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Abstract  

Permafrost regions are thawing in the face of climate change. Permafrost thaw often 

entails greenhouse gas emissions and landscape changes within a formerly stable 

environment. One type of permafrost thaw feature are retrogressive thaw slumps (RTSs). 

The interest in RTSs is rising, because of their large impact on the surrounding landscape 

and the climate (Nesterova et al. 2024). To ease the scientific understanding and 

communication regarding the variability of RTSs, this work analysed diƯerent RTS 

properties. RTS spectral variability was the main focus, with the Pan-Arctic Visualization 

of Landscape Change (2003-2022) and Validation Dataset 2 as key resources.  Five study 

areas, each 10,000km2 large, are spread across Siberia. Each of them contains 10 

randomly located sub areas of 100km2. Each sub area contains known RTS outlines. The 

spectral slope (the average change of spectral index over a specific timeframe) of RTSs 

was compared between diƯerent study areas and, in addition, within the individual study 

areas. Moreover, single RTSs were classified regarding their terrain position and their 

morphology. RTSs within the same study areas and the same terrain position or 

morphology class were also compared regarding their spectral slope. The results show a 

clear variation regarding the spectral slope of diƯerent study areas, without any 

significant similarity.  While, on a smaller spatial scale, diƯerent sub areas within the 

same study area are predominantly heterogeneous, a few significant similarities in 

spectral slope have been found. And even single RTSs located within the same study area 

did not have a clear correlation between either terrain position or morphology and their 

spectral slope similarity. Additionally, hints of a connection between terrain position and 

RTS morphology have been observed. The majority of RTS within 4 out of 5 areas are 

located at the terrain position ’lake shore’, most of which exhibit a combined morphology 

including features of both thermocirque and thermoterrace RTS.  The key result of this 

study is that the spectral slope of RTSs is strongly variable, and a RTS similarity 

classification scheme was developed. This classification scheme has the potential to be 

modified for the comparison of other RTS properties as well. 
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1 Introduction  
The warming of the arctic is evident in hundreds of diƯerent changes in the polar 

landscape. Changes within the polar landscape diƯer in scale, shape, impact and 

recognition. This thesis discusses a specific thaw feature that is called retrogressive thaw 

slump (RTS) and only occurs in permafrost regions.   

RTSs generally are a type of slope failure (Mackay 1966). RTS formation requires two 

conditions: the permafrost needs to have a high ground ice content (Nesterova et al. 

2024; Mackay 1966) and the ground surface must be at a slope, often hillslope, where 

gentle slopes of <5° degrees are suƯicient (Leibman et al. 2023). An overview of terms 

used to describe the process of slope failure is described within table 2 of Nesterova et 

al. 2024.   

The first step of RTS formation is called genesis. Genesis starts when a trigger event (e.g. 

wildfires, anthropogenic actions (e.g. mining) or coastal erosion) induces a “Mass-

wasting on seasonal ice at the base of the active layer”  (Nesterova et al. 2024 p. 4802) 

(Cryogenic translational landslide (CTL) or Active layer detachment slide (ALD)). If the 

exposed ground ice is not covered by sediment and stabilized with vegetation regrowth, 

the ground ice remains exposed to warm air and solar radiation, which induces a “[m]ass-

wasting on massive ground ice” (Nesterova et al. 2024, p. 4802) called ALD or cryogenic 

earthflow. If this exposed ice is not covered with sediment and stabilized through 

vegetation regrowth, further melting of massive ground ice (or thawing of ice-rich 

permafrost) combined with denudational processes result in the formation of concave 

hollows. The term “massive ground ice” can describe diƯerent types of ice: buried glacial 

ice, thick ice layers, or large syngenetic ice wedges.  

These concave hollows manifest in three primary morphologies: thermocirque,  

thermoterrace and a combination of both (Nesterova et al. 2024). A schematic of RTS 

formation is presented in Figure 1.  
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Figure 1: Diagram of the theoretical concept of RTS formation and the resulting landforms. Reproduced with 

permission from Nesterova et al. 2024. 

Thermocirques can be described as amphitheatrical or cirque-like hollows opposed to 

thermoterraces that have a terrace-like or elongated shape (Nesterova et al. 2024). 

Thermoterraces often occur at shorelines and result from ice cliƯ retreat. Thermocirques 

are typically found at gullies, lake shores and river shores (Nesterova et al. 2024). Both 

thermocirques and thermoterraces follow the same development scheme, as discussed 

above. Sometimes the combination of both morphologies can be found.  

RTSs have four required morphological features as shown in Figure 2. Several other 

morphological features only occur in some RTSs depending on their local characteristics. 

