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S U M M A R Y 

We present an adaptation of the Backus–Gilbert method that enables (i) the incorporation of 
arbitrary prior knowledge and (ii) the solution of multiparameter inverse problems, providing 

a tunable balance between spatial resolution, inference errors and interparameter trade-offs. 
This yields a powerful approach for solving a class of inverse prob lems w here the forward 

relation is linear or weakly nonlinear. The method rests on a probabilistic reformulation of 
Backus–Gilbert inversion and the solution of an optimization problem that maximizes deltaness 
while minimizing interparameter trade-of fs. Appl ying the theory to multimode surface wave 
dispersion data collected by distributed acoustic sensing on the Northeast Greenland Ice 
Stream, we show that density in the firn layer may be constrained directly and without the 
need for scaling relations to depths of around ten metres, provided that dispersion data up to at 
least the third overtone of Rayleigh waves are available in the ∼10–50 Hz frequency band. The 
limiting factor that prevents the resolution of density at greater depth is data quality. Hence, 
progress on the direct inference of density could be made by repeated experiments or higher 
signal-to-noise ratios that would require better coupling and shielding of fibre-optic cables 
from wind and temperature fluctuations. 

Key words: Inverse theory; Distributed acoustic sensing; Wave propagation. 

1  I N T RO D U C T I O N  

George Backus’ and Freeman Gilbert’s early work on inferences of Earth structure based on noisy data is frequently considered the hour of
bir th of moder n geophysical inverse theor y (Backus & Gilbert 1967 , 1968 , 1970 ). In addition to providing profound insight into the nature
of inverse problems and circumventing the need to parametrize the model space, they posed and answered the question of how to negotiate a
compromise between two antagonists: spatial resolution and certainty. 

Both mathematically and philosophically, the Backus–Gilbert method differs from alternative approaches, including, at the opposite ends 
of the methodological spectrum, Bayesian inference (e.g. Tarantola 2005 ; Fichtner 2021 ) and misfit minimization by numerical optimization
(e.g. Nocedal & Wright 1999 ). The major advantage of Backus–Gilbert theory is that spatial discretization, which is unavoidably subjective
and affects inversion outcomes, is not required. Generalizations of the original Backus–Gilbert method include the SOLA method and efficient
extensions to higher dimensions (e.g. Yanovskaya 2000 ; Zaroli et al. 2017 ), as well as variants for mildly nonlinear problems (Snieder 1991 ).
Applications of Backus–Gilbert inversion can mostly be found in seismic tomography (e.g. Zaroli 2016 , 2019 ; Amiri et al. 2023 ) and the
imaging of the solar interior (e.g. Pijpers & Thompson 1992 ; Pijpers 1995 ; Kosovichev 1999 ). 

Notwithstanding its elegance and numerous successful applications, the Backus–Gilbert method has limitations that prevent its more 
widespread use. By design, Backus–Gilbert inversion does not infer model parameters but their spatial averages, which have the advantageous
property of being unique. While uniqueness greatly facilitates interpretation, averages may not be used directly in simulations that aim to
predict new data, because most forward problem solvers require the actual model parameters as input. Therefore, Backus–Gilbert inversion 
primarily serves the purpose of quantitative interpretation instead of prediction. 

A deficiency of the original Backus–Gilbert method that weighs more heavily is the restriction to single-parameter prob lems. F rom the
perspective of an interpreter , kno wledge of multiple parameters is often required to produce derived inferences. For instance, seismic wave
speeds, attenuation and density are required to distinguish thermal from chemical heterogeneities in the Earth (e.g. Trampert et al. 2004 ;
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oelemeijer et al. 2017 ; Cobden et al. 2018 ). Fur ther more, optimizing the inference of just one parameter may increase trade-offs with other
arameters, thereb y producing potentiall y useless results. For these reasons, multiparameter inversion has long been and continues to be
onsidered one of the main challenges in seismic inversion (Kennett et al. 1988 ; Kennett & Sambridge 1998 ; Fichtner et al. 2024 ). 

In addition to multiparameter problems, the incorporation of prior knowledge, frequently needed to obtain meaningful inferences, is not
onsidered in Backus’ and Gilbert’s original work. While prior knowledge in the form of a probability density is an integral part of Bayesian
nference, the inherently deterministic Backus–Gilbert approach does not naturally include this option. 

Several attempts to extend the basic Backus–Gilbert method have been made during the past decades. Masters ( 1979 ) and Masters &
ubbins ( 2003 ) proposed a multiparameter variant in the context of global-scale density inversion using normal-mode data but could not

nclude essential prior information, for example, on the total mass or moment of inertia of the Earth. Backus ( 1970a , b ) developed the special
ase where the norm of inferred model properties is a priori bounded but did not allow for arbitrary prior knowledge. 

The primary objectives of this work are twofold. First, we derive a Backus–Gilbert method for multiparameter problems where arbitrary
rior knowledge can be incorporated. This approach is intended to answer the question of how inferences of one parameter may be optimized
hile (i) simultaneously reducing trade-offs with all other parameters and (ii) accounting for a priori information. Secondly, we illustrate

he method in a multiparameter inversion for 1-D fir n proper ties near the East Greenland Ice Core Project (EastGRIP, see section 3 ) using
ultimode Ra yleigh wa ve dispersion measurements. Our analysis will focus on the extent to which firn density, typically estimated from
ave speeds with empirical scaling relations (e.g. Kohnen 1972 ; Diez et al. 2014 ), can be constrained independently. 

