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Abstract

Human activities have been transporting caprellid amphipods (or “skeleton shrimps”) across the 
oceans for many decades. As a result, some caprellid amphipods now are among the most widespread 
non-indigenous species in many different coastal regions of the world. The global spread of these 
species is still ongoing in some cases, such as that of the successful invader Caprella mutica Schurin, 
1935. Here, we report on the arrival of C. mutica in South America and modelled its environmental 
niche based on its current global distribution in order to evaluate future expansion risks. The species 
distribution model confirmed high occupancy probabilities for already invaded areas of Europe and 
North America with generally lower probabilities in the southern hemisphere and mean sea surface 
temperature as best predictor. Further, the model suggested that our discovery of C. mutica in north-
ern Chile was made in a region that is less favorable for this species, while occupancy probabilities 
increased further south. Given the invasion history of C. mutica in other marine regions of the world 
and the more favorable oceanographic conditions, a further spread of this invader southwards along 
the South American Pacific coast seems very likely.
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Introduction

Many marine species have been transported by human activities across the oceans 
to other coastal regions where they established as non-indigenous species (NIS). 
This human-mediated spread creates recent ‘neocosmopolitan’ distributions of spe-
cies (i.e. extensive geographical ranges through anthropogenic dispersal) among 
coastal benthic habitats around the world (Darling and Carlton 2018). Crusta-
ceans, including barnacles, shrimps, crabs and peracarids are among some of the 
most ubiquitous NIS worldwide (Ruiz et al. 2011; Bailey et al. 2020). While large 
decapod species have likely been transported in ballast water of cargo ships (Rodrí-
guez and Suárez 2001), many smaller amphipod species are assumed to have been 
dispersed as stowaways on ship hulls or with aquaculture activities (e.g. Marchini 
and Cardeccia 2017; Albano and Obenat 2019; Martínez-Laiz et al. 2019; Guer-
ra-García et al. 2023). Many of these amphipod NIS are now cosmopolitan species 
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but their former native ranges cannot always be determined (Beermann et al. 2020; 
Martínez-Laiz et al. 2021). This is because their invasion history is often ancient, 
sometimes dating back hundreds of years to the first circumglobal expeditions 
(Darling and Carlton 2018; Beermann et al. 2020).

Interestingly, caprellid amphipods are among the most widespread neocos-
mopolitan species that have become NIS in many different regions of the world 
(Cabezas et al. 2010; Ros et al. 2016; Marchini and Cardeccia 2017; Martínez-Laiz 
et al. 2021). For example, Caprella scaura Templeton, 1836 successfully established 
dense populations all around the globe in warm-temperate to tropical waters where 
it thrives in fouling communities on man-made substrata (e.g. Guerra-García et al. 
2011; Martínez-Laiz et al. 2021). At least in southern Europe, it competes with an-
other cosmopolitan caprellid, Caprella equilibra Say, 1918, which can occur in the 
same habitats (Foster et al. 2004; Ros et al. 2015; Marchini and Cardeccia 2017).

In recent decades, many new species introductions had been recognized shortly 
after their initial arrival in new regions. The invasion history of these newly intro-
duced species could be documented, allowing to better understand the mechanisms 
of transport and expansion into new regions. One of these cases of ongoing invasions 
is the caprellid amphipod Caprella mutica Schurin, 1935. Native to North-East Asia, 
it was described from the Sea of Japan (Schurin 1935; Vassilenko 1967; Arimo-
to 1976) before it established populations on many coasts outside its native range 
within a relatively short time (Boos et al. 2011; Marchini and Cardeccia 2017). The 
successful establishment of amphipod NIS in an area can result in a displacement of 
ecologically similar native species (e.g. Dick 1996; Dick et al. 1999). Correspond-
ingly, mass occurrences of invasive C. mutica have been linked to a scarcity of native 
caprellids in the same habitats such as Caprella linearis (Linnaeus, 1767) in the North 
East Atlantic (e.g. Coolen et al. 2016). This could be due to direct interference com-
petition between the invader and native caprellids (Shucksmith et al. 2009) although 
differential habitat demands (Coolen et al. 2016) may facilitate a spatial segregation 
and thus resource partitioning (Schoener 1986). Based on its known habitat prefer-
ences and environmental tolerances, Boos et al. (2011) speculated on a future range 
expansion of C. mutica to several coastlines around the globe where it had not been 
reported yet, but environmental conditions seemed favorable. Among these poten-
tially vulnerable regions were the Pacific and Atlantic coasts of South America.

