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Abstract
1. Seagrass recovery has been reported across the globe where previously eutro-

phied waters have become less nutrient- rich. In the European Wadden Sea, dif-
ferent recovery trajectories were found after riverine nutrient loads decreased, 
namely full, temporary and no recovery. We compiled intertidal seagrass pres-
ence (Zostera noltei and Z. marina) and eutrophication data for 1930–2020, to re-
late the seagrass trajectories and regional eutrophication differences to riverine 
nutrient loads, and inferred prospects for seagrass recovery.

2. Seagrass fully recovered in the less eutrophic North Frisian region. The recovery 
trajectory was tightly coupled to riverine nutrient load reduction. Relative sea-
grass area (meadow area/region area) dropped from 10% prior to eutrophication 
to 2% during the eutrophication peak, increased to 7% during the nutrient reduc-
tion period and subsequently expanded to 13%. Colonization of marginal habitats 
was observed, indicating propagule spillover from neighbouring meadows.

3. The more eutrophic southern regions showed no or only temporary seagrass re-
covery. Prospects for (limited) recovery are good in only two out of four south-
ern regions, provided that riverine nutrient loads are further reduced by ~40% 
(reference: 2010–2017). Without this reduction, seagrasses may only temporarily 
recover and will remain vulnerable to erratic disturbances like macroalgae accu-
mulation or storms.

4. Historical evidence and application of habitat suitability models suggest that the 
potential relative seagrass area in the southern regions is low: less than 0.2% in 
the western Dutch region and maximum 2.4% in the Ems- Jade region.
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1  |  INTRODUC TION

Seagrasses continue to decline worldwide, and with it many eco-
system services such as coastal protection, carbon sequestration, 
biodiversity, support of global fish stocks and water purification 
(Lamb et al., 2017; Nordlund et al., 2016; Unsworth et al., 2019). 
Eutrophication is one of the major factors compromising seagrass 
meadows (e.g. Burkholder et al., 2007; Orth et al., 2006). Restoration 
efforts generally fail when eutrophication is not reduced sufficiently 
(van Katwijk et al., 2016 and references therein). On the other hand, 
worldwide, scattered recoveries are reported after nutrient reduc-
tion (de los Santos et al., 2019; Lefcheck et al., 2018; McCrackin 
et al., 2017; Riemann et al., 2016; Sherwood et al., 2017).

In the Wadden Sea, the largest coherent tidal flat system in 
the world, located along the North Sea coasts of the Netherlands, 
Germany and Denmark (northwestern Europe), a remarkable recov-
ery of intertidal seagrass occurred merely in the northern region 
(North Frisia) during the last two decades. Meadows even ex-
panded to marginal habitats (Dolch et al., 2013, 2017). The recovery 
mainly involved intertidal Zostera noltei, the dominant species in the 
Wadden Sea, but intertidal, annual Z. marina recovered as well. In the 
Ems- Jade and Elbe- Weser region (German coast), after a recovery 
between 2008 and 2013, intertidal seagrass declined again (Dolch 
et al., 2017; KÜFOG GmbH et al., 2020). In the western and eastern 
Dutch region, no natural recovery of intertidal seagrass has been re-
corded. The spatial differences in nutrient concentrations and eutro-
phication levels are often mentioned as a potential explanation for 
the regional differences in seagrass development and abundance in 
the Wadden Sea (e.g. Dolch et al., 2013, 2017; Folmer et al., 2016; 
van Beusekom et al., 2019; van Katwijk et al., 2000, 2009). However, 
up until now, a comprehensive assessment of seagrass distribution 
trends in connection to eutrophication across all Wadden Sea re-
gions has not been carried out.

In this study, we analyse intertidal seagrass recovery trajec-
tories and recovery potential in the international Wadden Sea in 

relation to eutrophication status (after van Beusekom et al., 2019) 
and reduction in nutrient loading. Specifically, we compile and re-
construct available seagrass and nutrient data of all Wadden Sea 
regions to further examine the relationship between recovery tra-
jectories and riverine nutrient loading. From this, we infer, for each 
region, if and to which levels nutrient loading should be reduced 
to allow for seagrass recovery. To explore the prospects for sea-
grass recovery, we assess the maximum seagrass area per region 
as recorded in our time series, as well as seagrass area per region 
predicted by habitat suitability models. We will discuss the role of 
propagule spillover potentially speeding up recovery at a landscape 
scale.

2  |  STUDY ARE A

2.1  |  Study area—Geographical setting, regions and 
monitoring

The Wadden Sea is a shallow intertidal coastal sea along the 
Dutch, German and Danish North Sea coast (Figure 1) and a World 
Heritage because of its globally unique geological and ecological 
values. It consists of saltmarshes, intertidal and subtidal areas, 
drainage gullies, channels and deeper inlets. The semidiurnal tidal 
wave travels along the Wadden Sea from west to north- east and 
drives water exchange between the Wadden Sea and the North 
Sea through the tidal inlets between the barrier islands. The tidal 
range is about 1 m at the northern and western ends and increases 
to more than 3 m in the central part. At tidal ranges below 3 m, bar-
rier islands and high sands are formed (e.g., Hayes, 1975; Oost & de 
Boer, 1994), protecting the tidal flats in the southern and northern 
Wadden Sea, but such islands are absent in the central part. About 
50% (range: 30%–96%) of the tidal basin areas emerge during low 
tide. Tidal currents and exposure to waves strongly differ between 
regions due to differences in tidal range, geomorphology, fetch 

5. Synthesis and applications. Within a large seascape (15,000 km2) the least eutroph-
icated region showed seagrass recovery upon nutrient reduction. We translated 
the critical riverine nutrient loads for this recovery, via regional eutrophication in-
dicators, to loads that may enable a sustained recovery in the other regions. This 
technique is applicable in other complex systems, provided sufficient historical 
data are available. Propagule spillover exerts a positive feedback at metapopula-
tion scale leading to acceleration of recovery. Occupied and potential seagrass 
habitat (e.g. assessed by the maximum recorded area in the past) are thus impor-
tant landscape selection criteria for restoration, particularly when eutrophication 
is not yet sufficiently reduced.

K E Y W O R D S
eutrophication, historical baseline, mass effect, metapopulation, propagule spillover, Wadden 
Sea, Zostera marina, Zostera noltei
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and the presence of barrier islands. Geomorphology and sediment 
composition are strongly influenced by tidal currents and wind- 
driven waves. Sediments are mostly sandy in the more exposed 
parts, whereas in the more protected parts, muddy sediments pre-
vail (Folmer et al., 2023). Seagrass occurs only in areas that are 
sheltered from large wind waves and where the tidal currents are 
relatively weak (Folmer et al., 2016).

We distinguish six regions (Table 1). The Wadden Sea can 
be further divided into 39 tidal basins which are loosely defined 

hydrological units demarcated by tidal inlets, tidal divides and 
the mainland (e.g. Folmer et al., 2016; van Beusekom et al., 2010; 
Figure 1).

2.2  |  Study area—Seagrass

In the Wadden Sea, the seagrass species Z. marina and Z. noltei are 
present and very incidentally Ruppia maritima has been recorded 

F I G U R E  1  Wadden Sea consists of 39 tidal basins (numbered in ascending order from north- east to south- west), which are clustered in 
six regions, see Table 1. Tidal ranges at spring tide (redrawn from Wiersma et al., 2009) are presented with dotted lines. Intertidal seagrass 
meadows recorded in the period 1970–2015 are shown in red; they are drawn larger than their actual extents to increase visibility of the 
small seagrass meadows in The Netherlands and Lower Saxony (LS). SH=Schleswig- Holstein. Blue dots refer to water quality monitoring 
stations and their names are printed next to them. Inlay: The nutrient loads in the Wadden Sea are influenced directly by Lake IJssel, Ems, 
Weser and Elbe (catchment dark grey shading), and indirectly by the river Rhine and Meuse (catchment Rhine in Lobith: light grey shading). 
The water trajectory from Rhine and Meuse through the North Sea is indicated with a blue arrow.
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(e.g. van Katwijk et al., 2006). Both Zostera species grow in the inter-
tidal zone, where Z. noltei has a perennial life history and Z. marina 
predominantly an annual life history. In the past, a robust, subtidal 
form of Z. marina also occurred which had a perennial life history, 
that covered 70–150 km2 or more in the subtidal western Dutch re-
gion. This morphotype also occurred in North Frisian region and it 
may have occurred in the Ems- Jade region, but all to a more limited 
extent (see Appendix S1.1 in Supporting Information). The subtidal, 
robust morphotype of Z. marina, has gone extinct in the western 
Dutch region in the 1930s due to a combination of wasting disease 
and major infrastructural works (closing of the former Zuiderzee by 
the Afsluitdijk in 1932, e.g. Giesen et al., 1990; Reise, 1994) and later 
also in the other regions (see Appendix S1.1). Historically, the robust 
morphotype of Z. marina was economically important in the western 
Dutch Wadden Sea (at that time including the Zuiderzee) where it 
covered more than 70 km2 in 1869 (Oudemans et al., 1870), approxi-
mately 150 km2 around 1915 (van Goor, 1919), and approx. 120 km2 
around 1931 (Reigersman et al., 1939) (see Appendix S1.1).

