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Abstract. Reconstructions of past variations in the global
mean surface temperature (GMST) are used to characterise
the Earth system response to perturbations and to validate
Earth system simulations. Beyond the instrumental period,
reconstructions rely on local proxy temperature records and
algorithms aggregating these records. Here, we propose to
establish standards for evaluating the performance of such
reconstruction algorithms. Our framework relies on pseudo-
proxy experiments (PPEs). That is, we test the ability of an
algorithm to reconstruct a simulated GMST, using artificially
generated proxy data created from the same simulation. We
apply the framework to an adapted version of the GMST re-
construction algorithm used in Snyder (2016) and the meta-
data of the synthesis of marine proxy records for the temper-
ature of the last 130 kyr from Jonkers et al. (2020). We use
an ensemble of four transient simulations of the Last Glacial
Cycle (LGC) or the last 25 kyr for the pseudo-proxy experi-
ments.

Given the dataset and the algorithm, we find that the recon-
struction is reliable for timescales longer than 4 kyr during
the last 25 kyr. However, beyond 40 kyr BP, age uncertainty
limits the reconstruction reliability to timescales longer than
15 kyr. For the long timescales, uncertainty on temperature
anomalies is caused by a factor that re-scales near-global-
mean sea surface temperatures to GMST, the proxy measure-
ments, the specific set of record locations, and potential sea-
sonal biases. Increasing the number of records significantly

reduces all sources of uncertainty but the scaling. We also
show that a trade-off exists between the inclusion of many
records, which reduces the uncertainty on long timescales,
and of only records with low age uncertainty, high accumu-
lation rate, and high resolution, which improves the recon-
struction of the short timescales.

Finally, the method and the quantitative results presented
here can serve as a basis for future evaluations of reconstruc-
tions. We also suggest future avenues to improve reconstruc-
tion algorithms and discuss the key limitations arising from
the proxy data properties.

1 Introduction

The global mean surface temperature (GMST) is a funda-
mental quantity to describe climate change. It is a major
component of the Earth’s energy balance and describes the
response of the Earth system to external perturbations. Fur-
thermore, the GMST is one of the variables characterising
Earth’s habitability and how ecosystems develop. Hence,
GMST is the main target measure of international efforts to
limit anthropogenic global warming (UNFCCC, 2015). The
past evolution of GMST is used to evaluate Earth system
models (ESMs; e.g. PAGES 2k Consortium, 2019; Brierley
et al., 2020; Kageyama et al., 2021; Lunt et al., 2021) and to
estimate the equilibrium climate sensitivity, i.e. the response
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of GMST to a doubling of atmospheric CO; concentrations
(Snyder, 2016; Friedrich and Timmermann, 2020).

Comprehensive ESMs are being developed to project cli-
mate change for the end of the century and beyond. Some of
these ESMs include an atmosphere—ocean general circula-
tion model along with modules for ice sheets (Nowicki et al.,
2016; Ziemen et al., 2019; Muntjewerf et al., 2020), iceberg
melting (Rackow et al., 2017; Erokhina and Mikolajewicz,
2024), dynamic vegetation (Song et al., 2021), and the car-
bon cycle (Brovkin et al., 2012; Arora et al., 2020; Kleinen
et al., 2021). During the Last Glacial Cycle (LGC; the last
130 kyr, which includes the Last Interglacial (LIG), the Last
Glacial Period, and the Holocene), large changes in these
Earth system components occurred in response to radiative
forcing changes of comparable magnitude to those projected
in future scenarios. Therefore, the LGC is an important eval-
uation period for ESMs.

Reconstructing past GMST relies on proxy records ex-
tracted for example from sediments or ice. Many methods
for reconstructing the GMST over the LGC use a bottom-
up approach, where many local proxy temperature records
are combined to compute an area-averaged temperature (e.g.
Shakun et al., 2012; Snyder, 2016; Friedrich and Timmer-
mann, 2020; Osman et al., 2021; Clark et al., 2024). This
approach aims to suppress noise and regional influences in
these time series but remains sensitive to the spatial and tem-
poral coverage of the data.

To our knowledge, a proper evaluation of such reconstruc-
tion methods has not been performed, which limits their use
for model evaluations. In particular, we note several open
questions regarding the quality of GMST reconstructions of
and beyond the LGC:

— How reliable are GMST reconstructions of the LGC?

— Does the non-uniform spatiotemporal distribution of
proxy samples lead to biased GMST reconstructions?

— Which sources of uncertainty impact reconstructions
and in what way?

— What is the shortest timescale on which amplitudes and
timings of GMST variations can be accurately recon-
structed for a given algorithm and dataset?

— What are the sources of the loss of accuracy on short
timescales?

— Which limiting factors should be prioritised for improv-
ing the GMST reconstruction quality (uncertainty, reso-
lution)?

This study tests a reconstruction method similar to the one
published in Snyder (2016, hereafter S16). This algorithm
was used to compute a GMST reconstruction of the Pleis-
tocene based on sea surface temperature (SST) proxy records
to investigate glacial cycles. It is robust enough to tackle and
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account for the non-stationarity of climate states and the spar-
sity of the records. Compared to other algorithms proposed
to reconstruct GMST on glacial-interglacial timescales, it
quantifies uncertainties more comprehensively and has a lim-
ited reliance on model output. Therefore, we use it as the
basis of our work, although most of the findings will likely
hold for other algorithms using similar principles for the re-
construction.

This study does not provide a new reconstruction but
an evaluation method based on pseudo-proxy experiments
(PPEs) and transient climate simulations. PPEs enable the
testing of an algorithm in controlled, idealised environments,
where the underlying truth is known (i.e. the simulation out-
puts). They rely on pseudo-proxies that are synthetic time
series imitating proxy records, based on the spatiotemporal
climate state of the simulation. The computation of pseudo-
proxies is performed using a proxy system model (sed-
proxy; Dolman and Laepple, 2018), which simulates the
processes from the fixation of the climate-dependent quan-
tity to the measurement of the proxy in the lab, including
the entailed uncertainties. To create realistic pseudo-proxies,
we use the metadata of a recently published database: the
PalMod 130k marine palacoclimate data synthesis (Jonkers
et al., 2020, hereafter J20). This database provides numerous
proxy records of near-surface sea temperature from marine
sediments. It is metadata-rich, which enables us to test the
impact of various uncertainty sources on the reconstruction
and whether these are well accounted for in the algorithm’s
uncertainty estimates.

In the following, we first describe the J20 database and
the transient climate simulations employed to compute the
pseudo-proxies. Then, we present the GMST reconstruction
algorithm and the design of the PPEs. The results from the
PPEs follow this. Finally, we discuss the algorithm’s perfor-
mance when using the J20 metadata and future avenues to
improve GMST reconstructions.

2 Data

2.1 Temperature reconstructions

Our study relies on one of the largest syntheses of marine
proxy records for temperature of the LGC available: the ex-
tended PalMod 130k marine palacoclimate data synthesis,
beta version 2.0.0 (Jonkers et al., 2020, hereafter J20). This
dataset is a multi-proxy compilation of globally distributed
marine proxy records spanning the last 130 kyr and was de-
veloped within the PalMod initiative (https://www.palmod.
de, last access: 16 January 2025; Latif et al., 2016; Fieg et al.,
2023) as a comprehensive reference for transient climate
simulations. We use various metadata from this database:
core locations, proxy types, species (for Mg/Ca), sedimen-
tation rates, and age ensembles. We prefer this database
over the one assembled for S16, where only locations, proxy
types, and mean chronologies are available. In particular, the
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effect of bioturbation can be computed using sedimentation
rates or the impact of habitat preferences using species. The
J20 database also provides a unified framework for the age
models. These are constrained using a blend of radiocarbon
dates (between 0 and ~ 40 kyr BP) and 6!80 benthic stratig-
raphy based on Lisiecki and Stern (2016). Chronological un-
certainty is assessed using the Bayesian framework BACON
(Blaauw and Christen, 2011). Specifically, the database con-
tains 1000 age ensemble members for each sediment core.
We do not use the temperature records in J20, as our study
does not aim to present a new GMST reconstruction.

