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Abstract

Trail Valley Creek, located in the Northwest Territories (NWT), approximately

45 km north of Inuvik, Canada, marks the northern boundary of the tundra-taiga

transition zone. This region, underlain by continuous permafrost, is experiencing

rapid warming and vegetation changes, including shrub expansion. These shifts may

lead to increased snow depths, which could in turn affect subsurface temperatures

and potentially impact permafrost stability.

Topography and vegetation are key drivers of spatial variation in snow depth,

with wind redistribution leading to snow accumulation in topographic lows, leeward

slopes, and densely vegetated areas. However, landscape complexity also affects

snow measurement accuracy, adding variability to depth estimates. Understanding

these relationships is essential but often limited by the scarcity of high-resolution,

large-scale data that can capture landscape heterogeneity. In this study, I investi-

gated snow depth patterns across different topographic features (landforms, slopes,

and aspects) and vegetation types (height ranges and cover classes) within an area

of 127 km2. To achieve this, I used LiDAR (Light Detection and Ranging) data col-

lected over the snow-covered surface (April 2, 2023) and the snow-free terrain (July

10, 2023) of Trail Valley Creek to create a 1-meter resolution snow depth map. I

then compared the LiDAR data with two reference sources: 9569 coordinate refer-

ence points along the Inuvik-Tuktoyaktuk Highway (ITH), which intersects the area

and is maintained at minimal snow depth throughout winter, and snow depth mea-

surements from 4615 field survey points. Field surveys recorded deeper snow depths

than LiDAR estimates, with an overall bias of 0.18m. The discrepancy between Li-

DAR and field measurements varied significantly, with the largest biases over trees

(0.30m) and on steep east-facing slopes (0.37m). However, LiDAR measurements

closely aligned with the ITH reference points, showing a median depth deviation of

just 0.017m. The analysis showed that, with regard to topography, snow depth was

highest over footslopes and valleys, with median depths of 0.38m and 0.44m, respec-

tively, and lowest on ridges (0.20m). Snow depth also increased with slope steepness

and was consistently greater on east-facing slopes, in response to predominant winds

from the west and northwest. In terms of vegetation, snow depth increased with

vegetation height, with medians ranging from 0.29m over vegetation shorter than

0.50m to 0.54m in areas where vegetation height exceeded 1.5m. These findings

align with results by vegetation class, where single and riparian shrubs exhibited

the highest accumulations, with snow depth medians reaching 0.49m.
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Introduction

The Arctic air temperatures have risen at least twice as fast as the global averages in

the past decades (Biskaborn et al., 2019; Langer et al., 2023; Taylor et al., 2013). As

a consequence of the rapid warming, the overall snow cover duration is likely reduced,

with later snow fall begin in autumn and earlier snow melt in spring (IPCC, 2022),

impacting Arctic ecosystems and landscapes. Permafrost is particularly sensitive to

climatic variations such as increases in air and ground temperatures and changes in

snow regimes (Biskaborn et al., 2019). The shorter snow cover seasons are likely to

reduce species richness and accelerate local extinctions (Niittynen et al., 2018).

1.1 Permafrost and snow cover

Permafrost is defined as ground that remains frozen for two or more consecutive

years (Harris et al., 1988). Its warming and thawing has the potential to amplify

global climate change through the release of methane and carbon dioxide from per-

mafrost into the atmosphere (Chadburn et al., 2017; Schuur et al., 2015). Permafrost

thaw also impacts ecosystems, hydrological systems (Biskaborn et al., 2019), and can

be damaging to civil infrastructures and industrial plants above and below ground,

potentially leading to the release of toxic chemicals such as hydrocarbons and heavy

metals into soil, surface and ground water (Langer et al., 2023; Schneider von Deim-

ling et al., 2021). Permafrost is also highly influenced by seasonal snow covers, as

snow depth variations affect the biogeochemical properties (Zhao et al., 2022) and

the temperature variability in upper soil layers (Callaghan et al., 2011b; Zhang,

2005).

Snow has low thermal conductivity properties, and insulates the ground surface

from the atmosphere, actively protecting the ground from substantial energy loss in

winter (Callaghan et al., 2011a). Thin snow layers, with reduced insulating capacity

yet high albedo, tend to cool the ground surface temperatures during winter (Zhao

et al., 2022). On the other hand, increased snow depth enhances the insulation

effect, leading to warmer soil temperatures (Zhang, 2005), increasing soil moisture

(Zhao et al., 2022), and favoring organic matter decomposition (Walker et al., 2001).

Snow cover, therefore, plays a critical role in the energy and moisture fluxes, and

consequently in the formation and development of seasonally frozen ground and

permafrost (Callaghan et al., 2011b; Gouttevin et al., 2012). The accumulation

of thicker snow layers, facilitated by the trapping effect of shrubs and surface mi-
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INTRODUCTION

crorelief, contributes to an increase in soil temperatures, which in turn accelerates

permafrost thawing (Zhang, 2005).

Snow depth variations are mainly driven by topography and vegetation (Pohl and

Marsh, 2006; Walker et al., 2020), which serve as natural structures that facilitate

snow accumulation and retention (Derksen et al., 2009; Sturm et al., 2001). Terrain

features such as valleys and microtopographic lows (Wainwright et al., 2017), along

with taller vegetation such as shrubs and trees (Pohl and Marsh, 2006; Thompson

et al., 2016), significantly contribute to intercepting snow in Arctic landscapes.

In the short term, understanding snow depth distribution is crucial for the esti-

mation of snow water equivalent and therefore the prediction of water availability

(Hopkinson et al., 2012) and risk of flooding (Hopkinson et al., 2004). In the long

term, the northward expansion of shrub cover, a well-documented ongoing phe-

nomenon associated with climate change (Beamish et al., 2020; Sturm et al., 2001),

is likely to promote the increase of snow depths by 10-25% (Sturm et al., 2001).

This underscores the importance of comprehending the unfolding changes in snow

cover and their impact on permafrost dynamics.

1.2 Snow assessment techniques

Several methodologies have been used to observe and retrieve snow features and snow

depth information, ranging from broad-scale satellite observations to high-resolution

remote sensing techniques and localized field measurements.

Optical satellite data provide valuable information on snow cover extent (Harder

et al., 2016), as snow exhibits distinct spectral characteristics in the visible and

middle-infrared wavelengths, creating a clear contrast with other natural surfaces

(Wu et al., 2021). However, satellite imagery is highly impacted by the lack of

sunlight and the presence of cloud cover (Aalstad et al., 2020). The temporal res-

olution often does not align with the rapid changes in the snow line during spring

melt (Derksen et al., 2009), and the spatial resolution not always accomplish to

capture the complexities of the snow’s spatial variability (Callaghan et al., 2011a;

Harder et al., 2016; Hopkinson et al., 2008). Satellite microwave sensors such as the

Advanced Microwave Scanning Radiometer (AMSR) series, the Special Sensor Mi-

crowave/Imager (SSM/I) and Synthetic Aperture Radar (SAR), on the other hand,

operate at longer wavelengths and are able to retrieve surface information regard-

less the presence of sunlight and cloud cover. Passive microwave remote sensing has

traditionally been used in the estimation of snow water equivalent (Derksen et al.,

2009; Rutter et al., 2019).

However, the coarse spatial resolution of satellite data is not optimal to capture

the variability in the physical properties of snow (Derksen et al., 2009; Rutter et al.,

2014) and its seasonal microstructural evolution (Rutter et al., 2019). While satellite

data remain indispensable for large-scale monitoring and assessment of remote Arctic

landscapes (Beamish et al., 2020), such as through the extensive time series provided

by platforms like Landsat, which have been instrumental in revealing long-term
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INTRODUCTION

changes in vegetation cover and biomass (Berner et al., 2020; Nill et al., 2022)

there are significant limitations. Snow depth can significantly vary across short

distances driven by microtopographic variations, making it essential to obtain data

at finer geographical scales. The impact of snow depth in hydrology and ecosystem

functioning demands the knowledge of a broad regional context but also detailed

local assessments (Wainwright et al., 2017). To address this, direct approaches,

such as field snow depth measurements, ground and airborne high-resolution remote

sensing tools like Ground Penetrating Radar (GPR), Structure from Motion (SfM),

and Light Detection and Ranging (LiDAR), provide alternatives for capturing fine-

scale snow variability and supporting both regional and local analyses (Dharmadasa

et al., 2022; Wainwright et al., 2017).

GPR, extensively used for snow on sea ice (Wang, Wei, 2022) and estimations

of snow water equivalent, use radio waves and microwaves to characterize snow

depth, stratigraphy, density and by detecting variations in the dielectric properties

throughout the snow pack (Wainwright et al., 2017; Wang, Wei, 2022). The radar

equipment can be transported by foot, snow mobile (Derksen et al., 2009; Rutter

et al., 2019), or from airborne platforms (Krumpen et al., 2023). However, the snow

depth estimation with the use of radar can be influenced by terrain complexities

such as steep slopes, hummocks (Painter et al., 2016; Wang, Wei, 2022), and ice-

wedge polygons, due to radar positioning and ray path assumptions (Wainwright

et al., 2017). Additionally, retrieving snow depth in vegetated areas, particularly

where vegetation protrudes through the snowpack, presents challenges. Vegetation

increases the complexity of radar signals, as it interacts with the waveform before

and after it is attenuated by snow (Painter et al., 2016; Wang, Wei, 2022).

SfM is a technique that utilizes photogrammetry to produce high-resolution dig-

ital elevation models. By capturing multiple images from various angles, a software

identifies and matches common surface tie points to align and aggregate the pho-

tos into a 3-dimensional representation of the surface (Nadal-Romero et al., 2015;

Walker et al., 2020). This method is used to generate snow depth products and can

be deployed using both manned and unmanned aerial vehicles (UAVs). UAVs, in

particular, have become a viable alternative for small-scale, high-resolution remote

sensing applications, offering a lower cost of operation compared to other methods

such as LiDAR (Harder et al., 2016). While UAVs offer a flexible and cost-effective

approach for SfM-based snow depth measurement, the method is not without chal-

lenges. Lighting conditions, for example, can highly affect the accuracy and quality

of SfM snow depth products (Revuelto et al., 2021), particularly in polar regions

where short daylight periods restrict data collection windows. Additionally, high

wind speeds can shorten UAV and camera battery life, and cold temperatures can

compromise equipment performance (Walker et al., 2020).

LiDAR is an active remote sensing technology (Hopkinson et al., 2008) that has

become an indispensable tool in cryospheric studies due to its ability to produce

dense, high-quality point clouds that detect snow cover and under-canopy ground

points (Dharmadasa et al., 2022). LiDAR operates by emitting laser pulses that

reflect back to the emitting sensor upon reaching a target surface. The system cal-
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culates the distance from the sensor to the target for each pulse, and by integrating

multiple georeferenced pulses, it generates a point cloud of elevation measurements

(Painter et al., 2016). LiDAR sensors can be deployed in various ways, including

on tripods or stationary platforms in terrestrial laser scanning (TLS), a technique

widely used in geology and forestry (Nadal-Romero et al., 2015). They can also

be mounted on UAVs for small-scale, high-resolution mapping (Dharmadasa et al.,

2022), or on aircraft, where the method is known as airborne laser scanning (ALS)

(Hopkinson et al., 2008; Krumpen et al., 2023; Lange et al., 2021). Nevertheless,

LiDAR measurements can encounter certain challenges and be influenced by posi-

tional errors, particularly in complex and steep terrains (Dharmadasa et al., 2022).

Furthermore, dense vegetation can intercept a portion of the laser pulses, resulting

in a less dense point cloud at ground level (Hopkinson et al., 2004), which may

result in a systematic underestimation of snow depth in areas with dense understory

(Hopkinson et al., 2008). Post-processing errors can also cause the misclassification

of terrain features, such as ground points classified as non-ground points and the

reverse (Dharmadasa et al., 2022; Pingel et al., 2013).

In cryospheric applications, snow depths are typically determined by differencing

elevation models from snow-covered and snow-free periods (Dharmadasa et al., 2022;

Hopkinson et al., 2004; Painter et al., 2016). This can be achieved using the same

method for both models, such as LiDAR, as demonstrated in studies by Painter

et al. (2016), King et al. (2018), Rutter et al. (2019), Dharmadasa et al. (2022),

and Hammar et al. (2023). Dai et al. (2024) also applied a similar approach using

ArcticDEM, derived from Maxar satellite stereoscopic imagery, to generate both

snow-covered and snow-free elevation models. The snow-covered DEMs were created

from winter acquisitions, while the snow-free DEMs were based on the median of

summer ArcticDEM datasets of the same area. Alternatively, different methods can

also be combined to derive snow depth, as seen in Walker et al. (2020), who used

a snow-covered elevation model derived from SfM alongside a bareground LiDAR

digital elevation model from Hopkinson et al. (2008). Similarly, Parr et al. (2020)

averaged and fused a LiDAR and an SfM snow-free digital elevation model to base

their snow depth calculations.

While geophysical methods provide valuable insights into snowpack properties,

field measurements remain an essential approach for obtaining direct and ground-

truth data on snow depth (Wainwright et al., 2017). Traditional field techniques,

such as snow depth probing, are fundamental for both measuring snow depth and

validating remote sensing products (Deems et al., 2013). This method involves the

insertion of a cylindrical probe into the snowpack to measure the distance between

the snow surface and the ground (Sturm and Holmgren, 2018). Despite their di-

rectness and reliability, field measurements have their own limitations. Probes can

sometimes overestimate snow depth when they penetrate soft ground beneath the

snowpack, introducing potential bias in the data (Berezovskaya and Kane, 2007).

Additionally, positioning uncertainties can range from 3m (Sturm and Holmgren,

2018) to 10m, depending on the accuracy of the positioning system used (Walker

et al., 2020). Furthermore, although field measurements provide direct data, they
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can be labor-intensive (Hopkinson et al., 2004) and may not capture the full spatial

variability of snow depth across heterogeneous landscapes (Deems et al., 2013).

1.3 Study area

Trail Valley Creek is located in the Northwest Territories, Canada, within the tran-

sition zone between the northern edge of the boreal forest and the southern edge

of the Arctic shrub tundra (Figure 1.1). The area is underlain by continuous per-

mafrost, with a thickness ranging from 100 to 150m (Marsh et al., 2008). The region

is characterized by lakes, gently rolling hills and lowlands, with fairly low relief and

deeply incised valleys (Pohl and Marsh, 2006). The upland areas are characterized

by low tundra vegetation, while shrub tundra and sparse black spruce are found in

valleys and adjacent hillslopes (Grünberg et al., 2020; Pohl and Marsh, 2006). Trail

Valley Creek has a low Arctic climate, characterized by short and cool summers and

long cold winters (Pomeroy et al., 1997; Walker et al., 2020), and is covered by snow

8 months a year, from October to May, being snow responsible for half of the annual

precipitation (Pan et al., 2016).