2.3  |  Study area—Nutrients

Continental northwest European rivers are the main sources of 
anthropogenic nutrient loads to the Wadden Sea (Figure 1; van 
Beusekom et al., 2012, 2019). Major sources of nutrients that dis-
charge directly into the southern Wadden Sea are Lake IJssel (fed 
by a branch of the Rhine) and the Ems river. Major rivers entering 
the central Wadden Sea are the Weser and Elbe. Indirect loads origi-
nate from the northward transport of river water (mainly Rhine and 
Meuse) with the residual currents along the Wadden Sea following 
the anti- clockwise circulation of the North Sea. Nutrient loads of 
the Rhine and Meuse are especially impacting the southern Wadden 
Sea. The central and northern Wadden Sea are especially impacted 
by the northward- directed nutrient loads from the rivers Weser and 
Elbe (Figure 1). Higher riverine nutrient loads increase eutrophication 
throughout the Wadden Sea causing intensified nutrient dynamics, 
higher phytoplankton densities and altered community composi-
tion (e.g. Cadée & Hegeman, 2002; de Jonge & Postma, 1974; van 
Beusekom et al., 2001). Local nutrient loads by small rivers and 
sluices play a secondary role (van Beusekom et al., 2001).

Eutrophication of the Wadden Sea is also driven by the import 
of particulate matter from the North Sea consisting of inorganic par-
ticles, phytoplankton and phytoplankton detritus from the coastal 
zone adjacent to the Wadden Sea. The heterotrophic nature of the 
Wadden Sea was already recognized in the early days of Wadden 
Sea research (Linke, 1939; Verwey, 1952; Wohlenberg, 1937) and 
further elaborated by Postma (e.g. Postma, 1981, 1984, see also van 
Beusekom & de Jonge, 2002; van Beusekom et al., 1999). Between 
the 1950s and 1970s, the increasing river nutrient loads caused 
nutrient- enhanced phytoplankton production in the North Sea (de 
Jonge & Postma, 1974; Postma & van Bennekom, 1974) which in 
turn increased the organic matter supply from the North Sea to the 
Wadden Sea.TA
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The import of material from the North Sea to the Wadden Sea 
is regulated by hydrodynamics (e.g. Postma, 1981; van Beusekom 
et al., 2019). The freshwater discharge from the European conti-
nent to the North Sea causes density gradients which induce es-
tuarine circulation in the coastal North Sea with a bottom current 
directed towards the Wadden Sea (e.g. Eisma, 1993; van Beusekom 
et al., 2012; Visser et al., 1991), driving the import of organic matter 
and maintaining nutrient gradients between the North Sea and the 
Wadden Sea (Hofmeister et al., 2017). Zones of maximum phyto-
plankton sedimentation rates are located in the North Sea adjacent 
to the Wadden Sea (Maerz et al., 2016; Neumann et al., 2019). Any 
sinking material (including decaying phytoplankton) in the North Sea 
adjacent to the Wadden Sea has a large probability to accumulate 
in the Wadden Sea keeping up the gradient of suspended particle 
matter between the Wadden Sea and the North Sea (Hofmeister 
et al., 2017; Postma, 1981). Within the Wadden Sea, suspended mat-
ter is retained by hydrodynamic factors like vertical density differ-
ences and tidal asymmetry (Burchard et al., 2008), tidal differences 
in settling and erosion (van Straaten & Kuenen, 1958), filter feed-
ers (e.g. Cadée & Hegeman, 1974), stabilizing organisms (e.g. Reise, 
2002) or particle retention in permeable sandy sediments (de Beer 
et al., 2005).

The winter dissolved inorganic nitrogen (DIN) concentration is 
more or less similar among the tidal basin entrances (40–80 μM), 
suggesting that the river influence is equally spread over the 
Wadden Sea, except for the tidal basins in the mouth of the Elbe, 
which show higher values, that is 200 μM average January–March 
2004–2008 (van Beusekom et al., 2017). However, the levels of 
eutrophication (as measured by two eutrophication indicators, 
summer chlorophyll primarily representing productivity, and au-
tumn NH4 + NO2 concentration primarily representing remineral-
ization, as will be explained below in Section 3.2), differ strongly 
between the tidal basins and regions. This can be explained by: (1) 
the import of organic matter from the adjacent North Sea being 
higher in the south than in the north (van Beusekom et al., 2019) 
and (2) broader basins (like Hörnum tidal basin in the North Frisian 
region and the western Dutch tidal basins) spreading the imported 
organic matter over a larger area as opposed to narrow basins 
like the Ems- Jade or eastern Dutch basins, thus leading to a lower 
eutrophication level in the broader tidal basins (Schwichtenberg 
et al., 2017; van Beusekom et al., 2012).

Eutrophication levels for each of the regions within the Wadden 
Sea can be assessed by two indicators that strongly relate to riverine 
total nitrogen (TN) loads: summer chlorophyll and autumn NH4 + NO2. 
These indicators were chosen because they strongly relate to river-
ine TN loads (van Beusekom et al., 2001, 2009, 2019). They reflect 
a multitude of factors related to nutrient loading, such as nutrients 
for algae growth and organic matter import (from nutrient- enhanced 
phytoplankton growth in the adjacent North Sea) and remineral-
ization. But the indicators also reflect factors that are not directly 
related to nutrients, like shellfish and zooplankton grazing, light lim-
itation from suspended particles (e.g. Thompson et al., 2008) or hy-
drodynamical impacts on organic matter import influencing import 

efficiency, all contributing to the observed variability in their relation 
with riverine nutrient loads.

3  |  MATERIAL S AND METHODS

3.1  |  Seagrass monitoring

The extents of intertidal seagrass meadows prior to the eutroph-
ication peak, that is in the 1930s, in the 1950s–1960s, or both, 
were documented for the western Dutch, Ems- Jade and North 
Frisian region (see Appendix S1.1 and van Katwijk et al., 2024). 
Pre- eutrophication data for the eastern Dutch, Elbe- Weser and 
Danish regions are lacking, to our knowledge. Since the 1990s, 
seagrass population development was monitored in programmes 
that differed between countries with respect to frequency and 
length of the time series as well as methodology (methods, see 
Appendix S1.2). For comparison, we used the meadow area of 
both species combined. Only meadows where seagrass % cover 
is >5% (in the Netherlands and Germany) or >20% (in Denmark 
and the historical assessment of the Ems- Jade region 1936–
1939) are included in the monitoring data. To extrapolate from 
cover >20% to cover >5%, we multiplied the areas by 1.37. This 
multiplication factor is based on the cover classes in the North 
Frisian region where meadows >20% cover represent 73% of 
the meadow area >5% (std 20%, n = 189; T. Dolch, unpublished 
data) and 100/73 = 137. This value is similar in the western Dutch 
Wadden Sea for Z. noltei: 77% (std 19%, n = 12 years monitoring 
of one meadow in Terschelling; Dutch Ministry of Infrastructure 
and Water Management). We used the conversion factor of 1.37 
derived from North Frisia meadows because the western Dutch 
value is based on only one meadow located in atypical compact 
clay sediments.

