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Abstract 

The use of trait-based approaches and trait data in zooplankton ecology is rapidly growing to better understand and predict the patterns 
of zooplankton distributions and their role in aquatic ecosystems and biogeochemical cycles. Although the number of zooplankton 

trait-based studies and available trait datasets is increasing, several challenges remain for the findability , accessibility , interoperability , 
and reusability (FAIR) in trait-based approaches that, if unaddressed, may stifle progress in this research area. Here, we review recent 
applications of trait-based approaches in zooplankton research and summarize the currently available trait data resources. To realize the 
potential of trait-based approaches to resolve ecological roles of zooplankton, datasets and approaches must adhere to FAIR principles. 
We provide recommendations and pathways forward to ensure FAIRness while highlighting the importance of collaborative ef for ts. 
These practical and easily implementable strategies will enhance the FAIRness of trait data, ultimately advancing zooplankton ecological 
research and connecting these findings to aquatic ecosystem functioning. 

Keywords: trait; zooplankton; FAIR; trait-based approaches 
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ntroduction 

ooplankton are functionally and biologically diverse com-
onents of aquatic ecosystems that link primary producers
o higher trophic levels and influence many ecological pro-
esses, including energy and matter flows through food webs,
iogeochemical cycles, and carbon sequestration (Steinberg
nd Landry 2017 ). They span a range of sizes from unicellu-
ar microzooplankton to large gelatinous animals and include
he early life stages of most aquatic animals. The majority of
ooplankton observational studies maximize the resolution of
axonomic identification (i.e. to the genus or species level),
hich is foundational for documenting biodiversity and de-

cribing its biogeography and community associations. How-
ver, while taxonomy and community associations can be used
o infer ecological interactions, they do not explicitly address
cological processes and functions. Complementing taxon-
my with information on traits, which are commonly shared
y multiple species, allows for the more direct analysis of eco-
ogically relevant processes. which have the potential of scal-
ng up to ecosystem functioning. 

The trait-based approach shifts the focus from the taxo-
omic identity of individuals to the traits that describe indi-
iduals. Various definitions of the term “trait” have been put
orward, from narrow and study specific to broader, with the
atter approach including the widest swath of trait-based in-
ormation that can be gleaned from different approaches and
ampling devices. In alignment with common usage in trait-
ased research, Dawson et al. (2021) defined a ‘trait’ as ‘a
easurable characteristic (morphological, phenological, phys- 

ological, behavioural, or cultural) of an individual organism
hat is measured at either the individual or other relevant
evel of organisation’. While the definition implies that traits
re quantitative variables (e.g. predator–prey size ratio, body
ass, carbon content), qualitative or categorical traits (e.g.

eeding mode or reproductive strategy) are also frequently
sed to describe organisms. A more specific term is ‘functional
rait’, which implies that the trait directly influences individual
arwinian fitness through processes of growth, reproduction,
r survival (Violle et al. 2007 , Demetrius and Ziehe 2007 ). 
Ecological research can regularly involve organismal char-

cteristics or traits, but in the past three decades, studies with
 trait-based focus have proliferated (Green et al. 2022 ). The
heories and tools surrounding the trait-based approach for-
ally emerged from terrestrial plant ecology, which is the
omain that still dominates the field (Green et al. 2022 ).
onetheless, the use of trait-based approaches has revolu-

ionized the mechanistic understanding of ecological systems
n both terrestrial and aquatic realms (Meunier et al. 2017 ,

artini et al. 2021 , Green et al. 2022 ). Reviews describing
rait-based approaches particularly on zooplankton have pro-
ided frameworks in linking traits to organismal and ecosys-
em functions (Litchman et al. 2013 , Hébert et al. 2016a ,

artini et al. 2021 ). Data on zooplankton traits have long
een collected and compiled before the field of trait-based
pproaches was formalized, but it is only recently that these
ere integrated into standardized digital formats (Pata and
unt 2023 ). The trait-based approach has led to significant

nsights in zooplankton ecology (see the section “Trait-based
pproaches”) and resources on zooplankton trait data (see the
ection ‘Trait data resources’). 

Trait-based approaches have widespread advantages and
pplications, as well as open challenges across different eco-
ogical scales and domains ( Fig. 1 ). The use of traits can signif-
cantly simplify zooplankton community structure and over-
ome the lack of data or the varying resolution of taxonomic
dentification. This provides a common currency for compar-
ng the functional characteristics of taxonomically diverse and
ifferent regions. Although for some questions, it is ideal for
rait data to be measured in tandem with organismal sampling,
rait-based approaches can also be applied retrospectively to
xisting community datasets and can be updated when more
rait data become available, potentially from different sam-
ling devices and observational scales not present in the origi-
al dataset (e.g. Benedetti et al. 2023 ). More importantly, trait-
ased approaches assign organismal traits to ecological func-
ions that can be scaled up to processes at the ecosystem level,
hich allows for the development of mechanistic explanations

nd models (Kiørboe et al. 2018 ). 
Despite existing frameworks and data for zooplankton

cology, widespread applications of trait-based approaches
re limited due to the diversity of standards and methods for
cquiring, organizing, and describing zooplankton trait data.
urthermore, data types, formats, and management practices
ary among research groups and the systems they work in.
dvances in trait-based zooplankton research will therefore
e linked to improved findability , accessibility , interoperabil-
ty, and reusability (FAIR) of trait data (Wilkinson et al. 2016 ).
dhering to FAIR principles will facilitate common standards
nd practices when working with trait data, which will pro-
ote further innovation. FAIR trait data practices are criti-

al to improving the longevity and reach of zooplankton data
eyond project-specific study periods and geographies, poten-
ially leading to innovative strategies to monitor, model, and
redict impacts such as those caused by global warming and
iodiversity loss. 
Recent reviews articulate the benefits of FAIR data (Wilkin-

on et al. 2016 ), trait datasets (e.g. Keller et al. 2023 , Morim
t al. 2023 ), and trait-based approaches (e.g. Martini et al.
021 ). 
Here, we highlight the strengths, applications, and chal-

enges of trait-based approaches and the adoption of FAIR
rinciples in zooplankton research. Finally, we outline path-
ays to improve FAIR trait-based approaches that promise

o advance zooplankton ecology. The ideas presented in this
aper emerged from the workshop Approaches towards find-
ble, accessible, interoperable and reusable (FAIR) zooplank-
on trait data as stepping stones to improved functional ecol-
gy held during the 7th ICES-PICES Zooplankton Production
ymposium in March 2024 in Hobart, Tasmania. 