In November 2017, the ITH opened, connecting Inuvik to Canada’s Arctic coast.

Running south to north along the western edge of Trail Valley Creek, this all-weather

road, built on permafrost, has since influenced snow depth patterns along its route

(Hammar et al., 2023).

The Trail Valley Creek research station (68.7420, -133.4992) began operations

in 1991 (AHRG), and since the 1990’s, researchers investigate the relationship be-

tween snow accumulation patterns and landscape features in the area. For instance,

Pomeroy et al. (1997) demonstrated that landscape patterns, rather than just win-

ter precipitation, significantly influence snow accumulation and loss. Subsequently,

Essery and Pomeroy (2004) investigated the influence of shrubs on blowing snow

fluxes, while Pohl and Marsh (2006) and (Marsh et al., 2008) simulated snow accu-

mulation and melt in the tundra. The Alfred Wegener Institute, Helmholtz Centre

for Polar and Marine Research (AWI) conducted its first airborne survey campaign

at Trail Valley Creek in the summer of 2016 (Anders et al., 2018), and since then,

further surveys have been carried out in the summer 2018 (Lange et al., 2021),

winter 2019 (Hammar et al., 2023), and winter (Krumpen et al., 2023) and sum-

mer 2023 (Perma-X Crew, 2023). The research aircraft for these campaigns were

equipped with a Modular Aerial Camera System (MACS), radar, and LiDAR sensor

(Krumpen et al., 2023).

Digital elevation models created from the LiDAR data have enabled the investi-

gation of bare ground and snow-covered terrain, as well as canopy height. This has

advanced research on vegetation cover (Grünberg and Boike, 2019; Grünberg et al.,

2020), vegetation height (Antonova et al., 2019), snow depth patterns (Hammar

et al., 2023; Wang, Wei, 2022), and also served as a benchmark for other digital

elevation models (Dai et al., 2024).
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Figure 1.1: Trail Valley Creek and area of interest. a) Region of Trail Valley Creek, located 45 km

north from Inuvik and 70 km south from the Arctic ocean in Northwest Territories, Canada. b) Area

of interest (in yellow), in the surrounding area of the Trail Valley Creek Research Station.
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1.4 Research focus and scope

Snow depth distribution in the Arctic is largely influenced by landscape features such

as topography and vegetation. However, complex and densely vegetated terrains in-

crease the uncertainty in digital elevation models, adding challenges to accurate

snow depth measurements. In this study, I investigate the geomorphology, slope

and aspect, vegetation height and cover, and their links with snow depth distribu-

tion in the area of Trail Valley Creek. Using high-resolution winter and summer

digital elevation models along with in-situ snow depth measurements, the research

is structured around three core questions:

RQ1 How do LiDAR snow depth measurements compare with con-

trol points over the ITH, and to field snow depth surveys?

RQ2 What is the LiDAR snow depth distribution across differ-

ent geomorphological, topographical, and exposure settings

in Trail Valley Creek, and how do field snow depth surveys

compare within these classifications?

RQ3 What is the LiDAR snow depth distribution across different

vegetation height and vegetation classes in Trail Valley Creek,

and how do field snow depth surveys align with these classifi-

cations?

The first research question focuses on how LiDAR snow depth measurements

compare with control points along the ITH, as well as how LiDAR data relates to

field snow depth surveys. I hypothesize that LiDAR snow depths along the midpoint

coordinates of the ITH will approximate zero, as the road is expected to have little to

no snow cover. I also expect field snow depth measurements to be higher than those

obtained from LiDAR, due to potential overestimation caused by snow probes and

the tendency of LiDAR to underestimate snow depth, particularly in vegetated areas.

The objective for this research question is twofold: first, to validate the accuracy

of LiDAR snow depth measurements by comparing them to control points on the

ITH; second, to assess the relationship between LiDAR and field measurements by

comparing the results from both techniques.

The second research question examines how snow depth distribution varies across

different geomorphological, topographical, and exposure settings in Trail Valley

Creek. I hypothesize that topographical lows, such as valleys and footslopes, will

accumulate more snow compared to ridges and plateaus. I also expect snow distri-

bution to vary by exposure, with wind transportation and erosion leading to non-

uniform snow depths across slopes and aspects. Moreover, I anticipate that the bias

between LiDAR and field measurements will vary depending on the topographical

context. The objective of this research is to quantify snow depth variation across
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INTRODUCTION

geomorphological features and assess how topographical factors, including slope and

aspect, influence snow depth patterns.

The third research question focuses on the role of vegetation in snow depth dis-

tribution across different vegetation heights and classes in Trail Valley Creek. I

hypothesize that taller vegetation, such as shrubs and trees, will be associated with

deeper snow depths, while the bias between LiDAR and field snow depth measure-

ments will increase with vegetation height and density. The objective of this research

is to quantify snow depth variation across different vegetation types and to analyze

how vegetation height and class impact snow accumulation, offering insights into

the relationship between vegetation and snow distribution.

8



Datasets and methods

To investigate the snow depth distribution in Trail Valley Creek, this study employed

LiDAR snow depth data from 2023. The methodology was structured to address

three key aspects: validating LiDAR measurements against control points along the

ITH and field measurements, analyzing snow depth across various topographical

settings such as landforms, slope and aspect, and examining the influence of different

vegetation covers and heights.

I used LiDAR data acquired in the winter of 2023 (Krumpen et al., 2023) to

create the snow-covered digital surface model (DSM). The summer 2023 LiDAR

survey (Perma-X Crew, 2023) provided the base for the vegetation height map, and

the digital terrain models (DTMs), which I used to generate landform, slope, and

aspect maps. By subtracting the summer DTM from the winter DSM, I produced

the snow depth map. The vegetation class map was sourced from the summer 2018

LiDAR campaign (Lange et al., 2021). To delineate the ITH midpoint, I used the

ESRI Satellite basemap as a reference (Esri et al., 2023). Additionally, I utilized

field survey datasets collected in the winter of 2023 by Rutter (2023) and Walker

(2023). All rasters, the ones I used as a source and the ones I produced for this

work, are saved as GeoTIFF files with a 1-meter resolution per pixel. The effective

common area of interest totals 127.7 km2. The following sections detail each of those

steps, the workflow (Figure 2.1) and methodology employed in this research.

2.1 Mapping snow depth

2.1.1 DSM generation from snow covered terrain

Data source background: IceBird Winter 2023 campaign

I generated the snow-covered DSM using LiDAR point cloud data generated during

the 2023 Winter campaign of the IceBird program, a long-term airborne Arctic sea

ice and snow cover observation initiative led by AWI. The coinciding with the mini-

mum sea-ice extent in August and the maximum in March and April (AWI, 2024c).

The program aims to improve understanding of Arctic changes by collecting high-

resolution data, quantifying trends, and validating sea-ice and snow depth estimates

from products such as CryoSat-2, ICESat-2, and Sentinel-3A/B (Krumpen et al.,

2023).

The 2023 campaign, conducted aboard the research aircraft Polar 6, was equipped

9
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Figure 2.1: Datasets and workflow: The diagram illustrates this thesis’ workflow. The yellow

arrows indicate the comparison of LiDAR snow depths with reference field survey data (Rutter, 2023;

Walker, 2023) and reference coordinates over the ITH. The brown and green arrows indicate the snow

distribution analysis across topography and vegetation features, respectively. All the datasets in white

boxes were processed outside this thesis and have been kindly provided for this work, and the datasets

processed for this research are displayed in the beige boxes.

with the Airborne Electromagnetic (AEM) Bird—a sensor that detects the ice-water

interface by contrasting the electrical conductivity of sea water and sea ice—as well

as a Modular Aerial Camera System (MACS), snow radar, radiation sensors, and a

LiDAR system, which provided the data for the snow-covered DSM.

The Polar 6 survey over Trail Valley Creek, organized by Julia Boike and Inge

Grünberg, took place on April 2, 2023. This survey deployed LiDAR sensors, snow

radar, and optical cameras (Table 2.1). The survey covered the area of interest in 15

rounds, each following a looped trajectory. These loops consisted of 26 parallel flight

lines oriented from northeast to southwest, supplemented by additional lines running

west to east, north to south, and intersecting the parallel paths from northwest to

southeast, as illustrated in Figure 2.2.

LiDAR can be deployed from various platforms (Nadal-Romero et al., 2015),

including aircraft, drones, and ground-based systems. In ALS, LiDAR operates by

emitting laser pulses from an aircraft toward the ground and measuring the time it

takes for each pulse to return after hitting a surface. Knowing the flight height and
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Table 2.1: Flight and equipment configuration

Parameter Specification

Flight altitude 1800 ft (550 m) a.s.l.

LiDAR settings Frequency: 200 kHz, point spacing: 0.7m, point density: 2 pts/m³*

Weather conditions Temperature: -20° C, partly cloudy (high ceiling)

*Total point density considering overlap = 6 pts/m³.

Figure 2.2: Flight plan outline: Polar-6 flight path original plan over Trail Valley Creek in the Winter

2023 expedition (Krumpen et al., 2023)

speed allows conversion of this travel time into a distance measurement (Painter

et al., 2016). These sensors generate data that is converted into point clouds, with

x, y, and z coordinates recorded for each point, and used to create a digital surface

model. For the ICEBird 2023 winter campaign, the LiDAR survey used the Riegl

VQ-580 airborne laser scanner, specifically designed for snow and ice measurements

(RIEGL, 2015). Details of its configuration are provided in Table 2.2.

Pre-processing

The LiDAR survey data was processed at AWI by Veit Helm into 15 Level 1 (L1)

point clouds, each corresponding to a flight loop. L1 processing involves initial

data calibration, from the sensor’s raw data to georeferenced, noise-reduced, point

clouds. I then followed the workflow from Hammar et al. (2023), who processed

11
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Table 2.2: Riegl VQ-580 technical specifications

Parameter Value

Field of view +/- 30°

Angle measurement resolution 0.001°

Scan speed (selectable) 10 – 150 lines per second

Laser pulse repetition rate (selectable) 50 – 380 kHz

Minimum range 10 m

Accuracy 25 mm

Precision 25 mm

Wavelength near infrared (1064 nm)

Laser class 3B

the IceBird Winter 2019 expedition’s raw LiDAR data to similarly generate a snow-

covered DSM and subsequently a snow depth map. The processing steps were done

in Python 3.12, as outlined below:

Reprojection: To prepare for indexing the point clouds with the LAStools

Software Suite (Isenburg, 2023), I reprojected the point clouds from WGS 84 EPSG

4326 to UTM zone 8 EPSG 26908. LAStools, which includes over 50 open-source

and licensed command-line tools for LiDAR processing, requires this reprojection

because it does not process negative coordinates.

Indexing: After reprojecting the files, I indexed them using the open-source

tool ‘lasindex” from LAStools. This tool generates a LAX index file in the same

directory as the specified LAS or LAZ file. The LAX file contains spatial indexing

information for the entire point cloud, encapsulated in a compact data format that

enhances the efficiency of processing large datasets (Isenburg, 2023).

Ground classification: To classify the ground points, I applied the Simple

Morphological Filter (SMRF) introduced by Pingel et al. (2013). The algorithm

creates a minimum surface, then processes it to classify grid cells as either bare

earth or objects. It then generates a DEM from the gridded points and categorizes

the original LIDAR data based on its relationship to the interpolated DEM. The

SMRF in LiDAR data processing is used to separate ground from non-ground points

by determining whether raster cells contain bare earth (BE) or objects (OBJ). The

filter works by progressively removing points that do not meet certain criteria based

on their elevation and the elevation of surrounding points, considering the expected

terrain features. It is designed to retain points that are part of the actual ground

surface while filtering out points from vegetation and other above-ground structures.

The non-ground points are discarded.

Inverse Distance Weighting (IDW) interpolation: By using IDW inter-

polation, I applied the IDW algorithm to the LiDAR point cloud data to interpolate

values for the raster’s pixels. This algorithm assigns values to the raster pixels based

on the values of nearby points, with closer points having a greater influence on the
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pixel value than those further away. The influence is inversely related to the power

of the distance, defined in this case as resolution times square root of 2. This pro-

cess resulted in a set of 15 elevation data raster files, each corresponding to a flight

round.

Offset calibration To minimize height discrepancies among the parallel lines

and prevent abrupt elevation changes in areas of flight stripe overlap, I used one of

the crossing stripes for height offset calibration. Since the west-east stripe intersects

all other flight rounds, it served as the benchmark. I identified the shared overlap

between each flight round (ordinary rounds) and the reference west-east round (mas-

ter round). I then determined the height difference between the master- and each

ordinary round, using the median values from their overlapping regions to adjust

each raster accordingly. As a result, every pixel in an ordinary raster was adjusted

up or down based on its median difference from the master flight loop (Table 2.3).

Table 2.3: Flight stripe elevations and offset data

id flight stripe max height (m) min height (m) median offset

1 ALS L1B 20230402T163403 165031 175.11 -5.30132 0.01072

2 ALS L1B 20230402T165028 170344 174.72 -5.07940 0.00993

3 ALS L1B 20230402T170341 172013 184.60 -5.24631 -0.00456

4 ALS L1B 20230402T172009 173551 185.24 -5.24671 -0.01097

5 ALS L1B 20230402T173547 175135 184.21 -5.19181 -0.05138

6 ALS L1B 20230402T175131 181008 191.49 -5.18000 -0.05234

7 ALS L1B 20230402T181004 182441 182.55 -5.16177 -0.02995

8 ALS L1B 20230402T182437 184004 188.23 -5.23753 -0.03185

9 ALS L1B 20230402T184000 185547 188.03 -5.24401 -0.01629

10 ALS L1B 20230402T185544 191120 188.28 -5.24991 -0.01787

11 ALS L1B 20230402T191116 192642 188.17 -5.21000 -0.03765

12 ALS L1B 20230402T192638 194109 188.15 -5.13993 -0.03207

13 ALS L1B 20230402T194106 195556 188.17 -5.20183 -0.01163

14 ALS L1B 20230402T201158 202822 164.00 -5.42596 0.00000

15 ALS L1B 20230402T202818 203550 126.51 -5.43728 -0.00648

Merge stripes to DSM: To merge the independent offset calibrated flight

rounds, I used GDAL in QGIS, aplying cubic convolution interpolation as the re-

sampling method. The resulting product was a 1m pixel GeoTIFF raster file winter

snow-covered DSM.