This paper is organized as follows: We begin in Section 2 with the development of multiparameter versions of the Backus–Gilbert
ethod, with and without consideration of data errors. This leads to a probabilistic reformulation of the method that naturally permits the

ncorporation of prior knowledge via the conjunction of probability densities. In Section 3 , we introduce a seismic distributed acoustic sensing
DAS) data set collected on the Northeast Greenland Ice Stream (NEGIS), near the EastGRIP ice core drilling site. Dispersion curves obtained
rom the data allow for multiple Ra yleigh wa ve modes to be distinguished. Subsequently, in Section 4 , we provide an e xtensiv e sensitivity
nalysis on the basis of the EastGRIP dispersion data, with a focus on our ability to obtain averaging kernels for density that approximate a
elta function while reducing trade-offs with S - and P -wave speeds. Using a specific set of tuning parameters, Section 5 presents an example
nv ersion for density, S -wav e and P -wav e structure within the upper 100 m. Finally, in Section 6 , we discuss general advantages and limitations
f the method, as well as specific results concerning the resolution of 1-D density structure by multimode Rayleigh wave data. 

 T H E O R E T I C A L  B A C KG RO U N D  F O R  P RO B A B I L I S T I C  M U LT I PA R A M E T E R  

A C K U S – G I L B E RT  I N V E R S I O N  

.1 A condensed r e view of classical Backus–Gilbert theory 

efore delving into detailed developments, it is useful to establish mathematical context and notation with a brief recapitulation of the
ingle-parameter Backus–Gilbert method for error-free data d obs 

i that can be perfectly explained by some continuously distributed model
 ( z) . The index i = 1 , ..., N obs enumerates the measurements, and z represents, in most geophysical cases, depth. The data are linearly related

o m via a sensitivity or data kernel G i , 

 

obs 
i = 

H ∫ 
0 

G i ( z ) m ( z ) d z , (1) 

here z = 0 at the Earth’s surface and H is some maximum depth. A simple, yet profound, consequence of ( 1 ) is that only spatial averages, 

 A, m 〉 = 

H ∫ 
0 

A ( z ) m ( z ) dz , (2) 

ith some averaging kernel A ( z) , can be inferred from the observations. The kernel acts as a filter or blurry lens that obscures the details of
 ( z) . Eq. ( 1 ) also moti v ates the representation of A ( z) using the kernels G i as basis functions, 

A ( z) = 

N obs ∑ 

i= 1 
a i G i ( z) , (3) 

here a i are coefficients that remain to be determined as a function of the desired resolution. Inserting ( 3 ) into ( 2 ) reveals that the averaging
rocedure is equi v alent to a linear combination of the observations, 

 A, m 〉 = 

N obs ∑ 

i= 1 
a i 

H ∫ 
0 

G i ( z ) m ( z ) dz = 

N obs ∑ 

i= 1 
a i d 

obs 
i = a T d 

obs . (4) 

q. ( 4 ) has important implications for uniqueness. While (infinitel y) man y models m ( z) may explain the error-free data d obs 
i perfectly, the

verage 〈 A, m 〉 is unique because it can be computed via the model-independent scalar product a T d 

obs . To obtain a sharp image of m ( z) at
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some target depth z 0 , the averaging kernel A ( z) should equal the delta function δ( z − z 0 ) . While this ideal is unachie v able in practice, the
coefficients a i may still be chosen such that A ( z) is at least close to δ( z − z 0 ) in the sense of a deltaness measure s 0 ( A, z 0 ) . Though the choice
of a deltaness measure is to some extent subjective (e.g. Arfken & Weber 2005 ), the most frequently used and convenient version is 

s 0 ( A, z 0 ) = 12 

H ∫ 
0 

( z − z 0 ) 
2 [ A ( z) ] 2 dz . (5) 

In the special case where A ( z) is a boxcar function of width w, centred around z 0 , we find s 0 ( A, z 0 ) = w, which justifies the secondary
interpretation of s 0 ( A, z 0 ) as a position-dependent resolution or averaging length. At this point, the Backus–Gilbert method has taken the

form of an optimal-design problem. In fact, minimizing s 0 ( A, z 0 ) with the normalization constraint 
H ∫ 
0 

A ( z) dz = 1 leads to a linear system of

equations for the coefficients a i from which the optimal average can be computed via ( 4 ). 

2.2 Multiparameter inversion of error-free data 

To develop a Backus–Gilbert method for multiple parameters we take inspiration from the deep-Earth imaging application of Masters ( 1979 )
and begin by neglecting the influence of data errors. To factor in the effect of multiple model parameters on the data d obs 

i , we reformulate
eq. ( 1 ) such that 

d obs 
i = 

H ∫ 
0 

N p ∑ 

n = 0 
G 

( n ) 
i ( z ) m 

( n ) ( z ) dz = 

H ∫ 
0 

[
G 

(0) 
i ( z ) m 

(0) ( z ) + G 

(1) 
i ( z ) m 

(1) ( z ) + G 

(2) 
i ( z ) m 

(2) ( z ) + ... 
]

dz , (6) 

where N p is the number of model parameters in addition to the parameter of interest, denoted by m 

(0) ( z) . As in Section 2.1 , we wish to form
a linear combination a T d 

obs of the data that has advantageous resolution properties. Substituting ( 1 ) for d obs 
i gives 

a T d 

obs = 

N p ∑ 

n = 0 
〈 A 

( n ) , m 

( n ) 〉 = 〈 A , m 〉 , (7) 

with the components A 

( n ) of the vectorial averaging kernel A defined as 

A 

( n ) ( z) = 

N obs ∑ 

i= 1 
a i G 

( n ) 
i ( z) , (8) 

for any n between 0 and N p . Eq. ( 8 ) implies that the linear combination of the data, already considered in ( 4 ) for the single-parameter
Backus–Gilbert method, ine vitabl y involv es av erages ov er all model parameters. Unless A 