We selected all proxy records for SST located within the
latitudes 60° N and 60° S, following S16, with at least 10
values. This leaves us with 265 time series at 189 loca-
tions. These records rely on temperature dependencies of the
chemical composition, chemical product, and the tempera-
ture preferences of various organisms living near the sea sur-
face. Here, this includes alkenone indices (U?’f7, Ué‘;; 89 time
series; Prahl et al., 1988), a lipid-based index (TEXgg; 6 time
series; Schouten et al., 2002), the long chain diol index (LDI;
4 time series; Rampen et al., 2012), Mg/Ca ratios in plank-
tonic foraminifera (103 time series; Niirnberg et al., 1996),
and microfossil assemblages (planktonic foraminifera, radi-
olaria, and diatoms; 63 time series; Imbrie, 1971). In addi-
tion, we only kept the time series for which the representative
season was indicated as annual (105 time series) or unspec-
ified (112 time series). In some cases, assemblages from the
same core are used to estimate winter and summer tempera-
tures. If the time step coincides, we average the two to form
48 “pseudo-annual” time series.

Record metadata show some distinctive features (Figs. 1
and 2). Firstly, record locations tend to better cover the At-
lantic than the Indian and Pacific oceans and tend to be
close to the coast (Fig. 1-A). Secondly, the number of proxy
records is maximum for the deglaciation (> 200), while it is
relatively constant between 40 and 120 kyr BP (82; Fig. 2a).
However, substantial data gaps occur in the Southern Hemi-
sphere for periods prior to the LGM (Fig. 1b). Thirdly, the
lowest age uncertainty is achieved in the last 30 kyr (< 3 kyr),
where radiocarbon dating is reliable and frequently em-
ployed. For the rest of the LGC, median age uncertainty is
slightly below 10kyr. Finally, the highest temporal resolu-
tion and the highest accumulation rate are also found in the
last 30 kyr (< 1 kyr). Note that a high accumulation rate leads
to a bioturbated layer covering a shorter period of time.

2.2 Climate model output

To compute the pseudo-proxy time series used in the PPEs,
we use transient simulation outputs from four different cli-
mate models: FAMOUS, LOVECLIM, CESM, and MPI-
ESM. This multimodel approach is used to test the robust-
ness of the result.

The FAst Met Office and UK Universities Simulator (FA-
MOUS) is a version of the Hadley Centre Coupled Model
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version 3 (HadCM3; Gordon et al., 2000) AOGCM with re-
duced resolution (Smith et al., 2008). The simulation used
here is the version ALL-5G produced in the QUEST project
and covers the last 120 kyr (Smith and Gregory, 2012). The
simulation is forced with transiently changing orbital param-
eters (Berger, 1978), greenhouse gas concentrations (Spahni
et al., 2005; Liithi et al., 2008), and Northern Hemisphere ice
sheet extents and topographies from the ICE-5G v1.2 dataset
(Peltier, 2004).! The time-varying external boundary condi-
tions are accelerated by a factor of 10 in the simulation, such
that the last 120 kyr are effectively simulated in 12 kyr in the
model (Smith and Gregory, 2012).

LOch-Vecode-Ecbilt-CLio-aglsM (LOVECLIM) is an
Earth system model of intermediate complexity (Goosse
et al., 2010), that is, with coarser spatial resolution and
simpler representation of physical processes than in general
circulation models. The simulation used here (LOVECLIM
800k; Timmermann and Friedrich, 2016) uses version 1.1
of LOVECLIM (Goosse et al., 2007), with only the atmo-
spheric, oceanic, and vegetation modules activated. Green-
house gas concentrations are prescribed following the mea-
surements from the EPICA DOME C ice core (Liithi et al.,
2008), and the evolution of ice sheets (surface elevation and
albedo, land—sea mask) is prescribed following a simula-
tion with the CLIMBER-2 model (Ganopolski and Calov,
2011). Finally, orbital configurations are derived from Berger
(1978). Similarly to FAMOUS, the external forcings are ac-
celerated by a factor of 5.

Several simulations of the last 26 kyr, using MPI-ESM
1.2 (Mauritsen et al., 2019), have been published in Kapsch
et al. (2022). We select two simulations from this paper. The
first simulation (called GLAC1D-P2 in Kapsch et al. (2022),
hereafter MPI-G1D) is forced using the GLAC-1D ice sheet
reconstruction (Tarasov et al., 2012; Briggs et al., 2014).
By contrast, the second simulation (ICE6G-P2 in Kapsch
et al. (2022), hereafter MPI-16G) uses ICE-6G (Peltier et al.,
2015). Forcings are otherwise identical (Kohler et al., 2017,
and Berger, 1978, for greenhouse gases and insolation, re-
spectively). These simulations also include meltwater flux
forcing from ice sheet melt through a dynamical routing.

Finally, we use a simulation of the last 3 million years
(Yun et al., 2023), based on CESM 1.2. (Hurrell et al., 2013).
For our period of interest, it uses as boundary conditions an
LGM land-sea mask, greenhouse gas concentrations from
the EPICA DOME C ice core (Liithi et al., 2008), orbital
configurations from Berger (1978), and the ice sheet ele-
vation and albedo from a CLIMBER-2 simulation (Willeit
et al., 2019). The time-varying boundary conditions are ac-
celerated by a factor of 5. Open-access data availability is
limited to millennial averages, which restricts the use of this
simulation in our analysis.

I The land—sea mask is that of the pre-industrial condition in this
simulation, so the ice sheet topography is only applied to the pre-
industrial land surface.
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Figure 1. Spatial and temporal distribution of the selected temperature proxy records. Panel (a) shows the locations of inferred sea surface
temperature (SST) time series between 60° N and 60° S available in version 2.0 of the PalMod 130k marine palaeoclimate data synthesis and
used for this study. Colours indicate whether the recording seasons of the time series are labelled as annual (violet), are not indicated (purple),
or whether both summer and winter time series are available (lilac). The background shows, over the ocean, the LGM (19-23 kyr BP) anomaly
of SST from MPI-16G as an example (see Sect. 2.2). Ice-free land (brown) and ice sheets (light grey) are taken from ICE-6G (Argus et al.,
2014; Peltier et al., 2015). Darker grey in the ocean corresponds to sea-ice-covered areas in the simulation. Panel (b) represents the latitudinal
and temporal distribution of the SST proxy time series from the above panel. The number of proxy data points is given in latitudinal bands
of 10° and 1 kyr.

3 Methods 3.1 Global mean surface temperature reconstruction

We first present the GMST reconstruction algorithm, which ~ 3:1-1  The S16 algorithm
is an adaptation of S16 (Sect. 3.1). Then, we describe
the design of PPEs to evaluate the reconstruction quality
(Sect. 3.2).

The original S16 algorithm reconstructs GMST over the
Pleistocene following four main steps.

Firstly, all the irregular raw time series are brought to a
common, equidistant (1 kyr) time axis. Then, the time series
are smoothed using a Gaussian kernel, which represents the
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Figure 2. Characteristics of the proxy records in the J20 database. In panel (a), the number of records is computed using the entire time span
of the time series. The horizontal grey lines correspond to the values 61, 82, and 200 used in the pseudo-proxy experiments (see Table 2).
In panels (b), (c), and (d), the investigated characteristic is averaged over a 5kyr bin for each time series so that the box plots represent
the distribution over the ensemble of records. The bioturbated layer in panel (d) is computed as the bioturbated layer width (fixed at 10 cm)
divided by the accumulation rate so that the layer width can be interpreted as a period of time.

effect of age uncertainty (a constant 10 kyr as the 95 % inter-
val). The algorithm also estimates the signal’s standard devi-
ation arising from age, measurement, and calibration uncer-
tainty. The measurement and calibration uncertainty are de-
fined as a standard deviation of 1.5 K, a value similar to other
reconstruction studies (Shakun et al., 2012; Tierney et al.,
2020). The SST anomalies are finally computed with respect
to the late Holocene (0 to 5 kyr BP).

Secondly, the considered domain between 60° S and 60° N
is subdivided into latitudinal bands (with nine different con-
figurations), used to cluster the records. The objective is to
calculate SST anomalies for each band. Therefore, this lati-
tudinal subdivision is based on the assumption that tempera-
ture anomalies are approximately homogeneous within each
band (Rohling et al., 2012). This method is a trade-off to still
account for the heterogeneity of the record locations, despite
the sparsity of the available SST records. At this stage, a
Monte Carlo approach is used to propagate the signal uncer-
tainty from each record to the zonal band averages. Specif-
ically, independent realisations of the signal uncertainty are
used for each record to compute 1000 zonal band averages,
for each of the nine band configurations. Then, n time series
are randomly selected from all the time series available (the

https://doi.org/10.5194/cp-21-381-2025

number of records times the 1000 realisations of the previous
sampling), where n is the number of records. That way, the
algorithm can evaluate the uncertainty related to the selection
of records and, in particular, to their location.

Thirdly, the zonal band averages are aggregated to derive
a 60°S to 60° N SST anomaly.