2.1.2 DTM: snow free terrain

The DTM raster (DTM full) is a product of the summer campaign, which collected

point-cloud data from the snow-free terrain of the Trail Valley Creek area. This data

was acquired using a Riegl LMS-Q680i laser scanning sensor (RIEGL, 2012), onboard

the POLAR-6 research aircraft on July 10, 2023. The raw data were converted into 3-

dimensional points, with full-waveform properties for each laser return, by Veit Helm
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(AWI). The data was further processed by Inge Grünberg (AWI) into GeoTIFF files

with a 1m cell size (Figure 2.3). This processing included identification and removal

of vegetation based on full-waveform point characteristics. Additionally, a smoothed

version of the DTM was created using a 7m by 7m kernel.

Figure 2.3: Snow-free DTM: LiDAR snow-free DTM from July 10, 2023 (Unpublished work, AWI,

2024a). As reference, the field snow depth survey locations from March 2023 (Rutter, 2023; Walker,

2023) are shown in purple, and detailed in the insets 1, 2, and 3. Regions with no data are represented

in white.

2.1.3 Snow depth calculation

Calculating the difference between a snow-surface DSM and a snow-free bare ground

elevation model, such as a DTM, is a widely used method for measuring snow depth

(Dai et al., 2024; Deems et al., 2013; Walker et al., 2020). To create the LiDAR

snow depth raster map used in this work, I used the snow-covered DSM from the

LiDAR winter survey and from it I subtracted the elevation values of the snow-free

DTM full from the summer survey 2023, as following:

snow depth = DSM elevation snow covered − DTM elevation snow free
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2.1.4 Validation of the snow depth map

Validation based on the ITH control points

To set the control points along the ITH, I delineated the midpoint of the road as

a line polygon layer on QGIS (QGIS Development Team, 2023), using the ESRI

Satellite as basemap (Esri et al., 2023). I then segmented this line into points at

1m intervals, resulting in a total of 9576 positions.

Next, I loaded the point vector file into R and extracted the LiDAR snow depth

values at those coordinates. Before analysing the distribution of the snow depth

values across those points, I identified and excluded 7 outliers by removing values

that were more than three standard deviations away from the mean, reducing the

dataset to 9569 points.

Validation based on field surveys

The field data consisted of 4615 snow depth points, measured between March 26

and 31, 2023, by Walker (2023) and Rutter (2023). These measurements were taken

along multiple transects within our area of interest, located in the northeast region

near the Trail Valley Creek research station, and in the southwest region. The

summary of transects is provided in Table 2.4, and the survey locations are included

in all plotted maps for reference.

Table 2.4: Field survey summary: Field snow depth surveys with their corresponding date, their

location, the amount of samples at each transect, and the researcher responsible for the measurements,

Rutter (2023), and Walker (2023).

Date Location Sample count Researcher

26.03.2023 Main Met 925 Rutter

28.03.2023 Forest 581 Rutter

28.03.2023 Valley 1037 Rutter

29.03.2023 Upper Plateau 586 Rutter

26.03.2023 IWP 402 Walker

28.03.2023 TMM 185 Walker

28.03.2023 LYS 53 Walker

28.03.2023 TFS 86 Walker

28.03.2023 LBL 58 Walker

28.03.2023 BBL 122 Walker

30.03.2023 SLB 103 Walker

30.03.2023 SLT 100 Walker

30.03.2023 STS 97 Walker

31.03.2023 STB 99 Walker

31.03.2023 SMT 88 Walker

31.03.2023 SMC 93 Walker

The field sampling method used involved inserting a magnetostrictive metal prob-

ing rod (Magnaprobe) through the snowpack. Once inserted, the Magnaprobe mea-

sures the distance between its tip at the bottom, where it interfaces with the ground

surface, and a sliding disk that marks the snow’s upper limit, along with the survey

position (Sturm and Holmgren, 2018).
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Aiming to gap the scale difference between point data and LiDAR pixel estimates,

I used a buffering method to average the field snow depths in R. First, I retrieved the

position of each snow depth measurement that matched a valid LiDAR snow depth

raster pixel. Then, I set a 5m buffer around each LiDAR pixel and averaged the

field snow depth points within this area. This buffer average was then assumed to

be the field snow depth representative for the LiDAR pixel. The choice for buffering

was an attempt to counteract accuracy limits of the field GPS and because of the

gap in scale between point measurements and pixel averages. After filtering out field

survey points that were not within the LiDAR snow depth map, and averaging the

measurements within the buffer area, the final dataset comprised 3964 field snow

depth records matched with LiDAR pixels.

2.2 Topography datasets

2.2.1 Mapping landforms with the geomorphons approach

The geomorphons method is a technique used in geomorphology and remote sensing

to classify and analyze landforms based on their shape and structure. It relies on

pattern recognition algorithms to identify and categorize typical landform elements,

called geomorphons (geometric morphologies). The geomorphons method analyses

the spatial arrangement of raster cells in a DTM, based on their line-of-sight neigh-

bors. In this context, the elevation value of a central pixel is compared with the

values of eight surrounding neighbors and subsequently categorized according to its

pattern (Jasiewicz and Stepinski, 2013). Since the neighborhood is not fixed in size,

the designated ‘visible-neighbor’ pixel may not be an immediate adjacent cell.

To define this line-of-sight zone, the user specifies two parameters: the flatness

threshold (t), which sets the maximum slope (in degrees) below which the terrain

is classified as flat, and the outer search radius/search distance (L), which defines

the radius of the neighborhood. Figure 2.4 presents different geomorphon maps

created with the smoothed DTM as input, using different parameter combinations.

In this demonstration, I tested flatness thresholds of 1, 2, and 5 degrees and the

outer search radii/search distance of 90m and 250m.

The classification of the DTM produces a geomorphon map, categorizing the ter-

rain into ten distinct landforms: flat, summit, ridge, shoulder, spur, slope, hollow,

footslope, valley and depression. I implemented this method using the r.geomorphon

extension (GRASS Development Team, 2023) in QGIS 3.32 Lima (QGIS Develop-

ment Team, 2023), with parameters detailed in Table 2.5. After generating the

initial 10-class geomorphons landform map, I simplified the map by combining sim-

ilar classes.

• Flat class remains unchanged.

• Summit and ridge classes were combined as ridge.

• Shoulder and spur classes were merged as shoulder.
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• Slope class remains unchanged.

• Hollow and footslope classes were consolidated as footslope.

• Valley and depression classes were merged as valley.

This simplification process resulted in a 6-class landform map, featuring the

classes: flat, ridge, shoulder, slope, footslope, and valley (Fig 3.7).

Figure 2.4: Geomorphon classification examples: Demonstration of geomorphon map outputs with

varying input parameters for the flatness threshold (t), and outer search radius/search distance (L)

in r.geomorphons. In all outputs, the flatness distance parameter was fixed at 10m, and the inner

search radius/skip at 20m. For this work, I chose the flatness threshold (t) = 2◦ and outer search

radius/search distance (L) = 250m.

Table 2.5: r.geomorphons parameters used for the classification of landforms

Parameter Value

Digital elevation model input Summer smoothed DTM 1m resolution

Outer search radius/search distance (L) 250m

Inner search radius/skip 20m

Flatness threshold (t) 2◦

Flatness distance 10m
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2.2.2 Mapping slope and aspect

I used the R packages ‘raster’ and ‘terra’ to extract the slope and aspect values

in each pixel from the smoothed DTM, creating a 1-m per pixel slope and aspect

rasters. I then categorized the slope raster into four steepness ranges: flat (< 1◦),

slight (1◦ ≤ θ < 3◦), moderate (3◦ ≤ θ < 5◦), and steep (> 5◦). I categorized the

aspect values into eight classes, representing the cardinal and intercardinal direc-

tions: north, northeast, east, southeast, south, southwest, west, and northwest. I

then combined these variables as a matrix of 32 unique classes (4 slope ranges x 8

aspect classes), where each cell in this matrix represents an unique combination of

slope steepness and aspect category.

2.3 Vegetation datasets

2.3.1 Classifying vegetation height

The most recent vegetation height map from Trail Valley Creek (Unpublished work,

AWI, 2024b) is based on the full-waveform summer 2023 LiDAR survey. The veg-

etation height values were derived by subtracting the DTM raster from all LiDAR

returns and taking the maximum height for each pixel. LiDAR returns more than

20m above the DTM were removed as outliers. I used the vegetation height map

and categorized it into four ranges: under 0.1m, 0.1 - 0.5m, 0.5 - 1.5m, and above

1.5m (Fig 2.5).

2.3.2 Vegetation class map

The latest AWI vegetation class map of Trail Valley Creek (Unpublished work,

Grünberg, 2024) distinguishes 13 classes among vegetation types and land cover

features (Figure 2.6), and is based on the summer LiDAR survey from 2018 (Lange

et al., 2021).

For this analysis, I excluded large water bodies by removing the lake class from

the vegetation map. LiDAR pulses interact differently with water surfaces than with

solid terrain, leading to inaccuracies and data gaps over large water bodies in all

LiDAR-derived datasets. This adjustment resulted in a vegetation class map with

12 classes, as shown in Figure 2.7.
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Figure 2.5: Vegetation height classes: LiDAR vegetation height map from the summer campaign

in July 2023, classified into four height ranges (Unpublished work, AWI, 2024b). As reference, the field

snow depth survey locations from March 2023 (Rutter, 2023; Walker, 2023) are shown in purple, and

detailed in the insets 1, 2, and 3. Regions with no data are represented in white.
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Figure 2.6: Vegetation cover examples: Vegetation cover in Trail Valley Creek, represented across

13 classes based on unpublished work by Inge Grünberg (Grünberg, 2024). Each class is illustrated with

photographs from the study area.
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Figure 2.7: Vegetation class map: The vegetation class map used in this work, adapted from

Grünberg (2024). As reference, the field snow depth survey locations from March 2023 (Rutter, 2023;

Walker, 2023) are shown in purple, and detailed in the insets 1, 2, and 3. Regions with no data are

represented in white.
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2.4 Data analysis

To maintain consistency in the datasets and analysis, I ensured that all rasters

covered the same spatial extent and that each pixel contained valid data across all

datasets. This approach guaranteed that every pixel at a given position has valid

values for snow depth, landform, slope, aspect, vegetation, and vegetation height.

Once the maps shared the same extent throughout, I used the DSM raster as

a reference and resampled the remaining ones, using the nearest neighbor method

to match the reference. I then cropped the rasters to their common intersection

extent, stacked them, and created an invalid mask to identify NA pixels throughout

the stack. Based on this mask, I excluded the invalid pixels from each of the stacked

rasters. This process ensured that the final dataset excluded large water bodies (as

they had been previously excluded from the vegetation class map) and maintained

consistency across all rasters, with each pixel having valid data for all parameters.

All rasters were projected using UTM Zone 8N, WGS84 datum, with units in meters

(EPSG:32608).

2.4.1 Snow depth map: metrics, distribution, and validation

To understand the distribution of the snow depth raster, I converted the GeoTIFF

file to a dataframe and calculated distribution statistics, including maximum, mini-

mum, mean, median, range, standard deviation, variance, and interquartile range. I

then plotted a histogram to visualize the overall distribution pattern. For mapping

in QGIS (QGIS Development Team, 2023), I categorized the snow depths to empha-

size the central distribution, while still using the full snow depth map throughout

the analysis.

To validate the LiDAR-derived snow depth map, I used two reference methods:

reference control coordinates over the ITH, and field survey snow depth measure-

ments. Since the ITH is constantly snow-plowed during winter (Hammar et al.,

2023), I assumed a snow depth at the road midpoint to be zero for this analysis.

Using R, I extracted snow depth values from the LiDAR snow depth map at each of

the 9569 ITH-point reference coordinates. I then calculated the distribution statis-

tics for this dataset, including maximum, minimum, mean, median, range, standard

deviation, variance, and interquartile range, and visualized these values with a his-

togram. Similarly, I used the reference coordinates from the field surveys to extract

the LiDAR snow depths at those points. I calculated distribution statistics, includ-

ing maximum, minimum, mean, median, range, standard deviation, variance, and

interquartile range, as well as the correlation coefficient and the median of differences

between field survey and LiDAR at each of the 3964 points. To visualize the distri-

butions of both methods, I used paired histograms to display the overall spread and

central tendency. To assess agreement between the field and LiDAR snow depths,

I used a Bland-Altman plot-a scatterplot that shows the differences between paired

measurements on the y-axis and the averages of the two measurements on the x-axis-

to identify systematic biases, outliers, and discrepancies between the two methods.
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2.4.2 Linking snow depths, topography and vegetation

To investigate the relationships among snow depth, topography, and vegetation, I

converted the GeoTIFF files for landform, slope, aspect, vegetation height, and veg-

etation class into dataframes, and merged them to the LiDAR snow depths. Once

each variable was matched to the LiDAR values, I calculated the snow depth distri-

bution within each of their associated classes, including metrics such as maximum,

minimum, mean, median, range, standard deviation, variance, interquartile range,

skewness, and kurtosis (see Appendix for related tables). I used violin plots-which

display the distribution of data by combining a box plot with a kernel density plot-to

illustrate the snow depth distribution for each variable. Beside the the data spread

across classes, the plots also display their respective medians and quantiles.

In a second step, I compare LiDAR snow depths to the field surveys once again.

This time, I classified the field surveys according to their landform, slope, aspect,

vegetation height, and vegetation class categories, and calculated the paired distri-

bution statistics (maximum, minimum, mean, median, range, standard deviation,

variance, interquartile range, correlation coefficient and the median of differences)

according to their respective classes. The classified distribution of the paired meth-

ods was displayed as boxplots, and excluded all classes below a minimum threshold

of 10 measurements. The related tables can be found in the Appendix section.
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3.1 Snow depth map

The LiDAR snow depth map for Trail Valley Creek (Figure 3.4), was based on the

snow-covered DSM of April 2, 2023 (shown in Figure 3.3), and covered an area of

127 704 691m2. The map had a snow depth mean of 0.35m and a median of 0.30m,

suggesting a skew toward higher values. While the total range spanned from−7.61m

to 8.15m, the central 99% of the data, which excludes the most extreme 0.5% on both

ends, fell within the range of 0.00m and 1.60m (Table 3.1). A standard deviation of

0.24m reflected moderate variability around the mean, while the interquartile range

(IQR) of 0.20m indicated that the central 50% of values were closely clustered

around the median.