(1) , ..., A 

( N p ) are negligibly small compared to A 

(0) ,
inferences of m 

(0) are contaminated by the influence of the remaining model parameters. 
To maximize resolution of the parameter of interest, while minimizing contamination by other parameters, the optimal set of coefficients

a i should fulfil two requirements: (i) as before, the averaging kernel for the parameter of choice, m 

(0) ( z) , should closely approximate δ( z − z 0 ) .
(ii) the averaging kernels of all remaining model parameters m 

( n ) ( z) | n> 0 should simultaneously be close to zero. A balance between these two
antagonistic goals can be achieved by using two criteria; the deltaness criterion as in ( 5 ) for m 

(0) ( z) , 

s 0 ( A 

(0) , z 0 ) = 12 

H ∫ 
0 

( z − z 0 ) 
2 
[
A 

(0) ( z) 
]2 

dz, (9) 

and a minimization criterion for m 

( n ) ( z) | n> 0 that forces the L 2 norm of A 

( n ) ( z) | n> 0 towards zero, 

s n ( A 

( n ) ) = 

H ∫ 
0 

[
A 

( n ) ( z) 
]2 

dz , for n ∈ [1 , 2 , ..., N p ] . (10) 

To determine suitable coefficients a i , we employ the cumulative criterion 

s( A , z 0 ) = s 0 ( A 

(0) , z 0 ) + 

1 

2 

N p ∑ 

n = 1 
βn s n ( A 

( n ) ) 

= 12 

H ∫ 
0 

( z − z 0 ) 
2 
[
A 

(0) ( z) 
]2 

dz + 

1 

2 

N p ∑ 

n = 1 
βn 

H ∫ 
0 

[
A 

( n ) ( z) 
]2 

dz , (11) 

where the weights βn serve to balance the importance of achieving deltaness for m 

(0) and reducing the influence of m 

( n ) | n> 0 . As we will see
in later sections, specific choices of βn will depend on the trade-offs between resolution and interparameter leakage that are (subjecti vel y)
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eemed acceptable in the context of a specific application. To minimize s( A , z 0 ) for a fixed z 0 , while making sure that 
∫ H 

0 A 

(0) dz = 1 , we
onstruct the Lagrange function 

L ( a , λ) = 12 

H ∫ 
0 

( z − z 0 ) 
2 

[ 

N obs ∑ 

i= 1 
a i G 

(0) 
i ( z) 

] 2 

dz + 

1 

2 

N p ∑ 

n = 1 
βn 

H ∫ 
0 

[ 

N obs ∑ 

i= 1 
a i G 

( n ) 
i ( z) 

] 2 

dz − λ

⎡ 

⎣ 1 −
N obs ∑ 

i= 1 
a i 

H ∫ 
0 

G 

(0) 
i ( z ) dz 

⎤ 

⎦ , (12) 

here λ is a Lagrange multiplier. Forcing the partial deri v ati ves of L with respect to the coefficients a i to zero yields 

∂L 

∂a k 
= 24 

H ∫ 
0 

( z − z 0 ) 
2 

N obs ∑ 

i= 1 
a i G 

(0) 
i ( z) G 

(0) 
k ( z) dz + 

N p ∑ 

n = 1 
βn 

H ∫ 
0 

N obs ∑ 

i= 1 
a i G 

( n ) 
i ( z) G 

( n ) 
k ( z) dz + λ

H ∫ 
0 

G 

(0) 
k ( z) dz = 0 . (13) 

efining the vector u with components 

 k = 

H ∫ 
0 

G 

(0) 
k ( z) dz , (14) 

nd symmetric matrices S and T 

( n ) with elements 

S ik = 24 

H ∫ 
0 

( z − z 0 ) 
2 G 

(0) 
i ( z) G 

(0) 
k ( z) dz , (15) 

nd 

T ( n ) ik = 

H ∫ 
0 

G 

( n ) 
i ( z) G 

( n ) 
k ( z) dz , (16) 

eads to a condensed version of the linear system ( 13 ), ⎛ 

⎝ S + 

N p ∑ 

n = 1 
βn T 

( n ) 

⎞ 

⎠ a = −λu . (17) 

q. ( 17 ) determines a ′ = a /λ. Noting that 

H ∫ 
0 

N ∑ 

i= 1 
a i G i ( z) dz = a T u = 1 , (18) 

e find λ = 1 / ( a ′ T u ) , which can be used to obtain the coefficients a = a ′ λ. 

.3 Err or -contaminated data 

n any real-world application, measurements are contaminated by errors that we assume to be additive and representable as the k th realization
f a random variable �d i,k . Hence, we may write the components of the data vector as 

 

obs 
i,k = 

H ∫ 
0 

N p ∑ 

n = 0 
G 

( n ) 
i ( z ) m 

( n ) ( z ) dz + �d i,k . (19) 

omputing the linear combination of the data, we find 

 

T d 

obs 
k = 〈 A , m 〉 + ε k , (20) 

here the averaging error for the k th realization that we observed is defined as 

 k = 

N obs ∑ 

i= 1 
a i �d i,k . (21) 

hile it is not possible to work with individual errors �d i,k , their statistical properties can be estimated from a suf ficientl y large number N s 

f repeated experiments. In particular, the elements of the data error covariance can be approximated as 

 C D ) i j ≈ 1 

N s 

N s ∑ 

k= 1 

N obs ∑ 

i, j= 1 
�d i,k �d j,k , (22) 
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provided that the average errors vanish. Based on ( 22 ), the variance σ 2 
ε of the averaging error ( 21 ) can be estimated, 

