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Abstract 

Gliomas are primary malignant brain tumors with a typically poor prognosis, exhibiting 
significant heterogeneity across different cancer types. Each glioma type possesses dis-
tinct molecular characteristics determining patient prognosis and therapeutic options. 
This study aims to explore the molecular complexity of gliomas at the transcriptome 
level, employing a comprehensive approach grounded in network discovery. The 
graphical lasso method was used to estimate a gene co-expression network for each 
glioma type from a transcriptomics dataset. Causality was subsequently inferred 
from correlation networks by estimating the Jacobian matrix. The networks were 
then analyzed for gene importance using centrality measures and modularity detec-
tion, leading to the selection of genes that might play an important role in the dis-
ease. To explore the pathways and biological functions these genes are involved in, 
KEGG and Gene Ontology (GO) enrichment analyses on the disclosed gene sets were 
performed, highlighting the significance of the genes selected across several relev-
ent pathways and GO terms. Spectral clustering based on patient similarity networks 
was applied to stratify patients into groups with similar molecular characteristics 
and to assess whether the resulting clusters align with the diagnosed glioma type. The 
results presented highlight the ability of the proposed methodology to uncover rel-
evant genes associated with glioma intertumoral heterogeneity. Further investigation 
might encompass biological validation of the putative biomarkers disclosed.

Keywords:  Cancer omics data, Graphical lasso, Network centrality, Causal networks, 
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Background
Gliomas are primary malignant brain tumors with a typically bad prognosis, account-
ing for 80% of malignancies in the brain [1]. Due to their large heterogeneity, gliomas 
encompass different cancer types, where each type possesses distinct characteristics 
that influence patient prognosis and therapeutic options. The World Health Organiza-
tion (WHO) Classification of Tumors of the Central Nervous System (CNS) has been 
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changing throughout the years. In the most recent version of the WHO CNS tumor clas-
sification [2], the glioma types are classified mainly based on the sample’s molecular pro-
files instead of histological features. Gliomas in adults are characterized by three types: 
astrocytoma, oligodendroglioma, and glioblastoma [2]. The latter exhibits a wildtype 
status for the IDH genes, and it is the most common and aggressive type, with a median 
survival of only 14 months [3]. Conversely, oligodendrogliomas and astrocytomas pre-
sent mutations in at least one IDH gene, being molecularly distinguished by the pres-
ence/absence of the combined loss of the short arm chromosome 1 and the long arm of 
chromosome 19 (1p/19q codeletion), respectively [2].

Studying gliomas on a molecular level is essential for understanding the biological 
mechanisms behind these brain tumors, ultimately advancing cancer medicine. Omics 
data comprise various layers of biological information, e.g. genomics (DNA sequences), 
transcriptomics (RNA transcripts), proteomics (protein abundances), methylomics 
(DNA methylation level), and metabolomics (metabolite profiles). This type of data is 
increasingly available with technological advances, e.g., through high-throughput RNA 
sequencing (RNA-seq) and protein mass spectrometry. Typically, omics data is a matrix 
of variables (e.g. genes) and samples. In gene expression data, for example, each entry 
represents the expression level of a particular gene in a particular sample. These datasets 
are often high-dimensional, making it challenging to derive meaningful insights.

Network science is highly recognized in the field of cancer research to study the com-
plexity of diseases and extract relevant biological information [4–6]. Biological net-
works help to explain the disease by studying the interactions between biological entities 
such as genes. For example, genomics mutations data is analyzed by leveraging biologi-
cal interaction networks to discover genetic drivers in cancer [7–9]. To identify altered 
pathways, differential network analysis examines differences between group-specific 
molecular interaction networks, e.g. between cancer and healthy groups [10, 11]. From 
transcriptomics data, gene co-expression networks can be constructed, where the nodes 
represent genes that are connected with an edge if the corresponding genes are sig-
nificantly co-expressed in the RNA-seq dataset across different samples. Inferring and 
analyzing these networks for specific cancer types can uncover key network genes as 
potential biomarkers for diagnostic and therapeutic purposes [12–14].

Network inference methods attempt to identify dependencies between variables. 
The simplest way to construct a network from omics data is to use pairwise associa-
tion measures, such as Pearson’s correlation coefficient, which then represent the edge 
weights in the graph. However, this approach cannot distinguish between direct and 
indirect effects, resulting in dense and poorly interpretable networks. To overcome 
this, conditional dependencies, or partial correlations, can be employed that capture 
only direct interactions between two variables by taking into account the influence of 
all other variables so that that indirect effects do not create a link in the network. The 
most commonly used are Gaussian Graphical Models (GGMs), which assume normally 
distributed variables. The network structure is inferred from the inverse covariance 
matrix, representing direct dependencies [15]. In omics data, the number of samples is 
often much smaller than the number of variables, making statistical modelling difficult 
due to the risk of overfitting. The graphical lasso method estimates the structure of an 
undirected GGM by applying a lasso penalty to the inverse covariance matrix [15, 16]. 
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Another approach to GGM estimation is based on Bayesian methods, which can also be 
used to construct directed causal networks [15]. Learning Bayesian networks typically 
involves algorithms that explore possible network structures and identify the most prob-
able structure from the data [17]. To get reliable results, this method is often combined 
with constraints from prior biological knowledge [15]. A key property of Bayesian Net-
works is that they are acyclic, which can be problematic for modeling gene networks, as 
these may contain feedback loops [18].

This study aims to investigate the molecular complexity of gliomas at the transcrip-
tome level. We developed a comprehensive network-based framework that integrates 
network discovery and analysis to reveal causal relationships. The goal is to identify 
potential biomarkers or pathways that could improve our understanding of glioma het-
erogeneity. For this, we utilize the graphical lasso method to discover gene co-expres-
sion networks as it introduces sparsity to the network structure and does not rely on 
any additional information. To infer causal networks, we estimate the Jacobian matrix 
of the underlying biological system by a method that allows to infer causality by using 
the covariance from sample data and information about the network structure [19, 20]. 
The Jacobian matrix of a dynamical system describes how the system responds to small 
perturbations, here showing how small changes in the expression of one gene affect 
the expression of other genes. The estimated Jacobian matrix provides insights into the 
directional influences among genes, from which we construct a directed network. In this 
work, we explore the promising combination of the graphical lasso method, which pro-
vides insights on the underlying network structures, with Jacobian estimation to infer 
potential causal relationships in gene expression data.