Table 3.1: LiDAR snow depth distribution

mean (m) median (m) min (m) max (m) SD (m) var (m²) range (m) IQR (m) skewness kurtosis

0.3503 0.2976 -7.6077 8.1530 0.2434 0.0593 15.7608 0.2041 3.3662 24.8194

*SD = Standard Deviation; IQR = Interquartile Range.

The histogram (Figure 3.1) showed a pronounced peak near the median value,

with most snow depths concentrated below 0.5m and diminishing gradually toward

higher values. A skewness of 3.37 confirmed a rightward skew, while the kurtosis of

24.82 highlighted a strong peak with heavy tails, indicating that most values were

concentrated near the center, with occasional extreme depths. The histogram also

showed quartile markers: Q1 at 0.21m and Q3 at 0.42m, emphasizing the central

clustering of the snow depth values. The spatial patterns of snow depth will be

presented and discussed in greater detail in the following sections.
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Figure 3.1: LiDAR snow depth distribution: Histogram of LiDAR snow depth distribution for Trail

Valley Creek on April 2, 2023. Orange dashed lines represent the first and third quartiles (Q1 = 0.21m,

Q3 = 0.42m), while the mean is marked with a blue dashed line (0.35m), and the median with a solid

blue line (0.30m).

3.1.1 Comparison to ITH control points

The distribution of LiDAR snow depth values across the midpoints of ITH section

reveals generally low variability. As summarized in Table 3.2, snow depths ranged

from −0.143m to 0.323m, with a mean of 0.018m and a median of 0.017m. The

standard deviation (0.047m) further indicates low variability across the points. The

interquartile range showed that 50% of snow depth values are clustered within a

0.071m band. The histogram of snow depths (Figure 3.2) demonstrates a nearly

symmetric distribution with a subtle skew towards positive values.

Table 3.2: Snow depth distribution along the Inuvik-Tuktoyaktuk Highway

count mean (m) median (m) min (m) max (m) SD (m) variance (m²) range (m) IQR (m)

9569 0.0179 0.0166 -0.1426 0.3232 0.0469 0.0022 0.4658 0.0707

*SD = Standard Deviation; IQR = Interquartile Range.
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Count: 9569

Min: −0.143 m

Median: 0.017 m

Max: 0.323 m
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Figure 3.2: ITH snow distribution histogram: Histogram of LiDAR snow depth values along the

ITH. The 9,569 points were referenced at midpoint of the road, spaced at 1m, along the road section

that intersects the study area. The brown dashed line indicates the median snow depth value.

3.1.2 Comparison to field surveys

General distribution

If the snow depths along the ITH control points showed a median bias lower than

0.02m, the pattern over the natural landscape of Trail Valley Creek revealed different

trends.

Table 3.3: LiDAR and field survey snow depth values general distribution

method count mean (m) median (m) min (m) max (m) SD (m) variance (m²) range (m) IQR (m) r med dif (m)

field 3964 0.521 0.471 0.183 1.38 0.185 0.0341 1.19 0.215 0.788 0.179

lidar 3964 0.346 0.314 -0.0119 1.62 0.188 0.0352 1.63 0.213 0.788 0.179

*SD = Standard Deviation; IQR = Interquartile Range.

Among the 3964 paired data points, field measurements exceeded LiDAR values

in 93% of cases (3684 points), highlighting the general tendency for field snow depths

to be higher. As seen in Table 3.3, the field measurements showed a mean snow depth

of 0.521m, a median of 0.471m, with a standard deviation of 0.185m. In contrast,

LiDAR measurements had a lower mean of 0.346m and a median of 0.314m, with

a slightly higher standard deviation of 0.188m. The interquartile range for field

measurements was 0.215m, while for LiDAR, it was 0.213m, both of which reflect

similar ranges in the central 50% of their respective datasets. Additionally, the

minimum values for LiDAR snow depth were negative, with a value of −0.012m,

while the field measurements had a minimum of 0.183m. The maximum depth for
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Figure 3.3: Snow-covered DSM: LiDAR snow-covered DSM from April 2, 2023. As reference, the

field snow depth survey locations from March 2023 (Rutter, 2023; Walker, 2023) are shown in purple,

and detailed in the insets 1, 2, and 3. Regions with no data are represented in white.

Figure 3.4: Snow depth map: Trail Valley Creek snow depth map derived from differencing the snow-

covered DSM from April 2, 2023, and the snow-free DTM from July 10, 2023. Field snow depth survey

locations from March 2023 (Rutter, 2023; Walker, 2023) are shown in purple, and detailed in insets 1,

2, and 3. Control points along the ITH are displayed in yellow, with regions of no data represented in

white.
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LiDAR was slightly higher (1.62m) compared to the field measurements (1.38m),

indicating a broader spread of values in LiDAR measurements. The table also

highlights a median of differences (med dif) of 0.179m between field and LiDAR

measurements, reinforcing the central tendency for the field measurements to be

higher than LiDAR. Furthermore, the correlation coefficient (r) of 0.788 suggested

a strong positive relationship between the two methods, meaning that despite the

differences in absolute values, LiDAR and field measurements generally follow similar

snow depth patterns across the study area.

The Bland-Altman plot, which here presents the differences between field and

LiDAR snow depths, plotted against their averages (Figure 3.9), further highlights

the differences between both methods. It shows the mean difference between field

and LiDAR measurements as 0.175m, with the upper limit of agreement (LoA) at

0.412m and the lower LoA at −0.063m. It demonstrated that 95% of the data

points fell within these bounds, although there was a clear tendency for field mea-

surements to be higher than LiDAR, as shown by the concentration of points above

the zero difference line. The similarity between the mean difference (0.175m) and

the median of differences (0.179m) indicates that the distribution of differences be-

tween field and LiDAR measurements is relatively symmetrical, with few extreme

outliers. The histogram (Figure 3.6) reinforces these findings, where the field mea-

surements (in blue) were shifted toward higher snow depths, with a median value of

0.47m, compared to the LiDAR measurements (in orange), which had a median of

0.31m. Both distributions showed similar overall shapes, but the LiDAR data was

skewed toward lower values, resulting in a larger proportion of negative snow depths

compared to the field data.
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Figure 3.5: Bland-Altman diagram: The Bland-Altman diagram illustrates the differences between

field and LiDAR snow depths. Blue points indicate where field measurements are higher than LiDAR,

while orange points show where LiDAR depths are greater. The red lines represent the upper and lower

limits of agreement (LoAs), with 95% of the differences falling between -0.063 and 0.412m. The black

dashed line represents the mean difference.
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Figure 3.6: Field and LiDAR snow depth distribution: Snow depth distribution of the pixel-averaged

field measurements (in blue) and LiDAR (in orange). The dashed lines represent the medians (Lidar =

0.31m, field = 0.47m)

29



RESULTS

3.2 Snow depth and topography

3.2.1 Landforms

The area was divided into 6 landform classes, in a simplified version of the geo-

morphons approach landscape classification from Jasiewicz and Stepinski (2013).

Most of the area is represented by slopes, covering 39.8 km2, followed by flat areas

with 33.5 km2 and shoulder regions with 24.8 km2. Footslope and valley areas cover

14.9 km2 and 6.9 km2, respectively, while ridges account for the smallest area at

7.8 km2. The total mapped area amounts to 127.7 km2 (Figure 3.7).

Figure 3.7: Landform map: Created with the geomorphons classification approach by Jasiewicz and

Stepinski (2013), using the DTM smoothed. As reference, the field snow depth survey locations from

March 2023 (Rutter, 2023; Walker, 2023) are shown in purple, and detailed in the insets 1, 2, and 3.

Regions with no data are represented in white.

The snow depth distribution across landforms, demonstrated distinct patterns

in both central tendencies and variability. On ridges, the mean and median snow

depths were the lowest, at 0.22m and 0.20m respectively, while in valleys, they

were the highest, at 0.53m and 0.44m. Footslopes and valleys consistently showed

higher snow depths compared to ridges and shoulder areas, as demonstrated in the

violin plot (Figure 3.8). In terms of variability, footslopes and valleys exhibited

the highest standard deviations (0.33m and 0.38m, respectively), indicating greater

spread in snow depth values, while flat and ridge areas had lower variability with

standard deviations of 0.13m in both cases. The interquartile range followed a
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similar pattern, with the widest ranges observed in valleys (0.36m) and footslopes

(0.28m), while flat areas and ridges showed the narrowest ranges (0.14m and 0.13m,

respectively). These patterns are captured visually in the violin plot, where the

elongated shapes correspond to greater variability in snow depths, particularly in

the valley and footslope classes. Regarding skewness, the footslope areas exhibited

the highest skewness value of 3.07, followed closely by shoulder and slope classes,

both with skewness values of 2.99, indicating a strong positive skew. In contrast,

flat areas had a skewness of 1.80, and ridge areas had the lowest skewness at 1.57,

both of which reflect a more moderate positive skew, indicating that snow depth

values in these classes are more symmetrically distributed compared to the others.

Kurtosis values were highest in ridge and shoulder areas, reflecting sharper, more

peaked distributions with a higher likelihood of extreme outliers. Conversely, flat

and valley areas exhibited lower kurtosis, indicating more evenly spread snow depth

values around the mean.
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Figure 3.8: Snow depth distribution across landform classes: This violin plot displays the distri-

bution of the central 99% of the LiDAR snow depth data for each landform class, with snow depth (m)

on the y-axis. Each violin shows the density curve of the snow depth values, with the internal lines

marking the corresponding median and quartiles.

Landforms and field surveys

To assess whether geomorphology impact the bias in LiDAR snow depth estimations,

I classified the field surveys based on their corresponding landform categories. Field
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measurements were not available for the valley landform class, leaving this landform

exclusively represented by LiDAR measurements in the analysis.

The comparison between LiDAR and field snow depth measurements across land-

form classes revealed patterns of bias and variability, but maintained the general

trend, with field surveys recording higher snow depths across all classes. The me-

dian of differences ranged from 0.14m in flat areas to 0.24m in ridge areas, reflecting

a variable bias across the terrain types (Figure 3.9). Ridges also exhibited the weak-

est correlation (r = 0.61), indicating a lower agreement between field and LiDAR

in these regions. In contrast, footslopes (r = 0.89) and shoulder areas (r = 0.83),

displayed the highest agreement, suggesting a stronger alignment.

The variability of snow depths, as reflected by standard deviations, showed sim-

ilar trends between field and LiDAR measurements across all landform classes. In

the field data, standard deviations ranged from 0.05m on ridges to 0.25m in foot-

slopes, while for LiDAR, the range was from 0.06m on ridges to 0.26m in footslopes.

This consistent variability between field and LiDAR measurements suggests agree-

ment in the overall spread of snow depth values across different landforms, despite

the existing bias in their central tendencies. The interquartile ranges of LiDAR ex-

ceeded those of field surveys in ridges, slopes, and footslopes, indicating that LiDAR

captures broader variability in these terrains, whereas field measurements showed a

relatively narrower spread.
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Figure 3.9: Pairwise LiDAR and field measurements across landform classes: Comparison of

LiDAR (orange) and field (blue) snow depth measurements across landforms. Snow depth (m) is shown

on the y-axis, with each pair of boxplots representing the depth distribution for each landform class.

Sample sizes are indicated above each pair.

3.2.2 Slope and aspect

Following the investigation of how landforms relate to snow depth variability, I

extended the analysis by comparing different slope classes and their associated as-

pects against the LiDAR-derived snow depth map. Slopes were categorized into
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four classes (flat, slight, moderate, and steep), and further divided into cardinal (N,

E, S, W) and intercardinal (NE, SE, SW, NW) aspect classes to assess how these

combined factors influence snow distribution.

When considering slope alone, snow depths increased with steepness. Median

snow depth on steep slopes was nearly 0.08m higher than on flat slopes, while

the mean was approximately 0.15m greater. Standard deviations and interquartile

ranges also increased progressively, indicating a broader spread of snow depths as

slopes became steeper.

The inclusion of aspect in the analysis revealed that both slope steepness and

its associated aspect play a significant role in snow depth distribution. Steep, east-

facing slopes had the highest median snow depth at 0.53m, closely followed by

southeast-facing slopes at 0.49m. In contrast, flatter slopes exhibited lower me-

dian snow depths across all aspects, ranging between at 0.26m and 0.29m. West

and northwest-facing slopes consistently recorded lower snow depths than east and

southeast aspects within the same slope category, as demonstrated in Figures 3.11

and 3.12, highlighting the role of aspect on snow distribution.

Although snow depth variability increased with slope steepness overall, steep

slopes facing east and southeast exhibited the greatest variability, with standard

deviations reaching up to 0.45m. This heightened variability was further evidenced

by the wider interquartile ranges observed on these slopes, with the steep-east and

steep-southeast classes recording interquartile ranges of 0.43m and 0.39m, respec-

tively. In contrast, flatter slopes showed the least variability across all aspects,

with standard deviation values consistently around 0.13m and narrow interquartile

ranges of 0.14m, indicating more uniform snow depth distributions on flat terrain

regardless of aspect.

Slope, aspect, and field surveys

Similar to the classification by landforms, the classification of field surveys accord-

ing to slope and aspect revealed characteristic snow depth patterns. However, the

sampling area was uneven, with over 80% of measurements taken in flat and slight

slope areas and less than 4% in steep slopes (Figure 3.10). This limited coverage in

steeper slope areas reduces the robustness of statistical analysis for these classes.

When considering steepness only, the field measurements consistently showed

higher values than LiDAR across all 4 slope classes. Both means and medians in-

creased with slope steepness, and the median of differences between field and LiDAR

measurements followed a similar trend, ranging from 0.17 m in flat areas to 0.19 m

in moderate slopes, and increasing to 0.29 m in steep slopes. Correlation coefficients

indicated strong agreement in flat (r = 0.78), slight (r = 0.80), and moderate slopes

(r = 0.82), but decreased sharply in steep slopes (r = 0.62), suggesting a larger

discrepancy at higher gradients.