In South America, only few amphipod NIS have been reported so far, and they 
are often underrepresented or even completely absent from NIS inventories (e.g. 
Ferreira et al. 2009; Cárdenas-Calle et al. 2019; Carlton et al. 2019; Teixeira and 
Creed 2020; Zambrano and Ramos 2021; Rodríguez-Gavilanes et al. 2024), or 
their status is not well known and many species are categorized as cryptogenic 
(e.g. Orensanz et al. 2002). An exception to this general pattern is the Argentinian 
coast, where 18 amphipod NIS (including introduced and cryptogenic species) 
have been reported, among them three caprellid species (Schwindt et al. 2020). 
The cosmopolitan species Caprella danilevskii Czerniavsky, 1868, C. equilibra 
and C. scaura have been reported widely from the Atlantic and Pacific coasts of 
South America (Guerra-García and Thiel 2001; Díaz et al. 2005; Cunha et al. 
2018; Chunga-Llauce et al. 2023b). Furthermore, the caprellid Paracaprella pu-
silla Mayer, 1890 also has recently been reported as NIS from locations along the 
Pacific coast (Alarcón-Ortega et al. 2015; Ros et al. 2016; Alfaro-Montoya and 
Ramírez Alvarado 2018; Chunga-Llauce et al. 2022), suggesting that caprellid in-
vasions might not go entirely undetected along the coasts of South America.
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Few amphipod NIS have been reported for the coasts of Chile. In their review 
of marine NIS of the southeastern Pacific, Castilla and Neill (2009) listed no am-
phipod NIS for the coasts of Chile and Peru. However, two frequently occurring 
species of the genus Jassa Leach, 1814 have been confirmed to be NIS in Chile and 
South America in general (Beermann et al. 2020). Further, the cosmopolitan Mono-
corophium acherusicum (A. Costa, 1853) has been recorded from fouling communi-
ties in Chile (Pérez-Schultheiss 2009; Thiel and Hinojosa 2009), and several other 
amphipod species have been suggested as NIS for Chile (Marchini and Cardeccia 
2017). The littoral caprellid fauna of Chile has been relatively well-characterized, 
based on extensive sampling in benthic and artificial habitats at 30°S in Coquimbo 
in northern central Chile (Guerra-García and Thiel 2001). A follow-up study then 
surveyed caprellids from harbor and aquaculture buoys along the Chilean coast 
between 18°S and 41°S, confirming the same species as previously reported for 
Coquimbo with the exception of the species Deutella venenosa Mayer, 1890, which 
seemed to be restricted to Coquimbo (Thiel et al. 2003). Since then, the caprellid 
fauna of Chile and Coquimbo in particular has been screened occasionally, also 
checking for potential newcomers (Astudillo et al. 2009; Rech et al. 2023).

The aim of this study is to (i) report the arrival of the successful invader Caprella 
mutica in South America, (ii) compile recent surveys of the caprellid fauna from sev-
eral regions in South America, (iii) synthesize information about the current distribu-
tion of Caprella mutica, and (iv) build a species distribution model of Caprella mutica 
to evaluate the future expansion risk of this species along the South American coasts.

Material and methods

Sampling

Caprellid specimens were repeatedly collected at the same site with fouling as-
semblages from floating docks and on mooring lines of the aquaculture conces-
sions of the Universidad Católica del Norte (UCN) in Bahía La Herradura in 
Coquimbo, Chile (29°57'58.4"S, 71°21'12.9"W) on August 30th, 31st and Sep-
tember 9th 2022. Several culture lines for scallop aquaculture are established in 
the concession of UCN, where lantern-nets are suspended from longlines (Bakit 
et al. 2024). These artificial structures host extensive fouling communities (Du-
mont et al. 2009) providing habitat to many mobile organisms (including several 
species of caprellid amphipods) (Astudillo et al. 2009). For the sampling proce-
dure, the buoys and longlines were lifted up from a boat, and the fouling bio-
mass was scraped from these artificial substrata and brought to the lab (approx. 
transport time: 10 min). For each sampling we collected an approximate volume 
of about 10 l fouling biomass, which included seaweeds, hydrozoans, bryozoans, 
tunicates, mussels and other sessile organisms (for species inventory see e.g. As-
tudillo et al. 2009). Additional material was obtained from samples collected the 
same way and at the same site on 23 June and 7 July 2023.

