Late Pleistocene interglacials: Defining them and getting hold of their CO₂

Peter Köhler

PMIP Workshop on IG @ Bremerhaven, 09 Jan 2025

Interglacials defined by: (absence of NH) land ice (outside of Greenland)

CO_2

MIS 11c and 31

Interglacials defined by: (absence of NH) land ice (outside of Greenland)

@AGUPUBLICATIONS

Reviews of Geophysics

REVIEW ARTICLE 10.1002/2015BG000482

Interglacials of the last 800,000 years

Past Interglacials Working Group of PAGES¹

- Conceptual change of state
- "As warm or warmer than the Holocene"
- Fixed threshold
- Varying threshold
- Interglacial defined as the interval following a glacial termination
- Interglacial defined as the most prominent peak(s) within each odd-numbered marine isotopic complex

- Interglacials are characterized by absence of NH ice outside Greenland; different interglacials must be separated by lowering of sea level below a set threshold.

Choosing an insolation metrics

Defining interglacials

Deriving a simple scheme

Chosen definition for Interglacials (IG):

Interglacials are characterized by absence of NH ice outside Greenland; different interglacials must be separated by lowering of sea level below a set threshold.

In practise: (detrended) LR04 δ^{18} O taken, but this is NOT NH ice outside Greenland

ARTICLE

doi:10.1038/nature21364

A simple rule to determine which insolation cycles lead to interglacials

P. C. Tzedakis¹, M. Crucifix², T. Mitsui² & E. W. Wolff³

(Lisiecki & Raymo, 2005)

M

Input	Method	Output
reconstructed	3D ice sheet model	land ice distribution
deep ocean δ^{18} O	$\delta^{18} {\sf O} ightarrow$ sea level & ΔT	definition of IG (no NH ice out of Greenl.)
(Lisiecki & Raymo, 2005)	(de Boer et al., 2014)	(Köhler & van de Wal 2020)

(Köhler and van de Wal, 2020)

©.

benthic $\delta^{18}O$

land ice=f(δ^{18} O, model) (de Boer et al 2014)

(Köhler and van de Wal, 2020)

©.

benthic $\delta^{18}O$

land ice=f(δ^{18} O, model) (de Boer et al 2014)

Findings for IG:

(Köhler and van de Wal, 2020)

®**`**AVI

benthic $\delta^{18}O$

land ice=f(δ^{18} O, model) (de Boer et al 2014)

(Köhler and van de Wal, 2020)

©**`**AVI

benthic $\delta^{18}O$

land ice=f(δ^{18} O, model) (de Boer et al 2014)

(Köhler and van de Wal, 2020)

©**`**AVI

benthic $\delta^{18}O$

land ice=f(δ^{18} O, model) (de Boer et al 2014)

(Köhler and van de Wal, 2020)

OANI

benthic δ^{18} O

land ice=f(δ^{18} O, model) (de Boer et al 2014)

Evolving Revised Understanding

(Clark et al., 2024, submitted)

(Köhler and van de Wal, 2020)

®. M

benthic $\delta^{18}O$

land ice=f(δ^{18} O, model) (de Boer et al 2014)

Findings for IG: IG defined by lack of NH land ice outside of Greenland $\delta^{18}O_{sw} vs \delta^{18}O_{T}$ ANT+GIS>PRE Residual NAM+EUR

Alternative $\delta^{18}O_{sw} + \delta^{18}O_{T_{sy}}^{0}$ Temperature data-based (Clark et al., 2024, subm.)

CO_2

OM

 δ^{11} B-isotopes, alkenones, paleosol, blue ice, ice cores

© AVI

alkenones not reliable anymore (Phelps et al., 2021)

new data: leaf wax δ^{13} C (Yamamoto et al 2022)

OM

Carbon cycle simulations and transfer functions from marine data

MIS 11c and 31

MIS 11c

(Köhler and van de Wal, 2020)

(Köhler and van de Wal, 2020)

MIS 11c

CO₂ MIS 11c

MIS 11c: high-res ice core data (Nehrbass-Ahles et al (2020) + some proxy data

(Köhler and van de Wal, 2020)

CO₂ MIS 31

MIS 31: some proxy data and a lot of simulations

Beyond EPICA Oldest Ice Core

(Beyond EPICA, unpublished; Chung et al., 2023)

MIS 11c: CO_2 = preindustrial = 278 ppm (but: CO_2 @ PMIP-PI run: 284 ppm!)

MIS 31: $CO_2 = \in [250, 300]$ ppm or wait for Beyond EPICA (2026)

 $\begin{array}{l} CH_4,\,N_2O\text{:}=\text{preindustrial, or}\\ CO_2\Rightarrow \text{eff. }CO_2 \text{ with } \Delta R_{[GHG]}=1.25\cdot\Delta R_{[CO_2]}\\ \text{Non-CO_2-GHG factor of 1.25 based on Hansen et al (2023)}\\ \text{Older approaches have 1.16 based on different efficacies}\\ \text{(see Figure)} \end{array}$

(Data used in Köhler et al., 2010 based on Hansen et al., 2008)