Aspect added further detail to this relationship: in flat and slight slopes, field

and LiDAR measurements had similar standard deviations across all aspects, sug-

gesting consistent variability. However, as slope increased, LiDAR snow depths
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Figure 3.10: Slope and aspect classification. (a) Slope map divided in 4 classes flat (green), slight

(yellow), moderate (orange) and steep (brown). As reference, the field snow depth survey locations

from March 2023 (Rutter, 2023; Walker, 2023) are shown in purple, and detailed in the insets 1, 2, and

3. In (b), the field survey regions (insets 1, 2, and 3), are separated by slope classes and segmented

by cardinal directions (north, northeast, east, southeast, south, southwest, west, northwest). White

portions in (b) indicate areas within the inset that have no correspondence within the given slope class,

but in one of the neighboring categories.
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Figure 3.11: Windrose and snow depth across slopes and aspects: In (a), the windrose diagram

illustrates prevailing wind directions from October 2022 to April 2023, with hourly records data from

wind speeds greater than 4m s−1 (Government of Canada, Environment and Natural Resources, 2024).

In (b), the snow depth distribution divided by slope range (from flat to steep), and their corresponding

aspect.

showed a broader spread, particularly on moderate slopes facing northeast, east,

and southwest, where LiDAR recorded a wider range of values than field measure-

ments (Figure 3.13).

Bias between field and LiDAR measurements was relatively consistent across

aspects in flat areas, ranging from 0.17m to 0.21m. However, this bias increased

with slope steepness, becoming highly dependent on aspect in steeper slopes. For

instance, the median difference was as low as 0.11m on steep north-facing slopes

but reached 0.37m on steep southeast-facing slopes, indicating a significant aspect-

related variation in LiDAR underestimation. However, due to limited sample size

and uneven aspect coverage in steep areas, conclusions about LiDAR-field measure-

ment relationships in steep regions should be interpreted cautiously.
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Figure 3.12: Snow depth distribution across slope and aspect classes: This violin plot displays the

distribution of the central 99% of LiDAR snow depth data for each slope range (flat, slight, moderate,

and steep), with snow depth (m) shown on the y-axis. Within each slope range, snow depth values are

grouped by aspect. Each violin represents the density curve of snow depth values, with internal lines

marking the median and quartiles.
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Figure 3.13: Pairwise LiDAR and field measurements across slope and aspect classes: Com-

parison of LiDAR (orange) and field (blue) snow depth measurements across slope ranges (flat, slight,

moderate, and steep), and within each range, their aspect class. Snow depth (m) is shown on the

y-axis, with each pair of boxplots representing the depth distribution for each aspect class. Sample

sizes are indicated above each pair; classes with fewer than 10 measurements were excluded from the

plot.
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3.3 Snow depth and vegetation

In order to assess the influence of vegetation on snow depth distribution in Trail

Valley Creek, I examined two factors: vegetation height and vegetation cover. Veg-

etation height was classified into four height ranges, while a 12-class vegetation

map was used to differentiate vegetation types. I compared those features with

LiDAR snow depth measurements and investigated the relationship between vege-

tation height and cover with snow depth associated to them. In the sequence, to

assess potential biases associated to vegetation cover, I compared field measurements

with LiDAR values according to the vegetation height and class categories.

3.3.1 Vegetation height

Approximately 95% of the study area was covered by vegetation under 0.5m in

height, with 64 km² occupied by vegetation shorter than 0.1m and 55 km² by

vegetation between 0.1 and 0.5m. Taller vegetation, from 0.5 to over 1.5m, covered

smaller proportions of the area, at 6.6 km² and 2.4 km², respectively. The focus of

this analysis was to explore how snow depth patterns varied with vegetation height

and how LiDAR measurements might be affected by these vegetation structures.

Snow depth increased with vegetation height across the study area. The median

snow depth ranged from 0.29m in areas with vegetation under 0.1m to 0.54m

in areas where vegetation exceeded 1.5m (Figure 3.14). Similarly, variability in

snow depth rose with vegetation height, as reflected by the increasing interquartile

ranges and standard deviations, which ranged from 0.19 to 0.45m, indicating that

snow depths were more dispersed in areas with taller vegetation. The skewness

and kurtosis values indicated positive skewness across all vegetation height classes,

though skewness decreased with taller vegetation. Vegetation under 0.1 m had a

skewness of 3.32, reflecting a right-skewed distribution with more lower snow depths

and fewer higher extremes. The violin plots show broader distributions for taller

vegetation classes above 0.5m, reflecting the rising interquartile ranges and standard

deviations together with vegetation height. The decrease in skewness and kurtosis in

these classes is also consistent with more balanced distributions and fewer extreme

values compared to shorter vegetation.

Vegetation height and field surveys

While the LiDAR snow depth distribution consistently increased with vegetation

height, the field survey sample did not follow the same trend. Pairwise comparisons

between field and LiDAR snow depths showed an increase with vegetation height for

classes up to 1.5m, but decreased in the tallest vegetation category (Figure 3.15).

Besides that, the correlation coefficient remained fairly consistent across the lower

vegetation classes, but dropped significantly for the tallest vegetation, indicating

a weaker relationship between the methods in this category. The coefficients for

vegetation under 0.1m, 0.1 to 0.5m, and 0.5 to 1.5m were 0.74, 0.75, and 0.81,

respectively, deviating only slightly from the unclassified LiDAR and field survey
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Figure 3.14: Snow depth distribution across vegetation height classes: This violin plot displays

the distribution of the central 99% of the LiDAR snow depth data for each vegetation height class,

with snow depth (m) on the y-axis. Each violin shows the density curve of the snow depth values, with

the internal lines marking the corresponding median and quartiles.
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correlation of 0.79. However, for vegetation over 1.5m, the correlation dropped to

0.38, reflecting the poorest agreement between the two methods in this class.

The median of differences between LiDAR and field measurements also increased

with vegetation height, revealing a greater bias in taller vegetation classes. The

interquartile range remained similar for both field and LiDAR measurements in

vegetation shorter than 0.5m (around 0.19m) but increased significantly in the 0.5 to

1.5m range, reaching 0.27m for field measurements and 0.37m for LiDAR, reflecting

greater spread and a larger bias. In the tallest vegetation class, the interquartile

range decreased again, with values of 0.13m for field measurements and 0.15m for

LiDAR, indicating closer agreement in the variability, despite the low correlation

coefficient and high bias.
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Figure 3.15: Pairwise LiDAR and field measurements across vegetation heights: Comparison

of LiDAR (orange) and field (blue) snow depth measurements across vegetation height classes. Snow

depth (m) is shown on the y-axis, with each pair of boxplots representing the depth distribution for

each vegetation height range. Sample sizes are indicated above each pair.

3.3.2 Vegetation classes

Following the patterns of vegetation height, I also examined the role of vegetation

cover in the snow depth distribution of Trail Valley Creek. For this, I used a vegeta-

tion class map that classified Trail Valley Creek’s land cover into 12 classes, followed

by an analysis of the relationship between these classes and biases in LiDAR and

field survey measurements.

The area distribution across vegetation classes revealed that dry hummock and

dwarf shrub dominate the study area, covering approximately 36.3 km² (28.4%) and

34.2 km² (26.7%), respectively. Moss and lichen accounted for 14.3 km² (11.2%) and

13.4 km² (10.5%), while tussock covered around 9.5 km² (7.4%). The remaining

classes, including baresoil, tree, river, and polygon wet, made up smaller portions

of the area, contributing less than 3% of the total area combined.
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The LiDAR snow depth distribution showed variation across the 12 vegetation

and land cover classes, with river and baresoil having the highest median snow depths

(0.64m and 0.43m respectively). Although both classes present similar interquartile

ranges, baresoil exhibits higher variability, as reflected in its larger standard devi-

ation (0.51m compared to 0.41m for river), even with a lower median. The wide

spread of values is highly influenced by the lower snow depths, as demonstrated in

Figure 3.16.

Following these, single shrub, riparian shrub, and tree classes had the next high-

est median snow depths, from 0.46 to 0.49m, with interquartile ranges between 0.33

and 0.39m, respectively, suggesting a trend of high snow depths associated with

taller vegetation. Among the shrubs, the dwarf shrub class exhibited a narrower

interquartile range of (0.21m), yet with heavier tails toward higher snow depths, as

indicated by the skewness (3.09) and kurtosis (20.36). Tree areas, on the other hand,

exhibited a relatively uniform snow depth distribution when compared to shrubs,

with a more symmetrical spread around the median and less overall variability in

snow accumulation. Finally, at the lower end of the LiDAR snow depth distribution,

polygon dry and tussock classes had the lowest median snow depths, at 0.26m and

0.25m, respectively. These classes also exhibited the narrowest interquartile ranges,

with polygon dry at 0.12m and tussock at 0.13m.
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Figure 3.16: Snow depth distribution across vegetation classes: This violin plot displays the

distribution of the central 99% of the LiDAR snow depth data for each vegetation class, with snow

depth (m) on the y-axis. Each violin shows the density curve of the snow depth values, with the internal

lines marking the corresponding median and quartiles.
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Vegetation classes and field surveys

The field surveys did not represent the variety of classes in the vegetation map.

Baresoil and polygon wet did not meet the minimum sample size of 10, defined as a

threshold, were not represented along the remaining classes in the plot.

Tree areas showed the largest biases, with a median of differences of 0.3m, fol-

lowed by shrub classes, with median of differences ranging from 0.22m to 0.25m. In

contrast, lichen and dry hummock showed the smallest discrepancies among meth-

ods, both at 0.12m. The median of differences for tussock and moss, both at 0.19m,

were in line with the general unclassified LiDAR and field survey comparison (Figure

3.17).

Classes like lichen, moss, and dwarf shrub (r = 0.74, 0.75, and 0.82, respec-

tively) showed higher correlations, suggesting that despite varying biases, LiDAR

still captured the overall patterns of snow distribution. In contrast, areas with

taller or denser vegetation, like trees (r = 0.19) and riparian shrubs (r = 0.63),

presented lower correlations. Interquartile ranges and standard deviations further

highlighted the variability in snow depths. For instance, single- and riparian shrubs

had wider spreads in LiDAR measurements when compared to field values, indi-

cating more variability of snow depths captured by LiDAR in those areas. Classes

such as dwarf- and single shrub, had not only lower medians, but also extended to

extremely low values, as evidenced by the longer whiskers at the lower end of their

LiDAR boxplots.

Additionally, dry hummocks, tussocks, and dwarf shrubs exhibited a high num-

ber of outliers in both methods, suggesting the presence of localized areas with

higher snow depths. These outliers indicate natural variability in snow accumula-

tion through the landscape, rather than a discrepancy between the two measurement

methods. The correlation coefficients in these classes suggest that, despite the vari-

ability, both methods captured similar overall patterns in snow distribution.
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Figure 3.17: Pairwise LiDAR and field measurements across vegetation classes: Comparison of

LiDAR (orange) and field (blue) snow depth measurements across vegetation classes. Snow depth (m)

is shown on the y-axis, with each pair of boxplots representing the depth distribution for each vegetation

class. Sample sizes are indicated above each pair.
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4.1 Plausibility of snow depth map

4.1.1 LiDAR snow depth map

While the LiDAR snow depth map provides a useful overview of snow distribution,

it is important to consider the limitations inherent to the method. Snow depth is

dynamic, influenced by wind redistribution, sublimation, melt, and metamorphism

(Essery et al., 1999), so the conditions captured over one survey reflect the snow

depth distribution at a specific point in time. Although these data do not cap-

ture the evolution of snow cover throughout the winter and cannot be extrapolated

to other years, the high-resolution snow depth map provides valuable insight into

the relationships between snow distribution, geomorphology, and vegetation cover.

Across most of the 127 km2 mapped area in Trail Valley Creek, snow depth values—

representing the central 99% of the data—ranged from 0.00m to 1.60m, with half

of the area exhibiting depths between 0.21m and 0.42m. At the lower end, nega-

tive values accounted for 0.49% of the dataset, covering about 634 377m2, while the

uppermost 0.5%, spanning 638 530m2, ranged from 1.60m to a maximum of 8.15m.

Both the winter and summer LiDAR campaigns that provided the snow depth

estimations for this study took place within the same year. This has potentially

helped minimize errors in snow depth estimates that could arise from elevation

discrepancies due to terrain erosion or vegetation cover changes. Although these

processes are typically subtle over short periods, land cover changes such as the

opening of the ITH, in November 2017, can have a local measurable impact within a

short time span. For instance, the comparison between AWI’s digital terrain model

from the summer 2018 (Lange et al., 2021) and summer 2023, used in this work,

shows that the road has subsided by tens of centimeters within a 5-year period.

Errors can also arise during the processing of LiDAR data, particularly through

the misclassification of landscape features. The simple morphological filter (SMRF)

method, introduced by Pingel et al. (2013), uses both the first and last returns of

the point cloud to classify points as either bare earth (in this case, the snow surface)

or objects. Although the last return is more likely to represent the surface, it is

not always the case, which can lead to two types of classification errors: Type I

errors, where bare earth points are mistakenly classified as objects, and Type II

errors, where objects are incorrectly classified as bare earth points. Pingel et al.
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(2013) found that moderate and steep slopes tend to exhibit more Type II errors,

meaning that objects are more frequently misclassified as bare earth in these areas.

This misclassification can artificially raise surface elevations, potentially inflating

snow depth estimates at these points. Despite these challenges, the smoothness

and high reflectivity of snowpacks generally allow for greater accuracy in LiDAR

measurements of snow-covered surfaces compared to snow-free terrain (Hopkinson

et al., 2012).

In addition, discrepancies can also arise from the horizontal alignment between

snow-free and snow-covered terrain. Digital elevation models from two different

seasons must be resampled and aligned to ensure that each pixel matches the exact

position of its corresponding pixel before calculating snow depth. This slight adjust-

ment and repositioning can cause more pronounced discrepancies over steep slopes,

where small misalignments are amplified due to the slope gradient. Misalignments

can also affect measurements over sparse trees or shrubs as slight offsets may cause

the LiDAR to capture different parts of the structure in each season. Furthermore,

vertical errors are also a potential issue (Hopkinson et al., 2004) that can add to the

overall uncertainty of a LiDAR map.

Aiming to minimize vertical errors, standardize the merge of multiple elevation

rasters, and avoid abrupt elevation changes at the edges of flight rounds (artifacts),

I vertically adjusted the parallel flight-round rasters using an intersecting flight

round as a benchmark to calculate the offsets. The resulting offsets, ranging from

-0.05 to 0.01m, helped to standardize the data by leveling them using a common

parameter. As part of the post-processing choices, I also decided to exclude snow

depth measurements over water bodies, since the LiDAR data in these areas was

unreliable, as demonstrated by Skaugen and Melvold (2019). However, in contrast

to their approach, I retained negative snow depth values to avoid masking potential

patterns arising from the laser scanning or data processing.