In the laboratory, the fouling organisms were immediately placed in large trays 
(approximately 20 cm x 30 cm surface area) with seawater, and the material was sort-
ed alive. No signs of predation in the samples were observed during the procedure. 
All amphipods were retrieved and carefully inspected under a dissecting microscope. 
Caprellid amphipods were identified to the lowest taxonomic level, and counted. 
Voucher material was fixated in ethanol and deposited in the collection of the UCN.
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During the years 2004 to 2023, caprellid amphipods were collected annually for 
the Invertebrate Zoology laboratories in the Marine Biology program of the Ma-
rine Science Faculty in Coquimbo (30°S). For these courses, usually a few hundred 
live caprellid individuals were brought to the teaching laboratory (on seaweeds, 
bryozoans and hydrozoans). The collection of caprellid amphipods was conducted 
in a very similar way as described above by sampling extensive amounts of fouling 
organisms with the associated caprellid amphipods. The samples were collected a 
few hours before the course, transported to the nearby lab, and maintained alive 
for students to observe and document the morphology and behavior of the caprel-
lids. Students quantified the ventilation movements of ovigerous caprellid females 
and had to identify the particular species for which they recorded these behav-
iors using Guerra-García and Thiel (2001); the species identifications were usually 
checked by the course instructors.

Review of caprellid studies

In order to characterize the recent survey efforts focusing on the caprellid fau-
na in Central and South America, we searched the literature using the Web 
of Science and GoogleScholar. The keywords “Caprella” and “amphipod” were 
linked with the names of all Central and South American countries. In order 
to identify additional studies, all studies on caprellids that were published after 
2000 were carefully examined for cross-citations. The recovered references were 
then scanned to identify those that reported on caprellid surveys in their re-
gions or countries. These studies typically included species inventories that were 
based on targeted samplings of the caprellid fauna. All studies were conducted by 
invertebrate zoologists, often including amphipod or even caprellid specialists, 
who were very familiar with the taxonomic literature and species identifications. 
The investigations focused on shallow habitats up to approximately 20 m water 
depth, including fouling communities (e.g. Nunez Velazquez et al. 2017; Chun-
ga-Llauce and Pacheco 2021; Chunga-Llauce et al. 2022) and macrophyte or 
animal reefs (Díaz et al. 2005; Alarcón-Ortega et al. 2017; Cunha et al. 2018). 
Usually the authors sampled several sites within their study region, where in-
dividual sites had distances of a few to > 100 km between them. Most studies 
covered one or maximally two ecoregions (sensu Spalding et al. 2007). References 
that focused only on the population or reproductive biology of selected caprellid 
species were not included.

For comparative purposes, we extracted presence/absence data from each re-
spective study, which is common practice in biodiversity reviews of specific groups 
or regions (see e.g. Gallardo and Penchaszadeh 2001; Cárdenas-Calle et al. 2020; 
Durand et al. 2024). Only records on species-level were considered in the current 
data consolidation. The similar approaches used by all examined studies allowed 
for direct comparison in the context of the current overview.