Fourthly, the mean SST anomaly is scaled to a GMST
anomaly. Similarly to other studies (Bereiter et al., 2018;
Friedrich and Timmermann, 2020), a linear scaling coeffi-
cient is used to account for the stronger cooling of polar
and terrestrial regions compared to the spatial mean SST
change between 60° S and 60° N. The coefficient is derived
from PMIP2 and PMIP3 LGM and pre-industrial simulations
(Braconnot et al., 2007, 2012). A Monte Carlo approach is
again used to quantify the uncertainty: 5000 different reali-
sations of the scaling factor (defined as a Gaussian distribu-
tion with a mean of 1.9 and a standard deviation of 0.2) are
applied to randomly selected realisations of the mean SST
anomaly.

3.1.2 Adaptation of S16 algorithm

We decided to adapt the S16 algorithm to make full use of
the J20 dataset (age ensembles, records with no data in the
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last Skyr) and to improve the uncertainty quantification by
the algorithm.

Firstly, we apply the measurement and calibration noise
before the interpolation of the raw time series. That way,
the uncertainty depends on the number of measurements per-
formed: averaged over the same time span, a high-resolution
record should have a reduced uncertainty compared to a low-
resolution one. We consider 1000 different samples of this
noise to quantify the uncertainty.

Secondly, we make use of the age ensembles available for
each record in the J20 database: each time series is interpo-
lated using one of the 1000 age ensemble members. A dif-
ferent realisation of the measurement and calibration noise is
used for each of these time series. This method lends itself to
the Monte Carlo approach used later in the S16 algorithm and
avoids any assumption on the distribution of the age uncer-
tainty. We also use a centennial time step for the interpolation
so that the higher frequency variability of the reconstructed
GMST can be investigated.

Thirdly, 96 records from the J20 database do not cover the
reference period 0-5 kyr BP, from which the SST anomaly is
computed. Including them increases the number of available
records for the period 40-120 kyr BP by 60 %. Therefore, we
implement a zonal iterative offsetting procedure. We assume
that the SST anomalies are homogeneous enough within each
latitudinal band so that the offset needed to compute the SST
anomaly of one record can be derived from the others. In each
of the zonal bands, the time series are adjusted iteratively,
with respect to all previously adjusted time series, according
to the following steps:

1. Preliminary step. All records in the considered zonal
band are sorted by the age of their most recent data
point, starting with the closest to the present.

2. First offsetting. The temperature anomaly of the record
including the most recent age is computed with respect
to the most recent 5 kyr of that same record.

3. Iterative offsetting. We now consider the interval con-
sisting of the most recent 5 kyr of the next non-adjusted
record with the most recent age. We compute the mean
of all the already adjusted time series in the zonal band
over this interval. The offset of the new record is then
calculated such that this mean equals the average tem-
perature anomaly of the new record over the same inter-
val.

Fourthly, all latitudinal bands are averaged using an area-
weighted mean, where the weight is proportional to the
oceanic surface, instead of the entire surface of the band
in S16. For this, we use the ICE-6G reconstruction (Peltier
et al., 2015) of the LGM for the entire time period, as-
suming that changes in oceanic surfaces in each band are
small enough compared to other uncertainty sources to be
neglected.
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Finally, as in S16, the resulting Monte Carlo realisations
are used to compute summary statistics of the GMST recon-
struction, namely mean and 95 % confidence interval. How-
ever, in our case, each GMST time series does not span ex-
actly the same time period because they are based on differ-
ent sets of age models. Therefore, the statistics are computed
only when values from at least half of the realisations are
available.

3.2 Pseudo-proxy experiments

We evaluate the algorithm using pseudo-proxy experiments
(PPEs). The general design of a PPE is presented in Fig. 3.
Pseudo-proxies are artificially generated proxy data created
from a reference climate evolution — in our case, tempera-
ture outputs from transient simulations. Thus, we apply the
GMST reconstruction algorithm to these pseudo-proxies to
analyse how well the reference GMST evolution, i.e. the
GMST of the transient simulations, is recovered by the re-
construction algorithm. In this idealised setting, influences
of individual aspects of the algorithm or characteristics of
the data can be studied using sensitivity experiments. In the
following, we first describe the strategy to construct pseudo-
proxies before presenting the design of the PPEs we perform.

3.2.1 Construction of pseudo-proxies with sedproxy

Pseudo-proxies are created by simulating the processes that
contribute to the recording of a climate signal in an archive.
Here, we use the R package sedproxy to simulate these pro-
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cesses for marine sediment records (Dolman and Laepple,
2018, 2023). More specifically, the package provides a for-
ward model that converts an ocean temperature time series
with monthly resolution into pseudo-proxy time series with
the desired resolution. Table 1 summarises the processes sim-
ulated for each proxy type and the associated metadata. The
algorithm implemented in sedproxy consists of four steps.

Firstly, the input temperature data are converted to the rel-
evant proxy unit using well-established calibrations (forward
model). This forward model represents the dependency of a
process to ocean temperature (the sensor), such as the calcite
formation in foraminiferal tests, which uses both Ca or Mg
ions, in a proportion depending on the temperature (Niirn-
berg et al., 1996). This model corresponds to the inverse of
the calibration function used to infer temperature from proxy
measurements. This step is needed to consider the structure
of the calibration error. Note that the calibration for TEXg¢
and LDI is not yet implemented in sedproxy. Given that it
concerns only 10 records, the impact on our analysis should
not be significant. In addition, calibration methods used for
assemblages in J20 are heterogeneous, and no established
forward models, as needed in this first step, exist. Hence, no
conversion is performed for these 63 records either. This lim-
its insight into the error structure, but it cannot be overcome
with our current framework.

Secondly, for each time point (in fact, sediment depth)
for which the proxy record is to be modelled, the algo-
rithm computes monthly weights. These weights represent
the chance for the sensor to have recorded the temperature
of that specific month and year. The weights combine ef-
fects from seasonal preferences of species, bioturbation, and
sediment thickness of the sample (for an exhaustive descrip-
tion, see Dolman and Laepple, 2018). In sedproxy, overrepre-
sentation of high-abundance periods, such as particular sea-
sons, is only implemented for Mg/Ca ratios, although mod-
els for alkenones do exist (Tierney and Tingley, 2018). These
preferences are based on the recording species indicated in
J20 and computed in sedproxy using the FAME v1.0 model
(Roche et al., 2018). For 16 of the records, no seasonal pref-
erence is applied, as no growth model is provided for the
associated species (namely N. incompta, G. inflata, G. trun-
catulinoides, P. obliquiloculata, and G. crassaformis). Bio-
turbation is modelled as a low-pass filter (Berger and Heath,
1968). It supposes a constant bioturbated layer width, which
is fixed at 10 cm in our study (default value; see Boudreau,
1998; Zuhr et al., 2022). While other studies have suggested
lower values (Teal et al., 2008; Zhang et al., 2024), we con-
sider this a conservative approach to our analysis. It also re-
quires sedimentation rate as input, which we derive from the
depth and mean age available in J20. The impact of the sed-
iment thickness of the sample is also modelled at this stage.
In our study, it is computed from the difference between two
sample depths but not higher than 2 cm. Finally, for Mg/Ca
ratios, sedproxy samples 30 pseudo-proxy values whose tem-
poral distribution follows that given by the monthly weights.
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This sampling corresponds to the number of foraminifera
needed to produce a measurement (30 is the default value
in Dolman and Laepple, 2018). sedproxy also adds to these
values an error corresponding to the inter-individual variabil-
ity (standard deviation of 2 K; Dolman and Laepple, 2018)
and eventually takes the average over the 30 samples. This
sampling process is irrelevant for both U3’§/ and TEXgg: the
sample size is considered infinite, and the pseudo-proxy val-
ues are based on a weighted mean using the monthly weights.
For assemblages, this sampling would be relevant, but what
is implemented in sedproxy is too simple to represent it and
is dependent on a forward model (see previous paragraph);
therefore, it is not considered.

The third stage of the algorithm consists of applying a
random Gaussian noise depending on the measurement er-
ror. This one is set to 0.26 K and 0.23 K for Mg/Ca ratios
and U3’§/, respectively (Dolman and Laepple, 2018). Unfor-
tunately, no standard measurement errors are available for
TEXge and assemblages, so we arbitrarily set it to 1 K. This
large uncertainty aims to quantify the impact of not using
forward models for the temperature-to-proxy calibration.

The fourth step of the algorithm consists of converting the
time series from proxy unit back to temperature. Calibration
uncertainty, which arises from using empirical relationships
inferred from imperfect data, is only considered at this step.
This is done by sampling the calibration parameters using a
Gaussian distribution.