To explore the prospects for seagrass recovery, we compiled for 
each region: (a) the historical maximum seagrass extent recorded 
and (b) the maximum potential seagrass extent predicted by a hab-
itat suitability model of the Wadden Sea based on geomorphology, 
hydrodynamics and grain size (Folmer et al., 2016). Large discrepan-
cies between the historically observed and predicted maxima may 
point at factors missing in the habitat suitability model, or incom-
plete seagrass data.

To compare seagrass presence between regions, the relative sea-
grass area (RSA) was calculated by dividing seagrass areas by the 
total area of the region. To tentatively assess which minimal seagrass 
extent may suffice to allow for recovery, we also extracted the mini-
mum historical seagrass extent from our time series.

It should be noted that for all regions, the seagrass time series 
are incomplete, and particularly, historical data are largely missing, 
so interpretations should be cautiously made. Furthermore, it should 
be noted that there might have been meadows that were never mon-
itored. Still, contemporary experts indicate that the non- mapped 
areas in the western and eastern Dutch region only had minor sea-
grass areas during the 1950s–1970s (Polderman & den Hartog, 1975; 
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van den Hoek et al., 1979), which may also hold for the 1930s and 
before (see Appendix S1, Table S1).

The maximum potential seagrass extent predicted by habitat 
suitability was calculated using the model of Folmer et al. (2016). In 
this model, the mean fraction of time that the seabed is exposed 
to the air, mean bottom shear stress due to tidal currents, slope, 
fraction of sediment <63 μm and median grain size were used as 
predictors. Exposure to air and mean bottom shear stress were 
calculated using a three- dimensional open- source model (GETM; 
Burchard & Bolding, 2002). The slope was calculated from bathyme-
try data generated by governmental agencies in the three countries 
and grain size was obtained from the German Federal Maritime and 
Hydrographic Agency, where missing data for Denmark were im-
puted. (Folmer et al., 2016). The habitat suitability model was refined 
for the western and eastern Dutch Wadden Sea by Folmer (2019), 
by incorporating wave energy data (orbital velocity) from the wave 
model SWAN (Donker, 2015), and the density of large lugworms ob-
tained from a large Dutch monitoring programme (SIBES; Compton 
et al., 2013). Because these data were only available for the western 
and eastern Dutch region, the refinement was limited to these re-
gions (Folmer, 2019). The continuous score of habitat suitability was 
classified into the classes ‘unsuitable’, ‘marginal’ and ‘suitable’ using 
the continuous Boyce index (Folmer et al., 2016). In our study, we 
used only two classes: suitable and unsuitable (which includes the 
original classes ‘unsuitable’ and ‘marginal’).

3.2  |  Nutrients

Nutrient dynamics in the Wadden Sea are strongly linked to riverine 
nutrient loads (interpolated daily concentration × daily discharge), 
and the impact of these loads on the eutrophication status depends 
on local factors like organic matter import from the North Sea (van 
Beusekom et al., 2019, see also Section 2.3). Nutrient monitoring 
programmes in the Wadden Sea started between the late 1970s 
and 1990. Thus, for the long- term studies starting before the 1970s, 
only riverine nutrient loads were used, whereas for regional com-
parisons and changes after the 1970s, we used the riverine nutrient 
loads and eutrophication indicators as developed by van Beusekom 
et al. (2001, 2019).

To examine the long- term (from the 1930s to the present) rela-
tionship between historical seagrass area, decline and recovery in 
North Frisia and eutrophication, and to identify a critical nutrient 
load for seagrass return in this region, we use riverine nutrient loads 
from the Elbe and Rhine. We focus on N rather than P as N is directly 
related to one of the regional eutrophication indicators (autumn 
NH4 + NO2, see next paragraph), but note that riverine P loads also 
correlate with the regional eutrophication indicators (van Beusekom 
et al., 2019). For a historical reconstruction of the TN loads in the 
Rhine, we used and extended the study by van Bennekom and 
Wetsteijn (1990) based on monitoring data at the Dutch- German 
border (Lobith, Figure 1) available since 1952. We reconstructed 
TN loads from 1952 to 1966 based on DIN (Dissolved Inorganic 

Nitrogen) measurements and estimated TN based on correlations 
(1966–1990) between NH4 and Total Kjeldahl Nitrogen, used TN 
measurements from 1966 to 2017, and included estimates for the 
1930s based on Clarke (1924). For a historical reconstruction of the 
TN loads in the Elbe, we estimated riverine TN loads from 1954 to 
1979 based on DIN measurements and estimated organic N from 
correlations between NH4 and organic N (using data from 1979 to 
1990). After 1979, we used measured TN monitoring data. All data 
are from a station just upstream of the weir at Geesthacht (Figure 1). 
We further included estimates for the 1930s based on Clarke (1924), 
(details on the reconstruction and estimates are provided in see 
Appendix S1.4).

To assess regional differences in eutrophication levels and ex-
plore how they compare to a critical eutrophication threshold for 
seagrass return, we used the eutrophication indicators as devel-
oped by van Beusekom et al. (2001) and recently applied by van 
Beusekom et al. (2019). More specifically, with these indicators 
we (1) document decreasing eutrophication in the international 
Wadden Sea in response to decreasing nutrient loads, (2) identify 
regional differences and (3) translate the critical riverine nitrogen 
load for seagrass recovery to a critical eutrophication threshold at 
a regional level. The indicators are summer chlorophyll (average of 
monthly means over May–September; spring values were excluded 
as winter temperature may have a strong impact on spring bloom 
intensity, e.g. van Beusekom et al., 2009) and autumn NH4 + NO2 
(average of monthly means over September–November). Data 
for these two indicators were available over a wide geographical 
area over the period 2008–2016. It should be noted that several 
factors influence the relationship between these indicators and 
riverine nutrient loads: summer phytoplankton may be impacted 
by interannual differences in the import of organic matter (hy-
drodynamics, off- shore phytoplankton blooms, van Beusekom 
et al., 2001), by copepods or microzooplankton grazing (e.g. 
Loebl & Van Beusekom, 2008), by benthic filter feeders (Asmus 
& Asmus, 1991; Cadée & Hegeman, 1974; Ehrnsten et al., 2020; 
Hulot et al., 2020) or light limitation of algal growth as a conse-
quence of high suspended matter concentrations (Colijn, 1982; 
Loebl et al., 2007, 2008; Thompson et al., 2008). Similarly, the au-
tumn NH4 + NO2, a remineralization product, depends on summer 
import and summer productivity, autumn phytoplankton blooms, 
hydrodynamics (storms) and temperature (e.g. van Beusekom 
et al., 2001). The multitude of processes affecting the eutrophi-
cation indicators explains the variability in their relationships 
with river nutrient loads (van Beusekom et al., 2001, 2009, 2019). 
Note that the river load data used in these studies are from river 
monitoring stations closer to the Wadden Sea than the ones we 
had to use for the historical analysis for data availability reasons 
(Rhine–Meuse: Haringvliet and Maassluis, Weser: Intschede, Elbe: 
Teufelsbrück/Seemannshöft; for details: Pätsch & Lenhart, 2022). 
River loads are not annual loads but the loads from December–
August (Rhine–Meuse) or January–August (Weser- Elbe) as loads 
after August will not impact the summer phytoplankton blooms. 
As a starting point for the Rhine–Meuse loads, we used December 
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1790  |    van KATWIJK et al.

as this gave a stronger correlation with the eutrophication indica-
tors. As the Rhine Maas outflow is further away from the Wadden 
Sea than the Elbe- Weser, we choose a shorter period for the 
Elbe- Weser. For details, see van Beusekom et al. (2001) and van 
Beusekom et al. (2009).

The description of recent regional differences in eutrophi-
cation in the Wadden Sea is based on van Beusekom et al. (2019) 
and, for a better spatial resolution, supplemented with data from 
Zoutkamperlaag zeegat (eastern Dutch Wadden Sea, monitored 
until 2010), Jadebusen Entrance (Lower Saxony Wadden Sea, mon-
itored since 2000) and the stations Süderpiep, Wyk/Norderaue 
and Hörnum /Vortrapptief (northern Wadden Sea, monitored since 
2000). All stations are close to the tidal inlets (Figure 1).