Identifying important groups of genes in these networks can help uncover biomarkers 
and explore new treatment options aimed at these genes. In network analysis, central-
ity measures rank nodes based on their connections and position in the network. These 
metrics can identify genes of biological importance in the networks [21, 22], with each 
centrality measure reflecting a different notion of a gene’s role in the network. For exam-
ple, the degree, or strength in weighted networks, is the sum of edges connected to a 
node [23]. In gene networks, well-connected genes may play a central role in biological 
processes. Eigenvector centrality extends this concept by considering not only the direct 
connections a node has but also the importance of the nodes it is connected to [24], 
highlighting genes that exert a broader influence over the network rather than just locally 
within their immediate neighbors. Closeness centrality calculates how close a node is 
to all other nodes in the network, by measuring the shortest path lengths between all 
pairs of nodes [25]. Genes with high closeness centrality can interact quilckly with other 
genes across the network, suggesting potential roles in regulatory or signaling pathways. 
The betweenness centrality, on the other hand, quantifies the extent to which a node 
lies on the shortest paths between other nodes [25], where a high betweenness central-
ity indicates that a gene acts as a bridge between different groups of related genes in 
the network. We focus on strength, eigenvector, and closeness centrality because these 
measures emphasize different aspects of a gene’s connectivity and influence within the 
network, such as the number and quality of connections and proximity to other nodes. 
Betweenness centrality captures a gene’s role as an intermediary between different parts 
of the network, which refers to a property that is not central to our analysis. Community 
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or modularity detection in biological networks are crucial for uncovering functional 
relationships between genes, by grouping together nodes that reflect shared roles or 
behaviors within the network. Stochastic Block Models (SBMs) offer a probabilistic 
approach by fitting a model to the existing network structure to recover the community 
structure in the graph [26, 27].

Exploring modularity, hubs and shortest paths in biological networks is crucial for 
understanding their structure and function [28]. We use strength, eigenvector and close-
ness centrality as well as modularity detection by SBMs to identify groups of important 
genes in the networks for glioblastoma, astrocytoma and oligodendroglioma. To explore 
the pathways and functions these genes are involved in, we perform KEGG (Kyoto Ency-
clopedia of Genes and Genomes) and Gene Ontology (GO) enrichment analysis on the 
selected genes in each glioma type. Enrichment analysis helps understanding the bio-
logical significance of gene sets. While KEGG provides a resource for linking genes to 
metabolic and signaling pathways, GO categorizes genes based on their molecular func-
tions and processes.

The use of these tools allows us to determine whether the genes identified in our study 
are already known as potential drivers of other cancers or diseases, and if they can be 
considered therapeutic targets. Beside this, we also explore whether they can capture the 
heterogeneity between glioma types as potential diagnostic biomarkers. As patients may 
respond differently to treatments, patient stratification is critical for precision medicine 
approaches, ensuring that patients with similar characteristics receive the most effective 
treatments, adapted to their specific type of tumor. For grouping the patients, we build 
on another type of network that can be constructed from omics data. In  patient simi-
larity networks, patients are represented as nodes and the similarities between them as 
edges connecting the nodes. These networks are used for clustering patients into groups 
with similar molecular characteristics, which may be indicative of common underlying 
biological mechanisms in a disease. We employ spectral clustering of patient similar-
ity networks based on the gene expression data of the selected genes, and evaluate how 
much the resulting clusters are in agreement with the diagnosed glioma types.

In a previous study, Martins et al. [29] explored the capability of applying network dis-
covery and clustering techniques to glioma data. Glioma patients were grouped accord-
ing to 2016-WHO classification guidelines, and undirected networks were used to 
perform variable selection before applying the K-means clustering. The results pointed 
out some inconsistencies between clusters and 2016-WHO classes, fostering further 
studies based on the new 2021-WHO diagnostic label assignments, which we use here.

This study presents a comprehensive network-based approach to glioma patient 
data to investigate the complex gene expression profiles in glioma patient data, lead-
ing to the identification of potentially important genes and patient stratification. For 
this, RNA-seq glioma data from The Cancer Genomics Atlas (TCGA) were used, 
with patients grouped according to the updated 2021-WHO glioma types [30]. From 
these vast datasets, the variables (i.e., genes) were preselected using the correspond-
ing TCGA proteomics dataset containing a set of proteins in the major biochemical 
pathways in cancer, i.e., the genes encoding for the proteins present in the proteom-
ics dataset were retained for further analysis. A gene co-expression network for each 
tumor type was constructed using the graphical lasso method to reveal the interplay 
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of genes in each glioma type. Next, the obtained network structure was used to infer 
causality among genes through the Jacobian matrix estimation, a crucial step provid-
ing insights into the direction of gene interactions. Centrality measures and modu-
larity detection were then applied to the constructed networks to identify central 
genes as potential biomarkers of each glioma type. As a final step, spectral clustering 
was applied to patient similarity networks based on the selected variables from the 
gene networks to stratify patients into distinct groups and evaluate whether these 
patient groups matched the clinically diagnosed glioma types.

Materials and methods
Gene co‑expression networks via graphical lasso

The graphical lasso is a statistical method for estimating the graphical structure in 
a Gaussian graphical model. It is particularly useful in high-dimensional scenarios 
where the number of variables is higher than the number of samples, as it induces 
sparsity in the model. The objective is to find a sparse graph that represents the 
conditional independence structure among the variables by applying a lasso pen-
alty to the inverse covariance matrix. Suppose n multivariate normal observations 
of dimension p, and let � and S be the empirical and theoretical covariance matrix, 
respectively. The graphical lasso, first implemented by Friedman et  al. [16], esti-
mates the inverse covariance matrix � = �

−1 by solving the optimization problem

where � is the regularization parameter and ||�||1 is the L1 norm of �−1 (sum of the 
absolute values of all its elements).

If element ij in the estimated inverse covariance matrix �−1 is zero, then varia-
bles i and j are conditionally independent [16]. The non-zero elements quantify the 
sign and strength of the direct relationship between the corresponding pair of vari-
ables, while controlling for the influence of all other variables. The inverse covari-
ance matrix thus provides information about the partial correlation structure of the 
nodes [15].

To avoid overfitting when the number of variables is higher than the number of 
samples, the regularization term induces sparsity in the model by pushing entries 
in the inverse covariance matrix to zero. A larger value of � enforces more sparsity. 
Here, the Stability Approach to Regularization Selection (StARS) is used for select-
ing the regularization parameter � . StARS measures the stability of network topol-
ogy in the estimated graphical model across different subsamples of the data. The 
idea is that the graph structure should be stable if the chosen regularization param-
eter is appropriate. The method repeatedly draws subsamples from the dataset, fits 
a graphical lasso model for each subsample, and tracks how often each edge appears 
across the subsamples. For each � , StARS calculates the variability in edge selection 
across the subsamples and selects the smallest value of � such that the instability 
remains below a threshold. In this way � is optimized to use the minimum necessary 
regularization to ensure the network’s reproducibility under random sampling [31].

max
�

log det�− tr(S�)− �||�||1 ,



Page 6 of 29Kastendiek et al. BioData Mining           (2024) 17:56 

Causal discovery by Jacobian reconstruction

Inferring causality from observed correlations, i.e., moving from undirected to 
directed networks, is a key challenge. In omics studies, it holds the promise to unveil 
relevant links driving tumorigenesis. When a system is subject to some noise, it is 
possible to employ the theory of stochastic processes showing that correlations 
emerging from samples can be interpreted as a ‘signature’ of the underlying determin-
istic system [19]. This leads to a relationship between the covariance of the samples 
and the system’s Jacobian matrix, which is derived according to Steuer et al. [19] and 
Barter et al. [20] as follows.