andscape of what we know on zooplankton 

r ait-based approac hes and data resour ces 

rait-based approaches 

everal studies have used trait-based approaches in zooplank-
on research, highlighting the breadth of applications that
ave already been implemented ( Table 1 ). Trait-based ap-
roaches have been applied in empirical studies at different
evels of biological organization and from the local to global
cale. At the individual level, traits were used to demonstrate
rade-offs that govern organismal processes (e.g. Kiørboe and
irst 2014 ). At the community level, trait-based approaches

ave characterized the functional composition and diversity
f zooplankton (e.g. Pomerleau et al. 2015 ). Studies that ex-
licitly link traits to biodiversity and ecosystem functioning
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Figure 1. Characteristics of trait-based approaches in zooplankton ecology listed as advantages, challenges, and methodological or ecological 
applications. Zooplankton vectors adapted from Pata, P. (2023). Marine organism line art. https:// doi.org/ 10.5281/ zenodo.13685461 . 

Table 1. Examples of applications of trait-based approaches in zooplankton ecology categorized thematically based on the study topic. 

Category References 

Individual-level analysis, trade-offs between 
traits 

Kiørboe ( 2008 ), Gorokhova et al. ( 2013 ), Bianco et al. ( 2014 ), Kiørboe and Hirst ( 2014 ), 
Kiørboe et al. ( 2015 ) 

Population-level analysis García et al. ( 2007 ), Frances et al. ( 2021 ), Ili ́c et al. ( 2021 ), Shaw et al. ( 2021 ) 
Community-level analysis Litchman et al. ( 2013 ), Pomerleau et al. ( 2015 ), Romagnan et al. ( 2015 ), Benedetti et al. 

( 2016 , 2023 ), Hébert et al. ( 2016b ), Teuber et al. ( 2019 ), Becker et al. ( 2021 ), Vilgrain et al. 
( 2021 ), Cornils et al. ( 2022 ), Feuilloley et al. ( 2022 ), Li et al. ( 2022 ), Beck et al . ( 2023 ), 
Perhirin et al. ( 2024 ) 

Biodiversity and ecosystem functioning Barnett et al. ( 2007 ), Hébert et al. ( 2016a ), St.-Gelais et al. ( 2023 ) 
)M)odeling biogeography Barton et al. ( 2013 ), Brun et al. ( 2016 ), Prowe et al. ( 2019 ), Drago et al. ( 2022 ) 
Modelling food webs, including size-based 
ecosystem models 

Heneghan et al. ( 2016 ), Prowe et al. ( 2019 , 2020 , 2023 ), Everett et al. ( 2022 ) , 
Negrete-García et al. ( 2022 ), Clerc et al. ( 2023 ) 

Modeling biogeochemistry Renaud et al. ( 2018 ), Archibald et al. ( 2019 ), Luo et al. ( 2020 ), Wright et al. ( 2021 ), 
Serra-Pompei et al. ( 2022 ), Pinti et al. ( 2023 ), Clerc et al. ( 2024 ) 

This table is an open access source that can be updated regularly, and we invite all zooplankton researchers to contribute to its future version at this link 
https:// osf.io/ gqu53 . 
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ere explored for zooplankton (Hébert et al. 2016a , St.-Gelais
t al. 2023 ), yet linking traits to the effects of multiple anthro-
ogenic stressors on biodiversity (Butt et al. 2022 ) needs to
e further developed for zooplankton. Models that capture
he functional diversity of zooplankton have begun to look
nto the climate change impacts on ecosystem functioning as
odulated by traits (Clerc et al. 2023 , Heneghan et al. 2023 ).
y focusing on the individual-level processes determined by
raits, ecosystem models can mechanistically link functional
roups and environmental drivers. Moreover, applications of
rait data to global models that have synthesized zooplank-
on occurrence and biomass data lead to new insights into the
rivers of macroscale distribution of traits and the resulting
cosystem functions (Prowe et al. 2019 , Drago et al. 2022 ,
enedetti et al. 2023 ). 
Zooplankton trait data are also essential when building, pa-

ameterizing, and validating models. Traits help to simplify the
omplexity of ecosystems and facilitate the representation of
 broad range of organisms in mechanistic ecosystem models,
cross large ranges of traits and functional trait trade-offs (e.g.
rowe et al. 2019 , Heneghan et al. 2020 ). Trait-based model-
ng also improves the connection between the representation
f zooplankton physiology and biogeochemical processes, es-
ecially with regard to carbon cycling (Stemmann and Boss
012 , Renaud et al . 2018 , Serra-Pompei et al. 2022 ). Poor res-
lution of zooplankton traits in biogeochemical models has
een identified as the largest source of uncertainty in pro-
ections of climate impacts on the carbon cycle (Rohr et al.
023 ). Increasing the number of empirical trait values, there-
ore, is critical to improving parameterization and validation
f these models. Strategies to improve zooplankton represen-
ation in models include using functional types and contin-
ous trait distributions (e.g. Wright et al. 2021 , Clerc et al.
023 , Heneghan et al. 2023 ). 
Recent advancements in technologies and tools for sam-

ling, such as high-throughput sequencing, environmental
NA (eDNA), biochemical tracers, and advanced imaging