The four essential parts for RTSs are the headwall (“A steep retreating wall consisting of 

ablating ice and frozen sediments at the back of the RTS”), the slump floor (the “area of 

the hollow’s bottom”, that is low angle to horizontal), the mudflow ( “The meltwater 

stream that carries thawed viscous sediment material downslope across and out of the 

slump floor”) and the edge ( “The boundary line of the headwall or entire landform”) 

(Nesterova et al. 2024 p. 4792). 
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Triggers for RTS formation are saturation of the active layer, fires, bank or coastal erosion, 

extreme climate events, anthropogenic activities or earthquakes. The two main 

conditions for the formation of RTSs are (hill-)slope and ground ice content, but many 

other factors also influence RTS development. To list only a few of them: the aspect and 

the major relief partly condition the amount of rainfall and absorbed solar radiation and 

therefore the seasonal thaw depth and water saturation of the active layer, which 

influences the mass-wasting. The slope angle and the soil cohesion (influenced e.g. by 

soil micro structure) influence the speed of the mass-movement. The terrain position, 

defined as direct spatial and physical proximity to a large terrain feature such as lakes or 

rivers, strongly impacts processes of the RTS development such as abrasion of the lower 

edge. Other parameters that influence the RTS formation include average ground 

temperature and type of vegetation. To summarize: the geographical setting strongly 

impacts RTS formation and development.  

RTSs have a high impact on the topography of the landscape, the features can be up to 

several tens of meters deep and the extent can reach several tens of hectares (Nesterova 

et al. 2024). The number and the size of these features are rising. Moreover, the 

disturbance of the vegetation harms the ecosystem and large amounts of sediments, 

carbon, nutrients and, in some cases, contaminants are mobilized. These changes 

influence the geochemical fluxes, increase the ratio of released CO2 and impact the 

hydrology and water quality (Nesterova et al. 2024). Due to their enormous impacts the 

research interest in RTSs is rising. One of the challenges is getting an accurate 

understanding of the highly variable characteristics of RTSs (Nesterova et al. 2024). To 

Figure 2: Essential Parts of RTSs: (1) Headwall, (2) Slump floor, 
(3) Mudflow, (4) Edge.  Image reproduced with permission from 
(Nesterova et al. 2024), modified. 



 

8 
 

contribute to this important field and to deepen the understanding of RTSs, this work 

investigates the variability of retrogressive thaw slumps across Siberia. 

1.1 Retrogressive thaw slumps in Siberia 

Siberia, the largest and most northern part of Russia, surrounds nearly half of the Arctic 

Ocean. Its vast majority counts as permafrost which is defined as ground that stays at or 

below 0°C for at least two years in a row (Shur et al. 2011). According to Obu et al. 2018 

most of Siberia is underlain by continuous permafrost (90-100 % of the area is permafrost) 

and according to Jones et al. 2022 a high percentage of the area has a high or medium 

ground ice content (10% to >20% ice content). The high chance for ground ice and the 

huge area makes Siberia the perfect place to look into the variability of RTSs, the high 

ground ice content increases the probability of the appearance of retrogressive thaw 

slumps and the huge area contains diƯerent geographical settings that most probably 

increase the variability.  

This study looks at five diƯerent regions (Southern Taymyr, Northern Olenek, Chokurdakh, 

Iultinsky (Chukotka) and Southern Verkhoyansk Range) that are spread wide across 

Siberia, visible on the map 

(Figure 3). Each area is 

10,000 km2 large and 

contains 10 randomly 

located sub-areas that 

each are 100km2 large. 

The rising interest in RTSs 

and the lack of knowledge 

about their variability in 

their appearance and 

characteristics raises 

questions. What kind of parameters vary between RTSs? Are there patterns? How much 

do they vary? Are there linear relationships between varying parameters and components 

of the geographical setting?   

Parameters that could be varying and are therefore interesting to look at are e.g. temporal 

Figure 3: Overview of the study areas. Each yellow square is 10,000 km2 large. 
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dynamics (headwall retreat, change in size and numbers, link to air temperature or fires), 

volume change, spectral variability (spectral slope = average change of spectral index 

over specific timeframe) and morphometrical parameters (e.g. size, height of headwall, 

length-width ratio). In the context of this study, the spectral slope appears to be the most 

promising observable since it combines multiple types of information into three diƯerent 

indices which can clearly identify landscape changes within RTSs. The main hypothesis 

is supplemented with multiple sub-hypothesis to structure the research. 

 

Main hypothesis Retrogressive thaw slumps within the study areas show 

diƯerences in one or more parameters.  

Sub-hypothesis 1 The combined spectral slope of the RTSs in one area is never the 

same as the combined spectral slope of the RTSs in any of the 

other areas.  

Sub-hypothesis 2 The spectral slope of all the RTSs in one selected sub-area is never 

the same as the spectral slope of all the RTSs in any of the other 

sub-areas within the same main area.  

Sub-hypothesis 3 The spectral slope of single RTSs that are located in a certain 

terrain position is always the same as the spectral slope of single 

RTSs that are located at the same terrain position within the same 

main area.  

Sub-hypothesis 4 The spectral slope of single RTSs that have a certain morphology 

is always the same as the spectral slope of single RTSs that have 

the same morphology within the same main area. 

 

1.2 Description of the data 

Multiple datasets have been combined in this study. While some datasets revealed 

landscape changes over time, others provided information on features and their 

location. 
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1.2.1 Validation Dataset 2 

Nina Nesterova (orcid.org/0000-0001-7055-9852) is the contact person for Validation 

Dataset 2 used in Nitze et al. 2024a. The geographic extent comprises eight diƯerent areas 

of central and eastern Siberia, each site is approx. 10,000km² large and contains 10 

randomly located 100km² squares. Within each square the outlines of all RTSs have been 

manually mapped, drawn with a 5-meter buƯer, by Emma Schütt (overview is shown in 

Figure 4). Only the areas 1,2,3,4 and 6 contain RTSs and therefore only these areas are 

included in this study.  