σ 2 
ε ≈

1 

N s 

N s ∑ 

k= 1 
ε 2 k = 

1 

N s 

N s ∑ 

k= 1 

( 

N obs ∑ 

i= 1 
a i �d i,k 

) 2 

= 

N obs ∑ 

i, j= 1 
a i a j 

1 

N s 

N s ∑ 

k= 1 
�d i,k �d j,k 

= a T ( C D ) a . (23) 

The standard deviation 
√ 

σ 2 
ε = σε serves as a measure of uncertainty in the averages derived from the data. As before, we aim to minimize

the averaging length s 0 defined in ( 9 ), while also minimizing the L 2 norm of the remaining kernels, s n> 0 , given in ( 10 ). Additionally, we now
wish to minimize the variance of the averaging error, and we do so by adding σ 2 

ε to the cumulative criterion 

s( A , z 0 ) = s 0 ( A 

(0) , z 0 ) + 

1 

2 

N p ∑ 

n = 1 
βn s n ( A 

( n ) ) + 

1 

2 
γ σ 2 

ε 

= 12 

H ∫ 
0 

( z − z 0 ) 
2 
[
A 

(0) ( z) 
]2 

dz + 

1 

2 

N p ∑ 

n = 1 
βn 

H ∫ 
0 

[
A 

( n ) ( z) 
]2 

dz + 

1 

2 
γ

N obs ∑ 

i, j= 1 
a i ( C D ) i j a j . (24) 

The weight γ controls the importance given to the minimization of the averaging error, and its value will need to be chosen such that the
trade-offs between deltaness, interparameter leakage and uncertainty are acceptable in the context of a specific application. As in Section 2.2 ,
we determine the coefficients a by forcing the partial deri v ati ves of the Lagrange function, ∂/∂a i , to zero. This yields a new linear system of
equations, ⎛ 

⎝ S + 

N p ∑ 

n = 1 
βn T 

( n ) + γ C D 

⎞ 

⎠ a = −λu , with λ = −a T 

⎛ 

⎝ S + 

N p ∑ 

n = 1 
βn T 

( n ) + γ C D 

⎞ 

⎠ a . (25) 

2.4 Probabilistic Backus–Gilbert inversion and the incorporation of prior knowledge 

The incorporation of prior knowledge on model parameter averages requires a slight generalization of the Backus–Gilbert method for data
with errors. For this, we assume that the statistics of the data errors � d k can be described by a probability density ρD ( � d ) . From this, we
can derive the resulting probability density of the averaging errors ε k , denoted by ρE ( ε) . In fact, letting R be a rotation matrix that rotates the
coefficient vector a onto the 1-axis, that is, Ra = ae 1 with a = | a | and the unit vector e 1 = (1 , 0 , ..., 0) T , we find 

ε = a T � d = a T R 

T R � d = e T 1 ε = ε 1 . (26) 

The rotated data error vector is defined as ε = aR � d . Eq. ( 26 ) implies that the distribution of the scalar ε equals the distribution of the
vectorial ε , marginalized over ε 2 , ..., ε N . To find this marginal distribution, we first apply a coordinate transformation to ρD that produces the
distribution of ε , 

ρ( ε ) = ρD 

(
1 

a 
R 

T ε 

) ∣∣∣∣det 

(
1 

a 
R 

)∣∣∣∣ = 

1 

a N 
ρD 

(
1 

a 
R 

T ε 

)
. (27) 

Marginalizing over all components of ε except ε 1 , yields 

ρE ( ε) = 

1 

a N 

∫ 
ρD 

(
1 

a 
R 

T ε 

)
d ε 2 ... d ε N . (28) 

In the special case where the distribution of the data errors is a Gaussian with covariance C D = σ 2 I , eq. ( 28 ) simplifies to 

ρE ( ε) = 

1 √ 

2 π aσ
e −

1 
2 ( ε 

aσ ) 2 . (29) 

Using ( 20 ), we can transform the distribution of the averaging errors, ρE ( ε) , into the distribution of the actual model parameter averages, 

ρM 

( 〈 A , m 〉 ) = ρE ( a 
T d 

obs − 〈 A , m 〉 ) . (30) 

Eq. ( 30 ) is the probabilistic variant of Backus–Gilbert inversion. It expresses data-derived averages in terms of a probability density that
describes model uncertainty in terms of the underlying data errors. On the basis of ( 30 ), prior knowledge on plausible averages, encoded in a
prior probability density ρprior 

M 

( 〈 A , m 〉 ) , can easily be included via the conjunction of probability densities, 

ρ
post 
M 

( 〈 A , m 〉 ) = q ρM 

( 〈 A , m 〉 ) ρprior 
M 

( 〈 A , m 〉 ) , (31) 

with a normalization constant q , which ensures that the posterior probability density ρpost 
M 

integrates to 1. Using these theoretical developments,
we continue to provide examples of multiparameter averaging ker nels, a Backus–Gilber t inversion of the data introduced in Section 3 , and
the incorporation of prior knowledge. 
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(a) (b)

