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Abstract

Chemolithoautotrophic Hydrogenovibrio are ubiquitous and abundant at hydrothermal vents. They can oxidize sulfur, hydrogen, or iron,
but none are known to use all three energy sources. This ability though would be advantageous in vents hallmarked by highly dynamic
environmental conditions. We isolated three Hydrogenovibrio strains from vents along the Indian Ridge, which grow on all three electron
donors. We present transcriptomic data from strains grown on iron, hydrogen, or thiosulfate with respective oxidation and autotrophic
carbon dioxide (CO2) fixation rates, RubisCO activity, SEM, and EDX. Maximum estimates of one strain’s oxidation potential were 10,
24, and 952 mmol for iron, hydrogen, and thiosulfate oxidation and 0.3, 1, and 84 mmol CO2 fixation, respectively, per vent per hour
indicating their relevance for element cycling in-situ. Several genes were up- or downregulated depending on the inorganic electron
donor provided. Although no known genes of iron-oxidation were detected, upregulated transcripts suggested iron-acquisition and so
far unknown iron-oxidation-pathways.

Keywords: Hydrogenovibrio, iron oxidizer, hydrogen oxidizer, sulfur oxidizer, chemolithoautotrophy, autotrophic CO2 fixation: Indian
ridge, hydrothermal vent environment bacteria

Introduction
In deep-sea hydrothermal vent systems, hot and reduced
hydrothermal fluids enriched in carbon dioxide (CO2), hydrogen
(H2), methane, reduced sulfur (S) species, and metals (e.g., iron,
Fe), rise from cracks in the basaltic ocean crust where seawater
is circulating and transformed into hydrothermal fluids. They
mix with entrained ambient, oxic, cold waters, creating thermal
and chemical gradients along the fluid pathway [1]. In the mixing
zone, intermediate inorganic S species like S0, thiosulfate (S2O3

2−),
and polysulfide can be found [2, 3]. This chemical disequilibrium
can be exploited by chemolithotrophic microorganisms catalyzing
the oxidation of these reduced substances to conserve energy
that can be utilized for autotrophic CO2 fixation [1, 4]. One
group of chemolithoautotrophs that is often abundant in well
mixed hydrothermal environments are Hydrogenovibrio spp. [5–
9]. Members of this group were originally placed into the genus
Thiomicrospira [10] and described as typical S-oxidizers capable
of using H2, hydrogen sulfide (H2S), S2O3

2−, [Sn(SO3)2]2−, and S0

under aerobic or microaerobic conditions [7, 8, 11, 12]. Based on
physiology, morphology, and phylogeny they were reclassified as
Hydrogenovibrio [13].

Recent work showed that several Hydrogenovibrio spp. can har-
ness energy from H2 oxidation [5, 14]. The so far only strain capa-
ble of Fe(II) and S2O3

2− oxidation, Hydrogenovibrio sp. SC-1, was
isolated from a non-hydrothermal marine habitat by microbial
traps positioned in Catalina Island off California, USA [15]. To
our current knowledge, Fe(II) oxidation has not been tested for
other Hydrogenovibrio spp. However, in incubation experiments
with hydrothermal fluids to which Fe(II) was added, CO2 fixation
rates were highly stimulated, while the relative abundance of
Hydrogenovibrio/Thiomicrospira increased from 15% in the envi-
ronment to >50% in the incubations [6], highlighting that this
metabolic potential is likely more common in this group than
thought. Until today it has not been demonstrated that a member
of this group can grow with all three electron donors (Fe(II), H2,
S). Such metabolic versatility would be highly beneficial, given
the temporal and spatial dynamics existing in hydrothermal vent
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environments and may explain why Hydrogenovibrio species are
present at geographically distinct places with distinct vent chem-
istry [14, 16].

Here we report the isolation of three Hydrogenovibrio strains
from three different vents along the Indian Ridge (IR). Mem-
bers of the genus Hydrogenovibrio have previously been shown to
dominate in hydrothermal vent communities of the South-West
Indian Ridge (SWIR) [9, 17], and more recently a strain has been
isolated from an active hydrothermal vent chimney at the SWIR
that is capable of S and H2 oxidation (Hydrogenovibrio thermophilus
strain S5) [14]. We demonstrate that our isolates can oxidize Fe(II),
H2, and S2O3

2−, thereby gaining sufficient energy to synthesize
biomass. We calculate the potential these strains have for element
cycling in IR vents. Further, we link this physiological work with
shifts in the transcriptomic data under the three incubation con-
ditions and identify genes related to the different metabolisms.

Material and methods
Field sites and sampling
Hydrothermal vent fluid samples were collected during the BGR
led INDEX 2019 cruise on RV Sonne SO-271 along the Central
Indian Ridge (CIR) and South-East Indian Ridge (SEIR). Field sites,
sampling, and chemical parameters of the hydrothermal fluids
are described in detail by Adam et al. [17]. Fluid samples used for
the isolation of the three strains were 040 KIPS C/D (F1, VF4, CIR),
083 KIPS A/B (F2, VF1, SEIR), 104 KIPS C/D (F3, VF2, SEIR) (for more
details see Table S4).