Figure 4: Validation dataset 2. 5 main areas, such as (a) Northern Olenek, located in various positions across Siberia 

contain (b) 10 randomly located sub areas with (c-e) individual thaw slump features mapped out by Emma Schütt. 

1.2.2 Pan-Arctic Visualization of Landscape Change (2003-2022) 

The Pan-Arctic Visualization of Landscape Change (2003-2022), also referred to as ALEX 

dataset, from Nitze et al. 2024b is based on Fraser et al. 2014; Nitze, Grosse 2016. The 

contact person is Ingmar Nitze (orcid.org/0000-0002-1165-6852). The extend of the data 

is pan-arctic, images of the satellites: Landsat-5 TM, Landsat-7 ETM+, and Landsat-8 OLI 

were used to detect landscape changes, the spatial resolution of one pixel is 30m x 30m, 

the temporal coverage spans from 2003-07-01 to 2022-08-31. The data shows spectral 

information on land surface changes in form of tasseled cap index derivatives of wetness 

(“TCW_slope”), greenness(“TCG_slope”) and brightness(“TCB_slope”). Each Pixel 

contains one value per tasseled cap index. The data is provided by the Alfred Wegener 

Institute Helmholtz Centre for Polar and Marine Research.  



 

11 
 

Each of the tasseled cap indices has an associated spectral slope, where ‘slope’ refers to 

a linear trend, fitted through the tasseled cap index value calculated on annually 

aggregated data (Nitze, Grosse 2016). The change of the spectral information recorded 

over 20 years of time is summarized in one value per property and pixel, for each of the 

raster cells. The three slope type values are represented in their corresponding colour 

shown in Figure 5. The colour shows if there was an increase or 

decrease of one or more slope types happening for each cell. 

Since there are several ways of how e.g. a trend of increasing 

brightness can appear in a landscape each of the colours that 

can emerge by mixing red, green and blue can be the result of 

several processes of the landscape. Importantly, the dataset 

only shows how the landscape changed not what the change 

was induced or controlled by.  

RTSs are slope failure features with the essential characteristic of containing a headwall 

(Nesterova et al. 2024). The headwall and parts of the slump floor, called scar zone, are 

transitioning from vegetation to dark wet surfaces. Those parts appear blue in the ALEX 

dataset, since the melting ice increases the wetness. The slump floor is often shown 

colourful compared to the surrounding landscape. The colour depends on the intensity of 

diƯerent change processes. Orange and yellow colours show stabilizing RTS parts, that 

change from muddy surface to vegetation.  Figure 6 displays a selection of diƯerent RTSs 

and how they appear within the ALEX dataset. Notice that the area that got eroded during 

the observation period, including the headwall, is always shown in blue. The combination 

of having only one value per pixel that includes multiple types of information and the fact 

that RTSs should be clearly visible due to their nature of altering the surface makes the 

ALEX dataset perfect for looking at spectral variability and temporal dynamics of RTSs.  

Figure 5: Colourmap of 
spectral slope data. The 
colour of each image pixel is 
determined by the relative 
strength of all three tasseled 
cap index slopes at this point. 

Figure 6: RTS appearance in the ALEX dataset. Example RTS from the Chokurdakh region show how diƯerent RTSs can 
appear in terms of the spectral slope. 
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1.2.3 Esri World Imagery Map 

Esri World Imagery Map (Esri, Maxar, Earthstar Geographics, and the GIS User 

Community). The layer World Imagery was used, which includes one meter or better 

satellite and aerial imagery in many parts of the world and lower resolution satellite 

imagery worldwide. The single images are regularly updated (typically max. 3-5 years old). 

The data is provided and managed by Esri. A table including the citations of each image 

used can be found in the appendix (Appendix C1, Table 3).  

1.2.4 JRC Global Surface Water Mapping Layers 

The JRC Global Surface Water Mapping Layers, v1.4 (Pekel et al. 2016) dataset was 

generated using scenes from Landsat 5, 7, and 8 acquired between 16 March 1984 and 

31 December 2021. The spatial resolution is 30 m. The dataset has seven diƯerent bands 

that include information on the presence of water: changes in occurrence, seasonality 

and persistence. The data is provided by EC JRC/Google. In this work the layers 

occurrence, seasonality, and change_abs were used. 

1.2.5 Global Shoreline Dataset 

The Global Shoreline Dataset (Sayre et al. 2019) was commissioned by the Group on Earth 

Observations. The product is a Global Shoreline Vector (GCV) with 30-m spatial 

resolution, developed from annual composites of 2014 Landsat satellite imagery. The 

GSV separates terrestrial (land) from marine environments (sea). Three separate layers 

indicate: continental mainland, islands greater than 1 km2, and islands smaller than 1 

km2. The last update of the data set was on 2020-05-08. In this work only the mainland 

polygon layer was used. 

