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Antibiotic-Induced Gut Microbiota Dysbiosis Modulates
Host Transcriptome and m6A Epitranscriptome via Bile Acid
Metabolism

Meng Yang, Xiaoqi Zheng, Jiajun Fan, Wei Cheng, Tong-Meng Yan, Yushan Lai,
Nianping Zhang, Yi Lu, Jiali Qi, Zhengyi Huo, Zihe Xu, Jia Huang, Yuting Jiao, Biaodi Liu,
Rui Pang, Xiang Zhong, Shi Huang, Guan-Zheng Luo, Gina Lee, Christian Jobin,
A. Murat Eren, Eugene B Chang, Hong Wei,* Tao Pan,* and Xiaoyun Wang*

Gut microbiota can influence host gene expression and physiology through
metabolites. Besides, the presence or absence of gut microbiome can
reprogram host transcriptome and epitranscriptome as represented by
N6-methyladenosine (m6A), the most abundant mammalian mRNA
modification. However, which and how gut microbiota-derived metabolites
reprogram host transcriptome and m6A epitranscriptome remain poorly
understood. Here, investigation is conducted into how gut microbiota-derived
metabolites impact host transcriptome and m6A epitranscriptome using
multiple mouse models and multi-omics approaches. Various
antibiotics-induced dysbiotic mice are established, followed by fecal
microbiota transplantation (FMT) into germ-free mice, and the results show
that bile acid metabolism is significantly altered along with the abundance
change in bile acid-producing microbiota. Unbalanced gut microbiota and bile
acids drastically change the host transcriptome and the m6A epitranscriptome
in multiple tissues. Mechanistically, the expression of m6A writer proteins is
regulated in animals treated with antibiotics and in cultured cells treated with
bile acids, indicating a direct link between bile acid metabolism and m6A
biology. Collectively, these results demonstrate that antibiotic-induced gut
dysbiosis regulates the landscape of host transcriptome and m6A
epitranscriptome via bile acid metabolism pathway. This work provides novel
insights into the interplay between microbial metabolites and host gene
expression.

1. Introduction

The gut microbiota plays an important role in maintain-
ing host physiology, including digestion and nutrient uptake,
metabolism, development, and immunity.[1–4] At the molecular
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level, gut microbiota contributes to host
physiology through the production of a
myriad of metabolites (e.g., neurotransmit-
ters, vitamins, bile acids, etc.), which ex-
ert their effects within the host as signal-
ing molecules and substrates in metabolic
reactions.[5] Microbial metabolites are ab-
sorbed across the host gut and can inter-
act with any cell of our body through sys-
temic circulation.[6] As such, disruption of
the gut microbiota network, a process often
refers to dysbiosis is associated with many
diseases such as inflammatory bowel dis-
eases, neurological diseases, and metabolic
disorders.[7,8]

The alteration of gut microbiome in rela-
tionship to host gene expression can occur
in multiple ways. At the transcriptome level,
epigenetic changes enable the host cells to
adapt their transcriptional program to envi-
ronmental cues.[9] Recently, gut microbiota-
mediated epigenetic regulation has been
shown as one type of host-microbe in-
teractions. The links between epigenetic
changes and gut microbiota can be medi-
ated by microbiota-derived metabolites that
act as substrates and cofactors for key epi-
genetic enzymes in the host.[10] However,
molecular mechanisms by which the gut

microbiota chemically regulate the host gene expression and
physiology remain largely unknown.[11–14]

N6-methyladenosine (m6A) is the most abundant mammalian
mRNA modification that affects all aspects of mRNA life in-
cluding stability, splicing, translation, and decay.[15,16] The m6A
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modification is installed by writer proteins in mammalian cells
in response to environmental cues and thus could readily re-
spond to the type and the state of gut microbiota. We previously
showed that mouse gut microbiota reprograms the host mRNA
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methylome and tRNA methylome in multiple tissues.[17,18] This
host-microbe interaction was also observed by other groups, sug-
gesting that the RNA epitranscriptomic regulation represents an
additional level of host-microbe interactions.[19–21] Although the
role of gut microbiota in regulating host RNA epitranscriptome
has been recognized, however the specific microbiota-derived
metabolites mediating the epitranscriptomic response remain to
be elucidated.

Here, we investigated the impact of altered gut microbiota and
associated metabolites on host transcriptome and m6A epitran-
scriptome in animals and cells. Our metabolomic results demon-
strate that antibiotic-induced dysbiosis in the gut microbiota sig-
nificantly changes the bile acid metabolism in conventional mice,
which was verified using fecal microbiota transplantation (FMT)
in germ-free (GF) mice. We further showed that specific bile acids
treatment directly altered the expression of m6A machinery pro-
teins in mammalian cells. Our results demonstrate a key role of
the bile acid metabolism in regulating host transcriptome and
m6A epitranscriptome with dysbiotic gut microbiota.

2. Results

2.1. Characterization of Gut Dysbiosis Mouse Models Induced by
Antibiotics

To identify specific bacteriome regulating host transcriptome and
epitranscriptome, we constructed several gut dysbiosis mouse
models (Figure 1A). We exposed conventional SPF mice to dif-
ferent single antibiotic dose including ampicillin (Amp), gen-
tamicin (Gen), metronidazole (Met), neomycin (Neo) and van-
comycin (Van), or to an antibiotic cocktail (Abx, mixture of the
above five antibiotics) via drinking water for 40 days. Mice treated
with only distilled water were included as the control (Con). On
day 40, we collected fecal and tissue samples for multi-omics pro-
filing including microbiome, metabolome, transcriptome, m6A
epitranscriptome, and proteome.

We first analyzed the composition of gut commensals in fe-
cal samples from different antibiotic exposure by 16S ribosomal
RNA (rRNA) amplicon sequencing. Principal coordinate anal-
ysis (PCoA) showed that the beta-diversity in antibiotic treat-
ment groups (Amp, Gen, Met, Neo, Van, Abx) had substantial
divergence compared to the no antibiotic control, with biologi-
cal replicates well clustered within each group (Figure 1B). The
diversity indices (Sob, Chao1, Shannon, and Simpson) revealed
that the control group maintained excellent diversity and rich-
ness, while the diversity and richness in other groups dimin-
ished, some to a great extent (Figure 1C,D; Figure S1A–C, Sup-
porting Information). As expected, relative abundance analysis
at the phylum level indicated that the dominant phyla in fecal
samples of control mice were Bacteroidetes, Firmicutes, and Pro-
teobacteria (Figure 1E). Compared to the control, all antibiotics
greatly disturbed the composition of the gut microbiota, espe-
cially the three dominant phyla (Figure 1E–G). Our data revealed
that Firmicutes/Bacteroidetes ratios were significantly perturbed
by nearly all antibiotic treatments (Figure S1D, Supporting In-
formation), and the relative abundance of Proteobacteria in an-
tibiotic treatment groups was increased compared to the control
(Figure 1E,F; Figure S1A, Supporting Information). At the genus
level, the microbial compositions in antibiotic treatment groups
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Figure 1. Gut dysbiosis mouse models induced by antibiotics and the microbial composition analysis. A) Schematic diagram of gut dysbiosis models
and multi-omics analysis in this study. Antibiotic-treated groups include single antibiotic including ampicillin (Amp), gentamicin (Gen), metronidazole
(Met), neomycin (Neo) and vancomycin (Van), or an antibiotic cocktail (Abx). Mice treated with distilled water were included as the control (Con).
B) Principal coordinate analysis (beta-diversity) of 16S rRNA gene sequencing datasets showing microbial compositions in different antibiotic-treated
groups (n = 6–7 each). C) Chao1 analysis index showing alpha-diversity of microbial compositions in different antibiotic-treated groups (n = 6–7 each).
D) Shannon analysis index showing alpha-diversity of microbial compositions in different antibiotic-treated groups (n = 6–7 each). E) Phylum-level
taxonomic profiles of fecal microbiotas in different antibiotic-treated groups (n = 6–7 each). F) Relative abundance of three dominant phyla in different
antibiotic-treated groups (n = 6–7 each). G) Rank graphs showing relative abundance of microbial compositions in different antibiotic-treated groups
(n = 6–7 each). H) Venn diagrams showing microbial compositions at genus level in different antibiotic-treated groups (n = 6–7 each). I) Relative
abundance of microbial compositions at genus level in different antibiotic-treated groups (n = 6–7 each). J) Number of operational taxonomic unit
(OTU) in different antibiotic-treated groups (n = 6–7 each). K) Boxplots shows the difference in the number of OTUs between each of antibiotic-treated
groups and the control group (n = 6–7 each). *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001, Student’s t test.

differed greatly (Figure 1H,I; Figure S1E,F, Supporting Informa-
tion), and the number of operational taxonomic units (OTUs) was
also significantly reduced by antibiotic treatments (Figure 1J,K).
We also performed microbial composition analysis for Abx group
and Con group, and the results showed that microbial composi-
tions in Abx group were obviously reduced by antibiotic cocktail
treatment (Figure S2, Supporting Information). However, after
40 days of treated many bacteria still could be detected in the fecal
samples, especially the Gram-negative bacteria and pathogenic
bacteria. Overall, our microbial analysis suggested that antibiotic
treatments significantly reduced the bacterial diversity of gut mi-
crobiota.