As a critical eutrophication threshold, we used the range be-
tween the minimum and maximum levels of the eutrophication indi-
cators in the North Frisian region (Sylt) during the 4 years preceding 
the year that recovery started to accelerate (the year 2000), that is 
the maximum of summer chlorophyll levels during 1997–2000 and 
the autumn NH4 + NO2 levels during 1997–2000.

We projected the riverine nutrient loads that may lead to sea-
grass recovery in other regions using a cautious approach because 
of the large environmental variability. We only used monitoring 
stations that have long time series and are located near tidal inlets: 
Sylt (North Frisian region, which is the reference region for recov-
ery, data: 1984–2016), Marsdiep and Vliestroom (western Dutch 
Wadden Sea, data: 1978–2017) and Norderney (Ems- Jade region, 
data: 1985–2016). We only used summer chlorophyll as it shows 
comparable variability patterns and significant correlations with 
riverine TN loads in North Frisia (Sylt), the western Dutch Wadden 
Sea and Ems- Jade region (compare van Beusekom et al., 2019). We 
did not use autumn NH4 + NO2 because this indicator only cor-
related significantly with riverine N loads in the southern Wadden 
Sea (Marsdiep, Vliestroom and Norderney), but not in the northern 
Wadden Sea (Sylt) but note that the general levels of summer chlo-
rophyll and autumn NH4 + NO2 show comparable regional patterns 
(van Beusekom et al., 2001, 2019). For the projection, (1) we used 
the year that recovery accelerated, that is 2000, and calculated the 
4- year averaged riverine TN load preceding seagrass recovery, that 
is 1997–2000 (Elbe- Weser); (2) we deduced the maximum of sum-
mer chlorophyll at Sylt (North Frisian region) corresponding with 
these TN loads using the upper line of the two lines that envelop 
the observations (manually drawn); note that this is slightly more 
precise than the method we used to compare all regional stations 
described above, though the outcome is nearly the same; (3) we pro-
jected this chlorophyll maximum on the relation between river loads 
(Rhine–Meuse) and summer chlorophyll at the other stations, that is 
Marsdiep and Vliestroom for the western Dutch Wadden Sea and 
Norderney for the Ems- Jade region; and (4) compared this deduced 
TN load to the recent TN loads (i.e. 2010–2017). To determine the 
sensitivity of the results to choices made, we additionally calculated 
the critical summer chlorophyll range in the year 2003 (when recov-
ery was setting through) in addition to the year 2000 (when recov-
ery started to accelerate), the 3-  and 5- year averages in addition to 

the 4- year average, and we used the average levels in addition to 
maximum levels, in total yielding 11 additional scenarios.

A permission for fieldwork was not needed as monitoring was 
performed on behalf of the environmental authorities and/or con-
cern open source data.

4  |  RESULTS

4.1  |  Seagrass long- term dynamics

Intertidal seagrass abundance in the North Frisian region in the 
northern Wadden Sea has recovered and surpassed the levels as 
in the 1930s (Figure 2). Recovery accelerated between 2000 and 
2011. Since 2011 the levels have remained high and relatively sta-
ble, with further expansions in 2018–2020. Danish data are scarce; 
P.B. Madsen observed a slow decline between 1974 and 1991 (de 
Jong et al., 1993). In 1991, values are high in the Danish region (also 
in North Frisia), which is likely due to a notable spread of Z. marina 
throughout the 1980s, followed by a return to smaller meadows and 
strong dominance of Z. noltei as observed also in the 1970s in the 
North Frisian region (Reise et al., 2005). The values may be an over-
estimation as during the survey in 1991 green algal mats attained 
peak coverage, and confounded the estimate (Reise & Kohlus, 2008). 
It could also be that seagrass abundance was actually very high in 
this particular year, because it was preceded by three dry years with 
low riverine nutrient loads in the Elbe (Figure 3).

In the southern Wadden Sea, the seagrass coverage is presently 
stagnating at a low level with some indications of temporary in-
crease in the Ems- Jade region and the Elbe- Weser region (Figure 2). 
In the eastern and western Dutch Wadden Sea regions, seagrass 
has not recovered. Note that the time series for the Ems- Jade and 
Elbe- Weser region have a lower temporal resolution than the other 
regions (Figure 2); however, annual investigations at six selected key 
locations generally show a peak between 2009 and 2013 and a de-
cline since (Dolch et al., 2017), which suggests that the presented 
data are representative for the general trends in these two regions.

The maximum recorded intertidal seagrass area in the Wadden 
Sea regions varied between 1 km2 in the eastern Dutch region and 
186 km2 in the North Frisian region (Figure 2; Table 2). This cor-
responded to relative seagrass areas (RSA) of 0.11% and 13.3%, 
respectively (Table 2). Recovery trajectories in the Wadden Sea 
comprised expansions from 4.9 to 27.9 km2 (Ems- Jade region, tem-
porary recovery), from 1.5 to 11 km2 (Elbe- Weser region, temporary 
recovery) and from 30 to 186 km2 (North Frisian region, full recov-
ery), which correspond to an increase of factor 5.7, 7.6 and 6.3 re-
spectively (Table 2).

In the North Frisian region, RSA dropped to about 2% during the 
eutrophication peak and increased to 7% during the period of contin-
uously decreasing nutrient loads, that is to circa 2007 (Figures 2 and 
4), after which it expanded to 13%, colonizing even marginal habi-
tats (Table 2). In the region with temporary recovery, the Ems- Jade 
region, RSA never dropped below 0.6% during the highest levels of 
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    |  1791van KATWIJK et al.

F I G U R E  2  Seagrass long- term dynamics in six Wadden Sea regions. Only meadows with cover >5% are included. Data, explanations and 
sources are presented in van Katwijk et al. (2024). Information on species and lower cover categories are available for Dutch meadows (see 
Appendix S1.3). The assessment for 1936–1939 for Ems- Jade is based on a new analysis of aerial photographs (see Appendix S1.1). Triangles: 
monitoring of Hond- Paap is missing; stars: monitoring of Groningen is missing.
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1792  |    van KATWIJK et al.

eutrophication and recovered to 1.9% around 2013 after which it 
dropped to 0.5% in 2019. The maximum RSA in this region was 2.4% 
prior to eutrophication. In the Elbe- Weser region, also a region with 
temporary recovery, RSA never dropped below 0.08% during eutro-
phication, and temporarily recovered to 0.6% around 2013 (Table 2). 
In the western and eastern Dutch regions, prior to the eutrophica-
tion peak, around 1960, recorded RSA was maximally 0.2% (Table 2). 
Historical subtidal Z. marina in the western Dutch region occupied 
approximately 5% of the area (assuming 120 km2 seagrass meadows 
and a total area including a part of the Zuiderzee of 2400 km2).

The habitat suitability model predicts 11.3% and 14.2% of poten-
tial suitable habitats in the Ems- Jade region and the eastern Dutch 
region, respectively. This is much higher than the observed maxima 
RSA of 2.4% and 0.1% prior to eutrophication. It is therefore likely 
that some other factors than those included in the habitat suitabil-
ity model also limit the seagrass distribution. A habitat suitability 
model including waves for the western and eastern Dutch Wadden 
Sea (Folmer, 2019, not available for other regions) showed consider-
ably less suitable habitats, but still nearly 7% in the Eastern Dutch 
Wadden Sea (Table 3) thus still leaving a portion of ‘unexplained’ 
absence of seagrass even prior to eutrophication.

Despite seagrass being near absent in the western and eastern Dutch 
Wadden Sea, seeds were available throughout the area, as we deduce 

from the following evidence: firstly, low density meadows have been 
present for prolonged periods of times, for example along the southern 
shore of Terschelling in the western Dutch region, and fringing the main-
land shore of the eastern Dutch region (see Appendix S1.3); secondly, 
in the utmost western part of the western Dutch region at Balgzand, 
solitary Z. noltei plants and small patches were continuously observed 
during the 1970s to 1990s by J.J. Beukema (quoted in Philippart & 
Dijkema, 1995), and during 1990s–2010s by M.M. van Katwijk; thirdly, 
Z. marina (and to a lesser extent Z. noltei) was frequently introduced in 
the western and eastern Dutch region from 1991 to present in a series 
of restoration programmes (Govers et al., 2022; Gräfnings, 2022; van 
Duren & van Katwijk, 2015; van Katwijk et al., 2009, see Appendix S1.5 
for a review of seagrass restoration activities).