In addition to, and before applying, sedproxy, we add a
step to account for age uncertainty. Specifically, we randomly
select one age member among the 1000 available so that sed-
proxy computes the pseudo-proxy values at these specific
time points. The resulting time series is then associated with
all the age ensemble members available.

Finally, the input data for sedproxy correspond to the tem-
perature of the oceanic grid point nearest to the proxy loca-
tion. For LOVECLIM, MPII6G, and MPIG1D, we use the
topmost level of ocean temperature. We use air temperature
for FAMOUS and surface temperature for CESM instead,
with a screen for land mass and values below —2 °C, so that
the seasonality can be investigated.

3.2.2 Specification of the pseudo-proxy experiments

Different sets of PPEs are designed, first to evaluate the per-
formance of the algorithm and then to test the influence of
various data properties on the reconstruction. The character-
istics of the pseudo-proxies computed for each PPE are sum-
marised in Table 2. In the following, we further describe the
method to compute the pseudo-proxies and discuss the ratio-
nale of each experiment.

The “Full PP” experiment is used to evaluate the per-
formance of the algorithm under normal conditions. The
pseudo-proxies are computed as described in Sect. 3.2.1. The
computation of the pseudo-proxies is performed 10 times to
test the robustness of our results to the random elements in
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Table 1. Processes simulated in sedproxy for each type of proxy. The values are those suggested in Dolman and Laepple (2018). The

parameter for the bioturbation is the bioturbated layer width.

Proxy type Mg/Ca U 312/ TEXge LDI Assemblages
Number of records 103 89 6 4 63
Transfer function Anand et al. (2003) Miiller et al. (1998) None used None used None used
Seasonal bias Yes (for supported species) Not considered

Bioturbation ‘ 10cm

Sediment layer width Distance between each measurement (if < 2 cm)

Sampling size 30 Infinite sample size

Inter-individual variations 2 Not defined

Measurement error (K) 0.26 0.23 1 1 1

the methodology (measurement, calibration, and age uncer-
tainty when applying sedproxy). The individual contributions
of the five sources of uncertainty quantified by the algorithm
are also determined. We indicate in the following in paren-
theses how each uncertainty quantification is switched off:
the measurement and calibration noise (no noise is added),
the age model ensemble (only the mean age is considered),
the selection of records (all time series are used), the latitudi-
nal band configurations (only the configuration splitting the
domain in bands of 20° is considered), and the scaling factor
(no uncertainty is applied).

The “Measurement noise” experiment only includes the
measurement uncertainty from sedproxy (along with the cal-
ibration uncertainty) and its estimate from the algorithm. The
experiment is used to compare the representation of measure-
ment noise in the algorithm with the one introduced in the
pseudo-proxy and to quantify the effect of the latter on the
signal quality. To investigate this effect, we perform 30 iter-
ations of the PPE.

The experiment “SST at proxy locations” is designed to
evaluate the ability of the algorithm to recover the 60°S—
60° N mean SST signal, given the number and locations of
the proxy data. None of the processes modelled by sedproxy
are included; that is, the GMST algorithm is directly pro-
vided with the modelled SST time series at the grid point
nearest to the proxy location.

“Full PP at random locations” corresponds to a series of
PPEs investigating the influence of the number of proxy
records on the uncertainty. Four numbers are tested: 61 is the
number of records selected in S16, 82 is the average num-
ber of records during MIS3 to 5 in our dataset (Fig. 2a),
200 is the minimal number of records during the deglacia-
tion, and 400 is an example in the case where a much larger
dataset could be obtained. Oceanic locations are randomly
generated for each pseudo-proxy. To each of these locations,
we assign metadata (proxy type and species) that correspond
to a random record in J20 located within 5° of latitude. To
construct age models, we start by selecting 100 age ensem-
ble members from each of the 44 (for the MPI simulations)
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or 24 (for FAMOUS and LOVECLIM) sediment cores that
fully span, respectively, the deglaciation (2-25 kyr) and the
LGC (5-130kyr). The age models are then interpolated so
that their mean resolution is 100 years. This creates 44 or 24
age ensembles that are randomly assigned to a location. Fi-
nally, these metadata are used to compute pseudo-proxy time
series with sedproxy. Effects from bioturbation and sediment
thickness are removed, as they do not impact the uncertainty
estimates of the algorithm. This procedure is iterated 100
times for each number of pseudo-proxy records tested so that
an uncertainty range can be drawn from the ensemble.

The “no-offsetting” experiment is used to evaluate the im-
pact of the offsetting procedure: this one is removed from the
algorithm, and the correct temperature anomaly of the simu-
lation at each location is used instead. The experiment is oth-
erwise identical to the “Full PP” experiment. The “warmest-
month” experiment is used to estimate an upper bound of
seasonality bias on the proxy records. The pseudo-proxies
are computed by only considering the warmest month within
each year.

The next three experiments evaluate the individual impact
on the signal of bioturbation, age uncertainty, and age res-
olution, respectively, using a simple and idealised setup. In
the “bioturbation” experiment, the accumulation rate is iden-
tical at each location and is equal to the average across the
entire J20 dataset (but still time-dependent; see Figure 2d).
Note that we consider bioturbation together with the sedi-
ment thickness, as the two are intertwined in sedproxy. For
the “Age uncertainty” experiment, we use the same 44 or
24 age ensembles computed for the experiment “Full PP at
random locations” to consider age uncertainty independently
from other parameters. We consider this selection of age en-
sembles to closely represent the age uncertainty as a function
of time for the entire proxy dataset (as given in Fig. 2b). Fi-
nally, for the “Age resolution” experiment, we construct age
models for the entire time period which resemble the original
distribution of temporal resolutions across time (Fig. 2c). The
experiments “Age uncertainty”, “Bioturbation”, and ‘“Mea-
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Figure 4. Comparison of the simulated GMST (black lines) and the corresponding reconstructed GMST (coloured line) for each simulation.
The reconstructed GMST is based on the pseudo-proxies from the “Full PP” experiment. The shading corresponds to the 90 % confidence
interval of the reconstruction. Here, we consider the mean across the 10 computed members. The anomaly is computed with respect to the

late Holocene (0 to 5 kyr BP).

surement noise at age resolution” investigate combined ef-
fects.

Finally, note that CESM data have a temporal resolution
that is too low to be able to consider the smoothing factors
applied by sedproxy and that LOVECLIM data do not enable
the investigation of seasonality.

4 Results

The various pseudo-proxy experiments are analysed in this
section. We start with the “Full PP” experiment, whose re-
sults are presented in Fig. 4. This experiment gives a general
overview of the ability of the GMST reconstruction algo-
rithm. In particular, the algorithm successfully reconstructs
the orbital timescale variations (> 10kyr) of the four sim-
ulations. The mean pseudo-proxy reconstruction, however,
presents a strong smoothing of shorter timescales. Finally,
the temperature anomaly of the glacial period in the pseudo-
proxy reconstructions is, for most simulations, slightly too
cold, although the targeted simulated GMST is within the re-
construction uncertainty range. In light of these preliminary
results, we arrange the analysis of the results around three
main topics, addressed in the following subsections: quan-
tification and origin of the uncertainty, amplitude and tim-
ing of orbital timescale variations, and representation of the
timescale continuum.

Clim. Past, 21, 381-403, 2025

4.1 Quantification and origin of the uncertainty on the
GMST

4.1.1 Uncertainty range as estimated by the algorithm

The GMST reconstruction algorithm estimates uncertainties
using a Monte Carlo approach. Five different sources of un-
certainty are estimated at different stages of the algorithm:
measurement and calibration noise, age model uncertainty,
selection of records (which we interpret as a location re-
sampling), latitudinal band configurations, and scaling factor.
The uncertainty is propagated to the GMST reconstruction by
considering an ensemble of realisations.

The width of the total 90 % confidence interval (CI) is pre-
sented in Fig. 5, for the various simulations, alongside an es-
timation of the individual contributions of the considered un-
certainty sources. Note that the uncertainty estimates do not
depend on the uncertainty sources accounted for when cre-
ating the pseudo-proxies. We first notice a large uncertainty
increase at both ends of the time series. The Holocene oth-
erwise has the lowest uncertainty (~ 1 K for all simulations).
The uncertainty is maximum during the LGM (2-4 K). We
also find that the root-sum-square of the individual contribu-
tions is very close to the total confidence interval. This im-
plies that reducing the uncertainty from the highest sources
of uncertainty is the most impactful.