The dominant gut microbial phyla for mammals are
Firmicutes, Bacteroides, Proteobacteria, Actinobacteria, and
Verrucomicrobia,[22] among which Firmicutes and Bacteroidetes

are the two major phyla. The Firmicutes/Bacteroidetes ratio has
been widely used as an indicator of microbial homeostasis
for human and mouse gut microbiota, and changes in Firmi-
cutes/Bacteroidetes ratio have been proposed as indicators for gut
dysbiosis.[23,24] In addition, Proteobacteria is considered a micro-
bial signature of gut dysbiosis.[25] The Firmicutes/Bacteroidetes
ratio was altered by all antibiotic treatments, bactericidal ac-
tivity also varied among different antibiotics. For example,
ampicillin and gentamicin had strong bactericidal capacity
against Firmicutes, while gentamicin also increased the rel-
ative abundance of Verrucomicrobia (Figure 1E; Figure S1A,
Supporting Information). Collectively, we conclude that our
mouse models of gut dysbiosis were constructed success-
fully and each antibiotic generated different gut microbiota
dysbiosis.
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Figure 2. Antibiotic-induced gut dysbiosis causes imbalance of bile acid metabolism. A) PCA plot of fecal metabolome datasets in three groups (Con,
Amp, Abx. n = 5 for each group). B) Abundance of metabolites identified from fecal samples in three groups (Con, Amp, Abx. n = 5 each). Kruskal-
Wallis Test was used for statistical analysis. C) Venn diagram depicting the shared or unique number of antibiotic-treatment associated metabolites in
three between-group comparisons (n = 5 each). D) The number of antibiotic-enriched and depleted metabolites related to Amp and Abx (n = 5 each).
E) Top 15 differential metabolites with -log2(Amp/Con) > 3 (n = 5 each). Down- and up-regulated metabolites were in blue and green, respectively.
F) Top 15 differential metabolites with -log2(Abx/Con) > 3 (n = 5 each). Down- and up-regulated metabolites were in blue and green, respectively.
G) The top 3 down-regulated bile acids and top 1 up-regulated bile acid in Amp and Abx groups compared to the Con group (n = 5 each). H) Func-
tional pathways involved in the differential metabolites between Amp and Con group (n = 5 each), bile-acid-related pathways were highlighted in red.
I) Functional pathways of differential metabolites between Abx and Con group (n = 5 each), bile acids pathways were highlighted in red. J) Correlation
analysis of differential metabolites with Firmicutes and Bacteroidetes between Amp group and Con group (n = 5 each). K) Correlation analysis of differ-
ential metabolites with Firmicutes and Bacteroidetes between Abx group and Con group (n = 5 each). *P < 0.05, **P < 0.01, ***P < 0.001, Student’s
t test.

2.2. Antibiotic-Induced Gut Microbiota Disturbance Causes
Imbalance of Bile Acid Metabolism

Previous studies suggested that microbial metabolites can affect
host transcriptome and epitranscriptome by acting as substrates
and cofactors for various key enzymes.[5,11,26] We performed un-
targeted metabolome measurements to examine whether gut
microbiota disturbance by antibiotics changed microbial-derived
metabolites in fecal samples. Since the microbial compositions
in ampicillin-induced and ampicillin-containing cocktail groups
had the least diversity after antibiotic exposure, we focused our

metabolome study on mice feces from Con, Amp, and Abx
groups.

We identified a total of 1725 metabolites by untargeted
metabolome analysis (Table S1, Supporting Information). PCA
results showed that the three experimental groups (Con, Amp,
and Abx) were well separated, suggesting that microbe-derived
metabolites under the Amp or Abx treatment had significant
differences from those in the Con group (Figure 2A). Moreover,
the overall abundance of metabolites in Amp or Abx group was
significantly lower than that in the Con group (Figure 2B). We
analyzed differential metabolites between every pair of treatment

Adv. Sci. 2024, 11, 2307981 © 2024 The Authors. Advanced Science published by Wiley-VCH GmbH2307981 (4 of 18)

http://www.advancedsciencenews.com
http://www.advancedscience.com


www.advancedsciencenews.com www.advancedscience.com

groups and identified 129, 96 and 48 differential metabolites for
Amp/Con, Abx/Con, and Abx/Amp, respectively (Figure 2C).
Most of the differential metabolites were downregulated upon
Amp or Abx treatment (Figure 2D). Strikingly, we found that
bile acids were the most obviously changed metabolites upon
antibiotic-treatment compared to the control (Figure 2E,F).
Among them, the levels of lithocholic acid, deoxycholic acid and
7-ketolithocholic acid were severely decreased by Amp or Abx
treatment, while taurocholic acid was significantly increased by
Amp or Abx treatment (Figure 2G). The Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway analysis of differential
metabolites revealed that pathways such as bile secretion and
primary bile acid biosynthesis were enriched for both Amp/Con
(Figure 2H) and Abx/Con comparison (Figure 2I). Next, we
performed correlation analysis between the altered metabo-
lites and the pronouncedly changed gut microbiota at phylum
level and genus level. The decreased metabolites mediated
by Amp (Figure 2J; Figure S1G, Supporting Information) or
Abx (Figure 2K; Figure S1H, Supporting Information) closely
correlated with the abundance of Firmicutes and Bacteroidetes,
suggesting that the down-regulated metabolites might be due to
changes of Firmicutes/Bacteroidetes.

2.3. FMT Verifies the Association of Antibiotic-Induced Gut
Dysbiosis with Bile Acid Metabolism

To determine whether bile acid changes were responsible for
Amp-induced microbiota dysbiosis, we performed FMT by col-
onizing fecal samples from the Con group or Amp group into
GF mice followed by microbiome and metabolome analysis
(Figure 3A). PCoA analysis of 16S rRNA gene sequencing data
showed a clear microbiota separation between FMT-Con group
and FMT-Amp group (Figure 3B). The diversity of gut microbiota
in FMT-Amp group was significantly lower than FMT-Con group
(Figure 3C–E; Figure S3A–D, Supporting Information). Similar
with the microbial structures in conventional SPF mice, Firmi-
cutes and Bacteroidetes were still the two dominant phyla in fecal
samples of GF mice for FMT-Con group and FMT-Amp group
(Figure 3F). We also analyzed the microbial structures at the
genus level (Figure 3G; Figure S3E–G, Supporting Information)
and OTU level (Figure 3H), both of which showed reduced rich-
ness of gut microbiota in the FMT-Amp mice compared to the
FMT-Con mice. In addition to phylum level and genus level, we
also analyzed microbial structures at other levels (class, family, or-
der, species) for antibiotic-treated mice (Figure S4A–D, Support-
ing Information) and FMT mice (Figure S4E–H, Supporting In-
formation). We also performed functional analysis on the gut mi-
crobiome for both antibiotic-treated mice (Figure S4I, Support-
ing Information) and FMT mice (Figure S4J, Supporting Infor-
mation), most enriched functions are overlapped between Amp
group and FMT-Amp, compared to the group. Overall, micro-
bial profiling between FMT recipient and antibiotic-treated mice
showed similar gut microbiota dysbiosis, where Firmicutes were
consistently depleted in both antibiotic treatment experiments
(Figure S3H, Supporting Information) and FMT experiments
(Figure S3I, Supporting Information).

Next, we performed targeted metabolome study focusing on
bile acids. Fecal metabolomes from two groups were different

as shown by PCA analysis (Figure 3I). Among 219 metabolites,
we identified a total of 209 and 213 metabolites for FMT-Amp
and FMT-Con groups, respectively (Table S2, Supporting Infor-
mation). Among the differential metabolites, 46 and 45 metabo-
lites either decreased or increased in the FMT-Amp group com-
pared to the FMT-Con group (Figure 3J, Supporting Informa-
tion). KEGG pathway analysis of those differential metabolites
revealed that diverse metabolic pathways were enriched for FMT-
Amp/Con comparison (Figure 3K). We further analyzed differ-
ential bile acids between the two groups and found that most dif-
ferential bile acids were lower in FMT-Amp samples compared
to FMT-Con group (Figure 3L,M), and most of the differential
bile acids strongly correlated with Firmicutes (Figure 3N). Impor-
tantly, we found that the three bile acids, lithocholic acid, deoxy-
cholic acid and 7-ketolithocholic acid, were down-regulated both
in FMT-Amp and Amp group (Figure S3J, Supporting Informa-
tion). We also observed that microbiome and metabolome pro-
files in GF mice were different from that in SPF mice, presum-
ably due to the variable colonization ability of several microbes in
GF mice and SPF mice. However, our FMT experiments in GF
mice generally recapitulated the microbiome and metabolome
profiles observed in antibiotic-mediated gut microbial dysbiosis
in the SPF mice.