Figure 1. Setup and data. (a) Location of the DAS cable and the explosion site on the Northeast Greenland Ice Stream (NEGIS). The EastGRIP ice core 
drill site is shown for reference. Ice flow velocities and flow lines are from Joughin et al. ( 2018 ). (b) DAS data produced by the explosion, visualized in the 
frequenc y-phase v elocity domain. Ra yleigh wa ve modes are marked in red, and pseudo-acoustic modes in blue. For better visibility of lower amplitude modes, 
the spectral amplitudes at frequencies above 50 Hz are amplified by a factor of 3 (grey colour bar label). 
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 S E I S M I C  DATA  F RO M  T H E  N O RT H E A S T  G R E E N L A N D  I C E  S T R E A M  

o bring our previous developments of a probabilistic multiparameter Backus–Gilbert method to life, we include examples based on seismic
ata collected near the EastGRIP ice core drilling site on the Northeast Greenland Ice Stream (NEGIS) in summer 2022 (Fig. 1 a). With
 length of ∼600 km, NEGIS is the largest ice stream of the Greenland Ice Sheet, accounting for around 12 per cent of its total mass
ischarge (Rignot & Mouginot 2012 ). The acquisition system consisted of a Solifos BRUfield fibre-optic cab le deploy ed over a length
f 3000 m across the eastern shear margin of NEGIS. One of the four single-mode fibres in the cable was attached to a Silixa iDAS
2.0 interrogator, which collected strain rate data with 10 m gauge length, 2 m channel spacing and 1 kHz sampling rate. Our example
ata originate from a detonation of 100 g PETN (20 m detonation cord placed at the surface) close to the eastern end of the cable. The
requenc y–phase v elocity representation in Fig. 1 (b) reveals an unusually large number of clearly distinguishable Rayleigh and pseudo-
coustic modes. In subsequent examples, the data d obs 

i will be the phase velocities at selected frequencies of the Rayleigh fundamental mode
R 0 and the Rayleigh overtones R 2 , R 3 , R 4 and R 5 . Being only weakly excited and close to R 0 , the first overtone R 1 will be excluded from the
nalyses. 

The data closely resemble those produced by an airplane landing near the drill site, which served to constrain S -wave speed in the firn
ayer using a single-parameter Backus–Gilbert inversion (Fichtner et al. 2023b ). In contrast to the underlying ice, firn is permeable to air and
asily compressible (e.g. Paterson 1994 ), making it an essential ingredient of ice sheet mass balance calculations (e.g. Helsen et al. 2008 ),
ce core climatology (e.g. Parrenin et al. 2012 ), estimates of surface melt (e.g. van den Broeke 2005 ) and the correction of seismic reflection
nd transmission data for near-surface effects (e.g. Schlegel et al. 2019 ; Fichtner et al. 2023a ). 

 S E N S I T I V I T Y  A NA LY S I S  

n the first series of applications, we perform various sensitivity analyses on modal dispersion results to investigate the resolution of density
tructure, the influence of higher surface wave modes and the effect of including data errors. The relevant model parameters are the S -wave
peed v s , the P -wave speed v p and density ρ. To make averaging kernels for different parameters comparable, we work with the relative model
arameters ρ ′ = ρ/ρ init , v ′ s = v s /v 

init 
s and v ′ p = v p /v 

init 
p , where the initial model parameters m 

init = ( ρ init , v init 
s , v init 

p ) were found by manually
tting dispersion data of the fundamental Rayleigh and pseudo-acoustic modes from a nearby experiment (Fichtner et al. 2023b ). Their
istributions are displayed in Fig. 2 together with a comparison of observed and computed phase velocities. For the calculation of sensitivity
ernels G 

( n ) 
i ( m ) for surface wave dispersion measurements, we employ the classic approach of Takeuchi & Saito ( 1972 ). Moti v ated b y the

eneral difficulty of constraining density with seismic data, we select ρ as the target parameter that we wish to resolve, that is, ρ( z) = m 

(0) ( z) .
imultaneously, we seek to minimize leakage from v s = m 

(1) ( z) and v p = m 

(2) ( z) . 
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(a) (b)

Figure 2. Initial model and data fit. (a) Depth distributions and functional forms of the initial density (red), S -wave speed and P -wave speed (black). (b) 
Comparison of computed phase velocities (red) and observed phase velocities c (black) with estimated standard deviations of their errors (black bars). Phase 
velocity measurements were made in intervals of 1 Hz. Figure adapted from Fichtner et al. ( 2023b ). 
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4.1 Examples for err or -free data 

Fig. 3 displays averaging kernels focused on a target depth of z 0 = 50 m. The differential phase-velocity data d obs 
i = c obs ( f i ) − c( m 

init ) for a
range of frequencies f i include the measurements marked in Fig. 2 (b) for Rayleigh modes 0, 2, 3, 4 and 5. For now, we neglect the error term
in eq. ( 25 ) by setting γ = 0 . 

Varying the weights β1 and β2 reveals their role in balancing the deltaness and minimization criteria in eqs ( 9 ) and ( 10 ). Choosing small
values, β1 = β2 = 10 −3 , produces a narrow averaging kernel for density, A ρ′ , with an averaging length s 0 = 62 m. Ho wever , averaging kernels
for S -wave speed, A v ′ s and P -wave speed, A v ′ p , are around two orders of magnitude larger. 

Increasing the minimization weight for v p to β2 = 10 3 has the desired effect of suppressing the P -wave averaging kernel to values that
are nearly five times smaller than the maximum of the density averaging kernel. While the width of the peak around z 0 = 50 m in the density
averaging kernel A ρ′ is nearly unchanged, the formal averaging length s 0 has increased b y nearl y a factor of ten to 454 m. On the one hand,
this result reflects the presence of a long tail at greater depths. On the other hand, ho wever , it illustrates that the deltaness criterion ( 5 ) is
useful for optimization but not necessarily for measuring the width of an averaging kernel, because the quadratic term giv es e xcessiv e weight
to even small contributions far from the target depth z 0 . This deficiency of the deltaness criterion, discussed in more detail in Section 6 , must
be kept in mind when interpreting actual values of s 0 . 