Quantification of cell numbers
For cell counts, a subsample of the hydrothermal fluids was fixed
with 4% formaldehyde) for 24 h at 4◦C. The fixed cells were then
concentrated on polycarbonate filters (type: Nucleopore, 0.2 μm
pore size, Whatman, Buckinghamshire, United Kingdom), washed
with sterile PBS and stored at −20◦C. Filter sections were stained
with DAPI (4′,6-Diamidin-2-phenylindol) and cells counted under
an epifluorescence microscope.

Enrichment and isolation
Alongside the enrichment cultures that were described by Adam
et al. [17], enrichments from the fluids 040 KIPS C/D, ROPOS 083
KIPS A/B, and 104 KIPS C/D were set up on ZVI (zero valent iron)
plates under microoxic conditions to enrich for microaerophilic
Fe(II)-oxidizers. The ZVI plates were prepared as previously
described [18] with artificial seawater (ASW), N2/CO2 (80:20) as
headspace and pH 6.8. Detailed information on the ZVI plates
and medium composition can be found in the SI (Table S3). After
the initial enrichment, cultures were subjected to dilution to
extinction series for isolation. Growth was regularly checked by
brightfield and fluorescence microscopy, where the cells were
stained with LIVE/DEAD stain (BacLight, Invitrogen, Waltham,
MS, USA). The purity of the culture was confirmed by microscopic
examination and sequencing of the 16S rRNA gene. Strains 083
and 104 were deposited at the DSMZ under accession numbers
DSM 117350 and DSM 117349. Strain 040 was physiologically very
similar to strain 104 and therefore not deposited at the DSMZ.

DNA isolation and sequencing of the 16S rRNA
gene
DNA was extracted with the NucleoSpin Soil kit (Macherey-Nagel,
Düren, Germany) according to the manufacturer’s instructions.
The bacterial 16S rRNA gene was PCR amplified using the primers
27F/1492R [19] and sequenced by Sanger sequencing (Eurofins

Genomics, Ebersberg, Germany). The phylogenetic tree of the
strains and their closest relatives was constructed with MEGA X
[20] based on the Maximum-likelihood method and Tamura-Nei
model with 1000 bootstrap replications after multiple alignments
using ClustalW [21].

Growth on various electron acceptors and donors
Growth was tested on FeS (in gradient tubes) and FeCl2 under
microoxic conditions, FeCl2 and NO3

−, H2S and NO3
−, H2S, and

O2 (in gradient tubes), S2O3
2− and NO3

−, and S2O3
2− and O2.

Growth on Fe(II) and quantification of Fe(II) oxidation rates
To confirm growth on Fe(II) cultures were also grown in gradient
tubes with an FeS plug in the bottom and in liquid ASW medium
containing FeCl2. Gradient tubes contained gel-stabilized ASW
with a bottom layer containing 1% (wt/vol) agarose with a 1:1
mixture of FeS and ASW medium overlain by ASW medium
with 0.15% (wt/vol) agarose and air in the headspace [22, 23]. In
gradient tubes, cultures were inoculated vertically over the whole
length of the tube. Cultures in ASW with FeCl2 were grown in
100 ml serum vials containing 50 ml ASW, 500 μM FeCl2 with
a headspace of N2/CO2 (80:20) to which sterile air was added
to reach an oxygen concentration of ∼1%. The headspace was
flushed daily with N2/CO2, and afterwards 500 μM FeCl2 and fresh
sterile air (1% final O2 concentration) was added.

Fe(II) oxidation rates were determined in cultures grown in
ASW with FeCl2. Each day samples from the culture were taken
and fixed with 1 M HCl (final concentration). At the same time, a
sample for cell counting was taken and fixed with 4% formalde-
hyde. The concentration of Fe(II) and total Fe was measured
photometrically with the Ferrozine Assay [24], and for total Fe
measurements all Fe(III) was reduced to Fe(II) with hydroxylamine
hydrochloride. Fe(III) concentrations were calculated by subtract-
ing Fe(II) from total Fe. Uninoculated replicates were taken as
abiotic controls. Fe(II) oxidation rates were calculated from the
difference between the biotic and abiotic incubations. Total cell
counts were performed as described above.

Growth on H2 and quantification of H2 oxidation rates
Cultures growing on H2 were cultivated in 16 ml Hungate tubes,
containing MJ medium (detailed composition Table S3) with a
H2/CO2/O2 (79:20:1) headspace. Resazurin was added as redox
indicator and the cultures were flushed with H2/CO2/O2 (79:20:1)
regularly once the medium became clear.

For quantification of H2-consumption rates, cultures were
grown in 100 ml serum vials with 50 ml MJ medium and
a H2/N2/CO2/O2 (2:77:20:1) headspace. H2 concentrations in
the headspace were measured with a Trace GC Ultra gas
chromatograph (ThermoFisher Scientific, Waltham, MA, USA),
using a ShinCarbon ST 100/120 column (Restek Corporation,
Bellefonte, PA, USA) and a Pulsed Discharge Detector (Vici Valco
Instruments, Houston, TX, USA) as previously described [5].
Uninoculated replicates were used as controls. Cell counts were
performed as described above.