2.4. The Impact of Gut Microbiota on Mouse Transcriptome after
Antibiotic Treatment and FMT

After the establishment of gut dysbiosis models using antibi-
otics and FMT, we investigated the impact of changed gut mi-
crobiota and metabolites on host gene expression. We first an-
alyzed the mRNA transcriptome profiles of eight mouse tis-
sues (Figure S5A, Supporting Information) in the three above-
mentioned groups (Con, Amp and Abx). PCA results of tran-
scriptome datasets (brain, liver, intestine, kidney, lung, heart,
spleen, and testis) showed that samples between groups were
well separated (Figure 4A), indicating the global impact of gut
microbiota dysbiosis on mouse transcriptome. Among all tis-
sues, many differentially expressed genes were up- or down-
regulated by ampicillin (Figure 4B; Table S3, Supporting Infor-
mation) or antibiotic cocktail (Figure 4C; Table S3, Supporting
Information) in a tissue-specific manner. The number of differ-
entially expressed genes varied from hundreds to thousands for
different tissues. KEGG analysis suggested that large number of
tissue-specific pathways were affected by gut dysbiosis induced
by antibiotics (Figure 4D). Transcriptomic analysis for brain,
liver, and cecum tissues from FMT experiments in GF mice also
revealed profound difference between FMT-Amp and FMT-Con
(Figure 4E,F; Table S3, Supporting Information), and various
pathways were affected by gut dysbiosis (Figure 4G). Notably,
both SPF transcriptome and GF transcriptome showed that bile
acid metabolism-associated pathways were enriched for differen-
tially expressed genes after antibiotic treatment in brain, liver and
cecum/intestine tissues. In addition, neuroactive ligand-receptor
interaction pathway was found to be enriched in many tissues af-
ter antibiotic treatment.

For the brain tissue, we also collected samples treated with
other antibiotics treatments and performed mRNA transcrip-
tome analysis among samples (Con, Gen, Met, Neo, Van).
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Figure 3. Microbiome and metabolome profiling after fecal microbial transplantation experiments in GF mice. A) Schematic diagram of FMT experiments
and multi-omics analysis. GF mice were colonized with fecal samples from ampicillin-treated mice (FMT-Amp) or the control mice (FMT-Con), followed
by multi-omics profiling and integrative data analysis. B) Principal coordinate analysis (beta-diversity) of 16S rRNA gene sequencing datasets showing
between-sample difference in microbial compositions in FMT-Amp group and FMT-Con group (n = 4–5 for each group). C) Chao1 analysis showing
alpha-diversity of microbial compositions in FMT-Amp group and FMT-Con group (n = 4–5 each). D) Shannon analysis showing alpha-diversity of
microbial compositions in FMT-Amp group and FMT-Con group (n = 4–5 each). E) Rank graphs showing relative abundance of microbial compositions
in FMT-Amp group and FMT-Con group (n = 4–5 each). F) Relative abundance of microbial compositions at phylum level in FMT-Amp group and
FMT-Con group (n = 4–5 each). G) Venn diagrams showing microbial compositions at genus level in FMT-Amp group and FMT-Con group (n = 4–5
each). H) Venn diagrams showing numbers of OTUs in FMT-Amp group and FMT-Con group. I) PCA results of fecal metabolome datasets in FMT-Amp
group and FMT-Con group (n = 4–5 each). J) Volcano plot showing up- and down-regulated metabolites in FMT-Amp group and FMT-Con group (n =
4–5 each). K) Functional pathways of differential metabolites in FMT-Amp group and FMT-Con group (n = 4–5 each). L) Top 15 differential metabolites
in FMT-Amp group and FMT-Con group (n = 4–5 each). M) Box plot shows the differential bile acids in FMT-Amp group and FMT-Con group (n = 4–5
each). N) Correlation analysis of differential bile acids with Firmicutes and Bacteroidetes between FMT-Amp group and FMT-Con group (n = 4–5 each).
*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001, Student’s t test.
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Figure 4. Transcriptome-wide impact of gut microbiota on mouse tissue-specific gene expression. A) PCA results of mouse mRNA transcriptome
datasets for eight tissues (brain, liver, intestine, kidney, lung, heart, spleen, testis) in three groups (Con, Amp, Abx. n = 3 each). B) Volcano plot showing
up- and down-regulated genes for eight tissues in ampicillin treatment compared to the control (n = 3 each). Genes with expression level of fold change
≥ 2 and P < 0.05 are presented. C) Volcano plot showing up- and down-regulated genes for eight tissues in antibiotic cocktail treatment compared to
the control (n = 3 each). Genes with expression level of fold change ≥ 2 and P < 0.05 are presented. D) KEGG analysis showing enriched pathways
with differentially expressed genes for eight tissues in three groups (n = 3 each). E) Venn diagram showing the differences and overlaps of genes for
three tissues between FMT-Amp and FMT-Con groups (n = 3 each). F) Volcano plot showing up- and down-regulated genes for three tissues between
FMT-Amp and FMT-Con groups (n = 3 each). Genes with expression level of fold change ≥ 2 and P < 0.05 are presented. G) KEGG analysis showing en-
riched pathways with differentially expressed genes for three tissues between FMT-Amp and FMT-Con groups (n = 3 each). Neuroactive ligand-receptor
interaction pathway and bile secretion pathway were highlighted in red and blue, respectively.

Hundreds of transcripts with differential expression levels were
found upon the treatment of different antibiotics in the brain
(Figure S5B–G and Table S3, Supporting Information). Gene On-
tology and KEGG analysis indicated that differentially expressed
genes upon antibiotic treatment were enriched in neural signal-
ing pathways (Figure S5H,I, Supporting Information). We also
determined the impact of gut dysbiosis on host gene expression
at protein level using quantitative proteomic approach (Figure
S5J and Table S4, Supporting Information). Among thousands
of detected proteins in ampicillin-treated and the control groups,
we identified 588, 250, and 245 differentially expressed proteins
for brain, liver, and intestine, respectively (Figure S5K, Support-
ing Information). Among those proteins, many were enriched
in either neural signaling or metabolism-associated pathways
(Figure S5L, Supporting Information). Collectively, our results
from transcriptome and proteome confirmed the impact of
antibiotic-induced gut dysbiosis on mouse gene expression in
multiple tissues.

2.5. Gut Microbiota Perturbation Reshapes Mouse Brain mRNA
m6A Epitranscriptome

To further investigate the impact of gut microbiota and metabo-
lites on host gene expression, we profiled the mRNA m6A epi-
transcriptome in mouse brain tissues, which harbor relatively
high m6A contents.[17] We built m6A-seq (MeRIP-seq) libraries
using the m6A-seq2 protocol, which employs multiplexed m6A-
immunoprecipitation of barcoded RNAs and greatly increases
the throughput of sequencing samples. The m6A-seq libraries
and RNA-seq libraries using mouse brain mRNAs were se-
quenced, and the profiles of brain mRNA m6A epitranscriptome
from three groups (Con, Amp, Abx) were assessed. PCA results of
MeRIP-seq datasets showed that samples between three groups
were well separated (Figure 5A), indicating the global impact of
gut microbiota dysbiosis on mouse brain mRNA m6A epitran-
scriptome. Overall, 17 256, 11 981, and 18 455 m6A peaks were
identified in mouse brain tissues for Con, Amp, Abx, respectively
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Figure 5. Gut dysbiosis reshapes host brain mRNA m6A epitranscriptome and gene expression. A) PCA results of mouse brain mRNA m6A epitranscrip-
tome datasets in three groups (Con, Amp, Abx. n = 3 each). B) Numbers of peaks identified in three groups (n = 3 each). C) The frequency of m6A peaks
distributed across the mRNA regions (5′UTR, CDS, 3′UTR) in three groups (n = 3 each). D) Venn diagram showing numbers of m6A peak-containing
genes in three groups (n = 3 each). E) KEGG analysis showing functional pathways of differentially abundant m6A peak-containing genes between
antibiotic-treatment groups and the control (n = 3 each). F) Representative consensus motifs and corresponding P values of m6A peaks identified in
different groups (n = 3 each). G) Integrative genomics viewer (IGV) depicting representative sequencing coverage of m6A-IP (different colors) and Input
(gray) showing differential m6A peaks on the transcripts Snca and Pink1. H) The gain and loss peak numbers in different antibiotic treatment groups
compared to the control (n = 3 for each group). I) KEGG analysis showing functional pathways of genes gaining m6A peaks in different groups (n = 3
each). J) KEGG analysis showing functional pathways of genes losing m6A peaks in different groups (n = 3 each). K) Correlation analysis of mouse brain
m6A epitranscriptome with transcriptome in different groups compared to the control (n = 3 each).

(Figure 5B). Consistent with previous studies,[15,17] m6A peaks in
all samples were located in 5′UTR, CDS and 3′UTR, with an en-
richment around the stop codon regions (Figure 5C). The m6A
peaks identified were enriched in 9544, 7101, 9991 genes for Con,
Amp, Abx, respectively (Table S5, Supporting Information), with
common and specific genes for each group (Figure 5D). KEGG
pathway enrichment showed that the gut microbiota imbalance
led to enrichments in brain’s neural signaling-related pathways
(Figure 5E).