Species distribution model (SDM) of Caprella mutica

Worldwide georeferenced occurrences for C. mutica were downloaded and curated 
from the Global Biodiversity Information Facility (GBIF, www.gbif.org; down-
loaded on 06 September 2023). The database was augmented by an exhaustive 
literature search and further published records were added (i.e. derived from: 
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Schurin 1935; Vassilenko 1967; Arimoto 1976; Locke et al. 2007; Ashton et al. 
2008a; 2008b; Willis et al. 2009; Hosono 2011; Almón et al. 2014; Collin and 
Johnson 2014; Coolen et al. 2016; Peters and Robinson 2017; Heo et al. 2020; 
Lavrador et al. 2024). A total of 1388 occurrences of C. mutica were used for the 
model (excluding the current presence in Chile reported here; Fig. 1). The occur-
rences were thinned to reduce sampling biases (Aiello‐Lammens et al. 2015), leav-
ing only one presence per grid cell (0.08°, see below), resulting in 800 occurrences. 
We also compiled information on documented absences from sampled localities in 
South America (n = 170), where previous community-level studies of Caprellidae 
did not detect any specimens of C. mutica. While these absences were not used in 
the SDM, they were used to cross-validate the output of the SDM.

We used 13 oceanographic variables (Table 2) from the BioOracle database 
v.2.2. (Assis et al. 2018), with a 0.08° (~9.2 km2) resolution. These variables 
have commonly been used by previous studies and covered a wide range of 
biophysical and geochemical conditions in the ocean (Bosch et al. 2018), also 
reflecting relevant ecophysiological stressors for C. mutica as proven by experi-
mental studies (Cook et al. 2007; Lim and Harley 2018). Rasters were masked 
to include only coastal grid cells, as the species is restricted to shallow waters. 
The degree of collinearity of environmental predictors was examined by using a 
variance inflation factor (VIF) analysis where values of VIF > 10 have tradition-
ally been used to claim high collinearity. VIF analyses were carried out using the 
library ‘usdm’ (Naimi et al. 2014) in R (ver. 4.1.0; R Core Team 2024). Two 
variables (mean and range of phytoplankton concentration) showed a high de-
gree of collinearity and were removed from further analyses.

The SDM was built using recommended methodological protocols (Bosch et al. 
2018; Feng et al. 2019; Zurell et al. 2020). We created 10,000 random pseudo-ab-
sences obtained from all coastal grid cells. We used a Maxent modeling approach, a 

30.2

-1.8

14.2

temperature (°C)

before 2009
2009 - recent
no �ndings

Coquimbo

Figure 1. World oceans with mean sea surface temperature (SST) and confirmed reported presences and absences of Caprella mutica 
before and after the year 2009 (i.e. the survey of Boos et al. 2011) considered for this study. ‘No findings’ refers to sites where previous 
surveys had examined the caprellid fauna (see also Table 1) without finding Caprella mutica.
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robust machine-learning algorithm successfully applied to implement SDMs (Elith 
et al. 2011; Phillips et al. 2017). The model fit was evaluated using the Area Under 
the Curve (AUC) of the Receiver Operating Characteristic Curve, where values 
close to 1 indicate a perfect fit. Analyses were conducted using the library ‘SD-
Mtune’ (Vignali et al. 2020). The model’s accuracy was maximized by hyper-pa-
rameter tuning and different combinations of the regularization parameter and 
feature classes. We used a genetic algorithm to assess 150 possible combinations of 
parameters, evaluating 15 populations in two generations. Genetic algorithms are 
computational optimization techniques inspired by the process of natural selection 
(Goldberg and Holland 1988; Alhijawi and Awajan 2024), enhancing model per-
formance, selecting relevant variables, or optimizing parameters when predicting 
species distributions based on environmental data (Vignali et al. 2020). To ensure 
the robust spatial transferability of SDMs, we used a four-fold spatial cross-valida-
tion scheme based on a checkerboard pattern, implemented in the library ENMeval 
(Kass et al. 2021) in R. We evaluated the importance of all oceanographic variables 
in terms of percent contribution and permutation importance and estimated the 
functional relationship between the occupancy probability and the top predictors 
using partial dependence plots to isolate the effect of each predictor. A Multivariate 
Environmental Similarity Surfaces (MESS) analysis was carried out to evaluate areas 
with non-analog oceanographic conditions. MESS analyses were carried out using 
the library ‘predicts’ (Hijmans 2024) in R. Finally, we projected the probability of 
species occurrence onto the global coasts using ArcGIS Pro (ver. 3.3.0; ESRI Inc.).

