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Abstract
Although recent warming affects the high-northern latitudes at an unprecedented rate, little is
known about its impact on boreal forests because in situ observations from remote ecosystems in
Siberia are sparse. Here, we analyse the radial growth and climate sensitivity of 54 Cajander larches
(Larix cajanderiMayr.) from three sites across the northern treeline ecotone within the Omoloy
river basin in northeastern Siberia. Three independent tree-ring width chronologies span
279–499 years and exhibit distinct summer temperature signals. These records further reveal
evidence for sufficiently earlier onsets of growing seasons since the middle of the 20th century. This
phenological shift coincides with rapidly increasing May temperatures and associated earlier
snowmelt. Our findings reinforce the importance of high-precision ground measurements from
remote regions in Siberia to better understand how warming-induced changes in the functioning
and productivity of the boreal forest influence carbon, nutrient, and water cycle dynamics.

1. Introduction

The Arctic and subarctic are warming at historically
unprecedented rate, which exceeds the global aver-
age temperature increase by four times (Rantanen
et al 2022). Associated with this Arctic amplification
(Francis et al 2017, Previdi et al 2021), the boreal
forest zone is experiencing shifts in vegetation struc-
ture and productivity, northward vegetation expan-
sion, permafrost degradation and greenhouse gas
emission from permafrost thawing (Anisimov 2007,
Schaefer et al 2011, Serreze and Barry 2011, Schuur
et al 2015, Turetsky et al 2019). Understanding the
speed and magnitude of these ecosystem changes is
critical for assessing their impact on global carbon
and water cycles (Chapin et al 2005, Bala et al 2007).

The dynamics of boreal forest ecosystems within
the northern treeline ecotone, the transition from
northern taiga to treeless tundra, is largely regulated
by growing season temperatures (Paulsen and Körner
2014, Hansson et al 2023). Due to high climate sens-
itivity of the forest–tundra transition, these ecotones
are widely used to monitor early responses to climate
change (Shiyatov 1993, Esper and Schweingruber
2004, Kullman 2007, Dufour-Tremblay et al 2012).
While a number of biotic and abiotic factors have
to be considered when forest dynamics are studied
(Rees et al 2019), current warming is believed to be
among the main drivers initiating an expansion of
trees into the tundra as well as forest densification
within forest–tundra ecotones (Danby and Hik 2007,
Fomin et al 2020, Dial et al 2022, Kruse et al 2023).

© 2024 The Author(s). Published by IOP Publishing Ltd

https://doi.org/10.1088/1748-9326/ad845f
https://crossmark.crossref.org/dialog/?doi=10.1088/1748-9326/ad845f&domain=pdf&date_stamp=2024-10-22
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-6797-4964
https://orcid.org/0000-0003-1107-1958
mailto:ak2118@cam.ac.uk
http://doi.org/10.1088/1748-9326/ad845f


Environ. Res. Lett. 19 (2024) 114091 A V Kirdyanov et al

Tree-ring width (TRW) data are widely used as
an indicator of past forest ecosystem response to
climate change. In addition to tree establishment
dates allowing identification of tree regeneration
dynamics (Shiyatov 1993, Esper and Schweingruber
2004, Kharuk et al 2006, Devi et al 2008, Kirdyanov
et al 2012, Grigor’ev et al 2019), TRWs provide
approximations of tree growth and forest productiv-
ity (Knorre et al 2006, Devi et al 2008, Bouriaud et al
2015). Previous tree ring-based studies in Siberian
high-latitude forest–tundra ecotones demonstrated a
strong dependence of tree growth on summer tem-
perature (Vaganov et al 1996, Naurzbaev et al 2002,
Briffa et al 2004, D’Arrigo et al 2006, Hellmann
et al 2016, Kirdyanov et al 2018, Büntgen et al
2021, Hantemirov et al 2021, 2022). However, Briffa
et al (1998) described a persistent decoupling of
tree growth from rising summer temperatures in
northeastern Siberia. This so-called ‘Divergence’ phe-
nomenon was also observed in northcentral Siberia
(Kirdyanov et al 2020). Moreover, there is evidence
that other climate-related factors can directly influ-
ence tree growth in Siberian forest–tundra ecotones,
such as winter precipitation (Kharuk et al 2023),
snowmelt dates (Vaganov et al 1999, Kirdyanov et al
2003), within-growing season frosts (Gurskaya 2014,
2021), floods (Tei et al 2019a, Meko et al 2020) and
soil temperature and moisture (Nikolaev et al 2011,
Fujii et al 2022, Kharuk et al 2023, Liang et al 2023).
Despite a long history of local and large-scale tree-
ring studies in the high-northern latitudes, uncer-
tainties remain with reference to how current and
future climate and environmental changes will affect
tree growth and forest productivity in northeastern
Eurasia.