echniques, have significantly enhanced trait measurement ca-
abilities. These tools enable more comprehensive and near-
eal-time monitoring across zooplankton phyla, large size
anges, and gradients of trait distributions, likely at finer spa-
ial and temporal scales than previously possible (Martini
t al. 2021 ). Monitoring biodiversity using DNA metabar-
oding and eDNA-based techniques is valuable for assess-
ng species, especially by revealing the hidden biodiversity
or species richness. Associating biodiversity with trait dis-
ributions is possible but is limited by the reliability of the
pecies’ relative abundance estimates based on DNA reads.
hese molecular tools also allow sampling in a broader range
f habitats, especially in remote and seasonally ice-covered
reas that are not easily accessible by traditional net sam-
ling (Thomsen and Willerslev 2015 , Deiner et al. 2017 ,
acoursière-Roussel et al. 2018 ). Additionally, biochemical
racers, including stable isotopes and fatty acids, can provide
nformation for traits related to feeding behaviour and nutri-
ional quality and insights into dietary relationships and the
rophic roles of zooplankton in the food web (Laakmann and
uel 2010 , Visconti et al. 2018 ). 
Plankton imaging devices, similar to molecular approaches,

re becoming widespread and have a variety of technical
pproaches for sampling the full spectrum of plankton size
lasses (Romagnan et al. 2015 , Lombard et al. 2019 , Greer
t al. 2020 ). Many morphological traits that are difficult or
abour-intensive to quantify with microscopy can be measured
utomatically with in situ or benchtop imaging methods (Iris-
on et al. 2022 , Orenstein et al. 2022 ), albeit at the expense of
ower taxonomic resolution. For example, some morpholog-
cal traits can be directly measured on the images (e.g. size,
hape, colour, presence of elongations/spines), while others
an be inferred by the values of the measured traits and re-
ated to behavioural or physiological characteristics and the
ife stage category such as lipid content, gonadal maturity, and
eeding activity (Vilgrain et al. 2021 , Orenstein et al. 2022 ,

aps et al. 2024 ). In situ imaging systems can also produce
rait data at finer spatial scales ( ∼1–10 m) and overcome de-
ection biases due to the fragility of some zooplankton (Biard
t al. 2016 ), and are thus able to investigate habitat transition
ones that are difficult to capture with coarser traditional sam-
ling methods (Greer et al. 2015 , McManus et al. 2021 ). Imag-
ng systems can substantially reduce the cost and duration of
ata analysis, allowing the study of time series of morpho-
ogical traits over long time intervals or at a high frequency
Feuilloley et al. 2022 , Beck et al. 2023 ). 

rait data resources 

he use of trait-based approaches is facilitated by the ex-
ensive resources publicly available online for trait data col-
ection, curation, processing, and analysis. Extensive digiti-
ation efforts over the past decade have enabled the inte-
ration of historical data from original species descriptions,
esearch articles, and field studies into the compilation of
any organismal trait databases and several comprehensive
nline resources dedicated to the study of zooplankton traits
 Supplementary Table ). Some of the early databases with
ooplankton trait data have focused on copepods (Benedetti
t al. 2016 , Hébert et al. 2016b , Brun et al. 2017 , Razouls
t al. 2005–2024 ). Recently, these databases were harmo-
ized along with other datasets and publications to include
 broader range of zooplankton taxonomic groups and > 50
raits in the ‘Global Zooplankton Trait Database’ (Pata and
unt 2023 ). This harmonized database is focused on marine

pecies only and is mostly limited to holoplanktonic mesozoo-
lankton. Trait data for some meroplankton and micronekton
re available in other databases that do not explicitly focus on
ooplankton (Madin et al. 2016 , Gleiber et al. 2024 , Degen
nd Faulwetter 2019 , Faulwetter et al. 2014 ), while trait data
or freshwater zooplankton are stored in separate databases
Barnett et al. 2007 , Hébert et al. 2016b ). 

Although broader in scope, other valuable resources and
epositories of zooplankton trait data include the Ency-
lopedia of Life (EOL), TraitBank (Parr et al. 2016 ), the

arine Traits Portal of the World Register of Marine
pecies (WoRMS), SeaLifeBase, and the Global Biodiver-
ity Information Facility (GBIF). These resources primar-
ly focus on taxonomic information, but also contain de-
ailed entries for many zooplankton species with some
rait information and extensive occurrence data that can
e used to infer traits related to distribution and envi-
onmental preferences or to collate and incorporate trait
ata (Hébert et al. 2016a ). Moreover, several zooplank-
on trait resources can be extracted by consulting datasets
rchived among the main biodiversity and marine data portals
e.g. PANGAEA, OBIS). 

The development of comprehensive molecular databases
Wang et al. 2009 , Sayers et al. 2020 ) and repositories

https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsaf017#supplementary-data
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such as GenBank, Barcode of Life Data Systems (BOLD,
doi.org/10.17616/R3PP7J ) , and MetaZooGene Atlas and 

Database (Bucklin et al. 2021 , O’Brien et al. 2024 ) provide 
an additional source of taxonomic data that can be integrated 

with trait data and facilitate interspecies comparisons and the 
linkage of genetic information with phenotypic traits. Another 
emerging trait data resource is Ecotaxa ( https://ecotaxa.obs- 
vlfr.fr/), the largest database of sorted plankton images con- 
taining ∼450 million images, which is dedicated to the taxo- 
nomic identification of images of plankton and includes mea- 
surements of morphological traits (Picheral et al. 2017 ). 

Collectively, these resources support the advancement of 
trait-based research in zooplankton ecology by providing 
readily accessible information, courses, and documentation 

of FAIR data practices to researchers worldwide. The repos- 
itories also have implemented quality assurance (QA) and 

quality control (QC) measures to maintain high standards of 
data submission. Users collaborate through defined responsi- 
bilities shared among data providers, data curators, and re- 
viewers, and provide direct support and guidance to facili- 
tate data preparation and submission. This ensures rigorous 
QC through evaluation processes that may include pre-entry 
checks, formal criteria assessments, and content review. How- 
ever, trait data resources remain decentralized and widely dis- 
persed across the Web, which makes it challenging to de- 
velop robust information systems to aggregate and dissem- 
inate data according to FAIR principles. To date, there has 
been no specific online repository dedicated to zooplankton 

traits. Nevertheless, the Open Traits Network (OTN) repre- 
sents one of the major efforts to provide a centralized hub for 
trait-related data ( https://opentraits.org ). It includes a collec- 
tion of trait datasets, often specific to a particular taxonomic 
domain or biogeographic region, with some datasets includ- 
ing zooplankton taxa. Similarly, a catalogue of trait databases 
for a plethora of aquatic organisms, including zooplankton,
has been provided in Martini et al. (2021) . 