Besides the potential errors of snow-free and snow-covered terrain digital eleva-

tion models and subsequently the snow depth estimations, the spatial accuracy of

field measurements, which can range from 3 to 10m (Sturm and Holmgren, 2018;

Walker et al., 2020), introduces another source of variability. By averaging the field

measurements with a 5-m buffer, I aimed to mitigate these discrepancies and bring

the LiDAR and field survey datasets into better alignment. Additionally, although

field snow depths were measured in different days, I assumed minimal snow redis-

tribution or changes during this period given the short period of time between the

surveys, and combined the field measurements into a single dataset without adjust-

ing for collection dates.

The comparison of snow depth measurements between the ITH and field surveys

provided valuable insights into snow distribution patterns across varying landscapes.

While the highway served as a stable, low-variability reference point, with minimal

influence from topography or vegetation, the field measurements captured snow

depths over more complex terrain with diverse slopes and vegetation structures.

These differences highlighted the challenges of snow depth estimation in natural

settings, pose challenges for precise snow depth estimation.
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4.1.2 Snow depth and the ITH

The construction and maintenance of the ITH have had a measurable impact on

snow distribution patterns in Trail Valley Creek. Regular plowing operations ensure

the road remains clear of snow, while depositing snow along the embankments,

causing increased snow accumulation up to 36m from the road center (Hammar

et al., 2023). As the road is regularly cleared, I used its midpoint as a parameter for

negligible snow depth, as benchmark to assess the performance of the snow depth

map.

The LiDAR snow depths along the control points on the ITH aligned well with

the expected zero reference, with both the mean and median snow depths under

0.02m, and an interquartile range around0.07m. The data follows an approximately

normal distribution, with a slight positive skew, further supporting the accuracy of

the LiDAR product. The road served as a consistent reference parameter due to its

homogeneity: it is constituted from the same material, which maintains consistency

in the spectral response, and lacks the terrain roughness and complexity of vegetated

areas. The accuracy also suggests negligible changes in elevation between the seasons

due to settlement or potential seasonal volume changes.

4.1.3 Field surveys

Field snow depth measurements were generally higher than those from LiDAR, which

agrees with the literature (Berezovskaya and Kane, 2007; Hopkinson et al., 2004,

2012; Walker et al., 2020). In 93% of the 3,964 field points, field measurements ex-

ceeded LiDAR depths, with a median difference of 0.17m between the two methods.

Berezovskaya and Kane (2007) attributed this overestimation in field measurements

to the probe penetrating beyond the snow-ground boundary, sometimes reaching

the unfrozen organic layer. Additionally, LiDAR often underestimates snow depth

due to ground-level vegetation misclassifications, where the digital terrain model

may misinterpret vegetation as bare ground (Hopkinson et al., 2012), artificially

elevating the base level. Although the LiDAR values were higher than the field

surveys, both methods had very similar standard deviations (0.19m), interquartile

ranges (0.21m), and had a correlation coefficient of 0,79, showing that both methods

agreed well despite bias. LiDAR snow depths also showed a wider range, captur-

ing extreme values, including negative snow depths, due to variations in surface

detection, terrain heterogeneity, and data alignment.
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4.2 Influence of topography on snow depth distri-

bution

Arctic regions, characterized by vast open spaces and limited freeze-melt cycles or

rain-on-snow events, are especially susceptible to snow redistribution by wind (Pohl

and Marsh, 2006). This interaction of wind and terrain, combined with the Arctic’s

irregular landscape, underscores topography as a primary factor in snow distribution

(Pomeroy et al., 1997). In Trail Valley Creek, this influence of topography was

evident: landform, slope, and aspect classifications together highlighted the role

of geomorphology in snow depth distribution, with each layer contributing distinct

details to the analysis.

The geomorphons approach (Jasiewicz and Stepinski, 2013) classified the snow-

free digital terrain model into landforms based on terrain shape, with the output

determined by key parameters that must be actively selected, like the slope thresh-

old. In Trail Valley Creek’s relatively flat terrain (Pohl and Marsh, 2006), I set the

slope threshold to 2 degrees to capture subtle elevation changes, as increasing this

threshold would simplify the landscape into broader flat areas, as demonstrated on

Figure 2.4. While the landform classification allows for some flexibility in defining

terrain features, slope and aspect classifications are strictly defined by degree and

direction, systematic measures which can provide insights into snow transport and

wind-driven redistribution.

Snow depths increased with slope steepness, with northeast, east, and southeast-

facing slopes consistently showing higher snow depths across all slope classes. While

topography showed a clear association with snow depth, wind patterns further re-

vealed that snow accumulation aligned closely with prevailing wind directions. Ac-

cording to Li and Pomeroy (1997), winds above 4 m/s are sufficient to transport

dry snow, while wet snow requires speeds over 7 m/s. Hourly records from the

Trail Valley weather station during Winter 2022-2023 showed that winds above this

4 m/s threshold predominantly came from the west and northwest, aligning with

higher snow depths in the northeast, east, and southeast, and lower depths on west

and southwest-facing slopes (Government of Canada, Environment and Natural Re-

sources, 2024). Although aspect influenced snow depths across all slope categories,

its effect was more pronounced on moderate and steep slopes than on flatter areas.

Higher slopes also showed more outliers and negative snow depths. This could

indicate systematic errors commonly associated with steep terrain, such as angle of

incidence between the laser pulse and the ground surface, shadowing, and reduced

point density in comparison to flat areas. This trend is consistent with findings

from Hopkinson et al. (2012), who observed increased LiDAR outliers and higher

standard deviations on steep slopes and in gullies. Similarly, the dataset used in this

work, standard deviations were higher over slopes, footslopes, and valleys, increasing

with slope gradient. When analysing the median snow depths by landform, slopes,

footslopes, and valleys showed the highest records, contrasting with the shallow

snow on ridges. This pattern is expected, as low-lying areas retain more snow due to
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reduced wind exposure, while ridges experience greater wind-driven redistribution.

Field measurements consistently showed higher snow depths than LiDAR across

all landforms and slope classes. The median difference between field and LiDAR

measurements ranged from 0.17m in flat areas to 0.29m on steep slopes, where cor-

relation also dropped sharply (r = 0.62), indicating greater discrepancies on steeper

terrain. With 80% of samples collected from flat and slight slope areas, steep slopes

were underrepresented, impacting statistical robustness in these regions. Aspect

added another layer to these observations: in flat and slight slopes, field and LiDAR

measurements showed similar variability across all aspects. However, in moderate

slopes, LiDAR values displayed a broader distribution, particularly on northeast,

east, and southwest-facing slopes, consistent with the general LiDAR snow depth

distribution. Bias remained steady in flat areas but became increasingly aspect-

dependent on steeper slopes, with median differences ranging from 0.11m on north-

facing slopes to 0.37m on southeast-facing slopes. Yet, the limited sample size and

uneven aspect coverage in steep areas suggest caution in interpreting these patterns

as definitive relationships between LiDAR and field measurements.

Although landform and slope maps each provide unique insights into landscape

geomorphology, some classes overlap, such as the ‘flat’ and ‘slight’ slopes and the

‘flat’ landform class. These overlapping areas (Figures 3.7 and 3.10) show similar

snow depth means, medians, and standard deviations. Consistent with the slope

context, the ’flat’ landform had the lowest bias among landforms when compared

to field surveys, with a median underestimation of 0.14m, while ridges had the

largest bias of 0.24m. Shoulders and footslopes also showed large median differ-

ences but maintained high correlation coefficients and similar standard deviations

between field and LiDAR values, indicating that these landforms, despite bias, show

consistent variability and agreement between measurement methods.

48



DISCUSSION

4.3 Influence of vegetation on snow depth distri-

bution

Although counterintuitive, negative snow depths can occur because they result from

subtracting two elevation datasets—snow-free and snow-covered. This happens

when a pixel in the snow-free dataset has a higher elevation than in the snow-covered

one, often due to slight misalignments or differences in the structures captured by

the LiDAR. For instance, sparse vegetation, such as single shrubs or trees, can lead

to variations in the detected elevation depending on which parts of the vegetation

are captured by the LiDAR within the laser point density. For example, depending

on the point density and alignment, the LiDAR could detect the top of a shrub in

one dataset and the ground beside it in another, leading to discrepancies in eleva-

tion that can produce negative snow depth values. Conversely, if a LiDAR point in

winter measures the top of a tree protruding above the snowpack while the summer

DTM correctly captures the ground level, the calculated snow depth at this pixel

will be artificially elevated, resulting in values significantly higher than actual snow

depths. LiDAR point density can also impact the estimation of vegetation height.

The aerial laser scanning flight paths are planned with overlapping margins, creating

areas with higher point density. This increased density captures more details of veg-

etation structures, resulting in a noticeable stripe pattern on the vegetation height

map (Figure 2.5). In these overlapped areas, vegetation heights appear elevated

relative to adjacent, non-overlapping areas, creating abrupt transitions parallel to

the flight paths. These abrupt transitions are artifacts of data collection rather

than true landscape features, which suggests that vegetation height could appear

underestimated in regions with lower point density.

As reported by Hopkinson et al. (2004), the presence of dense vegetation, par-

ticularly in deciduous forests, can exacerbate LiDAR measurement discrepancies,

leading to even greater inaccuracies as canopy interfere with LiDAR’s ability to ac-

curately detect the ground surface. For this reason, some studies, like that of Dai

et al. (2024), choose to selectively avoid dense vegetation areas to simplify digital

elevation models. My data showed that LiDAR had the lowest correlation with

field data in areas with the tallest vegetation and tree cover, where agreement was

poorest and biases highest, confirming the highest LiDAR underestimation in these

regions.

Vegetation height and vegetation classes exhibited similar effects on snow depth

distribution, with snow depths increasing alongside vegetation height, as shown by

higher mean, median, standard deviation, and interquartile range values. This pat-

tern reflects the established understanding that taller vegetation tends to trap more

snow due to greater surface area and structural complexity, which can reduce wind

speed and limit snow dispersion (Shirley et al., 2023). Among vegetation types,

taller shrubs and trees displayed the greatest snow depths. Wilcox et al. (2019)

demonstrated that deeper snow over tall alder shrub areas, compared to dwarf shrub

areas, results in delayed snowmelt. However, if these taller shrubs protrude above
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the snowpack, they can reduce local albedo and accelerate snowmelt, a critical con-

sideration in regions with lower snow depths (Sturm et al., 2001; Wilcox et al.,

2019). This suggests that in scenarios of increased shrubification and reduced snow-

fall, albedo effects might counteract snow-trapping advantages, potentially leading

to earlier melt despite deeper snowpacks (Sturm et al., 2010; Wilcox et al., 2019).

Notably, while vegetation height generally corresponds with snow depth, the

highest snow depth overall was observed in the river class. Whereas included in the

vegetation map, ‘river’ represents a structural feature rather than true vegetation

class; instead, it aligns with landform-related findings agreeing that valleys tend to

accumulate the deepest snow packs.

Although the research questions focused on topography and vegetation sepa-

rately, the two are closely interconnected. For example, shrubs predominantly grow

in valleys due to greater nutrient availability and moisture (Essery and Pomeroy,

2004). Sturm et al. (2001) found that the tallest, densest shrubs—often situated

near water tracks and riparian zones—are associated with the deepest snow depths,

as the deep snowpacks shield shrubs from cold winter air, desiccation, and abra-

sion. However, according to Shirley et al. (2023), when shrubs are not confined

to topographic lows, they exert a stronger influence on snow depth and local snow

redistribution than topography itself. In the same context, polygon wet and dry cen-

ters—like the river class—are best interpreted as structural or topographic features,

despite being a class in the vegetation map. Polygon wet centers, or low-centered

polygons, generally hold water or support short graminoids. The fact that polygon

wet centers showed high snow depths might be better explained by their concave

structure, rather than by vegetation trapping, as observed by Wainwright et al.

(2017). In contrast, polygon dry centers (high-centered polygons), with their con-

vex shape, were associated with some of the lowest snow depths in both the snow

depth map and field records.

This relationship between topography, vegetation, and snow depth extends to

active layer depth as well. Ridges, which had the lowest snow depths, also correspond

to shallower active layers (Grünberg et al., 2020), while areas with taller shrubs,

where snow depths are greatest, exhibit deeper active layers. This pattern likely

reflects the soil properties in valleys and depressions, where organic matter and

nutrients promote vascular plant growth. Thus, while taller shrubs trap more snow,

they also benefit from favorable topographic settings that support deeper snowpack

development.

While vegetation height and density correlated with snow depth, baresoil ar-

eas—despite their broad spread and low to negative values—also showed mean and

median snow depths higher than moss, lichen, tussock, and dwarf shrubs, suggesting

an influence of topography. As baresoil is uncommon in organic-rich environments

like valleys, this pattern may instead relate to slope and aspect.

Although field surveys underrepresented certain classes (steep slopes, as well

as baresoil and polygon wet) it captured the distribution trends of LiDAR snow

depths in most of the cases and showed valuable data about class-related bias.

Field measurements aligned with the general LiDAR distribution, showing simi-
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lar patterns, including the skewness in lichen, dry hummock, tussock, and dwarf

shrubs. Correlation coefficients reveal that the relationship between field and Li-

DAR measurements weakens as vegetation height increases. For vegetation under

1.5m, correlation remains strong (r = 0.74–0.81), indicating consistent snow distri-

bution between methods. However, in vegetation above 1.5m, correlation drops to

0.38, underscoring LiDAR’s reduced accuracy in densely vegetated or forested areas.
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The results demonstrated that field survey consistently report higher snow depths

than LiDAR measurements, with LiDAR generally underestimating depths across

all the studied vegetation and topographic settings. Despite this consistent under-

estimation, LiDAR measurements align closely with field survey distributions, often

with similar interquartile ranges, though shifted towards lower values. Agreement

is strongest over flatter slopes and areas with shorter vegetation, and diminishes in

complex landscapes with steep slopes, taller and denser vegetation, where biases are

also highest.

Snow accumulation patterns correspond with both topographic and vegetation

features, showing deeper snow in micro- and macrotopographic lows, such as polygon

wet centers and valleys, on leeward sides of steeper slopes, and in areas with taller

vegetation. An intricate relationship exists between topography and vegetation, as

taller vegetation can trap snow, while its growth is also favored in topographic lows

where wind abrasion is lower and nutrient availability is greater.