A similar effect occurs when β1 is increased to 10 3 , while keeping β2 = 10 −3 . Finally, increasing both β1 and β2 to 10 3 reduces the
amplitude of the v s and v p averaging kernels below that of the density kernel. Ho wever , the averaging length scale for ρ increases to several
kilometres. 

4.2 Influence of higher surface-w av e modes 

The EastGRIP data set shown in Fig. 1 (b) is distinguished by the presence of an unusually large number of clearly visible Rayleigh
wav e ov ertones. While the benefit of ov ertones for improv ed depth sensiti vity and resolution of S -w a ve speed is w ell-known (e.g.
Takeuchi & Saito 1972 ; Stutzmann & Montagner 1993 ), their ability to aid in the estimation of density structure has not been explored
systematically. 

Fig. 4 presents such an analysis for averaging kernels based on an increasing number of overtones and two choices of the minimization
weights ( β1 , 2 = 10 −3 in black, β1 , 2 = 10 3 in red). Using fundamental-mode measurements alone produces density averaging kernels A ρ′ that
generally do not resemble a positive-definite single-peak distribution. When the second overtone is included, such a distribution emerges, but
only when the averaging kernels for v s and v p are not simultaneously forced to zero, that is, for the small minimization weight β1 , 2 = 10 −3 .
From the fourth overtone onwards, it becomes possible to obtain a bell-shaped averaging kernel for density around z 0 = 50 m, while reducing
the amplitudes of the v s and v p kernels below the amplitude of A ρ′ . 
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Figure 3. Averaging kernels for relative density ρ′ (left), relative S -wave speed v ′ s (centre) and relative P -wave speed v ′ p (right) based on phase velocity 
measurements of the Rayleigh modes 0, 2, 3, 4 and 5 shown in Figs 1 (b) and 2 (b). The influence of measurement errors is ignored by setting γ = 0 . Different 
rows correspond to different choices of the minimization weights β1 and β2 that balance the effects of focusing the density kernel A ρ′ around the target depth 
z 0 = 50 m and minimizing the S -wave and P -wave kernels, A v ′ s and A v ′ p . In the top row ( β1 = β2 = 10 −3 ), the emphasis is on focusing A ρ′ , which produces 

high-amplitude A v ′ s and A v ′ p , that is, good resolution and strong interparameter trade-offs. In the bottom row, the weights are increased to β1 = β2 = 10 3 , 
thereby producing small A v ′ s and A v ′ p at the expense of poor spatial resolution for ρ. For better visibility, amplified versions of some kernels are plotted as 
dashed curves, with amplification factor shown in top right in the second and third column from left. 
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.3 Influence of the error term 

ncluding the error term in eq. ( 24 ) introduces another factor, in addition to interparameter leakage, that needs to be balanced against deltaness.
hoosing large values for the error weight γ gives preference to achieving small errors in the inferred averages, at the expense of reducing
eltaness and increasing trade-offs between model parameters. 

This behaviour is illustrated in Fig. 5 using the EastGRIP data up to the fifth Rayleigh overtone. Again, the target depth in the examples
s z 0 = 50 m, and the minimization weights are set to β1 , 2 = 10 −3 (black) and β1 , 2 = 10 3 (red). The case γ = 10 −8 is nearly identical to the
rror-free scenarios in Figs 3 and 4 . As before, the density averaging kernel is dominated by a bell-shaped peak centred around ∼50 m depth.
or β1 , 2 = 10 3 , the v s and v p kernels are oscillatory with amplitudes below the maximum of A ρ′ . As γ increases, the reduction of errors in
he density averages becomes more important. Consequently, the peak of A ρ′ becomes successi vel y broader and skewed, and the amplitudes
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Figure 4. Effect of higher Ra yleigh wa ve modes on the resolvability of density structure. Averaging kernels are shown for an increasing number of overtones 
from top to bottom and for two different choices of the minimization weights ( β1 , 2 = 10 −3 in black, β1 , 2 = 10 3 in red). For better visibility, amplified versions 
of some kernels are plotted as dashed curves, with the amplification indicated in the top right. 
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of A v ′ s and A v ′ p increase. At γ = 1 , A ρ′ has acquired a complex shape that is not useful for the inference of density averages near 50 m depth,
and interparameter leakage would dominate the computed averages. 

Fig. 6 complements the kernel examples in Figs 3 and 5 by showing the dependence of the averaging length in A ρ′ on the minimization
weights β1 , 2 and the error weight γ . Increasing any of these parameters is compensated by an increased averaging length, that is, reduced
deltaness. The freedom to choose specific values for these parameters can either be used as a tool to produce a suite of useful models with
different resolution properties, or to achieve a pre-defined error level or resolution length. 

5  I N V E R S I O N  O F  E A S T G R I P  S U R FA C E - WAV E  D I S P E R S I O N  DATA  

5.1 Inversion without prior knowledge 

The tuning parameters β1 , β2 and γ generate a continuum of model averages 〈 A ( β1 , β2 , γ ) , m 〉 , with different balances between resolution,
er rors and inter parameter trade-offs. While none of the infinitel y man y alternati ves are per se wrong, some will be more useful than others in
the context of a specific application. The notion of useful may, for instance, be defined by specific target values for resolution and errors or
by the requirement that averaging kernels are approximately bell-shaped. 
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Figure 5. Illustration of averaging kernels for v arying v alues of the tuning parameter γ that balances deltaness and interparameter leakage against the error 
standard deviation of the inferred averages. Large values of γ give preference to smaller uncertainties, and vice versa. All averaging kernels are for the target 
depth z 0 = 50 m and all modes up to the fifth overtone. Black curves correspond to β1 , 2 = 10 −3 and red curves to β1 , 2 = 10 3 . 
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For illustration, we present an inversion of the EastGRIP dispersion data in Fig. 2 (b) up to the fifth Rayleigh overtone, initially without
he incorporation of any prior knowledge. We fix β1 = β2 = 10 3 and γ = 10 −2 , loop from z 0 = 0 to z 0 = 100 m and repeat the kernel
ptimization and average computation for each depth and each model parameter indi viduall y. The complete suite of average models for
rbitrary choices of tuning parameters can be constructed using the dispersion data and inversion codes found on the software webpages of
he ETH Seismology & Wave Physics Group ( www.swp.ethz.ch ). 