We also profiled the mRNA m6A epitranscriptome in mouse
brain tissues treated with other antibiotics (Gen, Met, Neo, Van),
and the results supported the influence of gut microbiota dys-
biosis on mouse brain mRNA m6A epitranscriptome (Figure
S6A–C, Supporting Information). The well-established mam-

malian m6A motif RRACH (where R represents G or A; H rep-
resents A, C, or U), particularly GGACU, was enriched in the
identified peaks in all groups of samples with high confidence
(Figure 5F), indicating the validity and reliability of our MeRIP-
seq datasets. Snca and Pink1 are well-characterized genes related
to neurodegenerative diseases (e.g., Alzheimer’s disease, Parkin-
son’s disease). Integrative genomics viewer (IGV) tracks revealed
that m6A peaks in 3′UTR regions of these genes were indeed al-
tered in different antibiotic treatment groups (Figure 5G). We
also analyzed the gain and loss of m6A peaks upon individual
antibiotic treatment condition (Figure 5H; Table S6, Supporting
Information). Neural signaling pathways were enriched for genes
either gaining or losing m6A peaks, and antibiotic-specific path-
ways were also present (Figure 5I,J).
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To understand the role of gut dysbiosis and altered m6A modi-
fications in regulating brain gene expression, we performed cor-
relation analysis of mouse brain m6A epitranscriptome with the
corresponding transcriptome. The results suggested that hun-
dreds of transcripts were either positively or negatively correlated
to m6A modification (Figure 5K). We continued to analyze the
m6A peak densities, most antibiotic treatments affected the m6A
peak density on exons (Figure S6D, Supporting Information),
and the patterns were consistent with m6A peak numbers. In ad-
dition, m6A peak intensity on transcripts also indicated that m6A
clusters were alterable by antibiotic treatments (Figure S6E, Sup-
porting Information). These findings collectively suggest that an-
tibiotic treatments significantly altered mRNA m6A epitranscrip-
tome and transcriptome in the host brain.

2.6. Gut Dysbiosis Reprograms Host Liver and Intestine mRNA
m6A Epitranscriptome

To expand our understanding of gut dysbiosis on host gene ex-
pression, we also conducted MeRIP-seq and compared the m6A
methylome of the liver and intestine tissues from Con, Amp,
and Abx groups, respectively. PCA results indicated that the three
groups were well separated in the liver (Figure 6A) and intestine
(Figure 6B). The GGACU motif was also enriched in the identi-
fied peaks from the liver and intestine of all three groups with
high confidence (Figure 6C). For the liver tissue, 6739, 5951, and
12 339 m6A peaks were identified in Con, Amp, and Abx, re-
spectively (Figure 6D). The m6A peak number in liver tissue de-
creased by ampicillin treatment but increased by antibiotic cock-
tail treatment, which had the same trend as this change in the
brain tissue. For the intestine tissue, 2540, 5589, and 19 595
m6A peaks were identified in Con, Amp and Abx, respectively
(Figure 6E). The m6A peak number in intestine tissue signifi-
cantly increased by both ampicillin and antibiotic cocktail treat-
ment. As expected, the m6A modification sites in the liver and
intestine were mainly distributed in 5′UTR, CDS, and 3′UTR,
with an enrichment around stop codon and 3′UTR (Figure 6F).
Notably, m6A methylome profile in the intestine appeared to
be more dynamic than the liver tissue in terms of peak num-
ber and peak distribution patterns upon antibiotic treatments
(Figure 6G).

Next, we analyzed the profiles of transcripts with m6A mod-
ifications in liver and intestine tissues. In total, m6A peaks
identified in different groups were enriched in 4094–6967 tran-
scripts for the liver and 1974–10374 transcripts for the intestine
(Figure 6H; Table S7, Supporting Information). KEGG pathway
enrichment of transcripts with m6A modifications showed that
both ampicillin-induced and antibiotic cocktail-induced gut mi-
crobiota imbalance led to significant changes in diverse pathways
including spliceosome, protein processing in ER and mRNA
surveillance (Figure 6I,J). Correlation analysis suggested that
large number of transcripts were correlated with m6A modifi-
cation transcriptome-wide (Figure 6K–N). We also analyzed the
gain and loss of m6A peaks (Table S6, Supporting Information)
for the liver and intestine upon antibiotic treatments (Figure
S7A,B, Supporting Information), various key functional path-
ways were enriched for the two tissues (Figure S7C,D, Support-
ing Information). In the analysis of m6A peak density on exons

(Figure S7E, Supporting Information), both ampicillin-induced
and antibiotic cocktail-induced gut dysbiosis altered exonic m6A
peak densities in either liver or intestine. The m6A peak inten-
sities on transcripts were also variable by antibiotic treatments
(Figure S7F, Supporting Information).

In addition to the effect of gut microbiota on host m6A epi-
transcriptome in SPF mice, we also performed m6A epitranscrip-
tomic study using brain, liver, and cecum tissues from FMT-
Con and FMT-Amp in GF mice (Figure S8A–C, Supporting In-
formation). Similar with the results from SPF mice, the m6A
peak numbers were different between FMT-Con and FMT-Amp
in three tissues (Figure S8D, Supporting Information), and the
GGACU motif was enriched in the identified peaks with high
confidence (Figure S8E, Supporting Information). The patterns
of host m6A epitranscriptome reprogramming in FMT experi-
ments were similar with that in antibiotic treatment experiments.
We also analyzed the profiles of transcripts with m6A modifica-
tions for three tissues from FMT experiments (Figure S8F,G,
Supporting Information). The KEGG enrichment analysis re-
vealed that bacterial colonization using Amp-treated fecal sam-
ples affected diverse biological pathways in these three tissues
(Figure S8H–J, Supporting Information). IGV tracks on genes
Snca and Hsp90ab1 supported that m6A peaks on those genes
were altered in three tissues (Figure S8K). Correlation analysis
of FMT datasets also suggested that many transcripts were cor-
related with m6A modification transcriptome-wide for three tis-
sues (Figure S8L–N, Supporting Information). Overall, our re-
sults from FMT experiments confirmed that gut dysbiosis repro-
grams m6A epitranscriptome in both proximal (liver and cecum)
and distal tissue (brain) in a tissue-specific manner.

2.7. Tissue-Specific Epitranscriptomic −Regulation of m6A
Writers by Gut Dysbiosis

To obtain mechanistic understanding of m6A epitranscriptomic
changes induced by gut dysbiosis, we first performed m6A anal-
ysis using Liquid Chromatography-tandem Mass Spectrome-
try (LC-MS/MS) to determine the m6A A−1 ratios in poly(A)-
selected RNAs, we observed that the m6A A−1 ratios in brain tis-
sue were significantly decreased by antibiotic treatments (Figure
7A). Mammalian mRNA m6A modification is dynamically reg-
ulated by the writer enzyme complex containing METTL3 and
METTL14 proteins. We analyzed the levels of the mRNA m6A
writer proteins in mouse brain exposed to various antibiotics,
and we observed that METTL3 and METTL14 were significantly
downregulated by antibiotic-induced gut dysbiosis (Figure 7B;
Figure S9A,B, Supporting Information), indicating that gut dys-
biosis indeed regulate mouse brain m6A writing with different
patterns. In addition, we observed that gut dysbiosis induced by
most antibiotics tend to downregulate the reader YTHDC1 and
the eraser FTO (Figure S9C, Supporting Information), as well
as methyl donor-associated proteins (METTL16, MAT1A, and
MAT2A, Figure S9D, Supporting Information).