As more trait data become available, collaborative projects 
and initiatives are establishing standardized methods for pro- 
ducing FAIR trait data (Gallagher et al. 2015 , Schneider 
et al. 2019 , Keller et al. 2023 ). In recent years, particu- 
lar attention has been paid to addressing issues of hetero- 
geneity in terminologies of trait data in units or categori- 
cal variables by applying standardized definitions. One of 
the most important examples of improving the annotation,
standardization, and interoperability of trait data and meta- 
data is the Ecological Trait-data Standard (ETS) vocabulary 
(Schneider et al. 2019 ). The ETS vocabulary is a single re- 
source terminology that provides a starting point for the de- 
velopment of a common language and terminology around 

traits and trait-based research across disciplines. Specifically,
for zooplankton, the Zooplankton Trait Thesaurus ( https:// 
ecoportal.lifewatch.eu/ ontologies/ ZOOPLANKTRAITS ) was 
initiated to make zooplankton-related trait terminologies 
machine-readable and actionable, to ensure data consistency,
and to promote zooplankton data harmonization and in- 
tegration across studies. This resource provides standards 
mainly for morphological traits and is currently being im- 
proved and extended to include standards for physiolog- 
ical, behavioural, and life-history traits. Furthermore, this 
thesaurus has been merged with the Phytoplankton Trait 
Thesaurus (Rosati et al. 2017 ), the Macroalgae Trait The- 
saurus, and the Fish Trait Thesaurus in a unique resource: the 
Traits Thesaurus (https://www.doi.org/10.48373/sa6p-ta25). 
he ultimate goal of this Traits Thesaurus is to interact with
he ETS and to be linked and aligned with other existing bio-
iversity and trait data terminology initiatives within The Bio- 
iversity Information Standards ( https:// www.tdwg.org/ ). Es- 
ablishing clear trait definitions and semantically annotating 
rait terminologies with rich metadata using controlled vocab- 
laries is essential for standardizing traits and associated in- 
ormation, such as units of measurement, the location or envi-
onment where the trait was measured, the level of measure-
ent (e.g. individual or species), and the protocol or instru-
ent used. This limits confusion during data aggregation and 

llows for accommodating multiple trait records for a single 
pecies, which facilitates documenting intraspecific variation. 

Recently, the identification of zooplankton and the col- 
ection of trait-based measurements have seen significant 
dvances through the integration of image processing 
ipelines, machine learning applications, and various analyt- 
cal tools, Web services, and open-source code and software 
 Supplementary Table ). Among these, Ecotaxa is a valuable
xample of an interactive database that allows collaborative 
mage processing and classification according to a universal 
axonomy and machine learning techniques to automate the 
dentification process, thereby reducing manual effort and im- 
roving data consistency. Ecotaxa uses the UniEuk taxonomic 
ramework, which is based on curated molecular phylogenies 
nd has established new standards relevant to marine biodi- 
ersity image networks (Irisson et al. 2022 , Martin-Cabrera 
t al. 2022 ). Other openly available analytical services for zoo-
lankton trait data acquisition, processing, analysis, and mod- 
lling include The LifeWatch Data Explorer, Plankton Tool- 
ox, Plankton Identifier, Plankton Lifeform Extraction Tool,
nd Plankton Inversion Model ( Supplementary Table ). The 
oo and Phytoplankton EOV Product from the Blue-Cloud 

RE and the Plankton Genomics VLab are examples of Vir-
ual Lab (VLab) and VREs that promote e-Science and collab-
rative research ( Supplementary Table ). They do so through
latforms that provide integrated access to data, computa- 
ional resources, and analytical workflows for interpolating 
parse in situ measurements and modelling phytoplankton–
ooplankton interactions, and for in-depth assessment of 
lankton distributions by mining biomolecular, imaging, and 

nvironmental data. All of these data resources and Web ser-
ices have the potential to greatly motivate researchers to 

rganize, share, and use trait data, fostering the adoption 

f common protocols and analytical processes in accordance 
ith the FAIR principles. 

xisting c halleng es in z ooplankt on tr ait-based 

pproaches 

espite the growing interest in trait-based approaches in zoo- 
lankton ecology, their application in fundamental and gen- 
ralizable ecological research is limited by (i) data availabil-
ty, (ii) data FAIRness, and (iii) some inherent shortcomings 
nd uncertainties in recent implementations of trait-based ap- 
roaches. 

rait data availability 

here are significant gaps in the taxonomic coverage of zoo-
lankton trait information where most available data are 
xtracted from morphological information (e.g. size, shape,
ody mass) or categorical behavioural traits, with less avail-

https://ecotaxa.obs-vlfr.fr/
https://opentraits.org
https://ecoportal.lifewatch.eu/ontologies/ZOOPLANKTRAITS
https://www.tdwg.org/
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsaf017#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsaf017#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsaf017#supplementary-data
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ble information on physiological, biochemical, and life-
istory traits (Pata and Hunt 2023 ). The existing databases
ainly focus on crustaceans, with other taxa, such as pelagic

nidarians, ctenophores, and tunicates, largely absent. Impor-
ant zooplankton groups that need to be incorporated into or
inked with global zooplankton trait databases include mero-
lankton, microzooplankton, macrozooplankton, and fresh-
ater species. Additionally, several important traits, such as
rowth rates, clearance rates, reproduction frequency, vertical
igration, motility, and size at maturation, are largely missing

rom the available databases even for relatively well-studied
pecies. 

A strategy for resolving the gaps in trait data availability
s to use available data as proxies for the traits of interest or
stimating trait values through broad taxonomic generaliza-
ions, allometric scaling equations, or imputation (Litchman
t al. 2021 , Thorson et al. 2023 ). Standardization of these es-
imation procedures is necessary, with recommendations pro-
ided by de Bello et al. (2021) . The accuracy of these vari-
us methods in estimating zooplankton traits was found to
e strongly dependent on the number of existing trait records
Pata and Hunt 2023 ). Thus, acquiring new trait data is
ssential. 