The Jacobian matrix of a dynamical system describes how the system responds 
to perturbations. Given a system of N variables defined by X = (X1, ...,XN )

T , their 
response to small fluctuations around an equilibrium can be approximated as

with the Jacobian J of dimension N. The system with noise can be modeled by the Lan-
gevin-type equation

where ξi(t) is Gaussian white noise, with zero mean and unit variance and Di is the mean 
amplitude of the fluctuations of Xi . By using the corresponding stationary Fokker-Planck 
equation for the probability distribution, the Lyapunov equation is obtained [32]

where Ŵ is the covariance matrix with entries Ŵij = �XiXj� and D is the fluctuation 
matrix, describing the internal noise of the system.

Based on this systematic relationship, it is possible to recover the deterministic 
system by inferring the system’s Jacobian matrix from the sample data, if additional 
knowledge about the system is available [19].

Note that the Jacobian matrix is generally non-symmetric, whereas the covari-
ance matrix is always symmetric. This leads to a number of constraints in the Lya-
punov equation that is lower than the degrees of freedom of the Jacobian, making 
it impossible to determine causality from correlation alone. However, if additional 
information, such as the topology of interactions, is available, the full Jacobian can be 
reconstructed. Barter et al. [20] proposed an algorithm to solve the Lyapunov equa-
tion for J, by considering additional constraints. Specifically, it is needed to set Jij = 0 
for N (N − 1)/2 pairs of nodes i and j, forcing the absence of the corresponding vari-
able relations [20].

Biomarker selection through node centrality

Centrality measures in network analysis are used to identify the most important nodes 
within a network. There are various measures that each offer different perspectives on 

d

dt
X = JX ,

dXi

dt
=

∑

j

JijXj +
√

2Diξi(t),

JŴ + ŴJT = −2D,
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a node’s importance based on its connections and position within the network struc-
ture. Here, the strength, eigenvector and closeness centralities are used, which are 
both calculated from a non-negative adjacency matrix A describing relations among a 
set of N nodes with centralities c1, ..., cN .

The strength of a node is quantified by summing the weights of the edges the node i is 
connected to [23]

With strength centrality, it is presumed that a node with significant or several interac-
tions has a higher level of importance in the network.

In the eigenvector centrality, the sum of a node’s connections is calculated, whereby 
each connection is weighted by the other node’s centrality

where � is a constant required so that the equations have a non-zero solution. This equa-
tion can be expressed in matrix notation

where � and c represent, an eigenvalue and the associated eigenvector of the matrix 
A, respectively. Among the possible eigenvalues of A, the leading one (i.e., the eigen-
value with the largest real part) is considered, since its eigenvector is guaranteed to have 
positive entries [33]. Then, the N components of the leading eigenvector represent the 
centralities of each node. In this concept of centrality, the importance of a node is pro-
portional to the importance of its neighboring nodes, creating a recursive relationship 
where connections to highly central nodes enhance a node’s own centrality [24].

Closeness centrality measures the proximity of a node to all other nodes in a network. 
Let d(j, i) be the shortest path distance between node i and j, then the closeness central-
ity of node i is defined by

Nodes with high closeness centrality can quickly interact with all others due to 
shorter path lengths [25]. In networks where the edges have weights corresponding to 
the strength of relationships, the distances can be represented as the reciprocal of the 
weights dij = 1/Aij so that higher weights (stronger relationships) translate into shorter 
distances.

In directed networks, it must be distinguished between outward and inward central-
ity. Outward centrality quantifies the influence of a given node over the network, while 
inward centrality reflects how much a node is influenced by the others [34]. With an 
adjacency matrix where rows reflect the out-degrees and columns the in-degrees of 
nodes, outward strength centrality is calculated by summing over the rows and inward 
strength centrality is computed by summing over columns. For eigenvector centrality, 

ci =
∑

j

Aij .

�ci =
∑

j

Aijcj ,

�c = Ac,

ci =
1

∑

j �=i

d(j, i)
.
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outward centrality calculates the right eigenvector of A, satisfying �c = Ac while inward 
centrality calculates the left eigenvector, satisfying �ct = c

tA [34]. Consequently, out-
ward centrality can be calculated similarly to undirected networks and inward centrality 
is calculated based on the transpose of A. For closeness centrality in directed networks, 
out-closeness is calculated by measuring the paths from node i to all other nodes and 
in-closeness is calculated by considering paths from all other nodes to node i. For this 
study, outward centrality was calculated, following the notion that genes that exert a 
high influence over the network could be potentially important drivers in the disease 
process.

Modularity detection by Stochastic Block Models

In modularity detection, the task is to organize a network into modules, or communities, 
by grouping nodes that have a similar role in the network. This can be regarded as a way 
to select groups of functionally related genes instead of focusing only on single nodes. 
Stochastic Block Models (SBMs) provide a probabilistic approach for this purpose [26].

An SBM is a generative model that is based on a structure of N nodes divided into 
B groups. The partition is given by a vector b , where each entry bi ∈ {1, ...,B} defines 
the group membership of node i. Given the partition of the nodes b , the idea is to gen-
erate a network in which the nodes are grouped accordingly, by maximizing the prob-
ability P(A|b) , where A is the adjacency matrix. The probability P(A|b) determines the 
likelihood of edges existing between nodes based on their group memberships. With 
a Bayesian inference approach, we can revert the problem, and infer the most proba-
ble modularity structure that could have generated an observed network, by comput-
ing P(b|A) through the Bayesian rule [27]. The number of groups B and the most likely 
partition b can be computed in combination by optimizing the Integrated Classification 
Likelihood [35].

SBMs lead to relatively homogeneous degree distributions within modules, which 
might not always align with networks estimated from real-world data. To address this 
limitation, Degree-corrected SBMs (DcSBMs) account for variations in node degrees 
within the same module [27].

Spectral clustering of patient similarity networks

Spectral clustering is a powerful method for grouping complex data into distinct clusters 
by partitioning a similarity graph. It is particularly useful for clustering samples based 
on high-dimensional omics data. In a patient similarity network, the samples to be clus-
tered are regarded as nodes of a graph. The edges between the nodes represent the simi-
larities between the samples, which are typically evaluated using the Euclidean distance 
across all variables. Taking the nearest neighbor graph to capture the local structure of 
the data is especially important for detecting non-linear structures in the data.

Spectral clustering captures the manifold structure of complex data structures through 
the eigendecomposition of the graph’s Laplacian matrix. The eigenvectors correspond-
ing to the smallest non-zero eigenvalues form a new, lower-dimensional, feature space 
where the data points are separated into distinct clusters [36]. John et al. [37] proposed 
the Spectrum method for spectral clustering of complex omics data, implemented as an 
R package. It constructs the patient similarity matrix from the omics data, computes the 
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nearest neighbor graph, reduces noise to better reveal underlying structures, and finally 
performs the spectral clustering. For more details of the method, refer to [37].