References

Clark, P. U., J. D. Shakun, Y. Rosenthal, P. Köhler, and P. J. Bartlein (2024), Global and regional temperature change over the past 4.5 million years, <i>Science</i> , 383, 884–890, doi:10.1126/science.adi1908.
Clark, P. U., J. D. Shakun, Y. Rosenthal, C. Zhu, J. M. Gregory, P. Köhler, Z. Liu, D. P. Schrag, and P. J. Bartlein (submitted-a), Mean ocean temperature change and deconvolution of the benthic δ^{18} O record over the last 4.5 Myr, <i>Climate of the Past Discussions</i> , doi:10.5194/egusphere-2024-3010.
Clark, P. U., J. D. Shakun, Y. Rosenthal, D. Pollard, S. W. Hostetler, P. Köhler, P. J. Bartlein, J. M. Gregory, C. Zhu, D. P. Schrag, Z. Liu, and N. Pisias (submitted-b), Global sea level over the past 4.5 million years
de Boer, B., L. J. Lourens, and R. S. van de Wal (2014), Persistent 400,000-year variability of Antarctic ice volume and the carbon cycle is revealed throughout the Plio-Pleistocene, <i>Nature Communications</i> , <i>5</i> , 2999, doi:10.1038/ncomms3999.
Dumitru, O. A., J. Austermann, V. J. Polyak, J. J. Fornós, Y. Asmerom, J. Ginés, A. Ginés, and B. P. Onac (2019), Constraints on global mean sea level during Pliocene warmth, <i>Nature</i> , 574(7777), 233–236, doi:10.1038/s41586-019-1543-2.
Hansen, J. E., M. Sato, L. Simons, L. S. Nazarenko, I. Sangha, P. Kharecha, J. C. Zachos, K. von Schuckmann, N. G. Loeb, M. B. Osman, Q. Jin, G. Tselioudis, E. Jeong, A. Lacis, R. Ruedy, G. Russell, J. Cao, and J. Li (2023), Global warming in the pipeline, <i>Oxford Open Climate Change</i> , <i>3</i> (1), kgad008, doi:10.1093/oxfclm/kgad008.
Hansen, M. C., S. V. Stehman, P. V. Potapov, T. R. Loveland, J. R. G. Townshend, R. S. DeFries, K. W. Pittman, B. Arunarwati, F. Stolle, M. K. Steininger, M. Carroll, and C. DiMiceli (2008), Humid tropical forest clearing from 2000 to 2005 quantified by using multitemporal and multiresolution remotely sensed data, <i>Proceedings of the National Academy of Sciences</i> , <i>105</i> (27), 9439–9444, doi:10.1073/pnas.0804042105.

Köhler, P. (2023), Atmospheric CO₂ concentration based on boron isotopes versus simulations of the global carbon cycle during the Plio-Pleistocene, *Paleoceanography and Paleoclimatology*, *38*, e2022PA004439, doi:10.1029/2022PA004439.

Köhler, P., and R. S. W. van de Wal (2020), Interglacials of the Quaternary defined by northern hemispheric land ice distribution outside of Greenland, *Nature Communications*, *11*, 5124, doi:10.1038/s41467-020-18897-5.

References

Köhler, P., R. Bintanja, H. Fischer, F. Joos, R. Knutti, G. Lohmann, and V. Masson-Delmotte (2010), What caused Earth's temperature variations during the last 800,000 years? Data-based evidences on radiative forcing and constraints on climate sensitivity, *Quaternary Science Reviews, 29*, 129–145, doi:10.1016/j.quascirev.2009.09.026.

Lisiecki, L. E., and M. E. Raymo (2005), A Pliocene-Pleistocene stack of 57 globally distributed benthic δ¹⁸O records, *Paleoceanography*, 20, PA1003, doi:10.1029/2004PA001071.

Martin, J. R. W., J. B. Pedro, and T. R. Vance (2024), Predicting trends in atmospheric CO₂ across the Mid-Pleistocene Transition using existing climate archives, *Climate of the Past*, 20(11), 2487–2497, doi:10.5194/cp-20-2487-2024.

Nehrbass-Ahles, C., J. Shin, J. Schmitt, B. Bereiter, F. Joos, A. Schilt, L. Schmidely, L. Silva, G. Teste, R. Grilli, J. Chappellaz, D. Hodell, H. Fischer, and T. F. Stocker (2020), Abrupt CO₂ release to the atmosphere under glacial and early interglacial climate conditions, *Science*, *369*(6506), 1000–1005, doi:10.1126/science.aay8178.

Past Interglacials Working Group of PAGES (2016), Interglacials of the last 800,000 years, Reviews of Geophysics, 54, 162–219, doi:10.1002/2015RG000482.

Phelps, S. R., H. M. Stoll, C. T. Bolton, L. Beaufort, and P. J. Polissar (2021), Controls on Alkenone Carbon Isotope Fractionation in the Modern Ocean, *Geochemistry, Geophysics, Geosystems, 22*(12), e2021GC009658, doi:10.1029/2021GC009658.

Willeit, M., A. Ganopolski, R. Calov, and V. Brovkin (2019), Mid-Pleistocene transition in glacial cycles explained by declining CO₂ and regolith removal, *Science Advances*, 5(4), eaav7337, doi:10.1126/sciadv.aav7337.

Yamamoto, M., S. C. Clemens, O. Seki, Y. Tsuchiya, Y. Huang, R. O'ishi, and A. Abe-Ouchi (2022), Increased interglacial atmospheric CO₂ levels followed the mid-Pleistocene Transition, *Nature Geoscience*, *15*(4), 307–313, doi:10.1038/s41561-022-00918-1.