It is not clear whether the limitations on zooplankton trait
ata’s findability and accessibility stem from actual gaps in
ata availability or from the scarcity of FAIR zooplankton
rait data. At the same time, zooplankton trait data that are
ot available in public open data repositories but are stored
n log books or on computer hard drives and discs in research
aboratories need to be identified, digitized, and uploaded to
ppropriate data repositories. Furthermore, trait data can also
e ‘hidden’ in publications that collect these data for other
urposes and are therefore not incorporated in trait databases.
owever, mining for all the hidden data would require ex-

ensive manual effort to harmonize the datasets and integrate
hem into trait data repositories. 

rait data FAIRness 

eyond the challenges in data availability, the majority of
vailable zooplankton trait data are decentralized, and, cur-
ently, there is no single access point or repository specifically
ailored for accessing zooplankton trait data and metadata. As
 result, many available data exist primarily as trait datasets
ttached to publications or uploaded to general-purpose data
epositories such as Figshare, Zenodo, ResearchGate, and
ata Dryad. Although these general-purpose repositories are
pen source and provide DOIs, they typically allow data to be
rchived with minimal standards for metadata documentation
nd data interoperability, resulting in variable tabular struc-
ures and labelling conventions for trait variables. Therefore,
hey often do not fully meet the requirements of FAIR prin-
iples. Beyond general-purpose data repositories, zooplank-
on trait data and metadata are also often scattered across
ultiple domain-specific repositories for marine and freshwa-

er systems ( Supplementary Table ) or available through insti-
utional websites and e-Science research infrastructure (e.g.
ifeW atch, Long T erm Ecological Research Network, Euro-
ean Marine Biological Resource Centre, European Multidis-
iplinary Seafloor and water column Observatory). In addi-
ion, FAIR data practices and data quality assurance mea-
urements are still not consistent across research data host-
ng centres and vary considerably depending on the reposi-
ory used (Kindling and Strecker 2022 ). Thus, the scattered
ata are complicated to extract and subsequently reuse. This
ssue is exacerbated by the occurrence of multiple parallel
nd concurrent efforts that may share the same objectives
ut employ their own approaches to data FAIRness and data
nd metadata quality assurance, resulting in differences in the
etadata schemas, data formats, standards used, and indi-

idual approaches to QA/QC assessment. Currently, the lack
f common agreement, linkage, and interoperability among
hese data resources underscores the urgent need for align-
ent and harmonization. Moreover, similar to the peer review
f research papers, research on the assessment and certifica-
ion of data repositories is needed to improve the value of data,
olicies, procedures, and services for data management and
haring. 

Another source of misunderstanding that limits data FAIR-
ess is, fundamentally, in the definition of what a trait is,
hich previous studies have attempted to constrain (Violle

t al. 2007 ). Trait-based approaches include a heterogeneity in
he sources of trait observations and in the level of biological
rganization in which traits were measured. Thus, practically,
cologists use varying, although closely related, definitions of
hat a trait is (Dawson et al. 2021 ). Beyond resolving the term

trait’, the terminologies and units of the traits themselves are
ontext-dependent and remain challenging to standardize and
ecode. 
In recent years, the DarwinCore (DwC) standard (Wiec-

orek et al. 2012 ) and DwC-Archive have gained popularity
or biodiversity data. However, the recommended data archi-
ecture was created with the intention of harmonizing occur-
ence data and does not provide standards for trait data. The
Ecological Trait-data Standard’ (ETS; Schneider et al. 2019 )
ddresses this gap, providing a vocabulary for trait datasets
ith essential terms such as ‘ trait name’, ‘trait value’, and

trait units’. The ETS, however, does not offer standardized
escriptions for trait names and units, which can be domain
pecific. There are currently a number of glossaries aimed at
tandardizing terminology and facilitating communication be-
ween trait-based research communities (e.g. Marine Species
raits, BIOTIC, ICES vocabulary, Ecotaxonomy). However, a
ommon problem is that many of these glossaries often lack
he ability to create linked data, as they do not provide Uni-
orm Resource Identifiers (URIs) for terms that are required to
onnect between different datasets and resources (Parr et al.
016 , Schneider et al. 2019 ). This limitation in interoperabil-
ty hinders their usefulness in automated systems and data
ntegration efforts and is further exacerbated by the lack of
lignment between the semantic resources mentioned previ-
usly. 
Another key challenge when integrating and ensuring the

AIRness of zooplankton trait data lies in the quality of the
etadata associated with the collected trait data, which can be
idely heterogeneous (e.g. various levels of taxonomic speci-
city, non-systematic information about the location and time
f sampling). Due to the rapid changes in marine environ-
ents caused by climate change, harmonized metadata are
eeded to evaluate and establish trait baselines, as well as to
rack the changes over time and to test their robustness. In
articular, the recurrent absence of spatial metadata for zoo-
lankton traits poses difficulties for understanding ecological
nd biogeographical patterns and limits the ability to relate
rait variations with environmental conditions. 

https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsaf017#supplementary-data
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Trait-based approaches 

Trait selection is limited by the amount of available informa- 
tion from literature and the cost of making new trait measure- 
ments. Reliance on analysing only the functional traits that 
are deemed to have sufficiently available information intro- 
duces a risk of oversimplification that may fail to capture the 
functional diversity or ecological process of interest. One out- 
come of this is focusing mainly on some easily measurable 
traits such as size, shape, and body mass (or biovolume), and 

putting less emphasis on behavioural or physiological traits,
which may require more detailed analyses and more specific 
equipment to obtain accurate and reliable trait data (Petchey 
and Gaston 2006 ). To address this, we recommend identify- 
ing the relevant traits a priori and explicitly linking these to 

the associated organismal or ecosystem processes of interest.
This approach is consistent with the work already undertaken 

within the Essential Ocean Variables (EOVs) and the Essential 
Biodiversity Variables (EBVs), which provide international co- 
ordination on best practices for observing and producing data 
(Muller-Karger et al. 2018 ). The EOV and EBV frameworks 
demonstrate the value of recommended and commonly agreed 

standards and protocols for data collection and management 
at the international level to ensure interoperability and inte- 
grability of data from local to global scales. Furthermore, since 
trait information could be derived from various levels of bi- 
ological organization, focusing only on taxonomic level trait 
values (e.g. using the same trait value for all individuals of 
the same species) will effectively miss the intrataxa variabil- 
ity. This presents a particular challenge when trait plasticity is 
ecologically relevant, whether from developmental changes in 

life history, regional variability in environmental conditions,
or from the long-term responses to environmental changes.
The appropriateness of trait records obtained from data com- 
pilations needs to be evaluated based on the ecological context 
for when the trait was measured, which are ideally provided 

by the metadata. This would be consistent with FAIR data 
practices necessary for utilizing trait data to address ecologi- 
cal questions. 