Data and analysis workflow

The transcriptomics and proteomics data were retrieved from GDAC Broad Firehose 
(https://​gdac.​broad​insti​tute.​org), a portal collecting data generated by The Cancer 
Genome Atlas (TCGA) [38]. In particular, we considered normalized RNA-seq and pro-
tein abundance data from the TCGA-GBM and TCGA-LGG projects [39–41]. These 
datasets group the glioma patients into glioblastoma and lower-grade glioma (LGG) in 
line with the 2007 WHO classification [42]. LGGs aggregate astrocytoma, oligodendro-
glioma, and oligoastrocytoma samples. The dataset was updated to align with the 2021 
WHO classification, thereby reallocating oligoastrocytoma cases to one of the three 
defined glioma types [30].

The transcriptomics data, derived from RNA sequencing, provides the gene expres-
sion levels of over 20,000 genes. The proteomics data, obtained through reverse phase 
protein arrays (RPPA), is a functional proteomics dataset accounting for nearly 200 pro-
teins involved in major biochemical signaling pathways in cancer [43]. For the compu-
tational feasibility of the methods employed in this study, a dimensionality reduction 
of the transcriptomics dataset was necessary. Therefore, the analysis was specifically 
focused on the expression levels of those genes from the transcriptomics dataset that 
encode the proteins contained in the proteomics dataset, according to the map provided 
by the GDAC Broad Firehose portal. This resulted in a significant variable reduction 
while still ensuring that important genes involved in regulating cancer pathways were 
included in the analysis. This subset of the transcriptomics dataset (transcriptomicsS) 
comprises 145 RNA-seq variables measured over 206 samples for glioblastoma, 255 
samples for astrocytoma, and 166 samples for oligodendroglioma. The reduced dataset 
was normalized by a high-dimensional Gaussian copula with non-parametric marginals 
(nonparanormal), which transforms the variable distribution to achieve normality [44]. 
The nonparanormal normalization was performed by the huge.npn R function. For the 
network inference process, we used only the transformed variables that were normally 
distributed in all glioma types according to the Jarque-Bera test (jarque.test function 
from the moments R package).

A preliminary spectral clustering using the Spectrum method was performed to get 
insights into the biological information contained in the reduced transcriptomicsS data-
set compared to the full transcriptomics dataset and the proteomics dataset. The Spec-
trum R tool was employed with a fixed cluster number set to c = 3 to match the three 
glioma types, i.e., glioblastoma, astrocytoma, and oligodendroglioma. The data is han-
dled automatically and no additional parameters are necessary.

In the methodological workflow, we started with network discovery to infer asso-
ciation and causal gene networks for the three glioma types, using the graphical lasso 
method and the Jacobian matrix estimation, respectively. Figure 1 describes the analy-
sis workflow. The undirected networks were inferred from the transcriptomics data for 
each glioma type separately by the graphical lasso method using the huge R function. 
The StARS method was employed using the huge.select R function to determine the opti-
mal regularization parameter � for each of the three networks. The resulting values for 

https://gdac.broadinstitute.org
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� were closely aligned across all types, with � ≃ 0.3, leading to a similar level of sparsity 
in the graphs. Based on the inverse covariance matrices, undirected gene co-expression 
networks were constructed for each glioma type, providing information about the par-
tial correlation structure of the gene relations at the transcriptomics level. Owing to the 
induced sparsity, some genes had no connections, being excluded for further analysis.

To infer causality among gene relations, the Jacobian matrix was computed for each 
glioma type, following the algorithm of [20]. The fluctuation matrix describing the inter-
nal noise of the system is assumed diagonal with Di =

σ 2
i
2  , for i = 1, . . . ,N  , where σ 2

i  are 
the variances of the individual variables [32]. The structural information needed as addi-
tional constraints was retrieved from the sparsity of the gene co-expression networks 
previously estimated. The zero entries in the inverse covariance matrix �−1

ij = 0 defined 
the zero entries in the Jacobian matrix Jij = 0 . For each glioma type, a directed network 
was deduced based on the respective Jacobian matrix, describing how one gene influ-
ences another. Self-loops and the sign of the edge weights were ignored for further anal-
ysis since the identification of important genes requires focusing only on the strength of 
the relationship between the genes.

The next step of the workflow was the analysis of the networks inferred, based on cen-
trality measures and modularity detection. Strength, eigenvector and closeness central-
ity were calculated to determine the importance of the genes in the glioma networks, 
while the modularity structure was computed to reveal functionally related groups of 
genes that may be important. For modularity detection via DcSBMs, the greed R func-
tion was used. If the adjacency matrix of the network is supplied, the function computes 
the most likely modularity structure obtained by DcSBM [35].

In the proposed methodology, relevant genes were selected from the undirected and 
directed networks, by identifying the genes covering the top 10% of importance in the 
networks and the most important gene from each module, based on strength, eigenvec-
tor and closeness centrality. This leads to eight sets of potential biomarkers for each gli-
oma type.

We used the enrichKEGG and enrichGO functions from the clusterProfiler package in 
R to perform KEGG and GO enrichment analysis on the selected genes in each glioma 
type. These functions take a list of gene IDs and return pathways or GO terms that are 

Fig. 1  Schematic representation of the workflow encompassing network discovery, network analysis, feature 
selection and patient clustering applied to the TCGA glioma transcriptomicsS dataset (transcriptomicsS stands 
for the proteomics-informed transcriptomics dataset)
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significantly enriched. KEGG and GO enrichment can be specified for Homo sapiens 
through the arguments organism =“hs” and OrgDb = org.Hs.eg.db, respectively. Both 
enrichKEGG and enrichGO functions allow for False Discovery Rate (FDR) control via 
the Benjamini-Hochberg procedure (pAdjustMethod = “BH”), which adjusts p-values for 
multiple testing. To retrieve Entrez IDs from gene symbols, the mget function from the 
org.Hs.eg.db package is employed. For each glioma type, we combine the eight sets of 
selected genes to form one gene set for each glioma type, that is passed to the enrich-
ment analysis.

In a final step of the analysis, spectral clustering using the Spectrum method was 
applied to the resulting glioma transcriptomics datasets accounting for the different 
sets of genes selected by the network analysis step, to test whether these reduced data-
sets allow the distinction of known glioma types. The Adjusted Rand Index (ARI) [45] 
was computed to quantify how much the identified clusters were in agreement with the 
actual updated labels. The quality of the clustering in terms of tightness and separation 
was evaluated by the Average Silhouette Width (ASW) [46]. In the Spectrum method the 
first c = 3 eigenvectors were used for clustering the data; thus, the feature space based 
on those was used to calculate the ASW.

Results
To assess if the biological information of the considered omics data is capable of captur-
ing glioma intertumoral heterogeneity, a preliminary unsupervised study was performed. 
In particular, the Spectrum clustering method was applied to the full transcriptomics 
dataset (16,217 features), the proteomics dataset (174 features), and the transcriptomicsS 
dataset (143 features), i.e., covering only genes coding for the proteins collected in the 
proteomics dataset.