4.2  |  Eutrophication

4.2.1  |  Riverine nutrient loads

In the river Rhine, for the 1930s we estimated TN concentrations 
of about 80 μM and about 60 μM in 1952. Given the few available 
measurements and the uncertainty in estimating TN, we assume that 
no big changes occurred prior to 1952. After 1952, concentrations 

F I G U R E  3  Historical discharges, total nitrogen (TN) concentrations and TN loads in the rivers Rhine (measured at Lobith; panels at the 
left) and Elbe (measured near Geesthacht; panels at the right).
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    |  1793van KATWIJK et al.

rose to a maximum of up to around 500 μM in the 1970s. Between 
the mid- 1980s and 2000, the concentrations decreased and re-
mained on a level between about 125 and 375 μM since (Figure 3). 
Annual loads show a similar pattern (Figure 3). In the river Elbe, 
TN concentrations during the 1930s were estimated at 37 μM (see 
Appendix S1.4). They sharply increased during the 1950s and 1960s, 
reaching a maximum in the 1970s and 1980s of 700–800 μM and 
decreased since the 1980s to presently reach maximum concentra-
tions of about 350 μM (Figure 3). Despite a small decrease in an-
nual discharge (van Beusekom et al., 2019), annual loads show the 
same pattern (Figure 3). Note that the TN loads actually reaching 
the North Sea may have been lower due to estuarine processes like 
denitrification. Denitrification is presently less dominant than in the 
past, since the organic matter loads have been strongly reduced dur-
ing the 1980s (Dähnke et al., 2008).

4.2.2  |  Relation between annual riverine nitrogen 
loads and seagrass abundance in North Frisia

Seagrass abundance in the North Frisian region is tightly related to 
the TN loads of both the Rhine and the Elbe (Figure 4), with seagrass 
abundance decreasing until the 1980s during a period of increasing 

loads, and increasing during the period of decreasing loads since the 
1990s. Recovery started to accelerate around the year 2000. That 
seagrass abundance correlates well with the TN loads of both rivers 
is not a surprise since N loads of river Rhine and Elbe are significantly 
correlated (p ≪ 0.0001; R2 = 0.60), probably due to a similar climate, 
and comparable agricultural and industrial land use developments in 
their respective catchments.

4.2.3  |  Regional differences in Wadden Sea 
eutrophication

The eutrophication indicators, summer chlorophyll and autumn 
NH4 + NO2 concentrations show similar regional patterns dur-
ing the period 2008–2016 (Figure 5). Lowest concentrations 
are observed in the North Frisian region (Pellworm—Sylt, loca-
tions see Figure 1) slightly increasing to the north in the nar-
rower Danish region (Knude Dyb, Gradyb) and towards the Elbe 
estuary. The highest concentrations are found in the southern 
Wadden Sea but there, regional differences are large. Within the 
southern Wadden Sea the lowest concentrations are found in the 
broader western Dutch region (Marsdiep—Doove balg west) and 
the highest concentrations in the narrow eastern Dutch region 

TA B L E  2  Seagrass meadow area prior to, during and after the peak of eutrophication as recorded (and assessed, see footnote c) in time 
series of the Wadden Sea regions, and corresponding RSA (% meadow area/total area).

Regions
Western Dutch 
Wadden Sea

Eastern Dutch 
Wadden Sea

Ems- Jade 
Wadden Sea

Elbe- Weser 
Wadden Sea

North Frisian 
Wadden Sea

Danish 
Wadden Seaa

Total areag km2 1525 1054 1466 1902 1398 628

1930s km2 
(%)

2.0b (0.13%) Anecd 22.4c (1.5)c n.a. 141.0 (10.1%) n.a.

1950s–1960s km2 
(%)

2.83e (0.19%)e Anecd 28.3–34.8d 
(1.93%–2.4%)d

8.1 (0.42%) 101.7 (7.3%) n.a.

1970–2000 km2 
(%)

0.0–0.2 
(0.0%–0.02%)

0.03–0.9 
(0.00%–0.09%)

4.9 (0.33%) 2.76 (0.14%) 29.6–67.1f 
(2.1%–4.8%)f

43.84f (7.0%)f

2001–2020 km2 
(%)

0.0 (0.00%) 0.02–1.13 
(0.00%–0.11%)

7.3–27.9 
(0.50%–1.90%)

1.5–11.0 
(0.1%–0.6%)

39.0–186.4 
(2.8%–13.3%)

9.2–15.7 
(1.5%–2.5%)

Current km2 
(%)

0.00 (0.00%) 0.02 (0.00%) 7.4 (0.50%) 2.7 (0.14%) 186.4 (13.3%) 9.8 (1.5%)

(2020) (2020) (2019) (2019) (2020) (2019)

Note: Ranges are minimum and maximum recorded. Each meadow has >5% seagrass cover. Anecd = anecdotal evidence available (see Appendix S1, 
Table S1).
Abbreviation: n.a., not available.
aMeadow areas and percentages were multiplied by 1.37 to convert cover >20% to cover >5% (see Section 3.1).
bIncomplete, only intertidal Z. marina at Balgzand.
cAssessed from a new analysis of aerial photographs from 1936 to 1939 (see Appendix S1, Table S2).
dThe first number was from mapping 1939–1970 (Michaelis et al., 1971); the second number was assessed from a new analysis of aerial photographs 
from 1951 to 1966 (see Appendix S1, Table S2).
eThis is the sum of meadow areas estimated between 1954 and 1965, that is Balgzand and east Terschelling; expert judgement was that other 
location may only have had minor seagrass presence (Polderman & den Hartog, 1975; van den Hoek et al., 1979). We assume that 2/3 of the meadow 
area of 425 ha concerns cover >5%, based on the cover distribution in comparable meadows.
fThis was recorded in an exceptional year: 1991, see text.
gTotal area of the region was calculated by summing the areas of the separate tidal basins. The areas of tidal basins of Sylt- Rømø and Ems Estuary 
each belong to two regions, their areas were equally divided between both regions.
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1794  |    van KATWIJK et al.

(Danziggat—Zoutkamperlaag zeegat). The concentrations in the 
Ems- Jade region (Norderney, Jadebusen entrance) are interme-
diate. The critical eutrophication threshold ranges (the minimum 
and maximum value of the eutrophication indicators in the years 
preceding the acceleration of recovery in 2000, i.e. 1997–2000) 
are 4.0 and 8.2 μg chla/L summer chlorophyll and 3.8–7.5 μM au-
tumn NH4 + NO2 (green belts in Figure 5).

4.2.4  |  Projection of river load reduction that would 
allow for seagrass recovery

In the region where seagrass recovered (North Frisia), the riverine 
TN loads and summer chlorophyll concentrations are significantly 
correlated (van Beusekom et al., 2019). Most data (one exception) 
are enveloped by two straight lines with different slopes represent-
ing the expected range (approximately equivalent to a mean ± 40%) 
in summer chlorophyll concentrations at a certain TN load. The two 
lines have near- identical intercepts at zero river loads (Figure 6; 
2 μg chla/L, similar to the background values estimated by van 
Beusekom, 2005). The latter suggests that a certain background 
summer chlorophyll level seems to exist, independent of the riverine 
load (e.g. nutrient loads from the Atlantic Ocean). In the North Frisian 
region, seagrass recovery accelerated in the year 2000 (Figure 4). At 
this time, 4- year averaged river Elbe/Weser loads reached levels of 
about 122 kTonnes TN/year. This load corresponds to summer chlo-
rophyll levels ranging between 4.0 and 8.6 μg chla/L (Figure 6).