The selection of measured or applied traits can affect esti- 
mates and applications of trait data (de Bello et al. 2021 ). For 
practical reasons, researchers tend to focus on understanding 
the ecosystem effects of a single or a few traits. The use of a 
‘representative trait’ approach, often involving a single trait 
(i.e. size), may oversimplify the interpretation of these eco- 
logical aspects. For instance, recent work documenting mor- 
phological traits of mesozooplankton revealed that carbon 

export may be more influenced by body transparency (i.e.
more transparent individuals are often gelatinous) than by 
their size (Perhirin et al. 2024 ). Instead, measuring more traits 
may better represent the functional diversity and variation 

of the community (Maire et al. 2015 ), although measuring a 
large number of traits at different levels of ecological com- 
plexity quickly becomes impractical, requiring increased sam- 
pling effort and costs for analysis. Traits are, however, known 

to intersect in the organismal processes they capture and so 

identifying the commonalities between traits in the statisti- 
cal trait space (Vilgrain et al. 2021 ) would be useful for trait 
selection. 

Currently, the relationships between traits and associated 

ecological functions are poorly investigated and understood 

(Degen et al. 2018 ). Furthermore, the trade-offs between re- 
source acquisition and defence govern the diversity of commu- 
nities, as they allow the coexistence of many trait configura- 
ions with similar fitness (Hébert et al. 2017 ). The execution of
ny one of these functions, however, may conflict with the oth-
rs, as they cannot all be maximized simultaneously (Bremner 
t al. 2006 ). Thus, quantifying the risks and trade-offs asso-
iated with key traits is necessary to predict the morphology,
ehaviour, and physiology that optimizes the fitness of an or-
anism in any environment (Violle et al. 2007 ), which requires
ross-disciplinary investigations. 

Finally, an important challenge to address in zooplankton 

cology is understanding how zooplankton traits and pro- 
esses contribute to and interact within the overall food web,
rom virioplankton to large marine mammals. Other than 

ody size, there are traits that are common across trophic
roups (Litchman et al. 2021 ) and the use of these cross-
rophic level traits will stimulate trait-based research on entire 
cosystems (Martini et al. 2021 ). Moreover, it will be worth-
hile to learn from other ecological domains, such as terres-

rial plants, that may have led to the development of trait-
ased approaches in terms of trait data infrastructure, form- 
ng expert networks, and applying traits for predictive studies 
Green et al. 2022 ). 

utur e dir ections 

lthough trait-based approaches have been used in ecological 
esearch for some time, coordinated efforts in trait data 
ollection, harmonization, and analysis are needed to realize 
he full potential of zooplankton trait-based approaches.
roadly, future zooplankton trait-based research involves the 
eed to incorporate new sources of trait data and facilitate
ow trait-based studies utilize common standards, practices,
nd technologies for FAIR data to achieve a more cohesive
nd comprehensive understanding of zooplankton trait-based 

nowledge. We believe that several steps are necessary to 

oordinate and promote the collection and standardization of 
ooplankton trait data and the increase of FAIR zooplankton 

rait data ( Fig. 2 ). 

nabling zooplankton trait data findability and 

ccessibility 

ontinuing to collect zooplankton trait data from field and 

aboratory studies, as well as finding and synthesizing trait 
ecords from literature into existing databases, is an ongo- 
ng effort that will advance trait-based approaches. This pro- 
ess involves digitizing existing data and metadata, extract- 
ng information from papers and grey literature, and encour- 
ging potential data holders to standardize and share their 
ata in domain-specific repositories through persistent iden- 
ifiers (PIDs). It is essential to establish structured connections 
etween zooplankton data and related information through 

igh-quality and rich metadata. This includes detailed descrip- 
ions of the methodology, environmental conditions of the 
rait measurements, data provenance, and other relevant at- 
ributes. For image data, assigning a unique identifier to high-
esolution images will allow for potential revisions or addi- 
ions to the trait measurements. When publishing, it is crucial
o share data and metadata openly through domain-specific 
epositories rather than in supplementary materials, ensur- 
ng that the data and metadata have a PID. Additionally, the
ublished data need to be associated with a clear usage li-
ence. The high volume and diversity of trait data generated by
ifferent systems and research groups underscore the critical 
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Figure 2. Summary of next steps to achieve FAIRness in zooplankton trait-based research. Recommendations are listed thematically for next steps 
related to FAIR data practices, collaboration within the scientific community, methods in trait data analysis, and expanding trait data collection. Sources: 
Illustration of the UMCES research vessel, RV Rachel Carson , adapted from Tracey Saxby, Integration and Application Network 
( ian.umces.edu/media-library ), CC BY-SA 4.0. Zooplankton vectors adapted from Pata, P. (2023). Marine organism line art. 
https:// doi.org/ 10.5281/ zenodo.13685461 . 