One of the most important contributors to the uncertainty
estimate is the scaling factor. By definition, it is proportional
to the temperature anomaly and therefore exhibits large fluc-
tuations. It is negligible during the Holocene and the LIG, but
it accounts for between 62 % (FAMOUS) and 80 % (LOVE-
CLIM) of the uncertainty estimate during the LGM, depend-
ing on how cold the simulated LGM is. On average, the

https://doi.org/10.5194/cp-21-381-2025
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Figure 5. Estimation of various sources of uncertainty for the “Full PP” experiment. The uncertainty is quantified as the width of the 90 %
confidence interval (CI) of the reconstructed GMST ensemble. The black lines correspond to the CI in Fig. 4. The coloured lines are the
individual contributions of each source of uncertainty quantified in the GMST reconstruction algorithm. Note that we interpret the CI arising
from the selection of record as a location resampling. The grey line is the root-sum-square of the individual contribution. It should correspond
to the black line if the individual contributions are independent of each other.

most important contributor to the uncertainty estimate is,
however, the measurement and calibration noise, with a CI
width mostly between 1 and 1.5K and an average contri-
bution from 38 % (LOVECLIM) to 50 % (FAMOUS, MPI-
16G). It also increases sharply at both ends of the time series
and is the main contributor to the same behaviour in the total
CI. The confidence interval of the location resampling and
the age model are below 1 and around 0.5 K, respectively
(or, in terms of average contribution, around 15 % and 6 %
for all simulations). Finally, the configuration of the latitudi-
nal bands has the smallest impact on the uncertainty estimate
(below 0.5K, or 1 %).

4.1.2 Ability of the algorithm to estimate the uncertainty

We further the analysis by investigating whether the GMST
reconstruction algorithm correctly estimates the uncertainty
sources. We can use the PPEs that only include one uncer-
tainty source and compare them to the estimates from the
algorithm. We start with the measurement and calibration
noise. By definition, the 90 % CI should have a coverage fre-
quency of the targeted signal of 90 %. However, using the
“Measurement noise” experiment, we find that the 90 % cov-
erage frequency is already reached by a CI, smaller than the
90 % CI by a factor of 2 (FAMOUS) to 2.3 (all the others).
The overestimation of the CI is not unexpected: the measure-

https://doi.org/10.5194/cp-21-381-2025

ment noise introduced in the pseudo-proxies by sedproxy is
between 0.23 and 1K (see Table 1), while the noise intro-
duced in the reconstruction algorithm is 1.5 K. This overes-
timation is a conservative approach in case the measurement
and calibration uncertainty is higher in reality than what is
used to compute the pseudo-proxies.

Next, we evaluate the ability of the reconstruction algo-
rithm to estimate the 60° S—60° N mean SST (MSST; before
applying the scaling factor) based on the specific set of proxy
locations made available in the J20 dataset. To that end, we
compare the MSST reconstructed from the “SST at proxy
locations” experiment to the simulated MSST (Fig. 6a). We
find that the reconstruction for all simulations exhibits a cold
bias during the LGM (up to 0.5 K) and most of the glacial pe-
riod. In addition, location resampling and latitude band con-
figurations, which aim to account for it, are not large enough
to cover the bias, yet the pseudo-proxy experiments using
random proxy locations can reproduce the simulated MSST
(Fig. S1 in the Supplement). Therefore, the bias is caused
by the specific set of locations in the J20 dataset: there is an
over-representation of regions with strong LGM cooling (e.g.
the North Atlantic and the origin of the Kuroshio Extension)
compared to regions with weaker to no cooling (e.g. Pacific
gyres) in the same latitudinal band (see Fig. 1a, Fig. S3). In
addition, how the uncertainty from the location sampling of
records is estimated relies on the hypothesis that the temper-

Clim. Past, 21, 381-403, 2025



392
kyr BP
102 20 40 60 80 100 120
< s { (a) Bias from proxy Iocation]
Py
8
Qo
-
[)]
[0}
=
<
[}
8
el
—
[0}
=
Q)
-2+ ' v ' ' v v
0 20 40 60 80 100 120
kyr BP
—— CESM —— LOVECLIM —— FAMOUS
— MPI-I6G — MPI-G1D

Figure 6. Potential reconstruction biases and evaluation of the con-
fidence interval. In panel (a), the 60° S—-60° N mean SST (MSST)
reconstruction from the experiment “SST at proxy locations” is
compared to the simulated MSST. The shaded area is the 90 % CI,
only estimating uncertainty from location resampling and the latitu-
dinal band configuration. A properly quantified confidence interval
should overlay the 0 line 90 % of the time. In panel (b), we apply
the scaling factor with uncertainty to the simulated MSST. We then
subtract the GMST from the result. As above, a properly quantified
confidence interval should overlay the O line 90 % of the time.

ature anomalies are well distributed, which is not the case,
explaining the underestimation of the uncertainty range.

The last uncertainty estimate we evaluate is the scaling
factor (Fig. 6b). We find the errors constrained within 1 K.
The coverage frequency of the 90 % CI ranges between 46 %
(MPI-16G) and 79 % (LOVECLIM), which denotes a small
underestimation. By definition, the uncertainty of the scaling
factor is proportional to the temperature anomaly. We suggest
that this overly strong constraint leads to an overestimation
(underestimation) of the uncertainty for large (small) tem-
perature anomalies. This can be tackled by considering, in
addition, an additive error independent of the SST anomaly.

4.1.3 Factors influencing the uncertainty estimates

We continue the analysis by investigating the dependency of
the uncertainty estimates. Using the experiment “Full PP at
random locations”, we find the number of records consid-
ered to strongly impact the uncertainty. Using 61 proxies as
a baseline (number of records in S16), we find that 83 records
(average number of records between MIS3 to 5) reduce the
uncertainty range of the reconstruction by ~ 15 % (see also
Fig. S1). With 200 (as during the deglaciation), the reduction
reaches 46 %. In the case where 400 records were available,
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the reduction would be 62 %. This reduction mostly affects
the band configurations and the measurement noise, followed
by the location resampling and age uncertainty (in relative
values). The proxy number has by definition no effect on the
scaling factor.

The variation in the number of records through time in the
“Full PP” experiment (Fig. 2a) explains most of the varia-
tions in the uncertainties shown in Fig. 5 and, in particular,
the increase at both ends of the time series. Note that the
number of records considered in the PPE at both ends of
the time series is not only related to the number of records
available in J20 (see Fig. 2a) but also to the fact that some
pseudo-proxy values cannot be computed as age uncertainty
spans beyond the time span of the simulations. This is most
evident in the MPI simulations (Fig. 5b and d). In addition,
measurement noise also depends on the age resolution, as
a higher number of measurements reduces the noise intro-
duced in the reconstruction algorithm. The location sampling
uncertainty depends on the homogeneity of the temperature
anomaly field — that is, to the first order — on the GMST
anomaly. Finally, uncertainty due to the age model is de-
pendent on the rate of change of the GMST: abrupt changes
such as the deglaciation or the millennial-scale variability ex-
hibited in the MPI simulation or LOVECLIM increase the
uncertainty. However, these effects only become noticeable
once the number of records is fixed.

4.1.4 Potential sources of uncertainty non-quantified by
the algorithm

Finally, we investigate other sources of uncertainty, which
are not or only partly estimated by the reconstruction algo-
rithm. We quantify, in particular, the effect of the offsetting
procedure and potential seasonal biases (Fig. 6). The offset-
ting procedure generates errors generally below 0.2 K on the
reconstructed GMST, except for FAMOUS, where it reaches
0.5 K. We suggest this bias is reasonable given the number of
records it enables the algorithm to additionally consider (96).

We also estimate an upper bound to the effect of season-
ality bias on the pseudo-proxy reconstruction. If all records
were not recording the mean annual temperature but that of
the warmest month, it would generate biases up to 0.75 K.
This bias mostly follows the summer solstice insolation
at 65°N: warm during the early Holocene, cold during
the LGM and MIS4, and warm again during MISS5. These
precession-scale biases can significantly impact the evalua-
tion of this timescale, in particular regarding the LGM cool-
ing, which it could overestimate, or an early Holocene warm
period which would only appear for the summer months.

In conclusion, we reckon that the estimation of the uncer-
tainty range by the algorithm is realistic but that the estima-
tions of the individual contributions are biased and should
be used with caution. We suggest that the measurement and
calibration noise, the set of record locations, and the scaling
factor contribute similarly to the uncertainty overall.
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Figure 7. Other potential sources of biases, non-quantified in the
uncertainty range. (a) The GMST reconstruction from the “Full PP”
experiment is subtracted from the one of the “no-offsetting” experi-
ment. Positive values mean that the offsetting procedure produces a
reconstruction that is too warm. (b) The GMST reconstruction from
the “SST at proxy locations” experiment is subtracted from the one
of the “warmest-month” experiment. Positive values mean that re-
constructions based on proxies biased towards the warm season are
too warm.