1.2.6 Lake Dataset   

The currently unpublished Lake Dataset from Ingmar Nitze (orcid.org/0000-0002-1165-

6852) is a product with a spatial resolution of 30 meters. It is created by using satellite 

data of Landsat 5, 7 and 8 and the methodology of Nitze et al. 2017; Nitze et al. 2018. The 

temporal coverage includes the years 2000 to 2020. A pan-arctic extend is planned for the 

dataset. The actual version comprises 20 diƯerent attributes of which geometry is the one 

that is important for this work.   
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2 Methods  
The analysis was performed in a Google Colaboratory Notebook (03.11.2024 - 12.01.2025 

Version 1.1.0 (Colaboratory-team 2023); 13.01.2025 – 15.03.2025 Version 1.2.0 

(Colaboratory-team 2024)) and in a QGIS 3.34 Prizren (QGIS Development Team 2023) 

environment. The Google Colaboratory Notebook code is attached as an appendix 

(Appendix D). Several toolboxes were used, the “ee” and the “geemap” (Wu 2020) toolbox 

were part of the key tools. Details of the analysis are presented with respect to the (sub-) 

hypothesis that they relate to. 

2.1 Comparison of cumulative RTS spectral slopes between study areas 

To compare the cumulative spectral slope between diƯerent areas (sub-hypothesis 1), 

histograms that contain all RTS data for each region were calculated. First, the ALEX 

dataset (section 1.2.2) was loaded as image collection and the Validation Dataset 2 

(section 1.2.1) data was loaded as feature collections containing RTS outline geometries. 

The data extraction and preparation workflow are summarized in Figure 7. The rescaling 

step in Figure 7d was necessary, because the data was stored as 8 bit integers (numbers 

from 0 to 255) and had to be restored to the original range of -0.12 to 0.12. It is important 

to use the correct values for the plots to show more intuitively that half of the range shows 

a decrease (-0.12 to 0) and half of it shows an increase (0 to 0.12) of the spectral index in 

the observed time. Considering the spatial resolution (30 m x 30 m per pixel) of the data, 

the histogram frequency axis can be rescaled to area (m2) by multiplication with 900. 

To view the data within their geographical context and to compare diƯerences in spectral 

slope between the areas the histograms were visualized on a map (Figure 11 in results). 

The map is projected using the Russia Polar Stereographic coordinate system (EPSG: 

5940) and overlaid with a WGS 84 graticule for orientation. Additionally, a violine plot of 

the same data (Figure 12) shows the five distributions for a simplified comparison.  
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Figure 7: Workflow for calculating histograms that contain all RTS data for each region. (a) Selection of relevant 

Alex images per region. (b) Creation of one ImageCollection per area with ALEX data that is clipped to the polygon 

geometry of the RTSs. (c) Creation of one GeoDataframe (gdf) per area. (Only an excerpt of the data frame is shown.) 

(d) Rescaling of the data to the range in which it was originally measured. (Only an excerpt of the data frame is shown.) 

(e) Calculation of cumulative spectral slope histogram per area. (The small histograms contain the same axis labels 

as the larger one.) 

In a second step, the significance of diƯerences in spectral slope was validated using 

statistical analysis. The normality of all groups (i.e., one group constitutes of all values of 

one spectral slope type from one area) was assessed using both, the Shapiro-Wilk test 

and the Anderson-Darling test. These tests were chosen because they diƯer in sensitivity 
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to deviations from normality: the Shapiro-Wilk test is more powerful, while the Anderson-

Darling test pays more attention to the tails of the distribution (Mohd Razali, Nornadiah 

and Yap, Bee 2011). Since normality was not necessarily given, the Kruskal-Wallis test 

was used as a non-parametric alternative to ANOVA to evaluate whether the groups 

originated from the same distribution. This test determines diƯerences in the 

distributions of the groups by comparing their ranked values rather than their means, with 

the null hypothesis stating that all groups follow the same distribution (McDonald 2014). 

Finally, a post-hoc Dunn-Bonferroni test was performed to conduct multiple pairwise 

comparisons and identify which groups significantly diƯered from each other, while 

controlling for the family-wise error rate. This adjustment is necessary to reduce the 

likelihood of Type I errors that arise when conducting multiple statistical tests. (McDonald 

2014). The null hypothesis for the Dunn-Bonferroni test states that there is no diƯerence 

between the compared groups. Only the results of the last statistical test (Dunn-

Bonferroni) are shown in section 3.1, results, visualized as heat map (Figure 13), since the 

results of the statistical tests are based on each other. 

2.2 Spectral slope comparison within study areas 

To analyse whether the sub areas within one main area show significant diƯerences 

regarding spectral slope (sub-hypothesis 2), another statistical analysis was performed.  

The analysis was conducted two times: one time with all values that are included in each 

RTS geometry of each sub area. Another time where each RTS geometry had a 5 m inward 

buƯer applied, to cancel out the 5 m buƯer that was added to each RTS geometry during 

the data collection (see section 1.2.1). This was done to reduce the signal from values in 

the RTS polygon buƯer areas, which aren’t part of the RTS themselves. 

The statistical test routine was the same as the one for sub-hypothesis 1 (section 2.1). 