The confusion matrices of the clustering results together with the two clustering per-
formance measures ASW and ARI are provided in Table  1. The full RNA transcrip-
tomics dataset produced the best clustering outcome, with the highest scores in both 
measures, suggesting these data reflect glioma heterogeneity. In contrast, the proteomics 
dataset lead to poor-quality clusters, not matching the known glioma types. This out-
come indicates that the proteomics dataset used was not informative for glioma patient 
stratification. Interestingly, the clustering obtained for the proteomics-informed data-
set, i.e., transcriptomicsS, achieved performances comparable to those obtained from 
the full transcriptomics dataset. The lower input dimension massively reduced the 

Table 1  Results from spectral clustering based on the transcriptomics and proteomics datasets 
(transcriptomicsS stands for the proteomics-informed transcriptomics dataset)

Transcriptomics Proteomics TranscriptomicsS

16217 features 174 features 143 features

Astrocytoma 4 239 12 57 42 107 4 243 8

Glioblastoma 190 15 1 33 14 69 181 24 1

Oligodendroglioma 0 6 160 37 49 57 0 17 149

ARI 0.82 0.01 0.75

ASW 0.71 0.45 0.65
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computational complexity, making this subset of features a valuable input dataset for our 
analysis.

Figure 2 shows the patient similarity network derived from the transcriptomicsS data-
set by the Spectrum algorithm. The graph is visualized using the force-directed layout 
algorithm by Fruchterman and Reingold, which positions nodes that are directly con-
nected closer to each other and increases the distance of isolated nodes [47]. The simi-
larity network shows a remarkable distinction between the three glioma types, despite 
some samples being closer to others from a different class. For instance, few glioblas-
toma cases are allocated in the area of astrocytoma and oligodendroglioma, suggesting 
some molecular affinities that might deserve further investigation. Overall, astrocytoma 
seems to share more similarities with the other two classes, while oligodendroglioma 
and glioblastoma can be better distinguished. This prior result is in line with biological 
knowledge since astrocytoma is characterized by the same cell type as glioblastoma [48], 
while having mutations in the same gene family as oligodendroglioma [2].

Network discovery and analysis

The estimation of the undirected glioma networks by the graphical lasso method was 
performed separately for glioblastoma, astrocytoma, and oligodendroglioma. The result-
ing gene co-expression networks comprised a set of genes that have at least one con-
nection, i.e., 141 genes for glioblastoma, 143 genes for astrocytoma, and 141 genes for 

Fig. 2  Patient similarity network computed from the proteomics-informed transcriptomics dataset 
transcriptomicsS. Each node represents a patient, and colors are assigned based on the associated glioma 
type. The nodes are placed using a force-directed layout algorithm
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oligodendroglioma. Based on these network structures, the Jacobian matrices were com-
puted for each type. We recall that the Jacobian matrix is not symmetric, as two genes 
can influence each other in both directions and in different ways ( Jmn  = Jnm ). Moreo-
ver, the entries can be positive or negative, where a positive entry Jmn means that gene 
m has an activating influence on gene n, while a negative entry indicates an inhibiting 
influence. However, the sign of the influence was not taken into account in our analy-
sis; instead, our focus was on the direction and strength of the relationships between 
the genes. While in the undirected networks, the edges reflect conditional dependencies 
between the genes, the edges in the directed networks reflect the extent to which the 
expression of one gene affects the expression of another gene.

Given the difficulty of a visual analysis of these dense networks, modularity detection 
by SBMs was employed to uncover groups of related genes and centrality measures were 
used to detect key genes as potential biomarkers. To this aim, for each glioma type, both 
undirected and directed networks were considered. The modularity detection algorithm 
applied to the undirected graphs identified 11 modules in both the astrocytoma and 
glioblastoma network and 9 modules in the oligodendroglioma network. In the directed 
networks, 15 modules were detected for both astrocytoma and oligodendroglioma, and 
14 modules for glioblastoma. The modules group together genes that have a similar role 
in the network, indicating that genes within the individual modules are likely to be func-
tionally related and participate in related biological processes.

The detection of such modules and the computation of gene importance improves the 
interpretability of the overall networks. Strength centrality is a local measure that high-
lights well-connected genes with significant or numerous direct interactions. Such genes 
may play central roles in biological processes, acting as direct participants in potentially 
important interactions [21, 28]. Eigenvector centrality extends beyond the local neigh-
borhood and recursively considers the influence of a node’s neighbors. This allows for 
the identification of genes with a broader influence over the network, highlighting those 
that may play roles in the regulation or coordination of multiple biological pathways 
[21]. By capturing both direct and indirect influence, eigenvector centrality points to 
genes that may serve as central coordinators within complex systems. While eigenvector 
centrality provides a balanced average over all paths in the network, closeness central-
ity focuses specifically on the shortest, most direct paths to all other nodes. Genes with 
high closeness centrality can interact quickly with other genes, suggesting they may be 
important in signaling and regulatory roles [21, 28].

From the computation of the centrality measures emerged that eigenvector centrality 
assigns a more distinct ranking among the genes, with some genes having significantly 
higher importance values than others, whereas strength and especially closeness central-
ity return a more uniform value to each gene. Eigenvector centrality proves to be par-
ticularly valuable in identifying hub genes, offering the most interpretable outcome from 
a visual point of view. Figure 3 shows, as an example, the astrocytoma undirected and 
directed network in which the nodes are labelled with the respective gene names and 
the node size is proportional to the gene importance based on eigenvector centrality. 
The modularity structure is depicted by the node colors, with genes in the same mod-
ule sharing a color. The nodes are placed using the force-directed layout algorithm by 
Fruchterman and Reingold [47].
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Fig. 3  Astrocytoma a undirected network and b directed gene network. The nodes are labelled with the 
corresponding gene names. The modularity structure is depicted by the node colors, with genes in the same 
module sharing a color. The node area is sized proportional to the node’s eigenvector centrality, making 
influential genes appear larger. The nodes are placed using a force-directed layout algorithm
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For ease of network visualization and interpretation, an interactive online visualization 
tool is provided in https://​netzw​erk-​ninja.​github.​io/​glioma/​gene-​netwo​rks/. The tool 
enables the exploration of the undirected and directed networks estimated for all three 
glioma types based on the different centrality measures. The rankings of the network 
genes according to the centrality measures can be found under https://​netzw​erk-​ninja.​
github.​io/​glioma/​gene-​ranki​ngs/, where the genes are colored according to the modular-
ity structure.