4.2 Amplitude and timing of orbital timescale variations

Given the J20 dataset, one of the key characteristics we ex-
pect the algorithm to reconstruct accurately is the amplitude
and timing of orbital timescale variations of the simulated
GMST. While these characteristics can be qualitatively as-
sessed in Fig. 4, we also provide quantitative metrics with un-
certainty and robustness (Table 3). Note that we use slightly
different definitions for the LGM and the end of the LIG to
accommodate the period and behaviour of the simulations
(see Table 3 caption).

As already discussed, a cold bias is evident for temper-
atures of the LGM and the end of LIG in all simulations
but FAMOUS, but the true anomalies remain included in the
90 % CIs. This bias is mostly caused by the location bias (see
Fig. 6a), while the other factors (offsetting procedure, scaling
to GMST, and seasonality) either reduce or amplify it.

We also investigate the timing of various events: glacial
onset, LGM, and deglaciation end. These metrics are only
designed to compare the result of the pseudo-proxy recon-
struction to the simulations. We find that the reconstructions
very closely match the timing of the simulations. We fur-
ther suggest that the 90 % CI as calculated by the GMST
algorithm largely overestimates the uncertainty. While the
overestimated measurement noise helps to account for non-
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quantified sources of temperature bias in the GMST algo-
rithm, it may also lead to an overestimation of the timing
uncertainty, where no biases are evident. Interestingly, the
PPE including only bioturbation shows a lag of about half
the bioturbated layer, which is not evident in the table. This
bias is caused by the non-symmetric shape of the function
characterising the sediment surface mixing.

Finally, we find our result robust to different realisations of
pseudo-proxies. The measure of robustness also describes a
limit under which temperature and timing differences depend
on the pseudo-proxy realisation: about 0.5 K and from 0.7 kyr
in the Holocene to 5 kyr during the LIG. Interestingly, these
values are below the uncertainty associated with individual
proxy measurements. In addition, we suggest that this mea-
sure characterises the uncertainty better than the confidence
interval provided by the GMST algorithm, when comparing
values to one another.

4.3 Representation of the timescale continuum

As noted in Fig. 4, the algorithm does not reconstruct the
high-frequency variability in the simulated GMST. We fur-
ther investigate this loss of signal using spectral densities
and coherence. We focus on the MSST, as the scaling fac-
tor does not influence the high-frequency variability. Fig-
ure 8 compares the spectrum of variability of the simulated
MSST to the one reconstructed in several PPEs. We first fo-
cus on the “Full PP” experiment. The individual Monte Carlo
realisations of the reconstruction (light-grey lines) appear
to overestimate the power spectral density (PSD) for most
timescales but the longest ones. In particular, their PSD ex-
hibits a straight slope for the shorter timescales (~ —2 K?).
The overestimated spectrum is mostly related to the large
measurement noise introduced in the GMST algorithm. By
contrast, the spectrum of the ensemble mean (darker-grey
lines) underestimates variability at most timescale, with a
steeper slope (between —2.7 K2 for FAMOUS and —3.3 K?
for the MPI simulations). The PSD is properly represented
only for timescales longer than 10 kyr for the entire LGC and
longer than 4 kyr for the last 25 kyr (the latter holds regard-
less of the simulation). None of the pseudo-proxy reconstruc-
tions are able to represent all the characteristics of the simu-
lated PSD, such as the high variability at short timescale in
FAMOUS or the high variability at millennial timescale in
the MPI simulations. The loss of PSD between the ensemble
mean and each member’s spectrum is due to a lack of coher-
ence between reconstruction members (i.e. loss of signal).
We further investigate the cause of the underestimated
variability of the ensemble mean with sensitivity PPEs.
We identify four potential causes: the bioturbation, which
smooths the local SST time series; the age uncertainty,
which reduces the coherence between the local SST time se-
ries; the age resolution, which permits resolving the short-
est timescale; and the measurement and calibration noise in
sedproxy, which adds non-climatic variability (see coloured
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Table 3. Quantitative assessment of the reconstruction of the amplitude and timing of orbital timescale variations. We use the GMST
reconstructed for the “Full PP” experiment. The LGM temperature anomaly is computed for LOVECLIM and FAMOUS as the coldest 4 kyr
later than 40kyr BP with respect to the last 5kyr. The same definition is used for LGM occurrence. Due to the difficulty of defining the
coldest period in the MPI simulations, we use the average between 19 and 23 kyr BP instead. The deglaciation end is defined as the last time
the temperature anomaly reaches 1/10 of the LGM temperature anomaly. Similarly, glacial onset is defined as the first time the temperature
anomaly falls below 1/10 of the LGM temperature anomaly. Finally, we also compute a temperature anomaly for the end of the LIG as
the average between 119 and 123 kyr for LOVECLIM and between 110 and 114 kyr BP for FAMOUS. “Mean” is the mean value across
the reconstruction ensembles. “Robustness” is the range of the mean value for each of the 10 ensembles computed for the experiment; it
characterises the robustness of the mean reconstruction to random factors in the proxy data. “90 % CI” is the mean 90 % confidence interval,
as calculated by the GMST algorithm, within each reconstruction ensemble. The target is the actual simulated value.

LOVECLIM ‘ FAMOUS
Mean Robustness 90% CI  Target ‘ Mean Robustness 90% CI  Target
End of LIG anomaly (K) —-0.4 —0.68/—0.05 —1.32/0.56 —0.09 | —0.04 —0.18/0.17 —1.03/0.93 —0.03
Glacial onset (kyr BP) 118.2 116.8/119.7 113.5/1229 1183 106 102.5/108.4 93.1/113.2  109.9
LGM anomaly (K) —6.65 —6.89/—6.39 —7.95/-540 —5.97 —3.6 —3.75/-343 —4.39/-2.85 —-3.57
LGM occurrence (kyr BP) 23.3 22.6/24 20.9/27 224 25.7 24.4/26.8 19.8/32.2 253
Deglaciation end (kyr BP) 8.7 8.19.2 6.5/10 9.9 5 4.7/5.2 4/6.2 54
MPI-16G MPI-G1D
LGM anomaly (K) —6.02 —6.13/-5.83 —-7.24/-485 569 | —-7.67 —7.82/-746 —-9.17/-625 —6.72
Deglaciation end (kyr BP) 8.9 8.6/9.3 7.1/10.2 9.2 8.8 8.5/9.2 7.4/9.9 9.2

lines in Fig. 8). The PSD from the “Measurement noise” ex-
periment (yellow) is the closest to the simulated one with
just slight overestimation but loses the simulated PSD char-
acteristics below 1 kyr. In this PPE, the noise is injected at
the centennial scale, resulting in increased variability at this
timescale and upward propagation. Over the LGC, none of
the other PPEs are able to represent the simulated spectrum
below 10 kyr, with the strongest loss in PSD due to age un-
certainty (blue). For the last 25 kyr, the PPEs are still able
to reproduce the large multi-millennial variability, which is
only lost by the joint consideration of bioturbation and age
uncertainty (purple).

The loss of signal at specific timescales can be further
characterised using coherence. Coherence, or the squared co-
herency spectrum, is a statistical method to analyse the de-
pendency between two time series through the timescales
(Von Storch and Zwiers, 1999). It can be seen as a timescale-
dependent squared correlation. A coherence of 0 implies that
the two time series vary independently at this timescale.
A coherence of 1 means that the time series vary syn-
chronously, although a lag can exist. The coherence also
does not characterise the amplitude of the variation, which
we have already investigated with the spectral densities. Fig-
ure 9 presents the coherence between the simulation and re-
constructed MSST from the same PPEs as in Fig. 8. For the
“Full PP” experiment, coherence is very high (> 0.9) for the
longest timescales in all simulations. However, the coherence
decreases sharply for timescales shorter than 15 kyr for the
LGC simulations (FAMOUS and LOVECLIM), which cor-
responds to the start of the PSD loss in Fig. 8a and c. The
drop happens at shorter timescales (below 4 kyr) for the last
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25 kyr, again corresponding to the timescale from which the
PSD loss starts. A similar timescale has been found for the
Holocene (Dolman et al., 2021).