With the exception that only the more powerful Shapiro-Wilk-test was used to test for 

normal distribution and that, in this case, a group consists of all values of one spectral 

slope type from one sub area.  

The significant diƯerences between the groups were classified using the classification of 

similarity shown in Figure 8. The classes span from highly heterogeneous (the sub area is 

dissimilar to all other sub areas) to highly homogeneous (the sub area is similar to all 
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other sub areas). In between, there are the classes heterogeneous and homogeneous (the 

sub area is dissimilar resp. similar to most other sub areas).  The classification of the 

single sub areas was done according to the scheme shown in Figure 9.   

The resulting pie charts were visualized in an overview map to place them into 

geographical context. The map (Figure 14) is shown in the Russia Polar Stereographic 

coordinate system (EPSG: 5940) projection and is overlaid with a WGS 84 graticule for 

orientation.  

Definition of similarity classes: 

Similarity classes describe the proportion of similar vs. dissimilar 

central tendencies of the spectral slope of sub areas (sub areas within 

the same main area were pairwise compared). 

 

Figure 8: Classification scheme of spectral slope similarity. Applied after carrying out pairwise comparisons using 

the Dunns-test to simplify the interpretation of the results. 
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Figure 9: Workflow for similarity classification. (a) Comparing one sub area (e.g. sub area 7) with all other sub areas 

(e.g. sub areas 8,9,2,5) within the same main area (e.g. Northern Olenek) using statistical tests. (b) The results of the 

pairwise comparison are recorded in a matrix, which is investigated row by row (e.g. row 3 corresponding to sub-area 

7). The fraction of rejected null hypothesis (the compared sub-areas show a significant similarity), ignoring the self-

comparison, is expressed as percentage and classified using the classification scheme of Figure 8. (c) The classification 

summary is displayed as one pie chart per main area. 

2.3 Terrain position and spectral slope similarity  

To conduct an analysis regarding similarities of spectral slope of those RTSs which are 

both within the same main area and located at the same terrain position (sub-hypothesis 

3), a new dictionary is needed. This dictionary should include data frames containing the 

spectral slope data per RTS and link these to the terrain position (TP) of each RTS. To 

create this dictionary, the spectral slope data from the geodata frames of sub-hypothesis 

1 was divided into individual RTS data frames and supplemented with the terrain position 

of each RTS, as well as the RTS geometry. Both terrain positions and RTS geometry were 

taken from other datasets, as outlined below. 
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Within this work, terrain positions were sorted into the categories lake shore, sea shore, 

river shore and gully. Out of necessity, an additional TP class for the combination of 

ponds+gullies was introduced in the course of the analysis. Classification was performed 

by comparison with the mainland polygons layer from the Global Shoreline Dataset 

(section 1.2.5) and the Lake Dataset (section 1.2.6).  

Sea shore category RTSs were found by overlaying the mainland polygon with the RTS 

outline polygons and identifying those RTS polygons that are not fully contained in any of 

the mainland polygons. Since the purpose of the mainland polygon is to separate land 

and sea, polygons that include more than land need to be located at the sea shore. Figure 

10a is a good example of a sea shore (TP class 1) RTS. 

Lake shore RTSs (TP class 2) were identified by looking for intersections in between RTS 

geometries and the geometry of lakes. Figure 10b is an excellent example for a lake shore 

RTS. 

The classes river (TP class 3) and gully (TP class 4) had to be assigned by hand because of 

a lack of available Siberian river and gully datasets. The intermediate result dataframes 

were imported into QGIS, where each un-categorized RTS was investigated individually. 

Reference layers that aided the TP class assignment were Esri World Imagery Map (1.2.3) 

and the layers occurrence, seasonality and change_abs from the JRC Global Surface 

Water Mapping Layers (1.2.4). Esri world imagery helped to identify evident features such 

as gullies or lakes.  

The JRC Global Surface Water Mapping Layers aided with decisions involving unclear 

waterbody shores and to assess the waterbody impact in general. Waterbody impact may 

have occurred in the past if an RTS used to be located at the shore of a currently drained 

lake. Indicators for waterbody impact are if the RTS is close to where water frequently 

occurred in the time from 1984 to 2021 (JRC occurrence layer, scale 0 to 100%), and if the 

layer change_abs indicates a strong absolute change in water occurrence in between two 

timespans (1984-1999 vs 2000-2021, scale -100% to 100%) close to the RTS position. 

Both options indicate that the RTS at said drained lake shore was strongly impacted by 

the lake shore in the past and therefore a lake shore (TP class 2) assignment would be 

appropriate. An image of such a TP class 2 assignment is presented in Figure 10c. 
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The guidelines for the individual class assignments were: 

-  RTSs that predominantly overlap with one terrain position feature are assigned to 

that TP class  

- RTSs that predominantly follow the outlines of a terrain position feature are 

assigned to that TP class. 

In the course of analysis, the classification scheme had to be expanded to include all 

striking TP features. Several RTSs were observed close to ponds which were connected to 

gullies. Since these RTS could be classified neither as lake nor as gully, a new TP class 6: 

“pond + gully” was created (see example RTS in Figure 10d). All TP classes are shown in 

Table 1. Fully categorized datasets were returned to the Google Colaboratory Notebook 

for further analysis.  