Growth on S2O3
2− and quantification of S2O3

2− oxidation
rates
Cultures growing on S2O3

2− were cultivated in 100 ml serum
flasks containing 50 ml of T-ASW medium with 40 mM S2O3

2−

(detailed composition Table S3) and sterile air in the headspace.
Cultures were also grown on T-ASW plates, which were pre-
pared with T-ASW medium and 1.5% agar. For quantification of
S2O3

2−oxidation rates, samples were taken over time and the
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S2O3
2− concentration was measured via high-performance liquid

chromatography (HPLC) as previously described [25, 26]. Uninoc-
ulated replicates were used as controls. Cell numbers were quan-
tified as described above.

Quantification of 14C-HCO3
− incorporation rates

during Fe(II), H2, and S2O3
2− oxidation

For quantification of 14C-HCO3
− incorporation rates for strain

104 with the three different substrates, cultures were set up as
described above for the rate measurements. The following treat-
ments were prepared in triplicates for each of the electron donors
in a 14C version and a no radioactivity version: (i) control without
cells with electron donor, (ii) control with cells without electron
donor, and (iii) a treatment with cells with electron donor. The
14C treatments were initially incubated and sampled in parallel
with the other treatments and after 6 h for FeCl2, 8 h for H2 and
24 h for S2O3

2− 1 μCi of 14C-NaHCO3− (specific activity of 50–
60 mCi mmol−1) was injected to the vials and incubated for 18, 17,
and 24 h for FeCl2, H2, and S2O3

2−, respectively. The 14C incubation
was stopped by adding formaldehyde (final concentration 4%
(v/v)). At the same time, the non-14C parallel treatments were
continuously sampled to determine the consumption of FeCl2, H2

and S2O3
2−, and cell numbers during the 14C incubation.

For quantification of 14C incorporation, samples for DIC con-
centration measurements were taken before tracer addition, and
fixed with HgCl3. For cultures grown on H2 and FeCl2 DIC was
quantified with a QuAAtro four-channel flow injection Analyzer
(Seal Analytical) and the respective standard QuAAtro method (Q-
067-05 Rev.1). For cultures grown on S2O3

2− DIC was quantified
by flow-injection using a conductivity method with 30 mM HCl as
carrier and 5 mM NaOH as receiver.

Just before the 14C incubation was stopped, 100 μl of super-
natant from each vial was added to a scintillation vial containing
scintillation cocktail (Ultima Gold XR, PerkinElmer) to determine
the total radioactivity in the culture by liquid scintillation count-
ing (TriCarb 291 001, PerkinElmer). The remaining culture was
concentrated on polycarbonate filters (pore size 0.22 μm), washed
with sterile PBS solution, and leftover bicarbonate was removed by
acid fuming for 24 h with 2 M HCl in a desiccator. The FeCl2 filters
were additionally treated with oxalic acid/ammonium oxalate
solution (100 mM/80 mM) and Fe(II)-EDAS (100 mM) while the
filter was still mounted on the filtration tower to dissolve Fe-
minerals, including siderite, and washed with sterile PBS again
before acid fuming. The filters were added to scintillation vials,
scintillation cocktail was added and the radioactivity quantified
by liquid scintillation counting. The rate of C-fixation per ml
culture per hour was calculated as described previously [27].

Quantification of RubisCO enzyme activity
Specific RubisCO activity was measured with an HPLC based
enzyme assay as previously described [28, 29]. A 1 l batch of
Hydrogenovibrio strain 104 was cultured under the same conditions
as outlined above for the rate measurements with H2. Crude
extracts were prepared using a French pressure cell press (Thermo
Spectronic) (for detailed information see SI). RubisCO activity
was measured at 25◦C in RubisCO assay buffer [100 mM Tris–
HCl (pH 7.8), 10 mM MgCl2, 1 mM EDTA, 25 mM NaHCO3, and
1 mM DTT] with 0.2 mg μl−1 protein crude extract and 10 mM
ribulose-1,5-bisphosphate (RuBP). The consumption of RuBP was
quantified using the LaChrom Elite HPLC system (Hitachi, Tokio,
Japan) with a Lichrospher 100 RP 18e column (VWR International
GmbH, Darmstadt, Germany) (for further information see SI).

Transcriptomic analyses under different growth
conditions
For transcriptomic analyses, strain 104 was grown with H2, S2O3

2−,
and FeCl2 as described above (45 × 50 ml). After harvesting the
cultures in the late exponential phase by centrifugation, RNA
was extracted using the Marchery and Nagel NucleoBond RNA
soil mini kit (Düren, Germany) according to manufacturer’s pro-
tocol but with Chloroform:Isoamylalcohol (24:1) instead of Phe-
nol:Chloroform:Isoamylalcohol (25:24:1). Residual genomic DNA
was removed using the RapidOut DNA Removal Kit as specified
by the manufacturer (ThermoFisher Scientific) and the absence
of genomic DNA was verified via PCR. Library preparation for
transcriptome sequencing was done with the Stranded Total RNA
Prep kit with the Ribo-Zero plus rRNA depletion kit (Illumina, San
Diego, USA) according to manufacturer’s protocol. Sequencing
was performed on a NovaSeq 6000 System (2 × 150 bp; Illumina)
with the NovaSeq 6000 SP Reagent Kit v1.5 and NovaSeq XP 2-Lane
Kit v1.5.