Here, we explore the radial growth and climate
sensitivity of three larch sites across the northern
treeline ecotone within the Omoloy river basin of
northern Yakutia. Although hardly accessible, this
extremely remote region is of great importance for
revealing the direct ecological response of undis-
turbed forest–tundra ecosystems to rising temperat-
ures. We hypothesize that tree growth in this region is
directly affected by Arctic amplification, and should
be reflected in changing patterns of radial tree growth
climatic response.

2. Material andmethods

The study area is located at the northern treeline
in northeastern Siberia between 70◦31′36′′ N and
70◦56′00′′ N along the 132◦47′ E longitude (figure 1).
This region is dominated by deciduous Larix cajan-
deriMayr. that is well adapted to growing onnutrient-
deficient permafrost soils under harsh winter cli-
mate and short growing season with 24 h day-
light (Abaimov et al 1997). Climate in this region

is extremely continental, with annual mean temper-
atures of −13.3 ◦C (WMO 226 609 ‘Yubileinaya’;
1936–2022; meteo.ru) (figure 2). The warmest and
coldest months are July and January with monthly
temperatures of 11.2 ◦C and −35.3 ◦C, respect-
ively. June is usually the first month with pos-
itive temperature means (7.2 ◦C) that last until
September (2.0 ◦C). Annual precipitation totals are
276 mm (1936–2015), of which 42% fall between
June and August. Seasonal temperature means sig-
nificantly increased since 1975 at a rate of 0.6
(P < 0.005), 0.6 (P < 0.005) and 0.5 ◦C/decade
(P < 0.05), in June–July, summer (June–August)
and annually, respectively (figure 2), whereas sum-
mer precipitation totals significantly decreased by
10.9 mm decade−1 (P < 0.05). Importantly, data on
monthly precipitation totals available from the All-
Russian Research Institute of Hydrometeorological
Information—World Data Center (RIHMI-WDC)
are corrected for systematic errors according to
Bogdanova et al (2007) andBogdanova andGavrilova
(2008).

Increment core samples were collected in undis-
turbed, uneven-aged Cajander larch stands at three
sites along a north–south transect within the forest–
tundra ecotone (figure 1). The northernmost site N
was established in sparse forest on the first terrace
of Omoloy river, the only forested area at this loca-
tion (Miesner et al 2022a, 2022b). Stand density was
700–800 trees/hectare, with larch trees reaching 6.5m
in height and mean DBH (diameter at breath height,
1.3 m) of 10.0 cm. The middle site M represents a
closed forest treeline, with varying stand density from
2100 trees/hectare in open forest to 6400 trees/hectare
in closed forest. Trees were up to 8 m in height with a
DBH of 11.3 cm. The southernmost site S was estab-
lished in closed forest with the mean tree stand dens-
ity of 5600 trees/hectare and individual trees being
up to 10 m with a DBH of 10.6 cm. In late June
2014, the mean active layer thickness was 10–25 cm,
33–35 cm and ∼35 cm at N, M and S, respectively.
Detailed information on ground vegetation and stand
parameters was provided by Miesner et al (2022a).
During sampling, we mostly aimed at coring old-
growth trees, which were distributed over an area of
a one-two hectares. In total, from 16 to 21 trees per
site were cored with the oldest trees reaching from
279 (site N) to 499 (S) and the mean segment length
(MSL) ranging from126 (N) to 281 (S) years (table 1).