Results

Caprella mutica in Coquimbo, Chile and its morphological distinction

In total, seven individuals of C. mutica (6 adult males and 1 ovigerous female) were 
found on August 30th, 31st and September 9th 2022. Besides this newly record-
ed NIS for this area, the 4 caprellid species Caprella equilibra, Caprella verrucosa 
Boeck, 1871, Caprella scaura and Deutella venenosa as well as the ischyrocerids Jassa 
marmorata Holmes, 1905, Jassa slatteryi Conlan, 1990 and Ericthonius cf. rubricor-
nis (Stimpson, 1853), the maerid Elasmopus rapax A. Costa, 1853 (sensu Hughes 
and Lowry 2010), the aorid Aora typica Krøyer, 1845, the dexaminid Paradexamine 
cf. pacifica (Thomson, 1879) and a stenothoid Stenothoe sp. were found coexisting 
in the amphipod fouling communities of Bahía La Herradura.

In the course of the Marine Biology program of the Marine Science Faculty in 
Coquimbo, the dominant species in the samples varied between the years, but the 
most common species were Caprella equilibra, C. scaura and C. verrucosa, and on 
rare occasions Deutella venenosa; the species identified by the students (using Guer-
ra-García and Thiel 2001) were frequently verified by one of the authors (MT). 
Prior to 2023, no Caprella mutica were found, but on 23 June 2023 a few caprellid 
amphipods examined by the students did not match any of the species reported 
in Guerra García and Thiel (2001). After closer examination, these individuals 
were confirmed to belong to C. mutica. In addition, two weeks later (7 July 2023), 
several individuals (adult males and females) of C. mutica were collected during a 
workshop on marine invasive species. The collected individuals have been depos-
ited in the Biological Collection of the UCN (SCBUCN-5533 1 female + 1 male 
adult; SCBUCN-5537 1 female + 4 male adults; SCBUCN-5561 5 male adults).
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The specimens of Caprella mutica collected in Coquimbo could be easily distin-
guished from its two sympatric congeners C. verrucosa and C. scaura by the absence 
of a projection on the head. Further, the individuals of C. mutica were characterized 
by numerous spiny projections on the dorsal surface of the pereonites (pereonites 
1–7 in females, 3–7 in males), which distinguished them clearly from co-occurring 
Caprella equilibra (Fig. 2). In addition, hyperadult males exhibited dense setation 
on pereonites 1 and 2, and on gnathopod 2, leading to a conspicuous ‘hairy’ ap-
pearance, which is unique among the known Caprella species of the world (Plat-
voet et al. 1995 as ‘Caprella macho’; Guerra-García and Thiel 2001; Beermann and 
Franke 2011; Boos et al. 2011; Daneliya and Laakkonen 2012; Heo et al. 2020).

Figure 2. Individual of Caprella mutica, collected in Bahía La Herradura (Coquimbo, Chile) on 09 September 2022. Habitus of adult 
male A lateral view B dorsal view. Scale bars: 5 mm.
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The Asian species Caprella acanthogaster Mayer, 1890 shares some morpho-
logical characteristics with C. mutica that may cause confusion, such as the 
dorsal spination on the pereonites and the hairy appearance of adult males 
(Faasse 2005; Daneliya and Laakkonen 2012; Heo et al. 2020). However, the 
specimens of C. mutica found in Bahía La Herradura were characterized by 
a dense hairy setation all over pereonites 1, 2 and gnathopod 2, whereas the 
hairy setation in C. acanthogaster is restricted to gnathopod 2 only. Further, 
C. acanthogaster bears a pair of two tiny tubercles on the head whereas C. mutica 
specimens from Chile had no tubercles or projections on the head.

Recent caprellid surveys in Central and South America

Over the course of the past 20–30 years, several surveys of the local caprellid 
fauna had been conducted in several countries of Central and South America 
(Table 1). These surveys documented a total of 25 caprellid species (of 27 taxa 
in total) on the Atlantic coast (between 21°N and 38°S), and 16 (of 17 taxa in 
total) species on the Pacific coast (between 23°N and 30°S). Only four of those 
species (Caprella equilibra, C. penantis, C. scaura and Paracaprella pusilla) were 
recorded on both Atlantic and Pacific coasts. No findings of Caprella mutica 
were reported in any of these surveys.