In our animal experiments, we recorded phenotypes when we
collected the tissues from antibiotic treatment experiments or
FMT experiments. The phenotypic difference of organ relative
weight was visible in the liver and cecum (Figure S9E,F, Sup-
porting Information). In addition to the weight change, we found
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Figure 6. Reprogramming of host liver and intestine mRNA m6A epitranscriptome by gut dysbiosis. A) PCA plot of mouse liver mRNA m6A epitran-
scriptomes in three groups (Con, Amp, Abx. n = 3 each). B) PCA plot of mouse intestine mRNA m6A epitranscriptomes in three groups (n = 3 each).
C) Representative consensus motifs and corresponding P values of m6A peaks identified from liver and intestine in three groups (n = 3 each). D) Num-
bers of peaks identified from liver and intestine in three groups (n = 3 each). E) Numbers of m6A peak-containing genes in liver and intestine of three
groups (n = 3 each). F) The frequency of m6A peaks distributed across the mRNA regions (5′UTR, CDS, 3′UTR) in liver of three groups (n = 3 each).
G) The frequency of m6A peaks distributed across the mRNA regions (5′UTR, CDS, 3′UTR) in intestine of different groups (n = 3 each). H) Venn dia-
gram showing the differences and overlaps of m6A peak-containing genes between different groups (n = 3 each). I) KEGG analysis showing functional
pathways of different m6A peak-containing genes in liver of three groups (n = 3 each), bile acid metabolism pathways were highlighted in blue. J) KEGG
analysis showing functional pathways of different m6A peak-containing genes in intestine of three groups (n = 3 each), bile acid metabolism pathways
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that the cecum was obviously enlarged in antibiotic-treated mice
compared to the control mice (Figure S9G, Supporting Informa-
tion). We then analyzed the levels of mRNA m6A modification
and mRNA m6A writer proteins in mouse liver and cecum tis-
sues. For the liver tissue, both m6A A−1 ratio and m6A writer pro-
teins were upregulated by ampicillin treatment (Figure 7C–F) or
FMT experiments (Figure 7G–J). For the cecum tissue by ampi-
cillin treatment, m6A A−1 ratio and m6A writer proteins were also
upregulated by ampicillin treatment (Figure 7K–N) or FMT ex-
periments (Figure 7O–R). Overall, our results indicate that the
m6A A−1 ratio and m6A writer proteins can be regulated directly
by antibiotic-induced gut dysbiosis for liver and cecum. The phe-
notypes and the responses of m6A machinery to different antibi-
otic treatments tend to be tissue-specific, which were in line with
the tissue-specific MeRIP-seq data for m6A patterns.

2.8. Bile Acids Treatments in Mammalian Cells Alter the
Expression of m6A Writers

Emerging evidence indicates that various metabolites
and metabolic pathways are involved in m6A mRNA
modification.[27,28] Like all enzyme reactions, m6A writing
is dynamically regulated by various substrates and co-factors.
Our metabolomic results from our gut microbiota dysbiosis
models showed high level of changes in the microbial metabo-
lites, in particular bile acids. We therefore treated three types of
mammalian cells with various bile acids (lithocholic acid, deoxy-
cholic acid, 7-ketolithocholic acid, chenodeoxycholic acid, and
hyodeoxycholic acid) to test whether bile acids directly affect host
m6A epitranscriptome via the alternation of m6A writer proteins.
For human glioblastoma U251 cells (Figure 8A; Figure S10A,B,
Supporting Information) and human colon cancer HCT116 cells
(Figure 8B; Figure S10C,D, Supporting Information), the results
strongly supported that the m6A writers METTL3 and METTL14
were down-regulated upon the addition of bile acids, especially
at high concentrations.

For human liver carcinoma HepG2 cells with different bile
acids, the results showed that the mRNA m6A writers METTL3
and METTL14 can be down-regulated by most bile acids, except
lithocholic acid (Figure 8C; Figure S10E,F, Supporting Informa-
tion). We further analyzed total m6A levels in HepG2 cells by
immunofluorescence analysis using m6A antibody (Figure 8D).
Cells were treated with lithocholic acid, deoxycholic acid, and
7-Ketolithocholic acid, which were identified as the main al-
tered metabolites in our gut dysbiosis mice models. Consis-
tently, total m6A levels were down-regulated by deoxycholic acid
and 7-Ketolithocholic acid, but up-regulated by lithocholic acid
(Figure 8D). The immunofluorescence analysis using METTL3
or METTL14 antibody further confirmed that the treatment of
lithocholic acid indeed up-regulated the expression levels of both
METTL3 and METTL14 (Figure 8E,F).

Taken together, we propose a working model for this study
(Figure 9). Under healthy gut microbiota conditions, microbiota-

derived bile acids are absorbed through the mucosa and circu-
lated to host tissues to maintain mRNA methylation levels and
gene expression by regulating expression levels of m6A machin-
ery proteins (METTL3, METTL14, etc.). Under dysbiotic micro-
biota conditions induced by environmental factors (e.g., antibi-
otics), microbiota-derived bile acids are reduced to alter the ex-
pression levels of m6A writer proteins in host tissues, which lead
to the reshaping of host transcriptome and m6A epitranscrip-
tome.

3. Discussion

Recently, our knowledge of the impact of the gut microbiota on
the host has greatly increased, especially with the advances in
multi-omics technologies. Given the influence of gut microbiota
on host cellular function through metabolites, changes in the
composition of the gut microbiota are certain to alter host gene
expression and can cause diseases.[12] Elucidating the molecular
mechanisms by which the gut microbiota interacts with the host
physiology is crucial for understanding the role of the microbiota
in health and disease.

In this study, we demonstrate that gut dysbiosis in mice in-
duces tissue-specific reprogramming of host mRNA m6A epi-
transcriptome via bile acid metabolism, which was further ver-
ified by fecal microbiota colonization experiment in GF mice.
Mechanistically, we demonstrated that the reshaping of mRNA
m6A epitranscriptome in animal tissues was accompanied by the
changes in m6A machinery enzymes, which could be reproduced
in cultured cells treated with specific bile acids. m6A represents
the most abundant mammalian mRNA modification that affects
diverse biological processes including development, tumorigen-
esis, circadian clock, and immune response.[15] While previous
studies support a key role of gut microbiota in regulating host
m6A epitranscriptome and gene expression,[17,19–21,29–31] the un-
derlying molecular mechanisms for this regulation in the con-
text of host-microbe interaction are still unclear. Our results here
provide a comprehensive landscape of host mRNA m6A epitran-
scriptome in multiple tissues associated with specific metabolites
and microbiota.

The diversity and composition of the gut microbiome have
been studied for over a decade, but their precise roles in influ-
encing host physiology and maintaining tissue homeostasis are
still under intense investigation.[32,33] In this study, we found
that ampicillin-induced gut dysbiosis led to unbalanced Firmi-
cutes/Bacteroidetes ratios and reduced production of secondary
bile acids. Bile acids are synthesized from cholesterol in the liver
and further metabolized by the gut microbiota into secondary bile
acids to exert biological functions.[34] It has been well established
that the gut microbiota has crucial effects on bile acid metabolism
by promoting deconjugation, dehydrogenation, and dehydrox-
ylation of primary bile acids in the distal small intestine and
colon, thus regulating the chemical diversity of bile acids.[35,36] In
our study, we found that lithocholic acid, deoxycholic acid, cholic

were highlighted in blue. K) Correlation analysis of mouse liver m6A epitranscriptome with transcriptome in Amp group compared to the control (n = 3
each). L) Correlation analysis of mouse liver m6A epitranscriptome with transcriptome in Abx group compared to the control (n = 3 each). M) Correlation
analysis of mouse intestine m6A epitranscriptome with transcriptome in Amp group compared to the control (n = 3 each). N) Correlation analysis of
mouse intestine m6A epitranscriptome with transcriptome in Abx group compared to the control (n = 3 each).
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Figure 7. Gut dysbiosis regulates m6A modification and m6A writers in mouse tissues. A) LC-MS/MS analysis of m6A/A ratios in the brain poly(A)-
selected RNAs from different groups (n = 5 each). *P < 0.05, **P < 0.01, ***P < 0.001, Student’s t test. B) Western blot of mRNA m6A writer proteins
in brain from different antibiotic treatments (n = 3 each). C) LC-MS/MS analysis of m6A A−1 ratios in the liver poly(A)-selected RNAs from Amp group
and Con group, respectively (n = 5 each). *P < 0.05, Student’s t test. D) Western blot analysis of mRNA m6A writer proteins in liver from Amp group and
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acid, and 7-ketolithocholic acid were significantly decreased
in Amp-treated or Abx-treated mice fecal samples, whereas
taurocholic acid was increased in these mice. Our results are
consistent with previous studies showing that most of bile acids
are lower in GF mice feces or antibiotic-treated mice feces.[37–39]

Importantly, we have verified our findings in GF mice without
antibiotic perturbance and the observed effects in SPF mice were
also observed in FMT experiments in GF mice, which ruled out
the side effects that might arise from the actions of antibiotics in
SPF mice. Previous reports revealed that Firmicutes are the main
source of bile acid-producing microbiota, given that Firmicutes
have large amount of bile salt hydrolase genes comparing to
other microbial phyla including Actinobacteria, Bacteroidetes, Eu-
ryarchaeota, and Proteobacteria, etc.[40] Taken together, our
microbiome and metabolome results suggest that the bile acid
metabolism in antibiotic experiments and FMT experiments
was indeed altered with the change in bile acid-producing
microbiota.