In Figure 7, the relationship between river loads and summer 
chlorophyll levels is depicted for those stations that have suffi-
ciently long time series and are situated near a tidal inlet similar to 
the Sylt station, that is monitoring stations Norderney in the Jade- 
Ems region, and Marsdiep Noord and Vliestroom in the western 

Dutch region. The relationships between river TN loads (Rhine/
Meuse for these regions) and summer chlorophyll levels are sim-
ilar to the relationship in the North Frisian region (Figure 6). In 
all graphs depicted in Figures 6 and 7, the upper and lower lines 
are about 40% higher or lower than the average (both at high and 
low TN load) showing that the variability of the chlorophyll con-
centrations increases with increasing TN loads. This variability in 
chlorophyll values reflects the suite of factors like grazing, light 
limitation or import efficiency that may impact phytoplankton 
growth during summer. The predictions shown in Figure 7 suggest 
that near Norderney in the Jade- Ems region, and in the western 
Dutch region the critical summer chlorophyll levels for seagrass 
recovery can be expected at Rhine/Meuse loads of about 86 and 
92 kTonnes per year (December–August), respectively. These 
summer chlorophyll concentrations are presently only observed 
in the western Dutch Wadden Sea in very dry years with a low 
riverine TN load. Compared with the average TN loads 2010–2017 
(150 kTonnes/year (December–August)), we suggest that a fur-
ther reduction in TN loads with approximately 40% (34%–46%) is 
required for seagrass recovery in the Ems- Jade Wadden Sea and 
in the western Dutch region (Table 4). For the Elbe- Weser and 
Danish region, no long- term data are available that allow a simi-
lar analysis as carried out above. For the eastern Dutch region, a 
significant correlation existed only for the autumn NH4 + NO2, but 
not for the summer chlorophyll concentration and river nutrient 
loads (van Beusekom et al., 2019).

5  |  DISCUSSION

The earliest records from the 19th and early 20th century provide 
us with an incomplete but consistent picture of historical seagrass 

F I G U R E  4  Relation between 4- year averaged riverine total nitrogen load of the Rhine (left) and Elbe (right) and seagrass coverage in the 
North Frisian region.
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abundance in the Wadden Sea. The long- term dynamics of intertidal 
seagrass in the Wadden Sea are characterized by a decrease since 
the 1950s and a minimum during the 1980s–2000s. Full recovery 
was only observed in the North Frisian region, first signs of (tempo-
rary) recovery in the Ems- Jade and Elbe- Weser region. In the latter 
regions, the seagrass areas increased by a factor 6–8 (after which 
they declined again). There were no signs of recovery in the western 
and eastern Dutch regions. For the Danish region there were insuf-
ficient data to be able to assess the development of seagrass over 
the long term but since 2008, the total seagrass area has remained 
relatively stable.

5.1  |  Eutrophication

In the Wadden Sea, seagrass abundance was at its lowest during 
the peak eutrophication period in the 1980s. After reduction in 
riverine nutrient loads the seagrass recovered only in North Frisia. 
There, seagrass presence is closely related to TN loads in the riv-
ers Rhine and Elbe. In the other regions, seagrass has not recovered 
as the eutrophication levels are still above the identified threshold 
ranges in North Frisia (Figure 5). While reduced eutrophication lev-
els are necessary for seagrass recovery, there could be other factors TA
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F I G U R E  5  Regional difference in the eutrophication indicators 
summer chlorophyll (top) and autumn NH4 + NO2 (bottom) for 
the years 2008–2016. Summer Chlorophyll is the mean of the 
monthly means in May–September. Autumn NH4 + NO2 is the mean 
of the monthly means in September–November. DWS, Danish 
Wadden Sea; EDWS, eastern Dutch Wadden Sea; EJWS, Ems- Jade; 
EWWS, Elbe- Weser; NFWS, North Frisia; WDWS, western Dutch 
Wadden Sea. The green bar depicts the eutrophication threshold, 
that is the range between the minimum and maximum prevailing 
concentrations when seagrass recovery started to accelerate in the 
North Frisian region. Zoutkamperlaagzeegat: only 2008 and 2009.
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preventing it. The lowest eutrophication levels are observed in the 
North Frisian and Danish region, and the highest levels in the eastern 
Dutch and the Elbe- Weser regions. Intermediate levels are found in 
the western Dutch region and in the Jade- Ems region. The difference 
between the western and eastern Dutch region can be explained by 
the broader basins in the west in which the imported organic mat-
ter is diluted over a larger volume (Schwichtenberg et al., 2017; van 
Beusekom et al., 2012). It is not immediately clear why the eastern 
Dutch region has a higher eutrophication level than the Ems- Jade re-
gion. We hypothesize that, in addition to the import from the North 
Sea, import over the tidal divide from west to east is an additional 
source of organic matter and nutrients contributing to the high eu-
trophication levels in the eastern Dutch Wadden Sea (Duran- Matute 
et al., 2014). Between the eastern Dutch and Ems- Jade region, part 
of this import is likely trapped by the Ems estuary situated between 
the two areas and acting as a particle and nitrogen sink (e.g. de Jonge 
et al., 2014; Schulz et al., 2022; van Beusekom & de Jonge, 1998), 
which may explain the lower eutrophication level in the Ems- Jade 
regions as compared to the eastern Dutch region.

We estimated that a further reduction in nutrient loads by about 
40% (34%–46%) of the present (2010–2018) levels is required for 
the western Dutch region and the Ems- Jade region for a persistent 
seagrass recovery. Given this uncertainty, a reasonable manage-
ment goal should aim at a reduction of at least 1/3 compared with 

the levels of 2010–2017. The eutrophication indicators suggest 
that prevailing conditions already may lead to a recovery, as sup-
ported by the temporary recovery to RSA 1.9% in Ems- Jade, and by 
the recent restoration success from yearly supplementary seeding 
(mainly Z. marina) at one of the restoration sites in the western Dutch 
Wadden Sea (Griend) to a presence of >1 million plants scattered 
over an area of 6.5 km2 in 2022 (Gräfnings, 2022). Two other sites 
in this region showed only temporary or no restoration success 
(Govers et al., 2022; van Duren & van Katwijk, 2015; van Katwijk 
et al., 2009), showing both the vulnerability and potential of seagrass 
in these regions. The eutrophication levels in the eastern Dutch 
and Elbe- Weser regions are far above the eutrophication thresh-
old. Note that seagrass meadows that are located in lower salinity 
areas (e.g. salinity 22–28, e.g. in the Ems estuary) generally tolerate 
higher eutrophication levels because of enhanced growth rates (van 
Katwijk et al., 1999).

5.2  |  Why enhanced nutrient loads lead to seagrass 
decline: Algae and habitat squeezing

Eutrophication negatively affects seagrasses by mechanisms 
that are largely indirect, via enhanced growth of phytoplankton, 
epiphytes or macroalgae or a combination of them. Algae shade 
and smother seagrasses, and their decay in autumn enhances an-
oxia with sulphide and ammonia toxicity (Burkholder et al., 2007; 
McGlathery et al., 2007; van Katwijk et al., 1997). Phytoplankton 
productivity in the Wadden Sea and adjacent North Sea plays 
a dominant role in the eutrophication process as is explained in 
Section 2.3. However, direct shading of seagrass by phytoplank-
ton is not likely detrimental because the seagrasses grow in the 
mid- intertidal, being exposed to daylight about half of the time. 
Epiphytes negatively affect seagrass and may become dominant at 
relatively exposed sites; at sheltered sites, they are grazed (Schanz 
et al., 2002). In the Wadden Sea, several observations point at 
green macroalgae being a major threat to seagrass in the intertidal 
zone. The temporal and spatial macroalgae dynamics show simi-
lar patterns as the eutrophication indicators: On Sylt in the North 
Frisian region, a switch between seagrass dominance in the 1930s 
to green macroalgae dominance in the early 2000s was described 
by Reise et al. (2008) with mass developments of green macroal-
gae since 1979 (Reise, 1983). In August 1991, upon monitoring, hy-
drogen sulphide could even be smelled in the aircraft flying 150 m 
above the decaying macroalgae mass (Reise & Siebert, 1994). 
Since the mid- 1990s, green macroalgae cover decreased to low 
levels (e.g. Dolch & Reise, 2021; van Beusekom et al., 2017) and 
seagrass recovered. Similarly, in the Jade- Ems region, macroalgae 
cover peaked during the early 1990s and decreased since. But in 
contrast to the North Frisian region, a high growth potential of 
green macroalgae is still clear in the Jade- Ems region, with peaks 
close to 50% of the maximum observed during the 1990s (e.g. van 
Beusekom et al., 2017). Interestingly, the seagrass recovery period 
around 2010 in the Ems- Jade region coincided with a transient 