We further the analysis with the sensitivity PPEs. We find
the age uncertainty (blue) to be the main cause of the loss of
coherence on the LGC. For the last 25 kyr, bioturbation also
plays an important role, but neither can individually explain
the coherence loss exhibited by the “Full PP’ experiment. In
addition, using a smaller bioturbation depth further limits the
influence of bioturbation (Fig. S2). Measurement noise (yel-
low) and age resolution (brown) have the smallest impact on
the coherence for either the LGC or the last 25 kyr. How-
ever, the measurement noise is in reality linked to the age
resolution. The PPE considering both (orange line) exhibits
a coherence loss at a timescale close to the age uncertainty
and bioturbation, suggesting it also has a key role for the last
25 kyr. Note that, for the number of records considered, the
set of record locations does not impact the coherence signif-
icantly. Simulated GMST and MSST are also significantly
coherent at all timescales (Fig. S5).

Our results show that the difference in results between the
LGC and the last 25 kyr is directly related to the dataset char-
acteristics (Fig. 2b—d). In the last 25 kyr, the average 90 % CI
of the age uncertainty and the average bioturbated layer have
similar values, corresponding to the timescale when coher-
ence is lost. The age uncertainty, resolution, and bioturbated
layer increase beyond this time period, but the increase in age
uncertainty is the most important. This one reaches ~ 10 kyr
beyond 40 kyr BP, again similar to the timescale when coher-
ence drops.
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Figure 8. Loss or gain of variability at specific timescales between reconstructed and simulated MSST. The black line is the power spectral
density (PSD) of the simulated MSST. The other lines correspond to various PPEs defined in Table 2. For the “Full PP” experiment, we
consider both the PSD of the ensemble mean and the PSD of each ensemble member. Only the ensemble mean is considered for the other
PPEs. Finally, the shading corresponds to the confidence interval at level 0.05 of the PSD estimates.

5 Discussion

The results from the previous section allow us to discuss
the performance of the reconstruction algorithm applied to
the J20 dataset (Sect. 5.1). Nevertheless, future avenues for
these pseudo-proxy analyses are possible (Sect. 5.2). We
also discuss which limiting factors from either the algorithm
(Sect. 5.3) or the dataset (Sect. 5.4) should be addressed in
priority to improve the GMST reconstruction quality.

5.1 Quality of the reconstruction

According to our analysis of the PPEs, the timing of GMST
variations can be reconstructed for timescales longer than
4kyr and a timing uncertainty of £0.5 to 1 kyr for the last
25 kyr. Beyond 40 kyr BP, only timescales longer than 15 kyr
can be reconstructed, with an uncertainty of up to £3kyr.
This precision of the reconstruction, and its variation through
time, is directly related to the underlying dataset charac-
teristics. The reconstruction of shorter timescales beyond
40kyr BP is limited by the age uncertainty of the records.
For the last 25 kyr, the limitation originates from a combina-
tion of age uncertainty, bioturbation, and measurement and
calibration noise.

Most reconstructed pseudo-proxy GMSTs also exhibit a
cold bias of up to 1K during the glacial period, which we
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attribute to the specific set of record locations in J20. Un-
certainty on the temperature anomaly is otherwise strongly
dependent on the number of proxy records and the scaling
factor. The GMST algorithm estimates the uncertainty range
(90 % CI) from less than 1K during the Holocene to up to
3K for a cooling of 6K during the LGM. Our results sug-
gest, however, that the Holocene uncertainty is overestimated
because of an overestimated measurement noise uncertainty.
Similarly, the uncertainty for large temperature anomalies is
also likely overestimated due to the definition of the scal-
ing factor uncertainty. For the LIG, overestimated measure-
ment noise and underestimated scaling uncertainty seem to
cancel each other out and lead to reasonable values. These
overestimations nevertheless help to account for uncertainty
sources not properly accounted for, such as locations or po-
tential seasonality bias. In particular, an underestimation of
the seasonality bias could lead to a deterioration of the per-
formance, both in terms of amplitude and timing of varia-
tions, especially for the period between the LGM and the
early Holocene, where uncertainty is otherwise the lowest.
The analysis of the uncertainty of the timing and ampli-
tude of variations shows that there exists a trade-off between
including many records, which helps to reduce the biases
and uncertainty on the amplitude, and including only the
records of the highest quality (low age uncertainty, high ac-
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Figure 9. Disentangling the origin of the loss of signal at high frequencies. The loss of signal is quantified by the coherence between the
simulated and reconstructed MSST for various PPEs. For the latter, we use the ensemble mean. The thicker lines correspond to significant
values at level 0.05. Specifically, they are values above the 95th percentile of the coherences between the simulated MSST and randomly

phase-shifted time series of the same characteristics.

cumulation rate, high resolution), which help better resolve
the shorter timescale variability. While a finer selection of
records could balance the two, we also suggest that the algo-
rithm could handle records of different characteristics better
(see Sect. 5.3).

These results are robust across the set of simulations, and
we assume them to hold for the real-world reconstruction.
In addition, while these results are specific to the adapted
S16 algorithm applied to J20, we expect that the general con-
cepts discussed here hold for any aggregation algorithm and
dataset. In particular, the algorithm could be used for regional
reconstructions (as done in Clark et al., 2024), as long as a
sufficiently high number of records is considered. We sug-
gest, for example, that the accurate reconstruction of the tim-
ing of orbital timescale variations (> 10kyr) offers a good
opportunity to investigate the synchronicity of regional tem-
perature anomalies and forcings.

5.2 Advances in pseudo-proxy experiments

Our results rely on advances in pseudo-proxy experiments,
which were enabled by the availability of proxy system mod-
els and climate simulation output.

Clim. Past, 21, 381-403, 2025

5.2.1 Model data

In addition to the proper availability of simulated climate
fields for the production of PPE, the PPE results can only
be transferred to real proxy data if these fields are realistic
enough. The recent advances in computing capacities, mod-
elling, and our understanding of climate drivers have en-
abled the production of more realistic climate simulations
over longer periods of time (Ivanovic et al., 2016), yet the
PPEs we conduct require data only available for a handful of
simulations. However, a multi-model framework for PPEs is
key to assessing the robustness of our results.

One of the requirements is, of course, the simulated time
period, which needs to cover more than the period of interest,
to take into account the age uncertainty of the records. For ex-
ample, properly investigating the LIG requires data from the
penultimate deglaciation. Another requirement is that these
simulations must include transient forcings so that realistic
variations in the GMST can be produced at sufficiently high
resolution. In particular, a centennial or lower resolution is
needed here to resolve the effect of bioturbation. The addi-
tion of other forcings, such as meltwater, in the MPI simu-
lations also increases the degree of realism of the simulated
GMST (Weitzel et al., 2024). These additions make more re-
fined analyses of the results possible, which can more easily
be transferred to real proxy data. For instance, we can assess
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that the GMST algorithm is not able to reconstruct the effect
of meltwater forcing, such as the abrupt events during the
deglaciation.

Finally, the spatiotemporal variability in the simulated cli-
mate fields affects our results. For example, the amplitude
of the temperature bias due to the proxy locations directly
depends on the spatial pattern of the simulated temperature
field. Differences between the simulations lead to differences
in the estimation of the bias in the PPE reconstruction (see
Fig. 6a). Therefore, despite some agreements between simu-
lations on the sign and amplitude of the bias, proper quan-
tification of this bias for real-world reconstructions would
first require an evaluation of the degree of realism of the spa-
tiotemporal patterns. In support of this, the temperature field
of simulations is known to be more homogeneous at the re-
gional scale compared to proxy records (Jonkers et al., 2023).
This has been demonstrated for the multidecadal to multimil-
lennial scale (Laepple et al., 2023; Weitzel et al., 2024). For
the orbital timescale (> 10 kyr), Paul et al. (2021) suggested
that upwelling regions, where many records come from, can
have a different variability while being too small to be prop-
erly resolved by the models considered here. The use of fields
that are too homogeneous can lead to an underestimation of
location biases on the reconstructed temperature and over-
confidence in the algorithm.

5.2.2 Proxy system models

In PPEs, proxy system models are used to produce pseudo-
proxy values that are as realistic as possible. However, proxy
system models only represent our current understanding of
the proxy system, which limits the extrapolation of our re-
sults to the real-world reconstruction. However, the use of
sedproxy presents the advantage, compared to more concep-
tual approaches (e.g. Wang et al., 2014; Jaume-Santero et al.,
2020; Nilsen et al., 2021; Weitzel et al., 2024), to model
specific processes, such as the measurement and calibration
noise and bioturbation, as a function of a record’s metadata.
Sensitivity PPEs can therefore be computed to evaluate the
impact of these processes.