Coupling module detection with eigenvector centrality allows the detection of entire 
groups of genes with high importance within the network. From Fig. 3, it is possible to 
detect the most relevant module based on eigenvector centrality in both undirected and 
directed astrocytoma networks, i.e., the purple module in Fig. 3a and the blue module 
in Fig. 3b. Figure 4 focuses on those subnetworks, allowing a deeper discussion of the 
included gene relations. Interestingly, despite a generally different module structure 
of directed and undirected networks, the most important module in each of these two 
cases is mostly constituted by the same genes, with the only exception of BCL2, which 
is exclusively present in the purple module of the undirected astrocytoma network. This 
high node overlap among the two graph representations allows the disclosure of how the 
estimated gene relationships change from the undirected to the directed network. We 
observe that the edge weights of the undirected module appear relatively uniform, while 
varying significantly in the directed network. In this case, many pairs of nodes have links 
in both directions, yet their weights highly differ, suggesting a dominant influence of one 
gene over the other. For instance, from Fig. 4a, PIK3R2 is predicted to have a considera-
ble impact on RAD51, influencing it by a direct strong positive link, and by a path medi-
ated by FOXM1, which might indicate an important gene regulatory process.

A literature review on these genes revealed findings that align with our results, 
highlighting a potential common ground in DNA repair mechanisms. Specifically, 
PIK3R2 regulates the activity of the enzyme Phosphoinositide 3-kinase (PI3K), which 

Fig. 4  Most relevant module in astrocytoma a undirected network and b directed network. These modules 
include the same genes, with the only exception of BCL2, which is exclusively present in the module of the 
undirected astrocytoma network. Node colors and placements correspond to Fig. 3

https://netzwerk-ninja.github.io/glioma/gene-networks/
https://netzwerk-ninja.github.io/glioma/gene-rankings/
https://netzwerk-ninja.github.io/glioma/gene-rankings/
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is linked to many cell functions, such as growth, proliferation, and cell motility. This 
gene is widely known in cancer, where it is frequently mutated, and associated with 
tumor proliferation and increased invasion [49, 50]. Due to these characteristics, 
recent studies proposed PIK3R2 as a cancer prognostic marker [51, 52].

On the other hand, FOXM1 is a transcription factor gene involved in cell prolifera-
tion, self-renewal, and tumorigenesis [53]. Commonly upregulated in cancer [54], it is 
considered a prognostic marker and a therapeutic target [55].

The existence of a link going from PIK3R2 to FOXM1 is supported by literature, as 
FOXM1 activation is controlled by PI3K/ATK pathway [56], which is crucial in glioma 
progression [57].

Instead, RAD51 has its primary function in DNA-damage repairs [58], a process 
extremely important in cancer, and broadly investigated in glioma due to its implica-
tion in treatment failure. In particular, it has been shown that higher levels of RAD51 
are associated with poor glioma survival, due to its role in repairing DNA damages 
caused by radiation and chemotherapy, contributing to treatment resistance and 
tumor recurrence [59, 60].

Many studies pointed out the FOXM1 role in regulating DNA damage response 
[61–63]. In pediatric glioma, it has been shown that inhibition of PI3K reduces 
the DNA repair functions by a pathway involving FOXM1. In particular, FOXM1 is 
responsible for activating promoters of genes having DNA damage repair functions, 
such as RAD51 [64]. In ovarian cancer, the depletion of PIK3R2 results in increased 
DNA damage and a reduction of the proteins encoded by the RAD51 gene [65].

All these findings suggest that the genes identified in our approach deserve further 
exploration to understand their biological functions in glioma. If such regulations are 
confirmed by biological validations, we may postulate that the PIK3R2 gene might 
impact glioma therapy resistance by alternating DNA repair processes, with impor-
tant clinical implications.

For further biological interpretation and potential biomarker detection, the modu-
larity structures and node importances in the networks were used to select the fol-
lowing sets of genes from the networks: genes covering the top 10% of importance in 
undirected networks based on strength centrality (set 1), eigenvector centrality (set 
2), and closeness centrality (set 3); the most important gene per module in undirected 
networks based on strength centrality (set 4), eigenvector centrality (set 5), and close-
ness centrality (set 6); genes covering the top 10% of importance in the directed net-
works based on strength centrality (set 7), eigenvector centrality (set 8), and closeness 
centrality (set 9); the most important gene per module in directed networks based 
on strength centrality (set 10), eigenvector centrality (set 11), and closeness central-
ity (set 12). The selected genes for each glioma type from all twelve sets are listed in 
Table 2.

The overview provided in Table 2 allows the identification of promising genes that 
may play significant roles in the glioma disease due to their importance in the net-
works. For instance, there are genes identified as important in the different networks, 
indicating their potential relevance in processes shared across different types. Among 
them, ACACA​ plays a key role in glioblastoma and oligodendroglioma networks, 
AKT3 in astrocytoma and oligodendroglioma, and CDK1 in the three glioma types. 
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Table 2  Selected genes in the 8 sets: undirected networks vs. directed networks, genes 
covering the top 10% of importance vs. most important gene per module, strength centrality 
(CS) vs. eigenvector centrality (CE)  vs. closeness centrality (CC)  ( Astrocytoma,  Glioblastoma,  
Oligodendroglioma)
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On the other hand, there are genes that were detected as key variables for a single 
glioma type, making them potential markers for glioma intertumoral heterogene-
ity. Indeed, many genes were selected exclusively for glioblastoma, such as CCNB1, 
NFKB1 and SERPINE1, potentially characterizing the most aggressive type of glioma.

We analyzed the genes selected for each glioma type using the KEGG and GO enrich-
ment analysis, which allowed us to identify key pathways and functional categories that 
are significantly overrepresented. Figure  5 highlights the top 15 KEGG pathways sig-
nificantly enriched in the gene set for each glioma type, while Fig. 6 illustrates the top 
10 enriched GO terms. The x-axis shows the ratio of genes associated with each KEGG 
pathway or GO term relative to the total gene set. The dot size reflects the number of 
genes linked to each pathway or term, and the dot color represents the adjusted p-values 
from the enrichment analysis, accounting for multiple testing corrections. Smaller p-val-
ues indicate greater statistical significance.

Fig. 5  KEGG enrichment analysis showing the top 15 KEGG pathways significantly enriched in the gene 
sets. The x-axis displays the ratio of genes associated with each KEGG pathway relative to the total gene set. 
The dot size reflects the number of genes linked to each pathway and the dot color represents the adjusted 
p-values from the enrichment analysis

Fig. 6  GO enrichment analysis showing the top 10 GO terms significantly enriched in the gene sets. The 
x-axis displays the ratio of genes associated with each GO term relative to the total gene set. The dot size 
reflects the number of genes linked to each term and the dot color represents the adjusted p-values from the 
enrichment analysis
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Besides the links to glioma and other cancer types, the EGFR, PI3K/AKT and mTOR 
pathways appear among the top significant in the KEGG enrichment analysis. Inter-
estingly, our network analysis had already highlighted the PI3K/AKT pathway, and its 
importance in glioma has been discussed previously. The mTOR signaling pathway acts 
both as a downstream effector and upstream regulator of PI3K [66], and has become an 
important therapeutic target for glioblastoma [67, 68]. The activity of this pathway is also 
associated with disease progression in astrocytoma and oligodendroglima [69]. Glioblas-
toma frequently exhibits overexpression or mutation of EGFR, triggering the activation 
of many downstream signaling pathways, such as the PI3K/Akt/mTOR pathway [57]. The 
AMPK pathway, here significantly enriched in the glioblastoma gene set, is known for its 
role in inflammation and cancer, particularly in regulating immune responses within the 
tumor microenvironment [70]. Its involvement in glioma, specifically in glioblastoma, 
has also been studied, where it appears to promote tumor formation [71–73].