i  

m
 

i  

f  

a  

t  

p  

k  

v  

o  

d  

t  

o  

a  

a  

o  

p  

f  

i  

m  

v  

D
ow

nloaded from
 https://academ

ic.oup.com
/icesjm

s/article/82/2/fsaf017/8042961 by guest on 08 July 2025
mportance of reproducible and platform-independent data
anagement strategies. 
To support these efforts, a dedicated data rescue work-

ng group should be established, potentially within the ICES
ramework, to facilitate connections and common practices
nd to provide technical support in adjusting existing data
o fit the structure of databases. The contributions of data
roviders to making data FAIR and harmonized must be ac-
nowledged, credited, and incentivized, thereby increasing the
alue of data reuse and promoting even more the adoption
f FAIR data management practices. Additionally, centralized
atabases such as the Plant Trait Database (TR Y, https://www .
ry-db.org/ de/ TabDetails.php ) and FishBase ( https://fishbase.
rg ) have demonstrated that providing accessible resources in
 single access point facilitates innovation in terrestrial plant
nd fish functional ecology. Since there is currently no specific
nline repository dedicated to zooplankton traits, the zoo-
lankton research community must decide on a suitable path
orward. Options include improving data FAIRness across ex-
sting repositories by aligning and standardizing FAIR data
anagement practices along the different repositories or de-

eloping a centralized trait database or data portal specific

https://doi.org/10.5281/zenodo.13685461
https://www.try-db.org/de/TabDetails.php
https://fishbase.org
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for zooplankton traits. A centralized platform has the poten- 
tial to benefit zooplankton ecologists by facilitating the find- 
ability , accessibility , and integration of zooplankton trait data 
into their studies. However, managing a centralized repository 
is challenging and requires consistent funding to remain oper- 
ational and ongoing investment in technical digital infrastruc- 
ture, staff, and user support to maintain their functionality.
Collaborations with digital research infrastructure, academic 
institutions, funding bodies, and data-sharing consortia can 

help ensure the long-term sustainability of the repository. 

Enabling zooplankton trait data interoperability 

Even if trait data are available in open data repositories, data 
interoperability seems to be the most challenging aspect, es- 
pecially among data generated by different devices and re- 
search groups (Bi et al. 2024 ). A critical first step in adhering 
to FAIR principles is the need for semantic and syntactic data 
standardization in zooplankton ecology. This includes stan- 
dardizing data and metadata from disparate trait data col- 
lection systems into interoperable and reusable formats and 

adopting widely used protocols and manuals for zooplank- 
ton trait measurements (e.g. Harris et al. 2000 ). For this rea- 
son, zooplankton ecologists must achieve a general agreement 
on the definitions of specific traits and how these are mea- 
sured. This would require developing agreed-upon trait ter- 
minologies and trait measurement protocols and the need for 
more Linked Open Data (LOD) for sharing machine-readable 
and actionable interlinked data on the Web. This should be 
achieved by the improved use of existing standards and con- 
trolled vocabularies for biodiversity and trait data annotation 

( Supplementary Table ). Although initial steps have been taken 

to include species traits as EBVs, and several datasheets, tem- 
plates, and guidelines for trait data collection have been pro- 
posed (Muller-Karger et al. 2018 ), progress is slow for inte- 
grating and operationalizing species traits in global monitor- 
ing. This is due partly to the challenges highlighted in this 
paper, such as the lack of a clear consensus on what is con- 
sidered a ‘trait’ and insufficient standardization of trait data 
and metadata from data providers. In this context, develop- 
ing tools to assist in aligning datasets to data templates and in 

mapping the measured traits to trait-based semantic resources 
remains a useful and ongoing task. These tools should include 
software for Web-based access to trait data and semantic Web 

standards. 
Pre-configured spreadsheet templates for capturing trait 

data may be an efficient way to identify and share a con- 
sistent structure and terminology extracted from controlled 

vocabularies (i.e. thesauri, ontologies) for trait data collec- 
tion that can be used in workflow analyses through Web ser- 
vices and Virtual Research Environments (VREs) . Similar 
initiatives already exist for occurrence data and phytoplank- 
ton trait data (i.e. PhytoplanktonData Template, https://www. 
phytovre.lifewatchitaly.eu/phyto- data- template/). For plank- 
ton imaging data management, best practices and recommen- 
dations have already been individuated among EMODnet Bi- 
ology, OBIS, and EurOBIS networks (Martin-Cabrera et al.
2022 ) and some specific data templates and standard termi- 
nologies have been suggested (De Pooter et al. 2017 ). How- 
ever, usually, data templates have limitations, as they can be 
restrictive, inflexible, and may not cover all possible scenarios 
exhaustively. An alternative approach is to use template gen- 
erators, such as The Nansen Legacy Template Generator for 
wC and CF-NetCDF ( Marsden and Schneider 2024 ), which 

nables the addition of terms such as the Climate and Fore-
asting convention standard names and DwC terms to spread- 
heets, allowing scientists to create semantically aware tem- 
lates without needing to understand the underlying technol- 
gy. Similar initiatives should be shared in the zooplankton 

ommunity to provide open source easily built templates with 

tandardized structures for trait data collection and acquisi- 
ion that is flexible enough to ideally contain the details re-
ated to the trait record (e.g. the prey type and concentrations
sed when measuring feeding rates). 
Although the use of data templates may be helpful in trait

ata harmonization, they have limited applications if data in- 
eroperability is weak. Therefore, there is a strong need to
dentify mappings among already existing trait-based seman- 
ic resources and align these resources. In this context, the
se of semantic technologies that promote automated ontol- 
gy matching approaches is a promising solution to the se-
antic heterogeneity problem. Moreover, trait-based termi- 
ologies included in glossaries and vocabularies with no URIs 
hould be assigned with URIs to facilitate the sharing and
euse of LOD on the Web. Thus, in the case of zooplank-
on data, providing the specific standardized definitions of 
raits and units through the Traits Thesaurus will enable an
utomated tool to extract relevant parameters from these di- 
erse data sources. It is essential that each type of measure-
ent is uniquely identifiable and accessible in a machine- 

eadable format. The list of possible traits is extensive, yet
any are seldom measured or recorded as continuous data,
ut rather as categorical descriptions. With regard to cate- 
orical traits, each value or level of a trait would require
tandardized definitions as well. As a result, there is an in-
reasing demand for domain-specific thesauri and ontologies 
ailored to address these limitations and improve annotation 

nd specificity, ensuring machine-readability and actionability.
hese actions, aligned with preexisting government-backed 

rameworks and product distribution initiatives, should re- 
ult as synergistic efforts for enhancing the information avail-
ble for existing EBVs. This would also facilitate inclusion 

f species traits as EBVs, particularly within the zooplankton 

omain. 