Sequence reads were processed with FASTP (v0.23.2) [X] to
remove artificial sequences originating from adapters, low quality
sequences (more than 40% of bases below a phread quality score
below 15), and to correct bases in the overlap regions of the
forward and reverse reads of each read pair. Reads were than
aligned to the NCBI RefSeq assembly GCF_003991075.1 (strain S5,
which had based on 16S rRNA gene 100% sequence similarity
to our strain) with BWA MEM (v0.7.17-r1188). Samtools (v1.16)
was used for sorting the alignments and featureCounts from the
Subread package (v.2.0.6) was employed to obtain counts per gene
based on the genomic coordinates provided with the aforemen-
tioned RefSeq assembly. Normalization and differential expres-
sion analysis were carried out with DESeq2 (v.1.40.1). Although the
selection of the reference strain can have a significant impact on
the results, we also carried out a complementary analysis without
using any reference strain. For this, we performed a transcriptome
assembly with Trinity (v2.15.1) and then annotated the assembled
transcripts with Prokka (v1.14.6). By this approach we could also
not detect any of the known genes involved in Fe oxidation (e.g.,
cyc2) as summarized elsewhere [30].

Results
Isolation of three Hydrogenovibrio strains from IR
vent systems
Hydrothermal fluids from VF4 (CIR), VF1 (SEIR), and VF2 (SEIR)
[17] were used for enrichment on ZVI-plates. Cells were uniform
and were mostly attached to Fe-minerals, which appeared as
bulbous structures. EDS analysis confirmed that the bulbous
structures consist of elemental Fe (Fig. 1) and XRD analysis of
the products confirmed existence of crystalline α-Fe. 16S rRNA
gene sequence comparison showed that the strains were most
closely related to Hydrogenovibrio thermophilus strains JR-2 and S5
(Fig. 2) with 99.9, 100, and 100% sequence similarity for strain
040, 083, and 104, respectively. More information can be found
in SI.

Growth of strains and quantification of electron
donor oxidation and C-fixation rates
Growth was observed on FeS gradient tubes, FeCl2 and O2

(microoxic, 1% O2), H2 and O2 (microoxic, 1% O2), and S2O3 [2]
and O2 (fully oxic) (Table 1). On H2 (MJ medium) and S2O3

2− (T-
ASW medium), growth was confirmed by color change of the
medium (blue to pink to colorless for MJ and red to yellow for
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Fig. 1. Microscopy, and EDX of culture 104 grown on ZVI. (A and B) SEM images. In a cells attached to the bulbous mineral structures can be seen. (C)
Overlay of brightfield and fluorescence microscopy. The Fe-minerals appear dark in brightfield microscopy, the cells are stained with LIVE/DEAD stain
and visible in fluorescence microscopy. D: SEM image with overlain EDX spectrum measured along the x-axis of the EDX graph.

Table 1. Effect of redox substrates on growth of strains 040, 083,
and 104.

e− acceptor

e− donor O2 NO3
−

ZVI + n.d.
FeCl2 + −
FeS gradient + n.d.
H2 + n.d.
H2S − −
S2O3

2− + n.d.

n.d. = not determined

T-ASW) as well as by microscopy. On T-ASW, growth was also
visible from the formation of a white precipitate, likely ZVS (zero
valent S).

Microbial Fe(II), H2, and S2O3
2− oxidation rates

Cell numbers in the Fe(II)-amended cultures increased on average
4.8-, 3.9-, and 3.0-fold within 3 days for culture 040, 083, and 104.
This is lower than what was reported for SC-1, for which cell
numbers increased by two orders of magnitude within a week
[15]. Maximum Fe(II) oxidation rates were 0.016 (± 0.002), 0.008
(± 0.004), and 0.010 (± 0.002) μmol Fe(II) ml −1 h−1 for culture
040, 083, and 104, respectively (± are SD). Cell-specific rates were
1.6, 0.9, and 1.7 fmol Fe(II) cell−1 h−1 for culture 040, 083, and
104, respectively. Cultures 040 and 104 completely oxidized all H2

in the headspace within 48 h; culture 083 was slower but also
completely oxidized all H2 available within 96 h (Fig. 3). Maximum

H2 oxidation rates were 145.2 (± 18.2), 75.4 (±3.0), and 140.3
(±6.2) nmol ml−1 h−1 for culture 040, 083, and 104, respectively.
Per cell, the rates were 1.8, 9.2, and 1.7 fmol H2 cell−1 h−1. This
is very similar to what is reported for strain SP-41 (1.47–6.10
fmol H2 cell−1 h−1) [5]. In all cultures S2O3

2− was completely
oxidized within 120 h (Fig. 3). Maximum S2O3

2− oxidation rates
were 1.16 (± 0.026), 1.05 (± 0.05), and 2.06 (± 0.014) μmol S2O3

2−

ml−1 h−1 for culture 040, 083, and 104, respectively. Cell specific
rates were 53.6, 190.8, and 262.4 fmol S2O3

2− cell−1 h−1 for culture
040, 083, and 104, respectively. The oxidation rates are similar to
those reported for Hydrogenovibrio thermophilus S5, which oxidized
maximal 1.04 μmol S2O3

2− ml−1 h−1 [14].