All increment cores were air-dried and moun-
ted on wooden supports, with their surface cut
and contrasted with chalk to increase the vis-
ibility of tree-ring boundaries. TRW was meas-
ured on a LINTAB measuring system (RINNTECH
e.K., Heidelberg, Germany). The individual TRW
series were cross-dated using the TSAP-Win (Rinn
2003), and cross-dating accuracy was statistically
verified with COFECHA (Version 6.02P). Individual
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Figure 1. Location of the tree-ring sampling sites (three blue circles of different intensity) and the meteorological station in
Yubileinaya (white circle). Green shading refers to the taiga zone. The upper left inset places the study region in the context of the
Northern Hemisphere, and the three pictures on the right show the three sampling sites (N= north, M=middle, S= south).
Basemap was developed with a Digital Elevation Model (DEM) produced by Shuttle Radar Topography Mission (SRTM) and
Sentinel satellite image, using the QGIS software.

Figure 2. (A) Annual climate cycle from the meteorological station in Yubileinaya averaged the period 1936–2022. (B) Annual
(Ta), summer (Ts) and June–July (Tjj) temperature changes, and (C) annual (Pa) and summer (Ps) precipitation changes. Linear
trends in the temperature data show significant increases since 1975 (P < 0.05).

Table 1. Chronology characteristics (MSL=mean segment length, TRW= tree-ring width, CS= coefficient of sensitivity;
Rbar= inter-series correlation, EPS= expressed population signal).

Site N of series Period CE MSL Mean TRW, mm Mean TRW>150 y., mm Mean CS Mean Rbar Mean EPS

N 21 1736–2014 126 0.56± 0.30 0.12± 0.06 0.397 0.415 0.905
M 17 1740–2014 190 0.27± 0.20 0.12± 0.06 0.415 0.538 0.946
S 16 1516–2014 281 0.21± 0.15 0.10± 0.05 0.408 0.469 0.914

Note: All statistics except Mean TRW and Mean TRW>150 y. were calculated for standardized chronologies.

TRW series were standardized with cubic smooth-
ing splines of 50% frequency-response cutoff at 2/3
of the individual series lengths. Bi-weight robust

means of the individual measurement series were
calculated to produce dimensionless TRW index
chronologies (Cook 1985). The standard version
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of the chronologies was chosen for further ana-
lyses to preserve potential longer-term variability
for comparison against different climate paramet-
ers. The coefficient of sensitivity (CS), mean inter-
series correlation (Rbar) and expressed population
signal (EPS) were calculated using the latest ver-
sion of the ARSTAN software (www.geog.cam.ac.uk/
research/projects/dendrosoftware/, last accessed on
25 March 2024).

To determine the most important climatic factors
that control tree radial growth, the TRW standard
chronologies were correlated against instrumental
records of monthly and seasonal temperature means
and precipitation totals from the nearest meteoro-
logical station Yubileinaya over the common period
1936–2014. Pairwise correlations were calculated,
which ignore missing climate data values. To assess
the temporal changes in the relationships between
TRW chronologies and climate records, Pearson’s
correlation coefficients were calculated over 1936–
1974 and 1975–2014, as well as using moving 25 year
windows. To eliminate the influence of climate data
trends on tree growth response to climate, we correl-
ated the residual TRW index chronologies with the
detrended climate records (Ols et al 2023). We also
evaluated time shifts in snowmelt dates available for
the meteorological station Yubileinaya.

3. Results

3.1. Tree radial growth
Trees at the study sites are characterized by low radial
stem growth rate, and up to 3.3% of tree rings can be
locally absent (M) (table 1). Themean TRW increases
from 0.21± 0.15mm (S) to 0.56± 0.30mm (N) with
decreasing chronology length and MSL. The mean
growth rate of trees at a mature stage (cambial age
>150 years), when the age trend in tree radial growth
is least pronounced, is similar among the sites, with
slightly lower values at S. All the index chronologies
are characterized by high CS >0.3 and Rbar >0.4.
Mean EPS (calculated for the 50 year periods shifted
by 25 years) is>0.9 since at least 1840. These statistics
indicate a strong common signal in individual TRW
series from each site and confirm that the sample
depth is sufficient for dendroclimatic analysis at all
the study sites.

The three TRW chronologies demonstrate a high
coherence of inter-annual and multi-decadal vari-
ation (figure 3). The coefficient of correlation for the
period since 1809, with data for at least three trees in
each chronology, ranges from 0.70 (P < 0.001) for
the most distant sites N and S to 0.85 (P < 0.001) for
two southern sites M and S. Since 1900, the highest
TRW indices were observed in the 1930s and the
early 1940s, followed by a gradual TRW decrease
until the 1970–80 s, and a growth increase afterwards
(figure 3).