F I G U R E  6  Summer chlorophyll concentration as an indicator 
for eutrophication at the long- term Station Sylt in the North Frisian 
region is related to the summed total nitrogen (TN) loads by the 
rivers Weser and Elbe (January–August 1984–2016). From this 
relationship, the critical summer chlorophyll range required for 
seagrass recovery (provided other habitat and seed availability 
requirements are met) is deduced (green vertical range). The 
grey broken lines envelop most of the data and are interpreted 
as the expected maximum and minimum values as a function of 
riverine TN load. The vertical grey line is placed at a TN load of 
122 kTonnes/year, being the average of the loads during the years 
preceding seagrass recovery, that is 1997–2000 (Figure 4). The 
green points mark the single observations for the years 1997–2000.
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minimum in macroalgae cover. Finally, restoration success in the 
western Dutch region (Balgzand) was high after years with low 
macroalgal cover (van Katwijk et al., 2009), whereas in years with 
high macroalgal cover, the majority of the plants wasted away be-
fore the seeds were formed (van Katwijk et al., 2010).

When riverine nutrient loads are not sufficiently reduced, the 
densities of epiphytes and macroalgae will remain high. Whereas 
epiphytes exert a relatively constant stress during the growing 
season (Philippart, 1995), macroalgae will drift depending on tidal 
currents and wind, thus leading to unpredictable disturbances and 
local extinctions. Particularly, sheltered habitats are prone to the 
accumulation of macroalgae. Seagrass may then survive better at 
relatively exposed areas. However, as relatively exposed areas are 
more vulnerable to storms, this may lead to habitat squeezing: In 
tranquil years, seagrass may only survive in relatively exposed areas, 
whereas in stormy years, seagrass may only survive at the more shel-
tered sites.

5.3  |  If nutrients are further reduced, can we 
expect seagrass recovery in the southern  
Wadden Sea?

Historical evidence suggests that—even prior to the eutrophication—
the potential relative seagrass area in the southern regions is low: 
maximum 2.4% in the Ems- Jade region and less than 1% in the Elbe- 
Weser, eastern and western Dutch region. This indicates that seagrass 
habitat suitability is lower than in the North Frisian region and similar 
recovery trajectories are not to be expected even if nutrient loadings 
would be reduced. Per region application of habitat suitability models 
(Folmer, 2019; Folmer et al., 2016) suggest that hydrodynamics and 
geomorphology can fully explain low seagrass abundance prior to eu-
trophication for the Elbe- Weser region, but only partly for the western 
and eastern Dutch and Ems- Jade region. Maybe the alignment of the 
barrier islands (East–West) doesn't give as much shelter from west-
erly wind and wave energy as the high sands and barrier islands in the 

F I G U R E  7  Relation between summer chlorophyll levels and TN loads by the rivers Rhine/Meuse from December–August, for the long- 
term Stations ‘Marsdiep noord’ and ‘Vliestroom’ in the western Dutch region, 1977–2017 (left) and at ‘Norderney’ in the Ems- Jade region, 
1985–2016 (right), and the predicted riverine TN loads that lead to seagrass recovery—provided that other habitat and seed availability 
requirements are met for each region. The grey dotted lines envelop most of the data and can be interpreted as the maximum and minimum 
values to be expected at a certain riverine nutrient load. The critical summer chlorophyll concentration (vertical green range, its derivation is 
depicted in Figure 6) is projected on the river TN load of Rhine/Meuse to come to this prediction (green dotted arrows).

TA B L E  4  Reduction in total nitrogen (TN) loads of the Rhine/Meuse required for seagrass recovery using 12 scenarios to derive 
thresholds: 3- , 4-  and 5- year averaged TN loads, upper line and the average of the upper and lower lines in Figures 6 and 7, and the year 
2000 as start of the acceleration and 2003 as the start of the recovery setting through (detailed outcomes are presented in Appendix S1.6).

Scenario
Western Dutch Wadden Sea stations  
Mardiep and Vliestroom

Ems- Jade Wadden Sea station 
Norderney

4- year averaged TN, year 2000, upper line 38% 43%

Minimum of all scenarios 34% 39%

Maximum of all scenarios 43% 46%
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northern Wadden Sea do (North–South aligned). The relatively high 
suitability and historical presence in the sheltered Jade Bay supports 
the important role of shelter. The central part of the Elbe- Weser re-
gion is even hardly protected by barrier islands, and wind- wave dy-
namics preclude persistent seagrass meadows.

Another part of the low habitat suitability in the southern regions 
could perhaps be explained by the abundant presence of clay and peat 
banks in the north, and not in the south acting as seagrass refuges. 
Clay and peat layers lying below the sandy surface may have enabled 
a strong anchorage of seagrass roots further stabilizing the local sea-
grass meadows under adverse conditions like heavy storms (Reise & 
Kohlus, 2008). It is illustrative that the scarce presence of seagrass 
in the Dutch Wadden Sea is limited to clay bank relicts from former 
saltmarshes and a harbour in the western Dutch region and artificial 
saltmarshes of former reclamation works in the eastern Dutch region. 
Also, the loss of suitable habitats due to progressive land reclamation 
over centuries may play a role (Lotze & Reise, 2005; Dolch et al., 2013; 
see Appendix S1.1). Seagrass recovery could also be constrained by 
alterations in the biotic community (e.g. Cronau et al., 2023; Sievers 
et al., 2022). In the Wadden Sea, it was for instance shown that rag-
worms could limit recruitment from seed (Kwakernaak et al., 2023). 
Interestingly, the temporal and spatial gradients in eutrophication in 
the Wadden Sea are reflected in faunal characteristics, which may 
therefore serve as an indicator for eutrophication, and as a predictor 
for seagrass recovery (e.g. Gräfnings et al., 2023; Singer et al., 2023).

5.3.1  |  Subtidal seagrass

Subtidal seagrass was abundant in the western Wadden Sea prior to 
the 1930s, but not in other parts of the Wadden Sea. Prospects for 
recovery of subtidal Z. marina may be still low at the present eutrophi-
cation level of the western Wadden Sea. The subtidal form of Z. marina 
is perennial and may therefore be even more sensitive to eutrophica-
tion than the intertidal annual form of Z. marina, as was inferred from 
system- scale experiments in Lake Grevelingen (van Katwijk & van 
Tussenbroek, 2023). Large geomorphological changes and altered salin-
ity regime (average higher salinity with more intense low salinity peaks) 
since the closure of the Zuiderzee limits the suitable area for subtidal 
seagrass in the western Wadden Sea (van der Heide et al., 2006, 2007).

5.4  |  Delay in decline and recovery?

Declines and recoveries of seagrass meadows generally show 
some delay in response time. In the Wadden Sea, the high seagrass 
abundance in 1958 may suggest a delayed response to increasing 
eutrophication, but may also been due to an overestimation of TN 
loads from the estuaries to the North Sea because of the higher 
denitrification rates related to the high organic matter loads during 
this period (Dähnke et al., 2008).

The recovery observed in North Frisia started to accelerate in 
2000, but slow recovery already started 10–15 years before. For the 
other regions this may imply that, upon partial reduction of nutrient 

loads—and all other habitat requirements being met—a delayed, slow 
or only temporary recovery of seagrass, as observed in the Ems- Jade 
region, may be expected. Several processes could be responsible for 
delays in recovery. First, when the nutrient levels are reduced but 
still above the threshold values there may still be large yearly vari-
ability in (macro-  and micro- ) algal abundance or import of organic 
matter that may impair recovery. A delay may also result from low 
propagule availability and large- scale seeding may then accelerate 
the recovery process (Reynolds et al., 2016). Third, it could be argued 
that a period of eutrophication may lead to delayed nutrient deliv-
ery from the sediments. However, van Beusekom et al. (2001, 2009) 
show minor delay of nitrogen release from organic matter stored in 
the sediment in the Wadden Sea, and phosphorus concentrations 
in the Wadden Sea are generally only related to river phosphorus 
loads during the preceding year, or maximally two preceding years, 
suggesting that lag- effects (through inorganic adsorption to the sed-
iment) are likely no more than 2 years (van Beusekom et al., 2001).