Our study indicates that bile acids are the main metabolites
regulating host transcriptome and m6A epitranscriptome in gut
dysbiosis. Bile acids have been shown to influence host DNA
and histone methylation during gene transcription.[41,42] Recent
reports showed that bile acids affect mRNA m6A modification by
targeting m6A catalytic enzymes under disease conditions.[43,44]

However, the bridge linking bile acid metabolism with host RNA
methylome in the context of gut dysbiosis was lacking prior to
this study. For the first time, our results added bile acids as the
molecular link between gut microbiota and host mRNA m6A
epitranscriptome. The complete atlas of microbial metabolites
and m6A methylome reshaped by gut dysbiosis from this study
provide an important clue to fill the gap between gut microbiota
and the host mRNA epitranscriptome. Our results also have
potential therapeutic implications to treat metabolic diseases or
other dysbiosis-related diseases. Maintenance of balanced gut
microbiota is essential for intestinal homeostasis and human
health, and microbiota-mediated unbalanced epigenetic or
epitranscriptomic signatures are related to many diseases.[45–47]

Thus, our results using the antibiotic-induced gut dysbiosis sup-
port the cautions of antibiotics usage in treating diseases. Also,
abnormal bile acids and other metabolites have been suggested
as disease biomarkers and targeting these metabolites could
present new approaches for treating diseases.[48–50] Thus, target-
ing host RNA epitranscriptomic machinery using bile acids or
bile acids-producing microbiota could be an effective and precise
approach as a treatment option of bile acid-related human
diseases.

At the molecular level, we demonstrated that the levels of m6A
machinery proteins and methyl donor-associated proteins were
altered by the gut dysbiosis in animal and bile acid treatments
in cultured cells. However, our mechanistic understanding of
microbiota-host RNA epitranscriptomic interactions underlying
this regulation is still limited, which will require further inves-
tigation. For example, the regulatory patterns of gut microbiota
and microbiota-derived metabolites on host m6A methylome and
m6A machinery proteins tend to be tissue-specific. Besides, other
host factors (age, food, gender, etc.) could also complicate the reg-
ulatory process. In addition, our metabolomic analysis reveals
numerous non-bile acid metabolites that were altered in dysbi-
otic microbiota, which could also impact on host RNA epitran-
scriptome. In previous study, bile acid was reported to modu-
late microRNA m6A modification by binding to METTL3 and af-
fecting the formation of METTL3-METTL14-WTAP complex.[43]

Whether similar mechanism could be applied to mRNA m6A epi-
transcriptome regulated by bile acids, experiments are required
to investigate exact mechanisms in future studies. Future work
will be needed to assess the effect of these metabolites on the host
RNA epitranscriptome and gene expression. Future work will
also include an extensive investigation of whether microbiota-
derived metabolites are involved in the host epitranscriptome
other than the m6A modification such as pseudouridine.

4. Experimental Section
Ethics Statement: The protocol for animal experiment was reviewed

and approved by Institutional Animal Care and Use Committee (IACUC)
of South China Normal University (protocol code SCNU-SLS-2022-009).

Antibiotics Treatment Experiments in Conventional Mice: Specific
pathogen free (SPF) mice (male, 6-weeks old, C57BL/6J) used in this study
were kept under a 12-h light-dark cycle. SPF mice were purchased from
SPF (Beijing) Biotechnology Co., Ltd., and housed in individually venti-
lated cages for autoclaved food and drinking water. To induce gut dysbio-
sis models with different microbial compositions, mice were given sin-
gle antibiotic treatment for 40 days via drinking water including ampi-
cillin (Amp, 1 g L−1), gentamicin (Gen, 1 g L−1), metronidazole (Met,
1 g L−1), neomycin (Neo, 1 g L−1), and vancomycin (Van, 0.5 g L−1),
respectively. Mice were also treated with antibiotic cocktail (Abx): a
combination of ampicillin, metronidazole, vancomycin, gentamicin and
neomycin with the above concentrations for 40 days. The control mice
(Con) were only given drinking water for 40 days. Mice (n = 6 each for
Con/Amp/Gen/Van/Abx group, and n = 7 each for Met/Neo group) were
sacrificed to collect tissues and stool samples, samples were immediately
dispensed to cryotubes and stored at −80 °C until used.

Bacterial Colonization in GF Mice: Germ-free (GF) mice (male, 4-weeks
old, C57BL/6J) were generated and provided by the GF animal platform

Con group, respectively (n = 3 each). E) Relative expression of METTL3 in liver from Amp group and Con group, respectively (n = 3 each). **P < 0.01,
Student’s t test. F) Relative expression of METTL14 in liver from Amp group and Con group, respectively (n = 3 each). *P < 0.05, Student’s t test. G) LC-
MS/MS analysis of m6A A−1 ratios in the liver poly(A)-selected RNAs from FMT-Amp and FMT-Con, respectively (n = 4 each). *P < 0.05, Student’s t test.
H) Western blot analysis of mRNA m6A writer proteins in liver from FMT-Amp and FMT-Con, respectively (n = 4 each). I) Relative expression of METTL3
in liver from FMT-Amp and FMT-Con, respectively (n = 4 each). **P < 0.01, Student’s t test. J) Relative expression of METTL14 in liver from FMT-Amp
and FMT-Con, respectively (n = 4 each). *P < 0.05, Student’s t test. K) LC-MS/MS analysis of m6A/A ratios in the cecum poly(A)-selected RNAs from
Amp group and Con group, respectively (n = 4 each). *P < 0.05, Student’s t test. L) Western blot analysis of mRNA m6A writer proteins in cecum from
Amp group and Con group, respectively (n = 3 each). M) Relative expression of METTL3 in cecum from Amp group and Con group, respectively (n = 3
each). *P < 0.05, Student’s t test. N) Relative expression of METTL14 in cecum from Amp group and Con group, respectively (n = 3 each). **P < 0.01,
Student’s t test. O) LC-MS/MS analysis of m6A A−1 ratios in the cecum poly(A)-selected RNAs from FMT-Amp and FMT-Con, respectively (n = 4 each).
P) Western blot analysis of mRNA m6A writer proteins in cecum from FMT-Amp and FMT-Con, respectively (n = 3 each). Q) Relative expression of
METTL3 in cecum from FMT-Amp and FMT-Con, respectively (n = 3 each). **P < 0.01, Student’s t test. R) Relative expression of METTL14 in cecum
from FMT-Amp and FMT-Con, respectively (n = 3 each). ***P < 0.001, Student’s t test.
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Figure 8. Bile acids treatments in mammalian cells alter the expression of m6A writers. A) Western blot analysis of mRNA m6A writer proteins in human
glioblastoma U251 cells treated with various concentrations of five different bile acids (n = 2 or 3 biological replicates). B) Western blot analysis of mRNA
m6A writer proteins in human colon cancer HCT116 cells treated with various concentrations of five different bile acids (n = 2 or 3 biological replicates).
C) Western blot analysis of mRNA m6A writer proteins in human liver carcinoma HepG2 cells treated with various concentrations of five different bile
acids (n = 2 or 3 biological replicates). D) Representative images of immunofluorescence analysis showing m6A levels in HepG2 cells treated with or
without lithocholic acid, deoxycholic acid, and 7-Ketolithocholic acid at 500 μm. n = 3 biological replicates. Scale bars, 40 μm. E) Representative images
of immunofluorescence analysis showing the expression of mRNA m6A writer METTL3 in HepG2 cells treated with lithocholic acid (0, 20, 100 μm).
n = 3 biological replicates. Scale bar, 40 μm. F) Representative images of immunofluorescence analysis showing the expression of mRNA m6A writer
METTL14 in HepG2 cells treated with lithocholic acid (0, 20, and 100 μm). n = 3 biological replicates. Scale bar, 40 μm.

of Huazhong Agricultural University (Wuhan, China), these mice were
maintained in a sterile Trexler-type isolator, and the mice were housed in
a pathogen-free mouse population (temperature, 25 ± 2 °C; relative hu-
midity, 45–60%; photoperiod, 12 h day−1; photoperiod 06:30–18:30), and
access to autoclaved food and drinking water. SPF mice and ampicillin-
treated SPF mice were used as donors in the fecal microbial transplan-
tation (FMT) experiments. The fecal microbial suspension was prepared
as described in previous study.[51] Briefly, fresh feces from SPF mice and
ampicillin-treated SPF mice were homogenized and diluted fivefold in ster-
ile potassium phosphate buffer (0.1 m, pH 7.2) containing 15% glycerol
(v/v). Fecal microbial suspension was then immediately dispensed to cry-
otubes and stored at −80 °C. For FMT experiments, GF mice were ran-
domly allocated into two groups (FMT-Con and FMT-Amp, respectively).
These mice were inoculated orally with 0.2 mL of fecal microbial suspen-
sion, once every day for seven days. Additional 2 mL aliquots were spread
on the fur of each mouse. After 7 days of bacterial colonization, mice were
reared in a sterile environment until 8-weeks old and then sacrificed for
fecal sample collection (n = 4 each for FMT-Amp group and n = 5 each for
FMT-Con group).

Fecal 16S rRNA Gene Sequencing and Microbial Analysis: Bacterial
DNAs were extracted from fresh fecal samples of mice treated with differ-
ent antibiotics and V4 region of the 16S rRNA gene was amplified for se-
quencing. Fecal samples of GF mice after FMT experiments were collected
and frozen until bacterial DNA was extracted and V3-V4 region of the 16S
rRNA gene were amplified for sequencing. Typically, microbial DNA from
150 to 200 mg of fecal samples was extracted using HiPure Stool DNA Kit
(Magen, Guangzhou, China) according to the manufacturer’s protocol.
High-throughput sequencing was performed on the Novaseq 6000 plat-
form of Gene Denovo Biotechnology Co. Ltd. in Guangzhou. Quantifica-
tion was performed on an ABI StepOnePlus real-time PCR system (Life
Technologies, USA) before loading into the sequencer. Purified amplicons
were pooled in equimolar for paired-end sequencing (PE250) on Illumina
platform according to standard protocols.