Following the initial survey of the local caprellid fauna by Guerra-García and 
Thiel (2001) and Thiel et al. (2003), the biota growing on aquaculture buoys in 
the Coquimbo region were again sampled and examined in 2007/08, and all pre-
viously identified caprellid species were recorded, but no C. mutica was found in 
that survey (Astudillo et al. 2009).

Species distribution model of Caprella mutica and risk of range 
expansion

The SDM exhibited a high accuracy (AUC = 0.96), and the MESS analyses 
showed that the model could be extrapolated to ~96% of the coastal grid cells. 
The model predicted a high probability of occupancy around the native area in 
Northeastern Asia, and the already invaded areas in Europe and North America 
(Fig. 3). In general, there was a lower probability of occupancy in the south-
ern hemisphere, except for some areas in South Africa, South Australia, New 
Zealand, and Chile. Areas with confirmed absences were characterized by low 
occupancy probabilities (Fig. 3). Along the Chilean coast, the model predict-
ed elevated probabilities (0.30–0.68) of occupancy between 32–42°S, which is 
200 to 1,400 km south of the newly confirmed occurrence in the Coquimbo 
area reported here (Fig. 4). In contrast, the SDM predicted a relatively low oc-
cupancy probability (0.07) in Bahía La Herradura.

The mean water temperature (i.e., sea surface temperature) was the top 
predictor explaining the occupancy of C. mutica with a 44% contribution 
and 74% of the permuted importance (Table 2). The remaining predictors 
reached much lower contribution and permuted importance, often by one or-
der of magnitude lower and < 10% (Table 2). The partial dependence plot 
revealed that the effect of the mean temperature was hump-shaped, with 
maximum occupancy probabilities around 11.3 °C, declining at lower and 
higher temperatures (Fig. 5).
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Figure 3. Probability of occupancy of Caprella mutica in coastal regions worldwide according to a calibrated SDM. Values closer to 1 (red) 
indicate higher occupancy probabilities, whereas values close to 0 (yellow) suggest lower occupancy probabilities. The SDM was calibrated 
at a 0.08° resolution, but is displayed here at a 1° resolution aggregation scale to improve visualization.
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Figure 4. Probability of occupancy of Caprella mutica in A the Southeastern Pacific and B in Coquimbo, Chile according to a calibrated 
SDM. Values closer to 1 (red) indicate higher occupancy probabilities, whereas values close to 0 (yellow) suggest lower occupancy proba-
bilities. The SDM was calibrated at a 0.08° resolution, but is displayed in A at a 0.5° resolution aggregation scale to improve visualization. 
Asterisks mark the location of Coquimbo in northern central Chile.
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Discussion

First record of Caprella mutica in South America

The current finding of C. mutica in Chile represents the first record of this 
caprellid in South America. Native to the north-east Pacific and introduced 
to the coasts of North America, Europe, New Zealand and South Africa, 
C. mutica seems to prefer cold-temperate waters (e.g. Arimoto 1976; Ash-
ton et al. 2008b; Willis et al. 2009; Peters and Robinson 2017). Based on 
the known temperature tolerances of C. mutica and given its invasion histo-
ry, Boos et al. (2011) predicted the species’ potential to extend its range to 

Figure 5. Functional relationships between occupancy probability and mean water temperature 
according to the species distribution model. Each empty dot represents the occupancy probability 
estimated for each global georeferenced occurrence. The red line shows the partial dependence plot 
of the isolated effect of mean water temperature on the occupancy probability. The blue dot indicates 
the new occurrence site in La Herradura Bay, Chile.
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Table 2. Variance inflation factor (VIF) and relative importance of 11 oceanographic variables in 
an SDM of C. mutica. The mean and range of phytoplankton concentration were excluded from the 
analyses due to their high VIF (> 10).