The geometries of the RTS polygons in the TP data 

frames were used to divide the spectral slope data of 

the buƯer corrected geodata frames of sub-hypothesis 

2 (section 2.2) into new RTS specific data frames. The 

dataset included the TP class and the main area from 

which the RTS originated. This dataset enabled the 

analysis of all RTS belonging to each TP class, for each main area. The analysis was 

performed similar to that of sub-hypothesis 1 and 2. DiƯerent from the analysis of sub-

hypothesis 1, only the more powerful Shapiro-Wilk-test was used to test for normal 

distribution and, this time, a group consisted of all values of one spectral slope type from 

one RTS.  The results were p-value matrixes that show if RTSs within the same main area 

and the same TP class show significant similarities. The matrixes were classified 

according to their similarity with the classification workflow shown in Figure 9, with the 

diƯerence, that this time the classification applied to RTSs instead of sub areas.  

The results are hierarchical, with more layers of complexity than a normal pie chart can 

visualise. An alternative is the multilayered plot called ‘sunburst chart’. Starting from the 

broadest category, the first layer of the plot represents a standard pie chart. The next layer 

of detail represents the contents of the first layer pie slices, and so forth. The python 

package plotly.express (Kruchten, N., Seier, A., Parmer, C. 2024) was used for sunburst 

charts in this work. It is important to note that certain constraints apply to data accepted 

Table 1: Classes of terrain positions 
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by sunburst plots. For example, it is mandatory to convert the percentages of the 

similarity classes to proportional count values such that every pie piece has the right 

dimension. The numbers visible in the charts (for example of Figure 17) are nevertheless 

the original percentages. This conversion inherently suƯers from a rounding uncertainty, 

since the percentages are rounded to 0 decimal places in the first step, and the count 

numbers derived from the percentages are rounded again. The uncertainty varies for each 

pie piece of the plot, depending on the corresponding count value.  The formulas and error 

tables for the conversion of percentages to count can be found in the appendix (Appendix 

C5).  

 

Figure 10: Examples for TP classification. The black outlines are the geometry of the RTSs, the background colours 

correspond to the terrain type. (a) Example sea shoreline where the RTS polygon is not fully covered by the mainland 

polygon, resulting in TP class 1 assignment. (b) Example lake shoreline where the RTS polygon and the lake polygon are 

overlapping. This RTS is assigned to TP class 2. (c) Manual assignment example 1: this RTS is located far from the current 

water level of the lake, however, both the occurrence and change_abs layers of the JRC Global Surface Water Mapping 

Layers show the proximity of the water body in the past. The previous proximity to the lake implies a strong impact of the 

lake in the RTS development. This RTS is assigned to TP class 2. (d) Manual assignment example 2:  this RTS is located 

at a small pond, which is connected to a gully. Since the RTS is neither located at a lake nor directly at a gully the TP 

class 6 ‘pond + gully’ was created. This RTS is assigned to TP class 6. 

2.4 Morphology and spectral slope similarity 

To investigate the similarities of RTS spectral slopes within the same main area and 

containing the same RTS morphology (sub-hypothesis 4), the dictionary used for the 

terrain position analysis above was expanded. In addition to the TP class and the RTS 

geometry, information on the morphology was needed. Consequentially, each slump had 

their morphology class assigned manually in QGIS. Possible classes are: thermocirque, 

thermoterrace and the combination of both, as described in (Nesterova et al. 2024), see 

Figure 1. Layers that were used for the assessment were the basemap: Esri World Imagery 

Map (1.2.3) and the geometry of the RTS layers (1.2.1) themselves. The extended data 

frames were imported back to the Google Colaboratory Notebook. The geometry of the 



 

21 
 

RTS polygons in the morphology/TP data frames were used to divide the spectral slope 

data of the geodata frames of sub-hypothesis 2 (the ones that include the 5 m inward 

buƯer) into new RTS specific data frames. The morphology class, the TP class and the 

main area from which the RTS originates were included in the RTS data frame names. 

From this point forward, the analysis followed that of sub-hypothesis 3, with the 

diƯerence that morphology was considered instead of the terrain position. Again, the 

statistical analysis was followed by similarity classification and, finally, the data was 

presented in sunburst charts. The formulas and error tables for the conversion of 

percentages to count during the sunburst chart visualization can be found in the appendix 

(Appendix C5). The manually created terrain position and morphology data frames are 

stored at the Alfred Wegener Institute, section Permafrost, group Permafrost Remote 

Sensing, and are available upon request.  
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3 Results 
To aid readability, the sub-chapters of the results section follow the order of the sub-

hypothesis, similar to the methods section above. Therefore, the results presented in 

section 3.1 are the result of the methods described in section 2.1, and so on. 