For microbial composition analysis, Illumina paired-end reads were
merged using FLASH (version 1.2.11) software[52] with a minimum over-
lap of 10 bp and a mismatch error rate of 2%, FASTP software[53] was used
to obtain high-quality reads for analysis. High-quality reads were aligned
to operational taxonomic units (OTUs) with 97% similarity using the UP-
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Figure 9. Proposed working model from this study. The status of gut microbiota and microbiota-derived bile acids can be changed from balance to
dysbiosis by environmental factors (e.g., antibiotics). Subsequently, the expression levels of m6A writer proteins (METTL3, METTL14, etc.) in host
tissues are perturbed, which will reshape transcriptome and m6A epitranscriptome. The image is created by BioRender.

ARSE (version 9.2.64) software,[54] and Silva (bacteria) database (ver-
sion 132)[55] was used to annotate the OTUs. The OTUs were classified
and assigned using RDP classifier (version 2.2).[56] The alpha-diversity,
beta-diversity, and differential OTU abundance analysis were performed
on the rarefied OTU table using QIIME (version 1.9.1).[57] For indica-
tor species analysis, the numbers of OUT sequences were used to ob-
tain differential OUTs in R project edgeR package, indicspecies and labdsv
packages in R project were used to calculate the indicator value of each
species. The indicator values were finally tested with cross-validation and
presented as bubble plots.

Untargeted Metabolome Analysis of Metabolites in Fecal Samples: Un-
targeted metabolome analysis of mouse fecal samples with different
treatments was performed in Gene Denovo Biotechnology Co., Ltd.
(Guangzhou, China). Briefly, ≈250 mg of mouse fecal samples from each
replicate were used for metabolites extraction by adding of 300 μL of 80%
methanol following previously published method.[58] An internal standard
for quality control (QC) was also included during sample preparation.
Samples were successively homogenized using a homogenizer, sonicated
for 10 min, incubated at −20 °C for 1 h, and centrifuged at 25 000 rpm for
15 min at 4 °C. Finally, the same volumes of samples and QC samples were
transferred to autosampler vials for LC-MS/MS analysis. To improve com-
pound coverage, an ultra-high-performance liquid chromatography high-
resolution mass spectrometer (Thermo Scientific) was used to separate
and detect positive and negative compound-ion modes.

For data analysis, raw data files generated by UHPLC-MS/MS were pro-
cessed using Compound Discoverer 3.1 (Thermo Scientific) to perform
peak alignment, peak picking, and quantitation for each metabolite. The
parameters were set as follows: retention time tolerance, 0.2 min; actual
mass tolerance, 5 ppm; signal intensity tolerance, 30%; signal/noise ratio,
3; and minimum intensity, 100 000. After that, peak intensities were nor-

malized to total spectral intensity. The normalized data was used to predict
molecular formula based on additive ions, molecular ion peaks and frag-
ment ions. Finally, the identified peaks were matched with mzCloud (https:
//www.mzcloud.org/) and mzVaultand Mass Listdatabase. For visualiza-
tion of differences between different groups of samples, the unsupervised
dimensionality reduction method principal component analysis was ap-
plied in all samples using R package models (http://www.r-project.org/).
Metabolites with a VIP greater than 1, a P value of T test < 0.05, and log2
(foldchange) ≥ 1 were selected for differential analysis between samples.
Enriched metabolites were mapped to KEGG for annotation and enrich-
ment pathways analysis.

Targeted Metabolome Analysis of Bile Acid Metabolites: Targeted
metabolome analysis of mouse fecal samples with different treatments
was performed in Shanghai Applied Protein Technology Co., Ltd. To extract
metabolites from the samples, 800 μL of cold methanol/acetonitrile/water
(2:2:1, v/v) extraction solvent was added to 100 mg sample, followed by
homogenization, dissociation, and centrifugation. For absolute quantifica-
tion of the metabolites, stock solutions of stable internal standards were
added to the extraction solvent simultaneously. The LC–MS analysis was
performed using an UHPLC (1290 Infinity LC, Agilent Technologies) cou-
pled to a QTRAP MS (6500, SCIEX). MRM detection mode was used for
mass spectrometry quantitative data acquisition of 350 targeted metabo-
lites. Targeted metabolome analysis was performed in positive and nega-
tive switch mode. A polled quality control (QC) samples were set in the
sample queue to evaluate the stability and repeatability of the system.

MultiQuant[59] was used for quantitative data processing. The QCs
were processed together with biological samples, and metabolites in QCs
with coefficient of variation <30% were denoted as reproducible mea-
sures. For data processing, mean value of the metabolites was assigned
in each group to the null value sample present in each group as the final
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level of that metabolite. After normalizing the metabolite levels in all
samples, the R package model was used to perform principal component
analysis on all samples to determine the variability of overall metabolite
levels between groups. Metabolites with a P value < 0.05 and VIP value
> 1 were considered as significantly differential metabolites between the
FMT-Amp group and FMT-Con group. KEGG enrichment analysis was
used to determine biological functions of final differential metabolites.

m6A MeRIP-Sequencing and RNA Sequencing: The m6A MeRIP-seq
libraries were built using the m6A-seq2 protocol adapted from pre-
vious study.[60] The m6A-seq2 protocol employs multiplexed m6A-
immunoprecipitation of barcoded RNAs and pooled samples, and can
greatly increase the throughput of samples. Before RNA barcoding and
ligation, 1.8 μg N−1 (N indicates the number of samples for pooling) of
poly-A selected mRNA using Oligo d(T)25 Magnetic Beads (S1419S, NEB)
was used for each sample at the beginning. RNA fragmentation at ≈150-nt
was performed using RNA fragmentation buffer (AM8740, Thermo Scien-
tific). VAHTS RNA Clean Beads (N412, Vazyme Biotech) was used to purify
RNA samples after fragmentation. For subsequent DNase and dephos-
phorylation treatment, each sample was incubated in T4 PNK (M0201,
NEB), TURBO DNase (AM2238, Thermo Scientific) and FastAP (EF0651,
Thermo Scientific) for 30 min in 37 °C in 5× FNK Buffer, followed by RNA
cleanup using VAHTS RNA Clean Beads. 3′ RNA barcode adapter ligation
was performed with 100 pmol of RNA ILL adapter (Table S8, Supporting
Information) and 36U of T4 RNA ligase (NEB, M0204) for 1.5 h at room
temperature for each sample. Following the 3′ ligation of barcoded RNA
adapters, all samples were pooled for the multiplexed m6A-IP and 10% of
the sample pool was taken as the input-RNA sample.

For multiplexed m6A-IP, 40 μl of Protein G beads (10004D, Thermo
Scientific) and 40 μl of Protein A beads (88 846, Thermo Scientific) were
washed twice in 200 μl IPP buffer (10 mm Tris-HCl, pH 7.5, 150 mm NaCl,
0.1% NP-40 in RNase-free water) and incubated with 4 μl rabbit anti-m6A
antibody (E1610S, NEB) for 6 h at 4 °C with rotation. RNA samples were
denatured at 70 °C for 2 min and incubated with anti-m6A-Protein A/G
beads for 2 h at 4 °C. After the incubation, RNA-Protein A/G beads were
washed twice with IPP buffer, low-salt IPP buffer (50 mm NaCl, 0.1% NP-
40, 10 mm Tris-HCl, pH7.5), high-salt IPP buffer (500 mm NaCl, 0.1% NP-
40, 10 mm Tris-HCl, pH7.5), respectively. RNA was eluted from the Protein
A/G with 30 μl of RLT buffer (79 216, Qiagen), followed by RNA cleanup
with VAHTS RNA Clean Beads. First strand cDNAs for m6A-IP RNA or
input-RNA were syntheszed with rTd RT primer (Table S8, Supporting In-
formation) and SuperScript III Reverse Transcriptase (18 080 051, Thermo
Scientific). The cDNAs were purified with the MolPure PCR Purification Kit
(19106ES50, Yeasen), followed by RNA hydrolysis in 1 m NaOH in 70 °C for
12 min and DNA cleanup using VAHTS DNA Clean Beads (N411, Vazyme
Biotech). Illumina 5′adapter ligation was performed with 50 pmol 5iLL-22
DNA adapter (Table S8, Supporting Information) with 45 U T4 RNA Ligase
1 (M0437M, NEB) for 6 h at 23 °C.