Autotrophic CO2 fixation rates
Autotrophic CO2 fixation rates were determined for strain 104
by measuring 14C-HCO3

− incorporation during growth on FeCl2,
H2, and S2O3

2−. The highest rates of 14C-HCO3
− fixation (per ml

culture and per cell) were found when the culture was grown with
S2O3

2−, whereas the lowest C-fixation rates were found when the
culture was grown with Fe(II) as electron donor (Table 1). 14C incor-
poration measurements with hydrothermal fluids conducted in
other studies reported significantly lower cell-specific rates in the
range of 0.0001–0.1 fmol cell−1 h−1 [31, 32]. In a previous study
[6] rates quantified in incubation experiments with hydrothermal
fluids to which Fe(II) was added were in the range of 4 × 10−7

to 20 × 10−7 mmol C ml−1 h−1. The rates in mmol C ml−1 h−1

we quantified for our strain with Fe(II) were in the lower range
of this. Autotrophic CO2 fixation in Hydrogenovibrio is operated
by the Calvin-Benson-Bassham cycle with RubisCO as the key
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Fig. 2. Phylogenetic tree. Phylogenetic tree based on 16S rRNA gene sequences, showing the phylogenetic relationship of the three isolates and closely
related strains. ∗ indicate which strains have been reclassified from Thiomicrospira to Hydrogenovibrio [13]. Colors indicate experimentally verified
metabolic capabilities of the strains as indicated in the legend. Bootstrap values are only displayed if above 80%. The scale bar represents the expected
number of changes per nucleotide position. M. ferrooxydans is added as an outgroup.

carboxylating enzyme [14, 33]. The specific RubisCO activity of
Hydrogenovibrio strain 104 grown under H2:CO2:O2 (79:20:1) atmo-
sphere was 41.5 ± 7 nmol RuBP per min and mg of protein crude
extracts in the exponential growth phase which is 3.0 to 9.9 times
lower then what has been measured for other Hydrogenovibrio
isolates (Table 2).

This significant difference in RubisCO activities might reflect
that RubisCO enzymes of strain 104 expressed under the given
cultivation conditions actually have comparatively poor catalytic
properties. However, the apparently reduced RubisCO activity
could just as well be caused by methodological biases in the
quantification of RubisCO activities (e.g., 14C incorporation versus
HPLC assay, see Table 2). The transcriptomic data, though, suggest
that genes associated with the carboxysome operon are down-
regulated in H2-treated cultures, which could also explain the
rather low RubisCO activity (more information follow in section
below).

Transcriptomic analyses under different growth
conditions
Transcriptomic analyses were performed for strain 104 under
the three growth conditions, namely with Fe(II), H2, and S203

2−

and revealed significant differences in the expression patterns
(Fig. S6). Whereas over 500 genes are differentially expressed
(FDR ≤ 0.05 and |log2FC| ≥ 1) when comparing S2O3

2− against H2,
about twice as many are observed in comparisons including FeCl2

(Table S4). Here we present the most important findings regarding
Fe(II), H2, and S2O3

2− oxidation and C-fixation. A more detailed
description of the results from the transcriptome analysis can be
found in the SI.

Transcriptomic shifts of genes related to energy
metabolism.
There are only two known genes involved in neutrophilic
microaerophilic Fe(II) oxidation (cyc2 and mtoAB) [30]. Neither is
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Fig. 3. Rates of electron donor oxidation and cell numbers over time. Concentrations of electron donors and numbers of cells over time for all three
cultures grown on (A) Fe(II), (B) H2

−, and (C) S2O3
2−. Symbols are the mean (n = 3), error bars show standard deviation.

Table 2. CO2 fixation rates for strain 104 and specific RubisCO activities for strain 104 and other Hydrogenovibrio species.

CO2 fixation rates mmol C-fixation
ml−1 h−1

fmol C-fixation
cell−1 h−1

S2O3
2− oxidation strain 104 1.26x10−4 ± 9.31x10−6 23.30 ± 1.72

H2 oxidation strain 104 5.16x10−6 ± 3.27x10−7 0.29 ± 0.019
Fe(II) oxidation strain 104 7.77x10−7 ± 7.52x10−7 0.09 ± 0.082

RubisCO activities nmol RuBP min−1 mg−1 reference method

H. crunogenus TH-55 126 ± 8 [28] HPLC
H. crunogenus XCL-2 410 ± 20 [37] 14C incorporation
H. thermophilus I78 222 ± 40 [76] HPLC
Hydrogenovibrio 104 41 ± 7 this study HPLC

included in the reference annotation. A number of genes encoding
redox proteins (oxidoreductases) were induced with Fe(II) versus
S2O3