In the GO enrichment analysis, protein serine kinase activity and protein serine/threo-
nine kinase activity are significantly enriched in all three glioma types. Protein kinases 
regulate various signalling pathways and cellular processes in cell life such as metabo-
lism, transcription and apoptosis [74]. While protein serine kinase is a borader term, 
protein serine/threonine kinase activity is directly involved in the PI3K/Akt/mTOR and 
AMPK pathways, as AKT and mTOR as well as AMPK are serine/threonine kinases [57, 
73]. Kinase inhibitors have become important in cancer therapy [75, 76] and present a 
promising therapeutic strategy in glioma.

Patient clustering

Since the dataset exploration performed as a first stage of our analysis assessed that the 
initial dataset was suitable for patient stratification by spectral clustering, we would like 
to preserve this ability after variable selection. Therefore, as a final step, clustering was 
performed by considering only data from the selected features. The confusion matrices 
of the clustering results together with ASW and ARI values are given in Table 3.

For most subsets, the clustering performance decreased compared to the one pro-
vided by the initial dataset. However, despite the considerable variable reduction, most 
of the final subsets lead to high-quality clusters, with ASW score above 0.5. The abil-
ity of class recovery was better for the subsets selected from the undirected networks, 
where ARI values are around 0.5 or higher. This suggests that the undirected networks 
based on conditional dependencies better capture the known glioma classes compared 
to the directed networks derived from the estimated Jacobian matrix. However, the bio-
marker selection process may also play a role since the centrality measures applied to the 
directed networks focus solely on the out-direction of links, overlooking bidirectional 
interactions and feedback loops. This may limit their ability to capture the complexity of 
gene interactions.

The best clustering results were obtained by considering the most important genes 
from the modules in the undirected graphs according to closeness centrality (set 6). The 
ARI value of 0.72 value is only slightly below that of the initial dataset and the ASW 
value of 0.68 is even higher, indicating that these genes show great potential as diag-
nostic biomarkers capturing glioma heterogeneity. Figure  7 visualizes the clustering 
based on set 6 in the patient similarity graph. Each node represents a patient, colors are 
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assigned based on the associated glioma type, and the node labels represent the assigned 
cluster. This representation highlights the definition of well-defined and distinctly sepa-
rated clusters, as indicated by the high average silhouette score obtained for set 6. The 
few misaligned observations (i.e., patients grouped in a cluster that does not match 
their assigned glioma type) tend to be located on the border of their respective glioma 
type. This suggests a similarity across some glioma types, as expected. Particularly, we 
can observe similarity between oligodendroglioma (green) and astrocytoma (blue), and 
between astrocytoma and glioblastoma (orange), which aligns with biological knowledge 
and prior studies [77–79]. On the other hand, a small number of these misaligned obser-
vations appears to be more closely aligned with patients in their assigned cluster than 
those of their actual glioma type. This could indicate that these patients have a distinct 
transcriptomic molecular profile, potentially identifying outliers or hinting at a need for 
a different stratification of patient groups.

Generally, the clustering performance improved when considering the modularity 
structure of the networks, though this result might also be affected by the number of 
genes included in the analysis, which is generally larger than the one derived from the 

Fig. 7  Patient similarity network computed based on the genes included in set 6 (the most important 
genes from the modules in the undirected graphs according to closeness centrality). Each node represents a 
patient, colors are assigned based on the associated glioma type and the node labels represent the assigned 
cluster. The nodes are placed using a force-directed layout algorithm
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top 10% approach. However, when looking at the sets of genes selected by closeness cen-
trality, the modularity approach led to better ARI values with fewer genes. Closeness 
centrality provided a relatively uniform distribution of importance between the genes, 
which explains why the top 10% includes a higher number of genes compared to the 
other centrality measures. The worst performances in terms of ARI and ASW values 
were provided by considering genes from the top 10% based on eigenvector centrality. 
Nevertheless, if the number of genes included in the analysis might affect clustering 
results, it is worth to note that both these cases are characterized by the smallest num-
ber of features.

The confusion matrices reveal that oligodendroglioma and astrocytoma are often 
assigned to the same cluster. This outcome aligns well with the known similarities in the 
genetic profiles of these glioma types. Astrocytomas and oligodendrogliomas are both 
low-grade gliomas exhibiting mutations in the same gene family, i.e., the IDH genes. 
Glioblastomas, on the other hand, display a wild-type IDH status, and are characterized 
by genetic or histological alterations, uncommon to astrocytomas and oligodendroglio-
mas. In diagnosis, this IDH mutation is a crucial marker that distinguishes astrocyto-
mas and oligodendrogliomas, from the more aggressive glioblastomas [2]. This outcome 
is also confirmed by previous studies based on the same datasets, investigating glioma 
heterogeneity by network inference, which also highlights the similarity between astro-
cytoma and oligodendroglioma [29, 80]. Furthermore, there is more overlap between 
glioblastoma and astrocytoma than between glioblastoma and oligodendroglioma, 
which is reasonable since both glioblastoma and astrocytoma arise from the same cell 
type, namely astrocytes.

In this study, clustering was used as an unsupervised approach to assess the effective-
ness of the selected genes in differentiating the glioma classes. An additional literature 
review on the subset of genes leading to the best clustering results (set 6) was conducted 
to explore their specific functions in gliomas and cancer in general. The findings can 
be found in Table 4 in Appendix. In the literature review, all selected features are men-
tioned in relation to human cancers, many in the context of gliomas. Among studies 
about gliomas, many studies are focused on glioblastoma, widely studied due to being 
the most common and aggressive type of glioma. The ACACA​ gene plays a significant 
role in the glioblastoma and oligodendroglioma networks but has not yet been linked to 
glioma in the literature. CHEK2 deservers further exploration in astrocytoma, and EIF-
4EBP1 should be considered for investigation in all types of glioma, since they have not 
yet been studied experimentally in glioma.

Conclusions
In this study, we proposed a network-based methodology to discover relevant gene 
interaction networks associated with different glioma types. We offer a novel perspective 
on gene expression in glioma, revealing valuable molecular insights and potential bio-
markers that may contribute to diagnosis and therapy. The methodology encompasses 
the estimation gene co-expression networks from transcriptomics data using the graphi-
cal lasso method, the estimation of causal relationships by the Jacobian matrix, modular-
ity detection by SBMs and the analysis of gene importance based on centrality measures. 
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Further clustering of patient similarity networks evaluates the suitability of selected net-
work genes to stratify the patients into the diagnosed glioma types.