In addition, positive feedbacks may explain delays in decline and 
recovery. Several positive feedbacks have been described for Z. noltei 
and Z. marina. For example, sediment stabilization and alleviation of 
bioturbation by seagrass, support seagrass expansion (Eklöf et al., 
2015; Philippart, 1994; Reise, 2002; Suykerbuyk, Bouma, et al., 2016; 
Suykerbuyk, Govers, et al., 2016; van Katwijk & Hermus, 2000). 
Desiccation in the upper intertidal zones is also partly alleviated by 
high densities of seagrass canopies retaining water, providing another 
positive feedback (Fox, 1996). The well- known feedback of seagrass 
trapping sediments and thereby improving light conditions (van der 
Heide et al., 2007) is probably not very relevant in the intertidal zones 
where most seagrass occurs in the Wadden Sea as they are directly 
exposed to daylight during the low tides. The positive feedback pro-
vided by the mutualism of seagrass with lucinid clams alleviating 
sulphide toxicity does not occur in the Wadden Sea as Lucinids are ab-
sent (van der Heide et al., 2012). All aforementioned feedbacks occur 
at the mm to 100 m scale and may explain the delays in decline and 
recovery. However, they do not explain the new settlements beyond 
extant meadows which are at the base of the recoveries. Therefore, 
we propose feedback from propagule spillover as a feedback for sea-
grass operating at a landscape scale.

5.5  |  A positive feedback operating at landscape 
scale: Propagule spillover

Propagule spillover is high in the Wadden Sea. For example, when 
seagrasses recovered from an RSA of 2.1% to the present 12%–13% 
in North Frisia, they were noticed to also cover marginal habitats 
(Dolch et al., 2013; T. Dolch, personal observations). High levels of 
propagule spillover are also suggested from the presented omni-
presence of seagrass in the Wadden Sea in very low densities, and 
further supported by the high level of genetic connectivity (Coyer 
et al., 2004; Ferber et al., 2008; Olsen et al., 2004). Also, the recov-
ery rates observed in North Frisia and temporary in the Ems- Jade 
region, are orders of magnitude larger than could be expected from 
clonal expansion rates only, further indicating propagule spillover. 
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Propagule spillover provides positive feedback at landscape scales 
that is well- described for metapopulations (rescue effect, 
Hanski, 1998), but not yet considered in seagrass recovery literature. 
In seagrass restorations, the importance of propagule spillover and 
abundance was suggested by (1) the larger environmental range cov-
ered by recovering seagrass when propagule abundance was higher 
(Dolch et al., 2013; Oreska et al., 2021), (2) higher success rates 
with increasing proximity of the donor populations (van Katwijk 
et al., 2016) and (3) disproportionally higher success of global resto-
ration trials with increasing numbers of introduced propagules (van 
Katwijk et al., 2016). Propagule spillover operates at landscape scale 
(0.01–1000 km) and the suggested high levels may explain the ac-
celeration in recovery observed in North Frisia. Rescue effects from 
propagule spillover will be particularly important when nutrient re-
duction is not yet complete and macroalgal blooms may still lead to 
local extinctions. Therefore, for restoration, occupied and potential 
seagrass habitat (e.g. assessed by the maximum recorded area in the 
past) should be an important landscape selection criterion.

Vectors for transport of propagules are water or birds. Dominant 
winds and the tidal wave run from west to east and from the Elbe 
onward to the north, making the western tidal basins a net source, 
and the most north- eastern basins net sinks of propagules. Transport 
modelling studies, which include wind effects, show that patterns of 
transport are highly variable over various timescales (Chrastansky 
& Callies, 2011; Duran- Matute et al., 2014; Erftemeijer et al., 2008). 
These studies imply that westward transport by water currents is pos-
sible but that it is less frequent and takes place over shorter distances 
than eastward transport. The propagules are usually seeds that are 
still attached to the seed- bearing shoots that are positive buoyant; 
single seeds are too heavy to travel far (e.g. Berkovic et al., 2014; 
Harwell & Orth, 2002). Waterfowl, particularly Brent Geese and 
Anas species, feed on seagrass and its seeds (Jacobs et al., 1981). The 
seeds can survive the gut and may contribute to dispersal (Loquès 
et al., 1988; Sumoski & Orth, 2012); the autumnal transport by water-
fowl is usually from north to south (Clausen et al., 2002).

Propagule spillover may provide an important feedback also for 
other seagrass species. Most seagrass species have both short-  and 
long- range propagule dispersal strategies, and propagules often travel 
in groups, for example through fruits or seed- bearing shoots (Kendrick 
et al., 2012; McMahon et al., 2014). The propagule spillover feedback 
generates (1) locally high densities for density- related feedbacks to op-
erate and (2) frequent and locally spread propagule arrivals to employ 
the available windows of opportunity (see van Katwijk et al., 2016).

6  |  CONCLUSIONS

6.1  |  Recommendations for the Wadden Sea

The only areas in the Wadden Sea where seagrass is not threatened 
by eutrophication are the North Frisian and the Danish regions where 
present eutrophication levels are below thresholds for seagrass 

recovery. In the Ems- Jade and Elbe- Weser region, temporary recov-
ery has been observed, but the eutrophication status is probably still 
too high to enable sustained recovery. Further reductions in riverine 
nutrient loads by ~40% (compared with 2010–2018) are needed to 
enable a permanent seagrass recovery. For comparison, terrestrial 
nitrogen inputs—to meet EU policy targets regarding terrestrial bio-
diversity, aquatic ecosystems and drinking water standards—should 
reduce nitrogen run- off to surface water by 51% and 74% in Germany 
and The Netherlands, respectively (de Vries et al., 2021). In this con-
text, a reduction of 40% of riverine nutrient loads is well within re-
ductions needed to meet EU environmental policy targets.

6.2  |  Seagrass prospects in the Wadden Sea

After a reduction in nutrient loads, seagrass abundance in the south-
ern Wadden Sea will probably not reach higher levels than an RSA 
of approximately 2.4% in the Ems- Jade region, and in the western 
Wadden Sea not more than 0.2%. The Elbe- Weser region has a low 
suitability for seagrass for other reasons, that is no wind- wave pro-
tection by barrier islands (except the margins of the region), and 
in the eastern Dutch Wadden Sea, the nutrient levels are so high 
that a 40% reduction is not sufficient. The temporary recovery in 
Ems- Jade as well as recent restoration success at one out of three 
restoration sites in the western Wadden Sea (Govers et al., 2022; 
Gräfnings, 2022) show the vulnerability, but also the potential of 
seagrass in these regions.

6.3  |  Landscape scale assessment of nutrient loads

Eutrophication in a half open tidal system is extremely complex 
(e.g. Ehrnsten et al., 2020; Thompson et al., 2008). Still, region- 
specific eutrophication indicators and their relation with riverine 
TN loads allowed us to deduce a tentative critical river TN load 
for seagrass recovery per region. We could only do this for those 
regions where the indicators correlated sufficiently tight with river 
nutrient loads to allow such projection. This may be a technique 
that can be applied in other (data- dense) landscapes in the land- 
ocean interface as well.

6.4  |  Propagule spillover: A positive feedback at 
landscape scale

The seagrass dynamics observed in our study indicate high levels of 
propagule spillover. Propagule spillover provides a positive feedback 
at metapopulation scale (0.01–1000 km), which may also operate 
in other seagrass species worldwide. It implies that, when planning 
seagrass restoration, a site within a landscape with a high density 
of (potential, or—even better—occupied) habitat should be preferred 
over an isolated ‘suitable’ site.
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