However, our results are also limited by the proxy system
model used. For example, the impact of the processes occur-
ring during the sensor stage for TEXgg, LDI, or assemblages
has only been crudely accounted for within a generic mea-
surement error. We therefore did not investigate in depth the
influence of the proxy types on the reconstruction. While in-
creased uncertainty from the measurement or the calibration
will reduce the ability of the reconstruction to resolve the
shorter timescale, other biases affecting the longer timescale
would require a more thorough analysis. These potential bi-
ases include, for example, the effect of any variables other
than the SST, such as depth, salinity, or seasonality, on
the temperature signal recorded (Telford et al., 2013; Tim-
mermann et al., 2014; Ho and Laepple, 2015; Jonkers and
Kucera, 2017). The seasonality bias is considered for most
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species recording Mg/Ca ratios in sedproxy but assumed
negligible for the other proxy types. For this reason, we de-
sign a PPE to estimate an upper bound of the effect of sea-
sonality, where all proxies record the warmest month of the
year. This warm season bias has, for example, been one of the
main hypothesised reasons for the model—data discrepancies
during the early Holocene (Liu et al., 2014; Marsicek et al.,
2018; Bova et al., 2021), although there is also evidence for
cold-season bias for other periods and species (Steinke et al.,
2008; Timmermann et al., 2014).

5.3 Improvement of the algorithm

One of the primary objectives of this paper is to provide a
framework to evaluate the performance of GMST reconstruc-
tion algorithms. We focus on an adaptation of S16 as an ex-
ample. The adaptations are minor and only required to im-
prove the use of the J20 dataset and the characterisation of
the algorithm’s performance (see Sect. 3.1.2). However, our
evaluation makes evident avenues of improvement for the al-
gorithm which we discuss here.

We have already discussed how the algorithm is sensitive
to the spatial distribution of proxy records. This sensitivity
relates to the assumption that temperature anomalies are sim-
ilar within a latitudinal band. Both the simulations used here
and other proxy analyses show that this is not the case (e.g.
Judd et al., 2020; Tierney et al., 2020; Paul et al., 2021).
Some studies have used more complex methods and relied
on either present SST observations (e.g. Paul et al., 2021) or
climate simulations (e.g. Osman et al., 2021; Annan et al.,
2022). These methods, however, rely on the assumption that
the spatial covariance of the present day does not change
through time or that the spatial covariance of the simulated
SST is similar to the reality. The design of another aggregat-
ing method could help to reduce the influence of areas with a
large density of records, without relying on external datasets.

Our refined algorithm relies on the stacking of proxy
records to increase the signal-to-noise ratio. However,
records are stacked together, regardless of their quality (age
uncertainty, accumulation rate, resolution). This stacking
method leads to a trade-off between data quality, which im-
proves the reconstruction of the shorter timescales, and a
high number of records, which reduces the overall uncer-
tainty (see Sect. 5.1). A new stacking method could be re-
searched to limit the impact of this trade-off by, for example,
taking into account the timescale resolved by each record.

Finally, the scaling of the MSST to the GMST was intro-
duced by S16 due to the limited availability of reliable local
temperature reconstruction over land and ice-covered areas
for the investigated time period. Similarly, Clark et al. (2024)
use a scaling factor, although with a different definition. This
scaling is in both cases a critical source of uncertainty, es-
pecially concerning the amount of glacial cooling or LIG
temperature anomaly. This directly affects our ability to con-
strain Earth system sensitivity or the global response to cli-
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mate forcings. The transient simulations used here show that
the variation in GMST and MSST is not completely collinear
(Fig. S4). This behaviour suggests going beyond the simple
LGM-to-PI ratio used to compute the scaling factor in S16 or
even the one-to-one match between MSST and GMST sup-
posed in Clark et al. (2024). Despite their scarcity, the use
of terrestrial proxies for temperature could still help to better
characterise the scaling, yet large areas lack proxy informa-
tion, particularly over sea ice and ice sheets that have melted.
Physics-based constraints remain needed for these areas.

5.4 Limiting factors from the dataset and future
developments

Expanding the dataset with new records, in particular for the
periods and areas where fewer records are available, will ev-
idently improve the reconstruction. Nevertheless, spatiotem-
poral inhomogeneity will always remain due to geological
constraints. Other avenues can improve the quality of and
the confidence in the reconstruction from the perspective of
the proxy dataset. Firstly, the age uncertainty is the limit-
ing factor preventing the reconstruction of a multi-millennial
timescale beyond 30kyr BP, and better characterisation of
and constraints on age uncertainty are required. Progress has
been made, for example, using visual matching and quan-
tifying the associated uncertainty or considering the impact
of bioturbation on age model (e.g. Waelbroeck et al., 2019;
Lougheed, 2022; Peeters et al., 2023). In addition to improv-
ing the confidence in the absolute age, information on the
relative age between records can also be provided, if prop-
erly accounted for by the reconstruction algorithm.

Secondly, measurement and calibration noise and biotur-
bation are other sources of loss of signal on short timescales,
particularly in the last 30 kyr. Here, we suggest better quanti-
fying these uncertainties for each record so that the algorithm
can sort the records depending on the timescale they can re-
solve. In particular, bioturbation depth could be quantified
for each record, and measurement uncertainty could depend
on the number of replications or sample size for each data
point.

Finally, we find that potential seasonality bias can sig-
nificantly decrease the accuracy of the reconstruction. For
many of the records available, it is unclear whether the re-
constructed temperature suffers from a seasonal bias. Cor-
rections from seasonally biased records have been suggested
(e.g. Bova et al., 2021), but they rely on assumptions that
must be verified beforehand (Laepple et al., 2022).

6 Conclusions

In this study, we design a framework for the evaluation of
algorithms reconstructing spatial mean temperatures. Our
framework relies on recent advances in pseudo-proxy exper-
iments, which include the availability of realistic proxy sys-
tem models and long transient climate simulations. We apply
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the framework to an adapted version of the GMST recon-
struction algorithm used in S16 and the synthesis of marine
proxy records for temperatures of the LGC from J20. The
quantitative results presented here can serve as a basis for
future evaluations of LGC reconstructions, while the frame-
work can be applied to other aggregation-based reconstruc-
tion algorithms and other datasets.

Our results are based on PPEs computed from an ensem-
ble of four transient simulations of the LGC or the last 25 kyr.
We find that the pseudo-proxy reconstructions based on the
S16 algorithm and the J20 dataset perform differently over
time. For the last 25 kyr, the temperature variations and their
timing are accurately reconstructed for timescales of at least
4 kyr. Sensitivity PPEs show that age uncertainty, bioturba-
tion, and measurement noise smooth the reconstruction, lead-
ing to a loss of signal below this timescale. Uncertainties re-
main large on the amplitude of temperature variations, even
for longer timescales, although we find the algorithm to over-
estimate it. The reconstructions exhibit, in particular, a cold
bias for most model simulations, which is related to the non-
uniform distribution of record locations. Other sources of un-
certainty include the scaling of the mean SST to the GMST,
the measurement and calibration noise, and a potential sea-
sonal bias. The number of records plays a critical role in re-
ducing all uncertainty sources but that of the scaling. The
decreasing proxy number and increasing uncertainty of the
scaling are the two main factors explaining the increased un-
certainty from the Holocene to the LGM. Beyond 40 kyr BP,
only timescales longer than 15 kyr can be reconstructed, due
to a sharp rise in age uncertainty. We assume these results to
hold for real-world reconstructions of the LGC.

Our results also show the existence of a trade-off between
the inclusion of many records, which overall reduces the un-
certainty, and of only the highest-quality records (low age
uncertainty, high accumulation rate, high resolution), which
improves the reconstruction of the short timescale. The re-
construction could be improved by a better filtering of the in-
put record data or by a better handling of the varying record
quality by the algorithm. We also suggest other avenues of
improvement for the algorithm to better handle the spatial
aggregation and the scaling to GMST. From the proxy record
perspective, reducing the age uncertainty is the most critical
challenge to tackle.

Code and data availability. The R code and the
proxy metadata (subset of the PalMod database) to
reproduce the results and plots of this study are
available at https://doi.org/10.5281/zenodo.14025763.

All  simulation datasets are also available online:
https://doi.org/10.26050/WDCC/PMMXMCRTDIP122
(Mikolajewicz et al., 2023b) (MPII6G),

https://doi.org/10.26050/WDCC/PMMXMCRTDGP122
(Mikolajewicz et al., 2023a) (MPIGID), https://catalogue.
ceda.ac.uk/uuid/a43dcfaccfae4824ab9ab2b572703e72/
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