2− that likely relate to electron transport from iron to
oxygen, most prominently genes of the sarcosine oxidase subunit
delta (Fig. 4). A genetic association with formyltetrahydrofolate
deformylase (purU) and a high induction of the system points to
a highly important interrelation of C1-metabolism and sarcosine
oxidase. The physiological function of this sarcosine oxidase and
the importance of it specifically during growth with Fe(II) would
be an interesting aspect for future research. Genes involved in
Fe transport and storage were upregulated during growth on
Fe(II), most prominently a TonB-dependent receptor. In Gram-
negative bacteria the TonB-dependent receptor mediates the
transport of siderophores into the periplasm (together with ExbB
and ExbD, which are also in the transcriptome but were not
significantly upregulated with Fe(II) (Fig. S4) [34–36]. Moreover,
a Pirin family protein, 2Fe-2S iron–S cluster binding protein,
and some hypothetical proteins were upregulated. As these
are specifically induced under Fe(II)-oxidizing conditions, these
enzymes likely are somehow involved in Fe oxidation or the
subsequent electron transport pathway in this organism.

Hydrogenases (H2-converting enzymes) were detected on the
genome of Hydrogenovibrio already in 2006 [37], but H2 oxidation
was experimentally verified only ∼10 years later [5, 38]. Hydrogen-
ovibrio species have been shown to possess [NiFe]-hydrogenases
of group 1 (hyaAB) and group 2b (hupUV) [5, 14, 38]. Hydrogenase-
related genes were upregulated in cells grown on H2 relative
to those on S2O3

2− (Fig. 4). Unexpectedly, for cells grown with
Fe(II), some hydrogenase-related genes were upregulated relative
to those from H2 amended incubations.

Hydrogenovibrio species rely on the Sox enzyme system and
the sulfide:quinone reductase (Sqr) for S2O3

2− oxidation [14, 37].
Strain 104 has an incomplete Sox pathway, soxB, soxD, and sqr
genes are missing. The incomplete pathway results in the intra-
or extracellular accumulation of ZVS [39, 40]. Genes soxZ, soxC,
soxY, and soxX were upregulated in the S2O3

2− vs. H2 comparison,
whereas soxA was slightly downregulated (Fig. 4). When the strain
was grown with Fe(II) and H2, generally sox genes were downregu-
lated and genes needed for assimilatory sulfate reduction (cysD
and cysN, APS reductase, cysI, cysG) were upregulated, showing
that the strain used sulfate, the sole S-source in these media, for
assimilation.

https://academic.oup.com/ismej/article-lookup/doi/10.1093/ismejo/wrae173#supplementary-data
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Fig. 4. Transcription of selected genes related to metabolic sulfur, iron, or hydrogen oxidation in Hydrogenovibrio. Each gene is differentially regulated in
at least one of the three comparisons. An extended heatmap can be found in Fig. S4.

Transcriptomic shifts of genes related to
autotrophic CO2-fixation
Transcriptomic data indicate that strain 104 features multiple
RubisCO enzymes, which may allow to facilitate CO2 fixation
at a variety of CO2 and O2 exposures, as has been shown for
other Hydrogenovibrio strains before [41]. A total of three RubisCOs
types were found to be transcribed in Hydrogenovibrio strain 104,
namely (i) a carboxysomal form IA (IAc), (ii) a non-carboxysomal
form IA (IAq), and (iii) a form II RubisCO. Both, form IAc and

IAq RubisCO structural genes (cbbLS) were markedly upregulated
when Hydrogenovibrio strain 104 grew with S2O3

2−(Fig. 4), which
coincides with the enhanced growth observed under this treat-
ment (Fig. 3). RubisCO form II is compared to RubisCO form I
the faster catalyst, which, however, comes at the expense of a
lower specificity towards CO2 and results in lower tolerances to
oxygen [42]. Using Hydrogenovibrio marinus it was demonstrated
that the three RubisCO operons are regulated in response to CO2

concentration, with elevated CO2 levels (<2%) promoting CbbM

https://academic.oup.com/ismej/article-lookup/doi/10.1093/ismejo/wrae173#supplementary-data
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synthesis [43]. The down regulation of the form II RubisCO struc-
tural gene cbbM in the S2O3

2− treatment, performed under fully
oxic conditions and atmospheric CO2 levels is therefore plausible,
as is its significant upregulation in the low-O2 but high-CO2 treat-
ments, i.e., cultures grown with H2 and FeCl2 in a 20:80 CO2:N2

atmosphere with 1% O2. However, the non-carboxysomal form
IAq is significantly downregulated when comparing H2 and FeCl2

treatments, although the starting O2 and CO2 levels are identical
in both experiments, suggesting that the O2 and CO2 levels are
not the only factor determining the expression of RubisCO, but
that available electron donors are directly or indirectly also of
relevance.