Fig. 7 shows the resulting depth-dependent averages for ρ, v s and v p , complemented by their respective error standard deviations and
veraging lengths. For our choice of tuning parameters, averaging lengths are nearly constant in the metre range below ∼10 m depth but
hen increase rapidly to more than 100 m at 100 m depth. The error standard deviation shows a similar behaviour, indicating that density is
ot well constrained by the data alone below ∼10 m. In contrast, the v s averaging length at a certain depth z is usually around z/ 2 , similar
o inversions where trade-offs with ρ and v p are not minimized (Fichtner et al. 2023b ). Error standard deviations for v s are on the order of
0 m s −1 , that is, a few percent of the inferred v s averages. Also for v p error standard deviations are at the percent level, but averaging lengths
re as unfav ourab le as for ρ below ∼10 m depth, which can be associated with more rapid e v anescence of the P -wave content of the modes
ith depth. 

A more detailed and informative image of spatial resolution for density is shown in Fig. 8 in the form of resolution kernels A ρ′ for
ifferent target depths z 0 . To depths of ∼75 m, approximately bell-shaped averaging kernels can be constructed. At 50 m depth, the half-width
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Figure 6. Dependence of averaging length on tuning parameters β1 , 2 and γ . (a) Variation of the minimization weights β1 (solid) and β2 (dashed). Increasing 
β1 , 2 gives more weight to the reduction of interparameter leakage, which is compensated by an increasing averaging length in A ρ′ . (b) Variation of the error 
weight γ for fixed β1 = β2 = 10 3 . Forcing errors in the density averages to become smaller by increasing γ also leads to an increased averaging length. 

Figure 7. Depth-dependent averages, error standard deviations σ and averaging lengths s 0 for (a) ρ, (b) v s and (c) v p and the tuning parameter values 
β1 = β2 = 10 3 and γ = 10 −2 . The initial model, around which sensitivity kernels are linearized, is shown as grey dashed curves. 
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Figure 8. Density averaging kernels A ρ′ for different target depths, marked by vertical dashed lines. The tuning parameters are equal to the ones used for the 
in version sho wn in Fig. 7 . 

(a) (b) (c)

Figure 9. Incorporation of prior information on density. (a) The raw distribution ρM 

( 〈 A , m 〉 ) is the result of plain Backus–Gilbert inversion, cast in the form of 
a probability density. (b) The prior distribution ρprior 

M 

( 〈 A , m 〉 ) encodes the hard constraint that the density of ice must not exceed 917 kg m 

−3 . (c) The posterior 

distribution ρpost 
M 

( 〈 A , m 〉 ) is the conjunction of ρM 

( 〈 A , m 〉 ) and ρprior 
M 

( 〈 A , m 〉 ) . Note that the region of high probability density located between 25 and 65 m is 
due to integrated averaging kernels for each depth being re-normalized to one following the conjunction of (a) and (b). 
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f A ρ′ is on the order of 10 m, that is, significantly smaller than the resolution length s 0 ≈ 50 m derived from the deltaness criterion. Similarly,
t 100 m depth, the kernel half-width is around 20 m, in contrast to s 0 ≈ 100 m. 

.2 Incorporating prior knowledge 

hile providing depth-dependent averaged densities and their uncertainties in the form of standard deviations, the results from Fig. 7 (a)
ontradict hard prior knowledge that the density of ice does not exceed 917 kg m 

−3 (e.g. P etrenko & Whitw or th 2002 ). The for malism
eveloped in Section 2.4 allows us to incorporate this non-Gaussian a priori information via the conjunction of two probability densities, the
aw distribution ρM 

( 〈 A , m 〉 ) and the prior distribution ρprior 
M 

( 〈 A , m 〉 ) . This process is illustrated in Fig. 9 . 
Under the assumption of Gaussian data errors, ρM 

( 〈 A , m 〉 ) is a Gaussian with the mean shown in the top panel and the standard deviation
hown in the middle panel of Fig. 7 (a). The prior ρprior 

M 

( 〈 A , m 〉 ) takes the form of a step function, independent of depth. Combining both
ields the posterior ρpost 

M 

( 〈 A , m 〉 ) , which places the maximum-likelihood values near 917 kg m 

−3 for depths below 30 m. This result is a
onsequence of the poorly focused averaging kernels below this depth, as shown in Fig. 8 . 

 D I S C U S S I O N  

e present a probabilistic multiparameter variant of Backus–Gilbert inversion that enables the incorporation of prior knowledge about
nferred model properties. It rests on (i) the solution of an optimization problem that maximizes deltaness for the parameter of interest, while

inimizing trade-offs with all other parameters, and (ii) the derivation of a probability density of inferred averages based on a probability
ensity of observational errors. To illustrate the way the method works, we applied it to a multimode Rayleigh wave dispersion data set
ollected on the Northeast Greenland Ice Stream. In the following we discuss remaining issues concerning available seismic constraints on
rn density structure, the translation of the method to the Earth’s crust and mantle and limitations of the methods. 