Variable VIF % contribution Permutation Importance

Temperature mean 4.4 44.3 73.5

Primary productivity mean 2.0 17.7 6.1

Chlorophyll mean 1.6 10.6 1.4

Salinity range 1.4 7.0 2.0

Temperature range 7.5 7.0 3.7

Salinity mean 7.3 5.7 2.6

Diffuse attenuation mean 10.0 2.7 3.2

Chlorophyll range 1.6 2.6 3.0

Silicate mean 8.0 1.3 2.0

Silicate range 3.0 0.7 0.9

Primary productivity range 3.0 0.4 1.5
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southern Pacific and Atlantic coasts of South America which is now corrobo-
rated by our recent finding.

The finding of several adult males and an ovigerous female in Coquimbo in 
2022, and the collection of additional adult individuals in 2023 suggests the suc-
cessful establishment of a population in Bahía La Herradura. However, the ob-
served abundances were quite low compared to the known mass occurrences of 
C. mutica in other introduced ranges (e.g. Buschbaum and Gutow 2005; Peters 
and Robinson 2017). This could be due to (a) competition with other well-estab-
lished local caprellid species along with (b) suboptimal environmental conditions 
for C. mutica, or (c) simply be the result of a very recent arrival of this invader 
in the region. Since C. mutica had previously never been observed in Coquimbo 
despite annual scans of the local caprellid fauna, it is indeed likely that this species 
has arrived relatively recently. Furthermore, the fact that C. mutica has not been re-
ported from other regions in Central and South America, where extensive surveys 
of the caprellid fauna had been conducted by experts (see Table 1 and references 
therein), also suggests that this species has only recently arrived in South America. 
Most of these other studies have surveyed several sites within a country or ecore-
gion, and explicitly focused on the caprellid fauna (e.g. Díaz et al. 2005; Guer-
ra-García et al. 2006; Paz-Ríos et al. 2014; Chunga-Llauce et al. 2023b), and thus 
the absence of the highly characteristic C. mutica in these surveys strongly suggests 
that it had not been present in those previous surveys. Since many of these surveys 
included taxonomical experts for the crustacean family Caprellidae who examined 
hundreds of specimens, it is considered very unlikely that C. mutica would have 
been overlooked. The population development of C. mutica in northern-central 
Chile must thus be monitored carefully, also with regards to any negative impacts 
on the local fauna such as the endemic Deutella venenosa.

Realized niche space of Caprella mutica

Overall, the predicted global occupancy probabilities reflected well the known 
native range of C. mutica as well as its occurrence in areas where it has been in-
troduced (i.e. northern Europe and North America). The modelled predictions of 
our quantitative approach presented here are roughly in accordance with the “po-
tential range” of C. mutica depicted by Boos et al. (2011). In direct comparison to 
the predicted probabilities in the northern hemisphere, the southern hemisphere 
seems to be less favorable for this caprellid species. The highest occupancy prob-
abilities for C. mutica along the southeastern Pacific coast were observed around 
32° and 42°S and were comparatively low in other areas such as Ecuador, Peru, 
as well as northern and southern Chile. Surprisingly, the SDM predicted only 
low occupancy probabilities for the Coquimbo Bay (0.07), well below other areas 
with a similar temperature, which is seemingly in contrast to the recent finding 
reported here. This new population might thus be living under near-suboptimal 
conditions that may prevent excessive population growth. A possible explanation 
could be that the original point of introduction of C. mutica to South America 
may have been located in central-south Chile with its large ports (i.e., San An-
tonio, Valparaíso and San Vicente) at 33° and 36°S, respectively, where predict-
ed occupancy probabilities increased to up to 0.65. The species may, therefore, 
already have built undetected populations elsewhere that remain to be found. 
Further, the local population of C. mutica in Bahía La Herradura may be at its 
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physiological limit, reducing the probability of a northward expansion towards 
northern Chile and Peru. Nonetheless, also if the original point of introduction 
was indeed in Bahía La Herradura, a further southward expansion to areas where 
oceanographic conditions could be more favorable, seems likely.