3.2. TRW climate response
The growth-climate response analysis of the local
chronologies back to 1936 shows that TRW indices
at the northernmost site N correlate significantly
positively with mean June and July temperatures
(P < 0.01) (figure 4(A)). TRW data from the other
two sites exhibit positive relations with mean June
temperatures (P < 0.001). All three local chronolo-
gies correlate positively with summer (June–July and
June–August) temperaturemeans (r ranges from 0.26
to 0.42, P < 0.05). The strongest correlation is found
for the southernmost site S with June temperature
(r = 0.56, P < 0.001). Correlations of standard TRW
chronologies with observed monthly and seasonal
precipitation (figure S1(A)) and residual TRW chro-
nologies with detrended precipitation (figure S1(B))
do not show any consistent results between the sites.

Detailed dendroclimatic analysis with temperat-
ures shows that TRW mostly depends on June and JJ
temperatures during the 1936–1974 period (P< 0.05)
(figure 4(B)). TRW chronology from the northern-
most site N significantly (P < 0.05) correlates also
with JJA temperature. However, the correlation pat-
tern considerably changes for the later period from
1975 (figure 4(C)). June temperature is still the most
important climate variable for tree growth at all three
sites (P < 0.05), and N continues to depend on July
temperatures (P < 0.05). However, N and M also
show a strong dependence (P < 0.01) on May tem-
perature. In the case of seasonal temperature means,
correlations remain statistically significant only for
N and S (P < 0.05). Importantly, correlations of the
residual TRW chronologies with detrended temper-
ature variables show a similar pattern with increasing
importance ofMay temperature for N andM over the
1936–1974 period (figure S2).

Running correlation analysis of growth-climate
relation shows a continuously increasing influence
of May temperatures on TRW at all three sites
(figure 5(A)). At site N, correlations become signi-
ficant during the 1959–1983 period and remain high
since then. At sites M and S, May temperature is
important only during a short interval, with the first
significant correlations observed for the 1987–2011
period. June temperatures significantly influence tree
radial growth at all the three sites throughout most of
the period from 1936, with the generally higher cor-
relations up to r= 0.77 (P< 0.001) at S (figure 5(B)).
The role of July temperature fluctuated at theP< 0.05
significance level at N, whereas atM and S, it is mostly
insignificant throughout the period (figure 5(C)).
Surprisingly, running correlations with monthly pre-
cipitation totals do not demonstrate increased posit-
ive influence of precipitation for the period of tem-
perature increase (figure S4). On the contrary, TRW
chronologies significantly (P < 0.05) negatively cor-
relate with June precipitation totals (figure S4(B))
in recent decades. Positive correlations are observed
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Figure 3. Standard tree-ring width (TRW) chronologies. The chronologies were smoothened with a 30 year spline.

Figure 4. Correlation coefficients of standard tree-ring width chronologies and monthly temperature means from previous
September to current September, and seasonal temperature means for June–July (JJ) and summer (JJA) for the period 1936–2014
(A) and selected months and seasonal means (JJ and JJA) for the 1936–1974 (B) and 1975–2014 (C) periods. Horizontal line
indicates the significance level P < 0.05.

with July (figure S4(C)) and August (figure S4(D))
precipitations during some intervals during the first
half of the analysed period from 1936. The running
correlations of the residual TRW index chronologies
with detrended monthly temperature means (figure
S3), and precipitation totals (figure S5) demon-
strate similar tendencies, with the only major dif-
ference of significant negative correlations between
the TRW residual chronology from N and detrended

July precipitation starting from the 1973–1997 period
(figure S5(C)).

3.3. Changes of climate parameters crucial for tree
growth onset
To reveal factors leading to the shift of the tem-
perature dependency of tree growth to earlier dates,
the dynamics of May temperatures and snowmelt
dates were explored (figure 6). Mean May temper-
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Figure 5. 25 year window running correlations between the standard tree-ring width chronologies N, M and S and monthly
temperature means of May (A), June (B) and July (C). Grey horizontal line indicates the significance level P < 0.05.