.1 Constraints on firn density structure 

n addition to the method itself, the most important result of this work is that averaging kernels for 1-D density structure that approximate
 delta function can be obtained when Ra yleigh wa ve dispersion measurements of at least the first three overtones are available. This, in
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principle, enables the replacement of empirical conversions from wave speed to density for firn (e.g. Kohnen 1972 ; Diez et al. 2014 ) by direct
inferences of the density distribution using seismic data. 

What still limits this replacement in practice are the data errors, encoded in the data covariance matrix C D . For the specific example of
the EastGRIP data, a useful resolution of 1-D density structure can be achieved only in the upper 10 m, a depth that is still easily accessible
by drilling. As illustrated by eq. ( 23 ), the error standard deviation σ of the inferred average is directly proportional to C D . Hence, keeping
the averaging coefficients a fixed, we may reduce σ without compromising resolution, provided that the entries of C D can be reduced. This
may be achieved, for instance, through repeated experiments, though at the expense of a longer and more costly data acquisition. 

The inversion results in Section 5 highlights the need to incorporate prior information, as plausible densities may be beyond one standard
deviation of the density averages inferred only from the data. Translating the classic Backus–Gilbert method into a Bayesian framework
allows us to include prior information easily via the conjunction of probability densities. While the formalism is clean, the construction of
prior probability densities often has a subjective component that must be acknowledged explicitly. 

Naturally, we are faced with a large number of potential solutions dependent on the subjective selection of tuning parameters in the
inversion. The question then arises of how to better exploit this wide range of model outcomes. While the example in Section 5 takes
β1 = β2 = 10 3 and γ = 10 −2 to produce a single model for illustration, the range of solutions could be explored by systematically varying
the tuning parameters and producing a suite of models. Model solutions may be also steered by pre-defining targets for resolution or error
levels. 

6.2 Translation to density inversion in the Earth’s crust and mantle 

Inversions for 1-D and 3-D density structure in the Earth’s mantle have been a topic of research and debate for several decades (e.g.
Dziewo ́nski & Anderson 1981 ; Kennett 1998 ; Ishii & Tromp 1999 ; Romanowicz 2001 ; Resovsky & Trampert 2002 ). Hopes that full-
wav eform inv ersion (Blom et al. 2017 ) or g radiometr y (Faber & Cur tis 2024 ) may improve our knowledge of density heterogeneities have
so far not materialized in practice, though they are known to have significant effects on crustal wave propagation (Plonka et al. 2016 ). The
EastGRIP example benefits from the easy observation of strong Rayleigh wave overtones. It is a consequence of the nearly exponential
wave speed increase within the firn lay er, w hich traps waves much more ef ficientl y than the Ear th’s cr ust, where wave speeds increase
with depth only by some tens of percent (e.g. Bassin et al. 2000 ). Hence, replacing classical scaling relations for crustal rocks, such as
Gardner’s law (Gardner et al. 1974 ), may be more challenging. At regional to global scales, Rayleigh wave observations up to the sixth
overtone are available (e.g. Moulik et al. 2021 ), but their usefulness in constraining cr ustal and upper-mantle density str ucture remains to be
explored. 

6.3 Methodological limitation 

Our application assumes that lateral variations in medium properties are negligible over the 3 km length of the DAS cable. While the large
number of narrowly defined modes, shown in Fig. 1 (b), supports this assumption, ice lenses created by melt water or firn thickness variations
across the shear margin cannot be excluded. All variants of the Backus–Gilbert method rest on the assumption of a linear forward problem.
Hence, when the forward problem is nonlinear, the governing equations must be linearized around a suitable initial model. It follows that the
range of applicability of Backus–Gilbert methods is limited to problems where such a model can actually be found. Hence, this issue must be
analysed on a case-by-case basis. For the EastGRIP data, an initial model that closely matches the observations could be estimated manually
with some prior information on plausible firn structures (Fichtner et al. 2023b ). 

The quantification of spatial resolution in the form of a single number is generally challenging. While the deltaness measure s 0 defined
in ( 5 ) may also be used as a measure of resolution length, it provides useful results only when the averaging kernel is similar to a boxcar
function. In the presence of side lobes far from the target depth z 0 , the numerical values of s 0 are unhelpful. Though numerous alternatives
have been proposed (e.g. Backus & Gilbert 1970 ; Masters & Gubbins 2003 ), the generally impossible task of condensing a complicated
function into one representative number suggests that a visual analysis of averaging kernels for different depths and sets of tuning parameters
is likely to be the most powerful and useful approach. 

Eq. ( 31 ) assumes the availability of prior knowledge on parameter averages and not on the actual parameters. As shown in the ex-
ample in Section 5.2 , prior knowledge on upper (and equi v alentl y lower) bounds is easy to implement, as it translates one-to-one from
the parameters to their averages. In cases where the averaging length is small compared to plausible spatial variations of the param-
eters, prior distributions for the parameters may be used to approximate prior distributions of parameter averages. For more compli-
cated scenarios, the link between Backus–Gilbert inversion and Gaussian processes (e.g. Valentine & Sambridge 2019 ) may offer useful
solutions. 

7  C O N C LU S I O N S  

We demonstrate an application of a Backus–Gilbert method that enables inversions for multiple parameter classes and the incorporation of
arbitrary prior knowledge. The adapted method is based on a reformulation of standard Backus–Gilbert inversion results in the form of a
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robability density that translates arbitrary error distributions in the data into a distribution of spatial model parameter averages. We apply
he method to surface wave dispersion data collected by DAS on the Northeast Greenland Ice Stream, and demonstrate that density can be
ndependently constrained to depths of around 10 m, provided that data include at least the third overtone. Resolution at greater depths is
heoretically possible but practically limited by current data quality. 
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