The carboxysomal RubisCO form IAc of strain 104 is arranged
in a carboxysome operon together with the carboxysome shell
proteins and a carboxysomal carbonic anhydrase. Thus, Hydrogen-
ovibrio strain 104, like other Hydrogenovibrio species, possesses
a carbon concentrating mechanism (CCM) that facilitates the
active uptake of dissolved inorganic carbon to generate up to
100-fold increased intracellular versus extracellular concentra-
tions [44, 45]. Therefore it is reasonable that the genes related
to CCM (carbonic anhydrases and carboxysomes) were highly
upregulated when strain 104 grew with S2O3

2− under atmospheric
i.e., comparatively low CO2 concentrations, versus FeCl2- and H2-
treated cultures growing under high CO2 levels, i.e., with a CO2:N2

headspace of 20:80 (Fig. 4). Additional information on RubisCO
associated genes (cbbQO and lysR) can be found in the SI.

Discussion
We describe three newly isolated strains of Hydrogenovibrio from
hydrothermal vents of the IR, able to grow autotrophically
by Fe(II), H2, and S2O3

2− oxidation. This study highlights the
metabolic flexibility of Hydrogenovibrio providing a competitive
advantage over other organisms to thrive in various vent
environments.

All fluids from which the enrichments originate contained H2S
(<10–60 μM) and Fe(II) (1.3–45 μM) [17]. High H2 concentrations
have been measured in fluids of the Kairei vent field, located
on the CIR, and previously H2 oxidizers have been isolated or
enriched from the IR [14, 17, 46]. Given that in the environment
they are exposed to various electron donors, it is beneficial if
microorganisms can switch between different metabolisms or
simultaneously use them. On the ZVI plates that were used for
isolation of the strains, Fe(II) and H2 is available simultaneously
as H2 is produced from the reduction of H2O by ZVI during the
hydrogen evolution reaction (HER) [47], for more information see
SI. The production of H2 per ZVI oxidized during HER is quite
significant with an overall stoichiometry between 1:1 to 4:3 [47].
That the strains can also grow on FeCl2 and in gradient tubes
with FeS in the bottom plug shows that they do not depend on
H2 for growth but can grow autotrophically on Fe(II) alone. It is
yet to be investigated which electron donor they prefer or if they
can make use of them simultaneously, as it was shown previously
for the Fe(II)- and H2-oxidizing Ghiorsea bivora [48], which had a
growth benefit when both electron donors were present simul-
taneously. When strain 104 was growing on FeCl2 we found that
hydrogenases were amongst the genes with the highest log2-fold
change compared to cells grown on S2O3

2−. This is an indication
that the strain may be using both metabolisms simultaneously
in the environment. ZVI plates, which were used for isolation,
would provide an advantage for organisms being able to use H2

and Fe(II) simultaneously and therefore likely specifically select
for organisms with this ability.

Most microaerophilic Fe(II)-oxidizers are described to produce
twisted stalks or sheaths as characteristic Fe(III)-mineral struc-
tures [49–51]. This is different for our strains, they produce “coral-
like” structures consisting of bulbous Fe(III)-minerals with ∼1–
6 μm in diameter (Fig. 1). These structures appear very different
from Fe(III) that precipitated in abiotic controls and are similar
to what is reported for Ghiorsea bivora [48], a Zetaproteobacterium
that is also capable of Fe(II) and H2 oxidation, and Hydrogenovibrio
sp. SC-1, the only other known Hydrogenovibrio capable of Fe(II)
oxidation [15]. For Ghiorsea it was shown that it produces solu-
ble exometabolites. These exometabolites are responsible for the
Fe(III)-mineral formation outside the cell, that is different from
abiotic mineral formation [52]. We could not find any known
genes for Fe(II) oxidation in the transcriptome, therefore we con-
clude that, as previously suggested for SC-1 [15], the organism
uses another Fe(II) oxidation pathway as indicated by Fe(III)-
minerals being different from those generated by other Fe(II)-
oxidizers. The genome of SC-1 was also sequenced and no known
genes for Fe oxidation can be found in the genome [53].

When the strain 104 was grown on FeCl2, hydrogenases were
upregulated compared to S2O3 [2]. Five of thirteen observed
hydrogenase-related genes were significantly higher expressed
with FeCl2 than in H2, whereas two were significantly less
expressed (Fig. 4). However, the latter two are other hydrogenases
than the ones important for H2 oxidation as seen from the
comparison of H2 and S2O3

2−, as they are also downregulated
in this comparison.

It could be that hydrogenases are upregulated with FeCl2 as
the strain potentially uses Fe(II) and H2 simultaneously. However,
under the conditions that the Fe(II) culture was grown for the
transcriptomic analyses, there is no H2 available. Another rea-
son for the upregulation could be that hydrogenases themselves
are somehow involved in Fe(II) oxidation. This hypothesis would
require further research though. Another interesting aspect is the
upregulation of TonB in the culture grown on Fe(II). One possibility
for the upregulation of genes related to siderophores in our strain
could be that they are involved in the formation of the Fe(III)
mineral structures, similar to the soluble exometabolites that are
involved in Fe(III) mineral formation in Ghiorsea [52]. Siderophores
have been found to be abundant and diverse in hydrothermal
plumes [54]. They are important in keeping Fe in solution and
thereby impact cycling and transport of iron in the ocean [55].
Whereas TonB can also be involved in the transport of carbohy-
drates [56], especially in venting regions where carbohydrates are
abundant, such as the Guaymas Basin [57]. A study that inves-
tigated microbial genes involved in Fe uptake in hydrothermal
plumes in the Guaymas Basin found that TonB was amongst the
most abundant genes in the whole plume metatranscriptome [58]
and the authors link that to Fe transport. That our strain has the
potential to be involved in siderophore production/export high-
lights the environmental importance that Fe-oxidizing microbes
such as Hydrogenovibrio might have.