While the sparse gene co-expression networks identified by the graphical lasso 
method stand as valuable information regarding the molecular associations involved 
in different glioma types, the causal links disclosed through the Jacobian matrix 
further increase the biological understanding of the directions of the correspond-
ing interactions. Although these cannot be considered as direct gene regulatory 
networks due to the absence of transcription factors that usually mediate gene-
gene interplay [81], the estimated causal networks provide an important indication 
of gene interactions, a crucial starting point to foster further research. In particu-
lar, by analyzing the directed gene relations in a astrocytoma module, we were able 
to detect very promising regulatory mechanisms, which aligns with prior studies, 
yet not comprehensively investigated in glioma. The confirmation of these findings 
might increase the overall glioma understanding, with potentially important clini-
cal implications. In the astrocytoma directed network as well as in the glioblastoma 
and oligondendroglioma networks, several more causal interactions between genes 
can be identified. With increased computational resources, it would be interesting 
to explore network inference using a larger dataset. For the Jacobian reconstruction, 
further research might consider other prior information about the network structure 
available from curated databases regarding known molecular interactions involved 
in glioma or cancer in general.

The analysis of the resulting networks through node centrality and modularity 
detection provided valuable insights into gene importance and the structure of gene 
interactions in the glioma networks. This led to a selection of genes as potential bio-
markers. For each glioma type, we performed KEGG and GO enrichment analysis 
based on the selected genes, showing biological pathways and processes that are 
enriched in the set of genes. While the selected genes are already valuable as disease 
drivers and therapeutic targets, we further applied spectral clustering to assess their 
ability to group patients into the known glioma types.

By calculating closeness centrality and selecting the most central gene from each 
module in the undirected networks, a set of promising genes that captures inter-
tumoral heterogeneity in gliomas was identified from a mathematical and compu-
tational standpoint. Spectral clustering based on these genes yielded clusters that 
closely aligned with the established glioma subtypes. Glioma is a highly heterogene-
ous disease, exhibiting greater variability than is captured by the three established 
glioma types. The structure we identified enables the discovery of new patient sub-
groups, sharing molecular characteristics.

We conducted a literature review to evaluate previous reports on the role of these 
selected genes in glioma or cancer in general, which is essential to assess their 
potential for diagnosis and therapy. While several genes have already been associ-
ated with glioma, many have not yet been comprehensively investigated. To promote 
further studies, we provided a ranked list that helps researchers prioritizing genes 
for further experimental validation, involving biological testing of the most promis-
ing candidates to examine their role in the development, progression, and therapy of 
glioma.
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Appendix

Table 4  Selected genes and their function in gliomas and cancer in general

Gene Function

ACACA​ Aberrant expression increases cancer risk [82]; down-regulation suppresses malignant progression of 
prostate cancer [83]

AKT3 Amplification promotes glioma progression [84]; it delays tumor progression, therefore strategies that 
inhibit AKT3 may be unhelpful in some glioblastoma patients [85]

ANXA7 De-regulated in many cancers, appears to have a tumor-suppression role in glioblastoma [86]; tumor 
suppressor, augments EGFR signaling in glioblastomas [87]

BAK1 Targeting BAK1 enhances chemosensitivity of glioblastoma stem cells to Temozolomide [88]

BRAF Lower-grade gliomas of childhood are characterized by BRAF mutations [89]; BRAF mutation associ-
ated with improved survival in glioma [90]

BRCA2 Downregulation can sensitize glioma cells to killing by anti-cancer drugs [91]; factor for poor progno-
sis in glioma patients [92]

CDK1 Inhibiting CDK1 activity promotes apoptosis in glioblastoma [93]; significantly enriched in glioblas-
toma cell cycle [94]

CHEK2 CHEK2 gene polymorphism might correlate with prognosis of glioblastoma patients [95], activated 
upon DNA damage; associated with breast cancer [96]

EEF2 Regulates autophagy in human glioblastoma cells [97]; targeting EEF2 kinase can enhance the antitu-
mor activity of Temozolomide against glioma [98], tumor-associated antigen overexpressed in various 
types of cancers [99]

EIF4EBP1 Increased expression in malignant gliomas [100]; overexpression linked to poor survival and disease 
progression in hepatocellular carcinoma [101]

ETS1 Key role on vascular abnormality in glioblastoma [102]

FASN Up-regulation of FASN correlates strongly with glioma grade [103, 104]; inhibition of FASN decreases 
expression of stemness markers in glioma stem cells [105]

FN1 Upregulated in glioblastoma; promotes glioblastoma cell proliferation by altering PTPRM methylation 
[106]

FOXM1 Promotes glioma cells progression [107]; overexpressed in malignant glioma [108]

GSK3B GSK3B activity is a critical regulator of glioblastoma stem-like cell survival and apoptosis [109]; poten-
tial anticancer targets for astrocytoma therapy [110]; AKT/GSK3 signaling pathway plays a significant 
role in the pathogenesis of glioblastoma [111]

MTOR Important role in glioblastoma [66]; therapeutic target for glioblastoma [67, 68]; the activity of the 
PI3K/Akt/mTOR is also associated with astrocytoma and oligodendroglioma [69]

MYC MYC inhibition effective against glioma [112], c-Myc protein required for maintenance of glioma 
cancer stem cells [113]

NFKB1 Significantly up-regulated in tumor tissue of glioblastoma, astrocytoma and oligodendroglioma but 
not in other cancer types [114], implicated in carcinogenesis, in some cases as tumor-driver, in others 
as tumour-suppressor [115]

PECAM1 Downregulated in glioblastoma; correlated to the overexpression of HIF-1α , a transcriptional regulator 
increasing tumor aggressiveness, invasiveness and resistance to radiotherapy and chemotherapy [116]

PIK3R2 Regulates the activity of PI3K, which is linked to many cell functions, and well known in glioma 
[117–119]; frequently mutated, and associated with tumor proliferation and increased invasion [49, 
50]; proposed as a cancer prognostic marker [51, 52]

RAB11A The RAB11 family protein family is the master regulator of vesicular trafficking and is prone to be 
altered in human cancers [120]

RB1 Downregulated in human brain tumors [121]; alteration of the RB1-pathway related genes are associ-
ated with shorter survival in low-grade gliomas [122]; in glioblastoma, loss of RB1 expression correlates 
with hypermethylation, which is not reported in low-grade astrocytoma [123]

SQSTM1 Acts as a regulator in autophagy in glioblastoma cells [124]; and cancer in general [125]

SYK SYK inhibition blocks proliferation and migration of glioma cells [126]; associated with malignant 
phenotype and immune checkpoints in diffuse glioma [127]

TSC2 AKT activation in human glioblastomas enhances proliferation via TSC2 and S6 kinase signaling [128], 
TSC2 protects glioblastoma from cell death induced by Photodynamic therapy [129]

YBX1 Potential regulator of tumor invasion in glioblastoma [130], highly overexpressed in multiple cancer 
types
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