PCR enrichment was performed with KAPA HiFi PCR Kit (KK2601, KAPA
Biosystems) with universal forward primer and reverse primer containing
DNA barcode (Table S8, Supporting Information). Finally, amplified cDNA
libraries were cleaned up and the library concentration was measured by
Qubit 4 fluorometer. RNA-seq and MeRIP-seq of the prepared libraries
were performed in Berry Genomics on the NovaSeq 6000 platform (Illu-
mina, CA, USA) to obtain paired-end reads of 150-bp. Library quality was
assessed on an Agilent Bioanalyzer 4200 TapeStation before loading onto
the sequencer, ∼8G of raw reads was obtained for each demultiplex library.

MeRIP-seq Data Analysis: The raw data of MeRIP-seq IP libraries were
first processed with the same upstream pipeline employed for RNA-seq.
The mapping results of both MeRIP-seq IP and input libraries were used
for calling m6A peaks. Differential m6A peaks of the single-factor com-
parisons between groups were analyzed using the R package exome-
Peak2 (version 1.6.1) (https://bioconductor.org/packages/release/bioc/
html/exomePeak2.html) with a Poisson generalized linear model as the
quantitative method. The “consistent_peak” option was used if applica-
ble. To reduce false positives, the called m6A peaks from each biological
replicate were considered as significant and retained for subsequent anal-
yses according to the following thresholds: peak width ≤ 1500 bp, fold
change ≥ 2, P < 0.05, and FDR < 0.05. Similarly, the called differential

m6A peaks between groups were considered as significant under the fol-
lowing thresholds: peak width ≤ 1500 bp, fold change ≥ 1.5, P < 0.05,
and FDR < 0.05. HOMER (version 4.11)[61] was used for de novo motif
searching around peak summit-centered 300-bp regions. The R packages
ChIPseeker (version 1.18.0)[62] and Guitar (version 2.10.0)[63] were used
for annotation and representation of the distribution characteristics of the
significant/differential m6A peaks. PCA analyses of the Input data and IP
data at the gene level (based on gene expression) were conducted. Inte-
grative Genomics Viewer (IGV) software (version 2.12.2)[64] was used to
display read coverage tracks of target genes using the mapping results of
both the IP and input libraries in bigWig format.

RNA-seq Data Analysis: Adaptors and raw reads containing low-quality
bases were first removed by applying Cutadapt (version 2.8) (https://doi.
org/10.14806/ej.17.1.200) to all RNA-seq raw data including the MeRIP-
seq input libraries. The resulting reads of at least 50 bp were mapped to the
reference genome (mm39) released by UCSC database (Index of /golden-
Path/mm39/bigZips). The featureCounts program[65] in Subread package
(version 2.0.2) at SourceForge was used to count the reads that mapped
to genes. The genes that showed an average read count of less than 10
in any group or lacked read count in any replicate were primarily filtered.
The R package DESeq2 (version 1.34.0)[66] was used for the identification
of differentially expressed genes (DEGs) by setting a false discovery rate-
corrected P value < 0.05 and fold change ≥ 2 as the thresholds for sig-
nificance. R package DESeq2 was also used for read count normalization
across samples by size factors and gene expression was measured based
on normalized read counts.

Label-Free Quantitative Proteomics Analysis: Details of label-free quan-
titative proteomic analysis have been reported in previous study.[67] In
general, the protocol can be divided into the following four parts: protein
digestion and extraction, SDS-PAGE, LC-MS/MS analysis, protein iden-
tification, and quantification. First, SDT buffer (4% SDS, 100 mm Tris-
HCl, 1 mm DTT, pH7.6) was used for sample lysis and protein extrac-
tion, followed by protein separation using 12.5% SDS-PAGE gel followed
by Coomassie brilliant blue R-250 staining. LC-MS/MS analysis was per-
formed on Q Exactive mass spectrometer with peptide recognition mode
enabled. MaxQuant (version 1.5.3.17) was used to merge and search the
raw MS/MS data of each sample for identification and quantitative analy-
sis. Finally, the identified peptides were mapped to UniProtKB Swiss-Prot
database (Swissprot_Mus_musculus_17 063_20 210 106.fasta).

LC-MS/MS Quantification of m6A Modification Level: Purified mRNAs
(≈200 ng for each sample) were digested in 30 μL reaction with 2 U nucle-
ase P1 (N8630, Sigma), 250 mm NaCl, 25 mm ZnCl2 at 37 °C for 2 h, then
2 U FastAP (EF0651, Thermo Scientific) and 3.5 μL of 10× FastAP Buffer
were added, followed by another 4 h of incubation at 37 °C. The digested
nucleoside mixture was used for LC-MS/MS quantification. Briefly, 5 μL
of each digested sample was injected into a C18 reversed-phase column
coupled to an Agilent 6490 Triple Quad Mass Spectrometer (Agilent Tech-
nologies). In multiple reaction monitoring (MRM) positive electrospray
ionization mode, the nucleosides were quantified by using retention time
and nucleoside-to-base ion mass transitions (268.1–136.1 for A, 282.1–
150.1 for m6A) with calibration curves from A (A9251, Sigma) and m6A
standards (S3190, Selleck Chemicals). The ratio of m6A A−1 ratio was cal-
culated based on the calibrated concentrations.

Cell Culture and Bile Acids Treatment: Human cell lines (U251 cells,
HepG2 cells, HCT116 cells) were grown in Dulbecco’s Modified Eagle
Medium (11965-092, Gibco) supplemented with 10% fetal bovine serum
(FBS500-S, AUSGENEX) and 1% penicillin/streptomycin (15140-122,
Gibco) at 37 °C with 5% CO2. Lithocholic acid (Cat# A832268, Macklin),
deoxycholic acid (Cat# D806701, Macklin), 7-ketolithocholic acid (Cat#
A184646, Aladdin), chenodeoxycholic acid (Cat# C104902, Macklin), and
hyodeoxycholic acid (Cat# H106315, Macklin) were dissolved in DMSO.
When cells were at the confluency of ≈70%, individual bile acid was added
to cell culture medium at different concentrations (20, 100, and 500 μm).
Control cells were only added with DMSO and all cells were collected for
subsequent experiments after 24 h.

Western Blotting Analysis: Fresh tissues or cells were homogenized us-
ing tissue homogenizer in 150 μl RIPA buffer (P0013B, Beyotime) and
lysed on ice for 30 min. The suspension was centrifuged for 30 min at
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13000× rpm, the supernatant was collected and protein concentrations of
samples were measured by BCA assays (20201ES76, Yeasen). The samples
were mixed with gel loading buffer and heated for 10 min at 105 °C. Pro-
tein samples were dissolved in 10% SDS-PAGE and transferred to PVDF
membrane (ISEQ00010, Millipore) for 1.5 h at 4 °C, followed by incubation
with different primary antibodies. After incubation with secondary anti-
rabbit antibody (A0208, Beyotime) or anti-mouse antibody (A0216, Bey-
otime), target proteins were detected using Clarity Western ECL Substrate
(1 705 061, Bio-Rad), and the intensities of protein bands were quantified
using the ImageJ software and GraphPadPrism9.

Immunofluorescence: Cells were grown in 12-well tissue-culture plates
with slides and treated with bile acids. After 24 h, cells were fixed with 4%
w/v formaldehyde (P0099, Beyotime), permeabilized with 0.5% v/v Triton
X-100 (DH351-4, Dingguo Biotechnology Co., Ltd.) in phosphate-buffered
saline (C0221A, Beyotime) for 30 min. The slides were blocked for 30 min
at room temperature in blocking buffer with 5% w/v goat serum (C0265,
Beyotime). After blocking, the cells were incubated primary antibodies in
blocking buffer overnight at 4 °C, and then incubated with goat anti-rabbit
IgG (H+L) Cross-Adsorbed Secondary Antibody, Alexa Fluor 488 (A-11008,
Thermo Scientific) for 1 h at room temperature. Tissues were mounted in
PBT buffer and stained with DAPI Staining Solution (P0131, Beyotime). A
FLUOVIEW FV3000 confocal laser scanning microscope (Olympus, Japan)
was used to capture immunofluorescence images.

Antibodies: Primary antibodies used for Western blotting and Im-
munofluorescence are as follows: Rabbit anti-METTL3 (Cat# 15073-
1-AP, Proteintech), Rabbit anti-METTL14 (Cat# HPA038002, Sigma),
Mouse anti-WTAP (Cat# 60188-1-Ig, Proteintech), Mouse anti-FTO (Cat#
ab92821, Abcam), Rabbit anti-YTHDC1 (Cat# A7318, Abclonal), Rab-
bit anti-METTL16 (Cat# A304-192A, BETHYL), Rabbit anti-Mat1a (Cat#
12395-1-AP, Proteintech), Rabbit anti-Mat2a (Cat# 55309-1-AP, Protein-
tech), Mouse anti-beta actin (Cat# ab6276, Abcam), Goat anti-GAPDH
(Cat# A00192, GenScript).

Statistical Analysis: All data were expressed as the mean ± SD and rep-
resentative data were shown. Statistical analyses used in this study include
Wilcoxon test, Kruskal–Wallis, and two-tailed Student’s t test. The level of
significance was set at P < 0.05; *P < 0.05; **P < 0.01; ***P < 0.001;
****P < 0.0001.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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