Thermodynamically, thiosulfate is with −762 kJ/mol S2O3
2−

oxidized the most favorable of the investigated electron donors
[59]. Hydrogen yields −237 kJ/mol H2 [60] and microaerophilic
Fe(II) oxidation only about −90 kJ/ mol Fe oxidized [61]. Results
from the 14C-HCO3

− incorporation experiments show that the
strain can grow autotrophically with all three tested electron
donors. C-fixation rates with S2O3

2− were much higher compared
to H2 and Fe(II), consistent with much higher cell growth and the
high upregulation of RubisCO with S2O3

2−. Based on our mea-
surements for C-fixation and concurrent substrate utilization, for
each mole of C-fixed ca. 16, 23, and 35 moles of substrate had
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to be oxidized for S2O3
2−, H2, and Fe(II), respectively. The ratios

of substrate oxidized per C-fixed in other autotrophic organisms
range from 2:1 to 5:1 for aerobic sulfide oxidizers [62–65], 10:1
for ammonium oxidizers [66, 67], and 25:1 to 80:1 for nitrite
oxidizers [68]. Considering that 4 mol electrons are needed for
each mol of C-fixation, this means that ∼7, 9, and 11% of the
electrons transferred from the substrate went into C-fixation (for
C-reduction) and the remaining electrons were used for energy
generation. This agrees relatively well with previous reports that
∼10–20% of the electrons are used for biomass synthesis [63, 69–
71]. The values for oxidized Fe(II) per fixed CO2 that we found
for Fe(II)-oxidizing conditions are slightly lower than what was
estimated previously for other neutrophilic microaerophilic Fe(II)
oxidizers, for which values of 43 to 70 mol oxidized Fe(II) per mol
of fixed CO2 were suggested [72, 73]. The rates of CO2-fixation
were much higher for S2O3

2−compared to FeCl2 and H2, likewise
the increase in cell numbers was much faster. It will have to be
elucidated in the future, which is the favored electron donor in
the environment where the strains were isolated from.

In the environmental samples used for isolation of our new
strains, we found that Hydrogenovibrio/Thiomicrospira had a relative
abundance of up to 6% [17]. For the fluid from which strain 104
was isolated we counted 3.44 × 106 cells ml−1

. This means that
we potentially have up to 2.064 × 105 Hydrogenovibrio cells per
ml of hydrothermal fluid. Assuming that all these cells consume
either Fe(II), H2, or S2O3

2− at the rate measured for the isolates, we
could find rates of C-fixation of 1.75 × 10−8, 6.04 × 10−8, and 4.8
× 10−6 mmol C ml−1 h−1, respectively. Unfortunately, we do not
have flow rates for the vents from which the samples originate.
Based on literature, we assume rates for low-temperature diffuse
vents between 116–17 580 l h−1 [74, 75]. Based on these num-
bers and the rates we measured with the cultures, between 71–
10 777, 159–24 109, and 6282–952 183 μmol Fe(II), H2, and S2O3

2−

could become oxidized per vent-site per hour, respectively. For C-
fixation we calculated that during Fe(II), H2, and S2O3

2− oxidation
by Hydrogenovibrio between 2–308, 7–1061, and 557–84 420 μmol
C could be fixed per vent site and hour, respectively. These rates
are potential rates that can be reached by a pure culture under
ideal conditions. Thus, they are likely overestimates of what can
be reached in the environment and many assumptions go into this
calculation. The details of the calculation can be found in the SI
(Table S5). Comparisons of the cell-specific 14C fixation rates from
our strain (Table 2) and rates determined in hydrothermal fluids,
which were in the range of 0.0001–0.1 fmol cell−1 h−1 [31, 32], show
that our rates are high. However, in another study 14C fixation
rates with Fe(II) in hydrothermal fluids have been in the same
range [6] (4 × 10−7 to 20 × 10−7 mmol C ml−1 h-1, Table 2). Even
though our estimates are rough, the calculations demonstrate
that Hydrogenovibrio potentially substantially contributes to C, S,
Fe, and H2 cycling at these vents.

The metabolic versatility of the isolated strains highlight that
Hydrogenovibrio species do not only play an important role in S
and carbon cycling, but are also important in H2 and iron cycling.
Because no known genes for Fe(II) oxidation were found, we
conclude that the strain uses a yet unknown pathway for Fe(II)
oxidation. The metabolic versatility makes these strains good
candidates for studying new Fe oxidation genes and mechanisms.
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