Mean water temperature was the most important variable driving the envi-
ronmental niche of C. mutica. The predicted thermal tolerance according to 
the SDM, however, is much lower compared to estimations based on ecophys-
iological experiments (Ashton et al. 2007; Hosono 2011). The median lethal 
temperature for adults was estimated at 28.3 ± 0.4 °C, while no mortalities 
occurred at 2 °C, even surviving below-zero temperatures (Ashton et al. 2007). 
Nevertheless, occupancy probabilities fell below 0.05 at temperatures lower 
than 5 °C or above 20 °C (Fig. 5). Interestingly, rearing experiments revealed 
that early stages of C. mutica reach maturity in the range of 10–20 °C, but not 
at 5 °C (Hosono 2011). All things considered, this suggests that the geographic 
spread of the species is not only driven by water temperature and it may be 
strongly co-dependent on the life stage of the animals.

Transport vectors and invasion scenarios along the southeast Pacific 
coast

The high densities of caprellid amphipods on aquaculture installations and espe-
cially on buoys indicate that aquaculture activities might contribute to the disper-
sal of caprellids along the Chilean and also the Peruvian coast (Thiel et al. 2003; 
Chunga-Llauce et al. 2023b). In fact, these buoys frequently become detached 
and are often found floating in coastal waters (Astudillo et al. 2009). The fouling 
assemblages previously identified on these lost aquaculture buoys contained all 
caprellid species currently known for the coasts of the SE Pacific (Astudillo et al. 
2009). Now C. mutica is also found on these highly buoyant substrata, which like-
ly will facilitate its future establishment and spread.

High densities and species richness of caprellids were also found on boat hulls 
in Peru (Chunga-Llauce et al. 2023b), indicating that small boats also might 
contribute to the transport of caprellids and other species along the SE Pacific 
coast. The recent finding of Deutella venenosa, a species that previously had only 
been reported from Coquimbo (30°S) in Chile, from aquaculture structures and 
boat hulls in Peru (Chunga-Llauce et al. 2023a), indicates that these substrata 
contribute to the dispersal of caprellids. Rafting dispersal on detached aquacul-
ture structures is also supported by another recent finding of D. venenosa on a 
rope stranded at Ritoque Beach at 33°S (Rech et al. 2023), which could also be 
expected for C. mutica in the future.

Recent records of Paracaprella pusilla from Mexico, Costa Rica and Peru 
(Alarcón-Ortega et al. 2015; Alfaro-Montoya and Ramírez Alvarado 2018; Chun-
ga-Llauce et al. 2022), which had earlier been confirmed at multiple sites near the 
Pacific entrance of the Panama canal (Ros et al. 2014), suggest another ongoing 
caprellid expansion along the East Pacific coasts. While most of these findings were 
made on suspended aquaculture structures, all authors consider transport in/on 
ships as a more likely cause for the recent appearance of P. pusilla.

Several other NIS have recently been reported along the Chilean coasts, including 
the sea anemones Diadumene lineata (Verrill, 1869) (Häussermann et al. 2015), 
Metridium senile (Linnaeus, 1761) (Molinet et al. 2023), and the tunicate Asterocar-
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pa humilis (Heller, 1878) (Pinochet et al. 2017). In many of these cases, dispersal 
on ship hulls is considered most likely (Pinochet et al. 2023). For several seaweeds, 
aquaculture activities and intentional introductions are considered likely causes for 
recent introductions or range expansions along the Chilean coast (Camus et al. 2022; 
Jofré Madariaga et al. 2023). Many NIS thrive on floating structures (including 
aquaculture floats and ship hulls), which facilitates their dispersal and establishment 
in harbors (Leclerc et al. 2020). All this suggests that shipping activity might have led 
to the initial introduction of C. mutica to the coast of Coquimbo, and that abundant 
floating structures have then allowed the establishment of a local population.

Conclusions and outlook

The recent finding of C. mutica confirms the projection of Boos et al. (2011) who 
denoted some areas around the world, with South America among them, to be 
potentially sensitive for the arrival of this caprellid. The global spread of C. mutica 
seems to be ongoing, which is corroborated by recent records from previously 
unaffected global regions such as South Africa (Peters and Robinson 2017). As the 
large-scale oceanographic conditions appear suitable for C. mutica especially along 
the South American Pacific coasts and given the vectors and invasion history of 
other caprellid NIS, a further spread of this invader in South America seems to be 
inevitable. Therefore, C. mutica could now be considered to have become a true 
‘neocosmopolitan’ (sensu Darling and Carlton 2018).
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