nabling zooplankton trait data reusability 

nce zooplankton trait data are findable, accessible, and inter- 
perable, it is essential to enhance their full reusability by doc-
menting the analytical workflow. This will ensure that zoo- 
lankton trait data are not only accessible but also reusable
n different analytical contexts, thus maximizing the value 
f the data collected. Since the handling and processing of
arge amounts of zooplankton trait data is difficult to per-
orm manually, the development of efficient tools for data in-
egration, analysis, and modelling, open-source codes, user- 
riendly Web services, workflows, and VREs specifically de- 
igned for zooplankton trait-based data analysis should be 
trongly encouraged by digital research infrastructure and IT 

evelopers. Reusability also includes the appropriate recog- 
ition of the data providers and preserving the history of
he PIDs linked to the data. Digital research infrastructure 
lays an important role in propagating good practices in data
se and citation through providing user interfaces and tools 
hat facilitate reusability. In plankton imaging, significant ad- 
ances in machine learning and computer vision algorithms 

https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsaf017#supplementary-data
https://www.phytovre.lifewatchitaly.eu/phyto-data-template/
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ave led to an immense increase in recorded data quantity
nd quality (Orenstein et al. 2022 ). These data are now part
f large-scale monitoring programmes, such as the Canadian
quaculture Monitoring Program (Finnis et al. 2023 ). Efforts
re underway to make these images and associated process-
ng algorithms available for broad-scale plankton analyses of
axa and functional traits (Picheral et al. 2017 , Drago et al.
022 , Dugenne et al. 2024 ), with initiatives such as iFDO
roviding standards and frameworks for FAIR marine images
 https:// marine-imaging.com/ fair/ ifdos/ iFDO-overview/ ). 

The promotion of open-source codes and software, work-
ows, and pipelines for data processing can support high-
hroughput data analyses, and various statistical and compu-
ational techniques and modelling, including machine learn-
ng, and enhance the scalability of research efforts. Dedicated
irtual zooplankton labs and VRE should be promoted as
ollaborative spaces where researchers can work together on
ooplankton trait data analysis, sharing tools, resources, and
ata, facilitating collaboration and knowledge sharing. In ad-
ition, incorporating more traits into models allows for multi-
latform analyses that comprehensively address trait-based
cological questions and improve predictive power. These
odels can simulate different ecological scenarios and help
redict the effects of environmental changes on zooplankton
ommunities. By implementing these strategies, the zooplank-
on community can augment the reusability of zooplankton
rait data, driving advances in ecological research and sup-
orting sustainable ecosystem management. 

ollaborating towards FAIR trait-based zooplankton 

esearch 

ll the steps previously stated depend heavily on support from
he institutions and digital research infrastructure that are rev-
lutionizing data management practices across a range of sci-
ntific disciplines. They are essential frameworks that facili-
ate the organization, storage, and dissemination of the vast
mounts of research data produced worldwide. However, the
ffectiveness of this infrastructure depends on the commit-
ent of individual researchers to be open and to improve the

AIRness of their own research, together with the support of
ata curators and data managers. The existing digital research
nfrastructure could play an important role in providing fund-
ng and professional support in maintaining data centres. In
he future, the funding, development, and promotion of a net-
ork of aligned physical and digital research infrastructure
ill be a major asset to the trait-based research community. 
Strengthening collaboration and networking in zooplank-

on research is the basis for integrating diverse expertise,
ethodologies, and data sources. Stronger networks and col-

aborative efforts will lead to improved data standardization,
nd more robust and accurate analytical processes and mod-
ls. Collaboration will be facilitated through forming working
roups to establish expert networks with the skills necessary
o navigate the complexities of FAIR data principles. Future
orking groups would need to solicit financial support speci-

ying the funds and labour necessary for data management. 
Encouraging the development of specialized programmes

hat integrate training in computer science, zooplankton ecol-
gy, and data management is also essential. These actions may
ave the potential to cultivate new professionals who have ex-
ertise in both ecological science and data management, fos-
ering dialogue and collaboration and ultimately advancing
esearch in both fields. Furthermore, implementing workshops
nd courses related to open science and zooplankton trait
ata management will facilitate the dissemination of FAIR
ooplankton trait data. These initiatives should be promoted
arly in scientific careers, even at the undergraduate level, and
ithin the framework of digital research infrastructure, which
lays a key role in enabling data-driven research by provid-

ng digital resources, tools, and Web services. Moreover, con-
ecting with and learning from experts in other domains of
cology, such as marine microbes, fishes, and terrestrial plants,
ho have more extensive experience in organizing trait data

nd applying trait-based approaches, would be helpful in ac-
uiring best practices for zooplankton ecology. 
Finally, incentives must be generated to foster a culture

f data sharing in the scientific community. Improving the
ay we attribute datasets in peer-reviewed research and aca-
emic evaluations is critical. Recognizing and rewarding data
haring efforts through proper citation and academic credit
an provide avenues for professional advancement for re-
earchers contributing their data to public repositories. By
reating datasets and data papers as research outputs on par
ith traditional publications, the scientific community can

oster a more collaborative and transparent research environ-
ent. Future trait data rescue and data standardization activ-

ties should consider how to promote the achievements of the
cientists generating the original trait data. 

The pathways forward are paved with FAIR data prac-
ices, and strengthening collaborations among the zooplank-
on research community with the existing FAIR initiatives and
rameworks is much needed. By adhering to FAIR principles
nd practices, trait-based approaches in zooplankton research
old significant promise for transforming trait data into ac-
ionable knowledge leading to a more holistic understanding
f the critical role of zooplankton in aquatic ecosystems and
iogeochemical cycles. Working towards establishing a con-
olidated network of trait data providers, stewards, and users
ill be key in promoting the benefits of FAIR data practices

nd in achieving the steps we outlined towards converting
raits to ecological insights. 
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