3.1 Comparison of cumulative RTS spectral slope between study areas 

To compare the spectral properties and spatial relationships of the five study areas, the 

cumulative spectral slope histograms are plotted on a map of Siberia in Figure 11. From 

visual inspection, the distributions of the slope types shown in the histograms vary 

between the study areas regardless of the distance of the areas towards each other. The 

peak of the greenness distribution of the area Southern Verkhoyansk Range (outlined on 

the map with an orange frame) shows the highest spectral slope decrease. For the area 

Chokurdakh (outlined on map with a purple frame) all three distributions are quite centred 

on top of each other but diƯer in height. The other three areas: Southern Taymyr (outlined 

on the map with a blue frame), Northern Olenek (turquoise frame) and Iultinsky (pink 

frame) all show diƯerences in the height of the distribution peaks and its centres.  

Figure 11: Cumulative spectral slope and spatial relationship of all study areas. The outline colour of each 
histogram corresponds to the outline colour of the corresponding area. 
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To ease the comparison of the individual distributions, they are presented in Figure 12 as 

a violine plot. Evidently, no two spectra are exactly alike. However, there are some 

features that appear in multiple spectra. 

There is some consistency in that only slope type greenness (‘TCG_slope’) shows a 

double peak. The double peak feature is observed strongly in three out of five distributions 

(the greenness for the areas Southern Taymyr, Northern Olenek and Iultinsky), while the 

other two have elongated tails. The greenness (‘TCG_slope’) distributions for Chokurdakh 

and Southern Verkhoyansk Range have a mean value below zero, indicating that there is 

a net reduction of greenness in these regions in the observed timeframe.  

The distributions of brightness (‘TCB_slope’) tend to be flatter and longer than those of 

wetness (‘TCW_slope’). The distributions of Southern Verkhoyansk Range for brightness 

and wetness are noticeably shorter than those of the other areas. The area of Southern 

Verkhoyansk Range that is aƯected by RTSs is very small. The elongated distribution of 

Southern Verkhoyansk Range greenness must have strong outliers in the limited sample 

set. In general, wetness distributions tend to be narrower.  

 

Figure 12: Violine plot showing the spectral slope types of each study area. The x-axis shows the diƯerent spectral 

slope types, the abbreviations TCB, TCW and TCG stand for the term tasseled cap index of brightness, wetness or 

greenness.  The distributions shown in the plot are not normalized and are based on diƯerent sample sizes.  

The results of a Dunn-Bonferroni pairwise area comparison is presented in Figure 13. The 

null hypothesis of the Dunn-Bonferroni test is that the compared areas are similar to each 

other. Yellow fields of Figure 13 correspond to p-values that exceed the significance level 
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on 0.05 (don’t reject the null hypothesis). Since none of the oƯ-diagonal terms exceed the 

significance level, the alternate hypothesis must be accepted: there is a diƯerence 

between all the compared areas. Consequentially, the spectral slopes between the main 

areas are significantly diƯerent and sub-hypothesis 1 cannot be rejected. 

3.2 Spectral slope comparison within study areas 

The process described in section 2.2 leads to a classification of the similarity of spectral 

slopes, classified by the scale presented in Figure 8. A convenient visualisation of the 

fraction of similar/dissimilar spectral slopes is to plot a pie chart of the similarity classes. 

Figure 14 shows an overview of the spatial relationships between such pie charts of the 

Figure 13: Heatmap of the Results of the Dunn-Bonferroni test. P-values that exceed the significant level of 0.05 are 
shown in yellow. None of the oƯ-diagonal terms exceed the significance threshold. The diagonal terms are self-
comparisons of areas that don’t contribute valuable information on similarity. 
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distribution of sub area similarity classes for each main area.   

If sub-hypothesis 2, all sub areas are dissimilar to all other sub areas, would be 

completely true, all pie charts would be coloured dark purple and classified as highly 

heterogeneous. Every pie chart contains a fraction of sub areas that are classified as 

highly heterogeneous but, at the same time, each pie chart also contains at least one 

other class. Therefore, sub hypothesis 2 can be neither rejected nor accepted. This is why 

sub-hypothesis 2 is only partially rejected. The spectral slopes of the sub areas (within a 

region) are mostly diƯerent, the classes highly heterogeneous and heterogeneous 

combined always make up more than 50% of the pie, but there is always some similarity 

between some of the sub areas. The amount of similarity varies a lot. Northern Olenek 

and southern Taymyr include sub areas which are both homogeneous and highly 

homogeneous. Iultinsky (Chukotka) includes the largest percentage of sub areas that 

were classified as homogeneous. And Chokurdakh and Southern Verkhoyansk Range 

only include sub areas of the similarity classes heterogeneous (a sub area is dissimilar to 

most other sub areas) and highly heterogeneous. 

 

Figure 14 Similarity class pie charts vs. study area location. The outline colour of each pie chart corresponds to the 

outline colour of the area which is shown the pie chart.  
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One aspect to consider in a similarity inspection is that the RTS geometries were recorded 

with a 5 m buƯer. Including non-RTS areas may influence the similarity analysis. Figure 15 

shows the results of an identical analysis with an additional 5 m inward buƯer to 

compensate the original buƯer. Slight changes are observed for two of the five areas, 

compared to Figure 14. For Iultinsky the percentage of highly heterogeneous decreased 

by 4% while the percentage of heterogeneous increased by 13%. The percentage of 

homogeneous decreased by 9%. In Southern Taymyr the percentages of highly 

homogeneous and of highly heterogeneous stayed the same, while heterogeneous 

decreased by 10% and homogeneous increased by 10%. A more detailed analysis of the 

impact of the 5 m buƯer on the RTS area can be found in the Appendix C3.  