The study revealed significant snow depth variation among slope aspects, with

highest depths recorded on northeast, east and southeast aspects of steep slopes,

consistent with predominant wind patterns from the west and northweast at speeds

above 4m s−1. Lastly, LiDAR measurements over the ITH section intersecting the

area of interest showed a snow depth median of 0.017m, demonstrating high accu-

racy over homogeneous, non-natural terrain.

This study is the first to utilize this combination of datasets to examine snow

depth distribution across varied landforms, slopes, aspects, and vegetation types

in Trail Valley Creek. The extensive area coverage and high resolution make this

dataset a useful starting point for future research, including analyses of outlier pat-

terns in LiDAR snow depths and more detailed statistical investigation of spatial

relationships within the snow cover.
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Appendix

7.1 Weather data

Figure 07.1: Temperature and precipitation: Weather data from the Trail Valley Station within

the periods of October 1, 2022 and April 1, 2023 (Government of Canada, Environment and Natural

Resources, 2024).
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7.2 Topography distribution

7.2.1 Landforms

Table 7.1: Medians: Landform classes: Comparison among snow depth medians from paired field

and LiDAR measurements, and the overall median across the entire area of interest, divided by class

landform
median (m)

field lidar overall lidar

flat 0.50 0.35 0.29

ridge 0.36 0.11 0.20

shoulder 0.55 0.34 0.25

slope 0.45 0.25 0.32

footslope 0.46 0.26 0.38

valley – – 0.44

Table 7.2: Landform descriptive statistics: Summary of the descriptive statistics for snow depth

across landforms, including measures of central tendency (mean and median), data spread (standard

deviation, variance, range, and interquartile range), and distribution shape (skewness and kurtosis).

The count indicates the number of pixel counts within each class.

landform mean median min max SD var range IQR skewness kurtosis count

flat 0.31 0.29 -1.23 2.76 0.13 0.02 3.99 0.14 1.80 8.27 33554156

ridge 0.22 0.20 -7.61 3.96 0.13 0.02 11.57 0.13 1.57 43.27 7806187

shoulder 0.28 0.25 -7.05 4.94 0.17 0.03 11.99 0.16 2.99 30.52 24750311

slope 0.38 0.32 -6.84 6.75 0.27 0.07 13.58 0.25 2.99 19.85 39794558

footslope 0.45 0.38 -5.91 8.15 0.33 0.11 14.06 0.28 3.07 18.34 14896840

valley 0.53 0.44 -3.47 6.93 0.38 0.14 10.40 0.36 2.14 9.00 6902639

*SD = Standard Deviation; IQR = Interquartile Range. Units: mean, median, min, max, SD, range, and IQR are

in meters (m); var is in square meters (m²).
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Table 7.3: Pairwise LiDAR and field descriptive statistics across landforms: Summary of the

descriptive statistics for LiDAR and field snow depth values across landforms, including measures of

central tendency (mean and median), data spread (standard deviation, variance, range, and interquartile

range), as well as the correlation coefficient (r), and the median of differences (med dif) between both

methods. The n indicates the number of paired values.

landform method n mean med min max SD var range IQR r med dif

flat
field

1924
0.53 0.50 0.18 1.38 0.18 0.03 1.19 0.23

0.75 0.14
lidar 0.39 0.35 0.04 1.62 0.17 0.03 1.58 0.17

ridge
field

180
0.37 0.36 0.28 0.48 0.05 0.00 0.20 0.08

0.61 0.24
lidar 0.13 0.11 0.01 0.30 0.06 0.00 0.29 0.10

shoulder
field

298
0.60 0.55 0.24 1.09 0.21 0.04 0.84 0.34

0.83 0.20
lidar 0.38 0.34 -0.01 0.96 0.19 0.04 0.97 0.27

slope
field

1125
0.49 0.45 0.22 1.00 0.15 0.02 0.78 0.15

0.71 0.21
lidar 0.28 0.25 0.02 0.90 0.15 0.02 0.87 0.20

footslope
field

437
0.57 0.46 0.28 1.15 0.25 0.06 0.87 0.30

0.89 0.19
lidar 0.39 0.26 0.06 1.09 0.26 0.07 1.04 0.38

*SD = Standard Deviation; IQR = Interquartile Range; Units: mean, med, min, max, SD, range, IQR, and med

dif are in meters (m); var is in square meters (m²).

65



APPENDIX

7.2.2 Slope and aspect

Table 7.4: Slope descriptive statistics: Summary of the descriptive statistics for snow depth across

slope ranges, regardless of aspect, including measures of central tendency (mean and median), data

spread (standard deviation, variance, range, and interquartile range), and distribution shape (skewness

and kurtosis). The count indicates the number of pixel counts within each class.

slope mean median min max SD var range IQR skewness kurtosis count

flat 0.293 0.275 -4.99 7.71 0.132 0.0175 12.70 0.143 1.92 12.50 21461687

slight 0.314 0.286 -5.64 6.99 0.160 0.0255 12.60 0.167 2.07 11.00 46435802

moderate 0.342 0.301 -6.97 7.27 0.197 0.0387 14.20 0.215 1.92 9.13 27595997

steep 0.447 0.358 -7.61 8.15 0.374 0.140 15.80 0.342 2.49 12.30 32210308

*SD = Standard Deviation; IQR = Interquartile Range. Units: mean, median, min, max, SD, range, and IQR are

in meters (m); var is in square meters (m²).

Table 7.5: Pairwise LiDAR and field descriptive statistics across slope ranges: Summary of the

descriptive statistics for LiDAR and field snow depth values across slope classes, including measures of

central tendency (mean and median), data spread (standard deviation, variance, range, and interquartile

range), as well as the correlation coefficient (r), and the median of differences (med dif) between both

methods. The n indicates the number of paired values.

slope method n mean med min max SD var range IQR r med dif

flat
field

1310
0.48 0.45 0.22 1.15 0.15 0.02 0.93 0.18

0.78 0.18
lidar 0.31 0.29 0.04 1.04 0.16 0.02 1.01 0.19

slight
field

1951
0.53 0.48 0.18 1.17 0.19 0.04 0.99 0.24

0.80 0.17
lidar 0.36 0.32 0.02 1.10 0.19 0.03 1.08 0.22

moderate
field

568
0.54 0.48 0.27 1.38 0.19 0.04 1.11 0.20

0.82 0.19
lidar 0.35 0.30 -0.01 1.62 0.22 0.05 1.63 0.26

steep
field

135
0.70 0.74 0.38 1.30 0.21 0.04 0.93 0.37

0.62 0.29
lidar 0.45 0.39 0.06 1.57 0.25 0.06 1.51 0.27

*SD = Standard Deviation; IQR = Interquartile Range; Units: mean, med, min, max, SD, range, IQR, and med

dif are in meters (m); var is in square meters (m²).
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Table 7.6: Slope and aspect descriptive statistics: Summary of the descriptive statistics for snow

depth across slope ranges and aspects, including measures of central tendency (mean and median), data

spread (standard deviation, variance, range, and interquartile range), and distribution shape (skewness

and kurtosis). The count indicates the number of pixel counts within each class.

slope aspect mean median min max SD var range IQR skewness kurtosis count

flat north 0.29 0.27 -1.62 7.35 0.14 0.02 8.97 0.15 1.96 15.96 2675649

flat northeast 0.30 0.28 -3.67 6.37 0.13 0.02 10.05 0.14 1.83 11.30 3308889

flat east 0.30 0.29 -5.82 5.61 0.13 0.02 11.43 0.14 1.80 12.00 3785799

flat southeast 0.30 0.28 -1.68 6.27 0.13 0.02 7.96 0.14 1.93 12.51 3223386

flat south 0.29 0.27 -4.99 5.44 0.13 0.02 10.43 0.14 1.95 12.53 2452201

flat southwest 0.28 0.26 -1.18 4.74 0.13 0.02 5.92 0.14 2.03 10.88 1979601

flat west 0.28 0.26 -1.63 5.73 0.13 0.02 7.36 0.14 2.01 11.13 1878822

flat northwest 0.28 0.26 -3.07 7.71 0.13 0.02 10.78 0.14 2.05 17.30 2157819

slight north 0.30 0.27 -4.31 6.10 0.16 0.03 10.41 0.16 2.23 11.61 4936100

slight northeast 0.33 0.31 -3.53 6.04 0.16 0.03 9.57 0.17 1.94 9.60 6443899

slight east 0.36 0.33 -4.21 6.99 0.17 0.03 11.20 0.18 1.94 10.78 8356744

slight southeast 0.34 0.32 -2.68 6.56 0.16 0.03 9.25 0.17 1.99 10.52 7372183

slight south 0.31 0.28 -4.67 6.81 0.15 0.02 11.48 0.15 2.17 12.92 5883045

slight southwest 0.28 0.25 -3.33 4.88 0.15 0.02 8.21 0.14 2.44 13.42 4533084

slight west 0.26 0.24 -5.64 5.77 0.14 0.02 11.40 0.13 2.61 16.93 4105288

slight northwest 0.27 0.24 -3.72 6.94 0.15 0.02 10.66 0.14 2.55 14.11 4805725

moderate north 0.29 0.26 -3.80 7.27 0.17 0.03 11.07 0.18 2.42 16.31 3132612

moderate northeast 0.38 0.35 -3.60 4.02 0.19 0.04 7.62 0.21 1.72 7.81 3597947

moderate east 0.44 0.40 -3.77 6.70 0.22 0.05 10.47 0.25 1.64 7.06 4435700

moderate southeast 0.42 0.38 -3.55 7.08 0.21 0.04 10.63 0.22 1.87 8.76 4101906

moderate south 0.34 0.31 -5.30 5.67 0.17 0.03 10.97 0.18 2.07 12.31 3728876

moderate southwest 0.28 0.25 -4.31 5.27 0.15 0.02 9.58 0.14 2.55 14.70 3053727

moderate west 0.24 0.22 -6.97 6.56 0.15 0.02 13.54 0.13 2.91 23.38 2619229

moderate northwest 0.25 0.22 -5.64 6.02 0.16 0.03 11.65 0.14 2.85 19.13 2926082

steep north 0.39 0.31 -7.23 6.60 0.32 0.10 13.84 0.28 2.25 11.62 4901112

steep northeast 0.52 0.44 -6.69 6.75 0.37 0.13 13.44 0.35 2.08 9.34 4298445

steep east 0.63 0.53 -7.56 6.48 0.45 0.20 14.04 0.43 2.15 8.53 4684279

steep southeast 0.61 0.49 -6.26 7.18 0.45 0.21 13.43 0.39 2.54 10.61 4289126

steep south 0.44 0.37 -6.35 6.93 0.33 0.11 13.28 0.28 2.92 16.84 3924587

steep southwest 0.31 0.26 -7.05 5.55 0.24 0.06 12.60 0.21 1.97 15.15 3173020

steep west 0.28 0.23 -7.61 8.15 0.23 0.05 15.76 0.20 1.97 16.13 2997329

steep northwest 0.30 0.24 -6.60 7.66 0.27 0.07 14.26 0.23 2.30 13.37 3942480

*SD = Standard Deviation; IQR = Interquartile Range. Units: mean, median, min, max, SD, range, and IQR are

in meters (m); var is in square meters (m²).
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Table 7.7: Pairwise LiDAR and field descriptive statistics across flat slopes: Summary of the

descriptive statistics for LiDAR and field snow depth values across flat slopes and their related aspects,

including measures of central tendency (mean and median), data spread (standard deviation, variance,

range, and interquartile range), as well as the correlation coefficient (r), and the median of differences

(med dif) between both methods. The n indicates the number of paired values.

slope aspect method n mean med min max SD var range IQR r med dif

flat north
field

124
0.54 0.54 0.31 0.83 0.12 0.02 0.52 0.17

0.59 0.17
lidar 0.36 0.35 0.13 0.80 0.12 0.01 0.67 0.10

flat northeast
field

183
0.52 0.51 0.25 0.88 0.13 0.02 0.63 0.17

0.66 0.17
lidar 0.35 0.33 0.06 0.75 0.14 0.02 0.69 0.16

flat east
field

243
0.46 0.42 0.25 1.15 0.15 0.02 0.90 0.11

0.80 0.21
lidar 0.28 0.22 0.04 0.95 0.16 0.03 0.92 0.19

flat southeast
field

219
0.47 0.42 0.24 1.14 0.17 0.03 0.91 0.15

0.84 0.17
lidar 0.31 0.27 0.09 1.04 0.18 0.03 0.95 0.23

flat south
field

181
0.44 0.40 0.22 1.13 0.17 0.03 0.91 0.15

0.89 0.17
lidar 0.28 0.24 0.07 0.96 0.17 0.03 0.90 0.20

flat southwest
field

123
0.48 0.45 0.23 1.04 0.14 0.02 0.81 0.17

0.82 0.17
lidar 0.30 0.29 0.06 0.85 0.14 0.02 0.79 0.18

flat west
field

121
0.50 0.48 0.23 0.91 0.13 0.02 0.69 0.16

0.66 0.19
lidar 0.31 0.29 0.09 0.79 0.13 0.02 0.70 0.12

flat northwest
field

116
0.51 0.50 0.31 0.89 0.12 0.01 0.58 0.13

0.64 0.17
lidar 0.34 0.35 0.10 0.70 0.12 0.01 0.60 0.14

*SD = Standard Deviation; IQR = Interquartile Range; Units: mean, med, min, max, SD, range, IQR, and med

dif are in meters (m); var is in square meters (m²).