Figure 6.May temperature (TM) and the day of a year (DOY) of complete snowmelt (Snowmelt) based on data from the nearest
meteorological station Yubileinaya. The lines are smoothed with distance-weighted least squares fitting in STATISTICA 64
(StatSoft, Inc.).

ature demonstrates a clear positive trend from the
late 1950s. During the last decades, May temperat-
ure was on average higher than for any other decade-
long interval over the period of instrumental meteor-
ological observations and increased from a decadal-
long mean −6.8 ◦C during the 1956–1965 period to
−2.0 ◦C in 1995–2014. Importantly, positive (>0 ◦C)
May temperature means started to appear in recent
decades and were recorded in 1990 (2.8 ◦C), 2007
(0.1 ◦C) and 2013 (0.2 ◦C). On the contrary, snow-
melt dates demonstrate a decreasing trend from the
1960s, evidencing a shift to earlier snowmelt from
154th day of the year (DOY) as a mean for the 1949–
1958 period to 135th DOY in 2011–2020.

4. Discussion

Radial tree growth at the northern treeline ecotone
in Siberia is usually extremely low due to harsh cli-
mate conditions, which synchronize tree growth not
only within single sites, but also at distances of sev-
eral hundred kilometers (Vaganov et al 1996, Esper
et al 2010, Hellmann et al 2016, Shestakova et al

2016, Büntgen et al 2021, Hantemirov et al 2021,
2022). Low mean annual increment, high inter-series
correlations of tree growth in our study region and
the results of the dendroclimatic analysis confirm
the importance of summer temperature as a primary
climatic driver that modulates year-to-year variabil-
ity of tree radial growth in northern Yakutia, with
the early summer period (June) showing the highest
impact. These results coincide with previous find-
ings for Siberia (MacDonald et al 1998, Hughes et al
1999, Vaganov et al 1999, Kirdyanov et al 2003, 2018,
Hantemirov et al 2022, Kolmogorov et al 2023), as
well as for the wider area of Eurasia and the Northern
Hemisphere (Briffa et al 2004, 2013, St. George 2014,
Hellmann et al 2016, Devi et al 2020). The period
of the growing season with significant correlations
between TRW and monthly temperature may con-
siderably vary between regions from one to four-five
months (Büntgen et al 2021), but early summer tem-
perature usually demonstrates higher correlations,
especially in Siberia (Vaganov et al 1999, Kirdyanov
et al 2018). Rapid onset of tree cambial activity after
snowmelt and daily temperature increase above the
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physiologically defined threshold at the beginning of
the growing season is the key adaptation of treeline
larch in Siberia (Vaganov et al 1999, Kirdyanov et al
2003). Trees take advantage of a 24 h photoperiod,
which enables them to complete tree-ring formation
within several weeks of the short and cold grow-
ing season (see data on seasonal tree radial growth
at the more southern location, but with short sea-
sonal growth in Bryukhanova et al 2013, Rinne et al
2015a, 2015b). However, neither the crucial temper-
ature threshold nor the timing of growing seasons
of larch at the northern treeline are currently known
despite the importance of these parameters for under-
standing the physiology of larch trees and predict-
ing future vegetation shifts in the boreal zone in
Siberia. Remote sensing data (Buitenwerf et al 2015,
Dronova and Taddeo 2022) and tree-ring growth
modelling (Vaganov et al 1999, 2006, Shishov et al
2016, Kang et al 2023, Shishov et al 2023)may provide
rough estimates of these values, but require on-site
validation.

Our TRWchronologies demonstrate a recent shift
of tree growth dependence on temperature to earlier
dates, which can indicate an earlier start of the grow-
ing season (Gao et al 2022). This shift coincides with
the temporal changes of two climate parameters that
directly affect the timing of the growing season onset:
snowmelt and temperature preceding and during
early growing season (Vaganov et al 1999, Kirdyanov
et al 2003, Livensperger et al 2016). An approximately
19 d earlier snowmelt and 4.8 ◦C higher May tem-
perature in recent decades compared to the middle of
the 20th century can indeed induce earlier activation
of seasonal growth, which is currently observed in
extratropical ecosystems in the Northern hemisphere
(Linderholm 2006, Menzel et al 2006, Piao et al 2015,
Büntgen et al 2022). Surprisingly, the significant cor-
relations between TRW chronologies and May tem-
perature during the period from 1975 were found for
the two northern sites N and M, but not the south-
ern site S, meaning the slower reaction of tree growth
at the southernmost location to temperature increase.
Unfortunately, there are no instrumental meteorolo-
gical observations in the region that could be repres-
entative to each of the study sites and confirm the
site-specific tree growth response to warming. The
only meteorological station Yubileinaya is latitudin-
ally located in the middle of the study transect, but
within closed forest of the treeline ecotone, corres-
pondent to site S. However, due to the proximity of
the sites and the flat topography of the study area
we can consider the regional climate rather homo-
geneous, with slightly lower air temperature at the
northern sites.