Table 7.8: Pairwise LiDAR and field descriptive statistics across slight slopes: Summary of

the descriptive statistics for LiDAR and field snow depth values across slight slopes and their related

aspects, including measures of central tendency (mean and median), data spread (standard deviation,

variance, range, and interquartile range), as well as the correlation coefficient (r), and the median of

differences (med dif) between both methods. The n indicates the number of paired values.

slope aspect method n mean med min max SD var range IQR r med dif

slight north
field

99
0.53 0.52 0.31 0.80 0.13 0.02 0.49 0.19

0.56 0.17
lidar 0.35 0.34 0.15 0.76 0.11 0.01 0.62 0.13

slight northeast
field

299
0.63 0.60 0.28 1.13 0.20 0.04 0.85 0.24

0.83 0.21
lidar 0.42 0.40 0.02 1.10 0.21 0.05 1.08 0.28

slight east
field

620
0.55 0.47 0.26 1.17 0.21 0.04 0.91 0.26

0.82 0.17
lidar 0.38 0.35 0.05 1.09 0.19 0.04 1.05 0.22

slight southeast
field

440
0.46 0.41 0.20 1.06 0.20 0.04 0.87 0.23

0.82 0.10
lidar 0.36 0.31 0.06 0.97 0.17 0.03 0.91 0.18

slight south
field

225
0.50 0.46 0.18 1.08 0.17 0.03 0.90 0.16

0.82 0.18
lidar 0.32 0.27 0.02 1.06 0.19 0.04 1.03 0.19

slight southwest
field

131
0.47 0.44 0.23 1.09 0.15 0.02 0.86 0.14

0.75 0.23
lidar 0.25 0.20 0.07 0.95 0.16 0.03 0.88 0.10

slight west
field

84
0.52 0.51 0.32 0.96 0.13 0.02 0.64 0.14

0.62 0.20
lidar 0.31 0.27 0.11 0.60 0.13 0.02 0.50 0.18

slight northwest
field

53
0.51 0.50 0.34 0.81 0.12 0.01 0.47 0.11

0.57 0.17
lidar 0.34 0.32 0.14 0.69 0.11 0.01 0.55 0.13

*SD = Standard Deviation; IQR = Interquartile Range; Units: mean, med, min, max, SD, range, IQR, and med

dif are in meters (m); var is in square meters (m²).
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Table 7.9: Pairwise LiDAR and field descriptive statistics across moderate slopes: Summary of

the descriptive statistics for LiDAR and field snow depth values across moderate slopes and their related

aspects, including measures of central tendency (mean and median), data spread (standard deviation,

variance, range, and interquartile range), as well as the correlation coefficient (r), and the median of

differences (med dif) between both methods. The n indicates the number of paired values.

slope aspect method n mean med min max SD var range IQR r med dif

moderate north
field

4
0.45 0.44 0.43 0.49 0.03 0.00 0.06 0.02

0.90 0.16
lidar 0.29 0.28 0.24 0.34 0.04 0.00 0.10 0.05

moderate northeast
field

99
0.62 0.57 0.34 0.94 0.15 0.02 0.61 0.23

0.54 0.12
lidar 0.51 0.48 0.15 1.01 0.19 0.04 0.87 0.23

moderate east
field

108
0.65 0.71 0.32 1.37 0.23 0.05 1.05 0.34

0.92 0.26
lidar 0.41 0.42 -0.01 1.62 0.28 0.08 1.63 0.30

moderate southeast
field

116
0.52 0.45 0.27 1.38 0.23 0.05 1.11 0.23

0.90 0.13
lidar 0.38 0.32 0.09 1.47 0.24 0.06 1.38 0.25

moderate south
field

191
0.45 0.44 0.29 0.97 0.10 0.01 0.69 0.07

0.67 0.21
lidar 0.25 0.22 0.05 0.91 0.12 0.02 0.86 0.14

moderate southwest
field

34
0.54 0.53 0.31 0.99 0.12 0.01 0.68 0.08

0.66 0.30
lidar 0.26 0.22 0.08 0.75 0.16 0.02 0.66 0.14

moderate west
field

16
0.47 0.45 0.36 0.69 0.07 0.01 0.33 0.08

0.58 0.26
lidar 0.22 0.20 0.10 0.49 0.09 0.01 0.38 0.07

*SD = Standard Deviation; IQR = Interquartile Range; Units: mean, med, min, max, SD, range, IQR, and med

dif are in meters (m); var is in square meters (m²).

Table 7.10: Pairwise LiDAR and field descriptive statistics across steep slopes: Summary of

the descriptive statistics for LiDAR and field snow depth values across steep slopes and their related

aspects, including measures of central tendency (mean and median), data spread (standard deviation,

variance, range, and interquartile range), as well as the correlation coefficient (r), and the median of

differences (med dif) between both methods. The n indicates the number of paired values.

slope aspect method n mean med min max SD var range IQR r med dif

steep north
field

6
0.43 0.44 0.38 0.46 0.03 0.00 0.08 0.03

-0.94 -0.14
lidar 0.60 0.57 0.47 0.77 0.11 0.01 0.30 0.12

steep northeast
field

21
0.81 0.86 0.42 1.30 0.30 0.09 0.88 0.48

0.65 0.11
lidar 0.77 0.73 0.35 1.57 0.33 0.11 1.22 0.22

steep east
field

16
0.72 0.77 0.39 0.93 0.21 0.04 0.54 0.31

0.86 0.30
lidar 0.43 0.38 0.07 0.95 0.28 0.08 0.88 0.32

steep southeast
field

65
0.79 0.78 0.53 1.00 0.11 0.01 0.48 0.13

0.62 0.37
lidar 0.42 0.39 0.11 0.75 0.13 0.02 0.64 0.14

steep south
field

20
0.42 0.42 0.39 0.49 0.02 0.00 0.09 0.03

0.44 0.22
lidar 0.20 0.20 0.06 0.32 0.07 0.00 0.25 0.09

steep southwest
field

6
0.64 0.64 0.54 0.72 0.08 0.01 0.18 0.11

0.94 0.26
lidar 0.40 0.38 0.19 0.60 0.16 0.02 0.40 0.21

steep west
field

1
0.77 0.77 0.77 0.77 0.00 0.00

0.24
lidar 0.53 0.53 0.53 0.53 0.00 0.00

*SD = Standard Deviation; IQR = Interquartile Range; Units: mean, med, min, max, SD, range, IQR, and med

dif are in meters (m); var is in square meters (m²).
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7.3 Vegetation distribution

7.3.1 Vegetation heights

Table 7.11: Medians: Vegetation height classes: Comparison among snow depth medians from

paired field and LiDAR measurements, and the overall median across the entire area of interest, divided

by class

Vegetation height
median (m)

field lidar overall lidar

under 0.1 m 0.46 0.33 0.29

0.1 to 0.5 m 0.46 0.29 0.29

0.5 to 1.5 m 0.94 0.67 0.50

over 1.5 m 0.73 0.43 0.54

Table 7.12: Vegetation height descriptive statistics: Summary of the descriptive statistics for

snow depth across vegetation heights, including measures of central tendency (mean and median), data

spread (standard deviation, variance, range, and interquartile range), and distribution shape (skewness

and kurtosis). The count indicates the number of pixel counts within each class.

vegetation height mean median min max SD var range IQR skewness kurtosis count

under 0.1 m 0.32 0.29 -4.77 5.84 0.19 0.03 10.61 0.17 3.32 27.73 64062039

0.1 to 0.5 m 0.34 0.29 -6.97 5.85 0.24 0.06 12.83 0.21 3.45 25.20 54622460

0.5 to 1.5 m 0.58 0.50 -7.05 7.18 0.40 0.16 14.23 0.38 1.88 9.03 6574330

over 1.5 m 0.63 0.54 -7.61 8.15 0.45 0.20 15.76 0.43 1.48 9.70 2445862

*SD = Standard Deviation; IQR = Interquartile Range. Units: mean, median, min, max, SD, range, and IQR are

in meters (m); var is in square meters (m²).

Table 7.13: Pairwise LiDAR and field descriptive statistics across vegetation classes: Summary

of the descriptive statistics for LiDAR and field snow depth values across vegetation height ranges,

including measures of central tendency (mean and median), data spread (standard deviation, variance,

range, and interquartile range), as well as the correlation coefficient (r), and the median of differences

(med dif) between both methods. The n indicates the number of paired values.

Vegetation method n mean med min max SD var range IQR r med dif

under 0.1 m
field

1402
0.50 0.46 0.23 1.37 0.15 0.02 1.14 0.19

0.74 0.16
lidar 0.34 0.33 0.02 1.58 0.16 0.03 1.56 0.19

0.1 to 0.5 m
field

2274
0.50 0.46 0.18 1.38 0.16 0.03 1.19 0.18

0.75 0.19
lidar 0.32 0.29 -0.01 1.62 0.17 0.03 1.63 0.20

0.5 to 1.5 m
field

198
0.91 0.94 0.43 1.32 0.17 0.03 0.89 0.27

0.81 0.23
lidar 0.66 0.67 0.11 1.18 0.22 0.05 1.07 0.37

over 1.5 m
field

90
0.71 0.73 0.38 0.96 0.11 0.01 0.58 0.13

0.38 0.29
lidar 0.43 0.43 0.12 0.77 0.14 0.02 0.65 0.15

*SD = Standard Deviation; IQR = Interquartile Range; Units: mean, med, min, max, SD, range, IQR, and med

dif are in meters (m); var is in square meters (m²).
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7.3.2 Vegetation classes

Table 7.14: Medians: Vegetation classes: Comparison among snow depth medians from paired field

and LiDAR measurements, and the overall median across the entire area of interest, divided by class

Vegetation
median (m)

field lidar overall lidar

river 0.75 0.67 0.64

baresoil 0.72 0.47 0.43

polygon wet 0.56 0.32 0.41

polygon dry 0.46 0.32 0.26

lichen 0.46 0.34 0.33

moss 0.51 0.32 0.30

dry hummock 0.45 0.33 0.29

tussock 0.39 0.19 0.25

dwarf shrub 0.47 0.23 0.27

single shrub 0.76 0.51 0.49

riparian shrub 0.98 0.76 0.49

tree 0.73 0.42 0.46

Table 7.15: Vegetation classes descriptive statistics: Summary of the descriptive statistics for

snow depth across vegetation classes, including measures of central tendency (mean and median), data

spread (standard deviation, variance, range, and interquartile range), and distribution shape (skewness

and kurtosis). The count indicates the number of pixel counts within each class.

vegetation mean median min max SD var range IQR skewness kurtosis count

river 0.71 0.64 -4.67 5.18 0.41 0.17 9.85 0.49 0.87 3.81 437135

baresoil 0.55 0.43 -7.05 7.66 0.51 0.26 14.71 0.48 2.20 8.17 1889452

polygon wet 0.44 0.41 -2.33 5.13 0.23 0.05 7.46 0.23 1.80 11.37 436474

polygon dry 0.27 0.26 -1.72 2.34 0.10 0.01 4.06 0.12 0.92 4.77 5302022

lichen 0.38 0.33 -2.63 6.83 0.24 0.06 9.46 0.24 2.38 13.28 13413426

moss 0.32 0.30 -1.63 4.84 0.15 0.02 6.46 0.17 1.73 9.53 14274391

dry hummock 0.32 0.29 -2.01 4.35 0.15 0.02 6.36 0.16 1.85 8.49 36253638

tussock 0.27 0.25 -0.73 3.66 0.12 0.01 4.39 0.13 1.78 11.59 9479275

dwarf shrub 0.32 0.27 -5.50 7.45 0.23 0.05 12.95 0.21 3.09 20.36 34153688

single shrub 0.61 0.49 -7.56 8.15 0.46 0.21 15.71 0.38 2.33 9.38 6596688

riparian shrub 0.55 0.49 -5.72 5.91 0.35 0.12 11.63 0.39 1.19 5.81 4531475

tree 0.51 0.46 -7.61 5.55 0.41 0.17 13.16 0.33 0.43 13.59 937027

*SD = Standard Deviation; IQR = Interquartile Range. Units: mean, median, min, max, SD, range, and IQR are

in meters (m); var is in square meters (m²).
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Table 7.16: Pairwise LiDAR and field descriptive statistics across vegetation classes: Summary

of the descriptive statistics for LiDAR and field snow depth values across vegetation, including mea-

sures of central tendency (mean and median), data spread (standard deviation, variance, range, and

interquartile range), as well as the correlation coefficient (r), and the median of differences (med dif)

between both methods. The n indicates the number of paired values.

Vegetation method n mean med min max SD var range IQR r med dif

river
field

14
0.76 0.75 0.64 1.04 0.10 0.01 0.41 0.07

0.50 0.18
lidar 0.63 0.67 0.36 0.85 0.13 0.02 0.49 0.13

baresoil
field

2
0.72 0.72 0.50 0.94 0.31 0.10 0.44 0.22

1.00 0.25
lidar 0.47 0.47 0.20 0.73 0.37 0.14 0.52 0.26

polygon wet
field

5
0.56 0.56 0.45 0.70 0.09 0.01 0.25 0.02

0.31 0.23
lidar 0.40 0.32 0.28 0.60 0.15 0.02 0.32 0.24

polygon dry
field

356
0.47 0.46 0.18 0.87 0.09 0.01 0.68 0.11

0.38 0.15
lidar 0.32 0.32 0.04 0.62 0.09 0.01 0.58 0.11

lichen
field

195
0.49 0.46 0.23 1.30 0.15 0.02 1.08 0.10

0.74 0.12
lidar 0.38 0.34 0.08 1.57 0.20 0.04 1.49 0.17

moss
field

910
0.53 0.51 0.23 1.11 0.15 0.02 0.88 0.23

0.75 0.19
lidar 0.34 0.32 0.06 0.85 0.16 0.03 0.79 0.23

dry hummock
field

935
0.47 0.45 0.20 1.38 0.16 0.03 1.18 0.20

0.77 0.12
lidar 0.36 0.33 0.06 1.62 0.16 0.03 1.57 0.15

tussock
field

429
0.39 0.39 0.22 1.06 0.09 0.01 0.84 0.08

0.70 0.19
lidar 0.22 0.19 0.02 0.86 0.11 0.01 0.84 0.10

dwarf shrub
field

737
0.52 0.47 0.27 1.30 0.16 0.03 1.03 0.15

0.82 0.25
lidar 0.28 0.23 -0.01 1.16 0.18 0.03 1.17 0.20

single shrub
field

218
0.79 0.76 0.25 1.32 0.17 0.03 1.07 0.21

0.76 0.24
lidar 0.54 0.51 0.07 1.18 0.20 0.04 1.11 0.26

riparian shrub
field

108
0.98 0.98 0.59 1.15 0.10 0.01 0.56 0.16

0.63 0.22
lidar 0.75 0.76 0.28 1.09 0.18 0.03 0.82 0.26

tree
field

55
0.70 0.73 0.38 0.99 0.10 0.01 0.61 0.12

0.19 0.30
lidar 0.41 0.42 0.14 0.65 0.13 0.02 0.51 0.14

*SD = Standard Deviation; IQR = Interquartile Range; Units: mean, med, min, max, SD, range, IQR, and med

dif are in meters (m); var is in square meters (m²).
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