The site-specificity of TRW climatic response
to warming observed in the study region is a
known phenomenon for the boreal permafrost zone:

trees at geographically close locations can demon-
strate different climate response due to local soil
thermo-hydroclimate conditions (Kirdyanov et al
2013, Bryukhanova et al 2015, Kirdyanov et al 2024).
Intra- and inter-species competition can also act as
a factor influencing tree radial growth dynamics and
climatic response because soil temperature condi-
tions, active layer thickness and nutrient availabil-
ity largely depend on tree stand density and ground
vegetation (Brown 1966, Shur and Jorgenson 2007,
Yin et al 2017, Fedorov et al 2019, Knorre et al
2019, Stuenzi et al 2021). Trees at site S are prone to
the highest level of competition due to the highest
tree density and most developed ground vegetation
(Miesner et al 2022a). Although the active layer thick-
ness at site S is similar to site M and 10–25 cm deeper
than at N, higher root competition for water and
nutrients can explain a delayed reaction of TRW to
warming (figure 4(A)) (Wieczorek et al 2017). Denser
ground vegetation at site S can trap and insulate snow
delaying snowmelt and leading to later start of grow-
ing season.However, the exact reason of the difference
in timing of tree seasonal growth activation between
the study sites may not be resolved due to the lack of
on-site data.

The statement on site-specific tree growth
response in the permafrost zone may seem to con-
tradict earlier observations on high similarity of
tree growth at distant sites in northern Siberia (for
example, Vaganov et al 1996, Hellmann et al 2016).
However, the approaches to sampling in dendro-
climatology and dendroecology are different (Fritts
1976, Schweingruber 1996). While dendroclimatic
studies in northern Siberia are often focused on
extracting summer temperature signal, and research-
ers pay special attention to cool and moist sites with
similar environmental settings (Vaganov et al 1996,
Hughes et al 1999, Jacoby et al 2000, Briffa et al 2004,
Esper et al 2010, Büntgen et al 2021, Hantemirov
et al 2022), dendroecology is focused on under-
standing the effect of different environmental and
climatic drivers on tree growth, and sampling is usu-
ally conducted in environmentally diverse ecosystems
(Kirdyanov et al 2020, Gurskaya et al 2021, Buchwal
et al 2023, Kharuk et al 2023).

Our study underlines the importance of the on-
ground data for detecting the current changes in
vegetation. Such data are especially important for
remote regions exposed to rapid climate change, like
northern Siberia (Gauthier et al 2015, Hantemirov
et al 2022). Generally, despite recent advances in data
collection, analyses, and modelling (Lloyd et al 2011,
Büntgen et al 2014, 2021, Tei et al 2019b, Tei and
Sugimoto 2020, Miesner et al 2022a, 2022b, Buchwal
et al 2023, Liang et al 2023, etc), the way treeline
forests behave in northeastern Siberia is still poorly
understood. Sufficient efforts are needed to obtain
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in situ field data and gain knowledge, for example, on
tree cambiumactivity and the exact timing of growing
season, vegetation productivity and plant-permafrost
interactions to define the adaptation potential of
trees growing under extreme environmental condi-
tions that are currently rapidly changing.

5. Conclusion

Our study demonstrates that radial growth of
Cajander larch trees within the treeline ecotone in
northeastern Siberia mainly depends on early sum-
mer temperature. In recent decades, a shift to earlier
growing seasons is observed due to warmer May con-
ditions and earlier snowmelt. The climatic response
of tree growth is site-specific, being partly depend-
ent on local conditions that include ecological set-
tings of the sites and intra- and interspecies compet-
ition. To detect current ecosystem changes caused by
global warming, on-ground data are required, espe-
cially for remote regions that are characterized by
low anthropogenic pressure, but sensitive to global
climate change.
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