 

Figure 15 Similarity class pie charts with 5 m inward buƯer vs. study area location. The outline colour of each pie 

chart corresponds to the outline colour of the area which is shown the pie chart. Note that the sum of the percentages 

may exceed 100% due to rounding errors. 

3.3 Terrain position and spectral slope similarity 

The creation of the new data frames that contain the geometry and the terrain position of 

each RTS (see section 2.3) made it possible to investigate the fractions of RTSs located 

close to the terrain positions of the study areas.  
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The pie charts of Figure 16 show that the majority for the RTSs in Southern Taymyr (98%), 

Northern Olenek (70%) and Chokurdakh (70%) belong to the terrain position class lake 

shore. In Iultinsky lake shores are the TP for 46% of the RTS which is the largest pie piece 

for that area. Southern Verkhoyansk Range is the only area where lake shores don’t make 

up the largest pie piece, taking second place with 22%. This shows that lake shores are, 

in general, the dominant TP.  

River shore is a terrain position that is also included in all five study areas. Southern 

Taymyr has the smallest portion with 2%, Iultinsky the second smallest with 7%, followed 

by Northern Olenek with 8%. 21% of the RTSs in Chokurdakh are located at river shores 

and in Southern Verkhoyansk Range river shores are the majority the terrain position with 

67%. Gullies were found as terrain positions for the areas: Northern Olenek, Chokurdakh, 

Iultinsky and Southern Verkhoyansk Range, with fractions between 8% and 11%. Iultinsky 

was the only study area in which RTSs with the TP Pond + Gully were found.  

The sub-hypothesis 3 states that: the spectral slope of single RTSs that are located at a 

certain terrain position are always the same as the spectral slope of single RTSs that are 

located at the same terrain position within the same main area. If this would be 

completely true, all of the RTS should be classified as highly homogeneous (yellow), 

Figure 16: Pie charts of the terrain position percentage for each area. The colour of the pie pieces corresponds to 
the terrain position.  
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indicating that the RTS is similar to all other RTS located at the same terrain position (a 

modification of the classification scheme in Figure 8).   

Sunburst charts, such as Figure 17 to Figure 21 below, are visualisations of hierarchical 

data. The central circle represents 100% of the RTSs of one area and is labelled with the 

study area name and the total number of RTSs of that area. The next ring is divided into 

segments corresponding to the fraction of the RTSs contained in each TP class, similar to 

a standard pie chart. The segments are labelled with the name of their TP class and the 

number of RTSs which are associated with them. The outermost ring shows the 

distribution of similarity classes within each TP class. The colour scheme follows a 

hierarchical blending approach. The outermost ring is coloured in colours that 

correspond to the similarity classes (see legend of plots). The colours of the second ring 

(the ones of the TP class) are the proportionally mixed colours of the outermost ring 

(based on the size of the similarity classes). The colour of the central circle results from a 

proportional blend of the TP class colours.  

Figure 17 is a sunburst chart of similarity classes corresponding to RTS terrain positions 

for the study area Northern Olenek. The blending approach of the colour code reveals at 

first glance that Northern Olenek does not show much similarity between RTSs within the 

same TP. The single TP classes are either coloured grey (neutral) or in light blue 

(heterogenous range) colours. The central circle combines the similarity information in 

the weighted colour mixing scheme and indicates that the RTSs at the same TP within 

Northern Olenek are mostly heterogeneous. A closer look shows that the TP classes lake, 

river and sea are mostly heterogeneous. Only the TP class gully is homogeneous as largest 

similarity class (42%) but the classes heterogeneous (33%) and highly heterogeneous 

(25%) combined shift the TP class back into the heterogeneous part of the scale. This can 

be seen from the blue colour of the gully segment.  
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Figure 17: Sunburst chart of Northern Olenek, showing the similarity classes corresponding to the terrain 

positions. The outermost ring shows the similarity class proportions of each TP. The second ring shows the fraction of 

RTSs that belong to each TP, the number of RTSs of that fraction is displayed. The central circle contains the total number 

of RTSs that are found in this area. The colour scheme follows a hierarchical blending approach. The initial colours are 

those of the similarity classes shown in the outermost ring. The meaning of the colours is shown in the legend. The TPs 

lake, river and sea are mostly heterogeneous (66%, 100%, 71%). The TP gully has a dominant similarity class of 42% 

homogenous which is overshadowed by the combination of 33% heterogeneous and 25% highly heterogeneous. In 

total, the RTS with similar TP in Northern Olenek are slightly heterogeneous regarding their spectral slope similarity. 

The sunburst chart of similarity classes corresponding to terrain positions for the study 

area Southern Taymyr is illustrated in Figure 18. The blending approach of the colour code 

in the central circle reveals that Southern Taymyr leans slightly towards homogeneous in 

total. However, Southern Taymyr has only one TP class that contains more than one RTS, 

which is a requirement for the similarity classification. This TP class is lake shore and is 

coloured in light yellow (slightly homogeneous). The TP class river contains just a single 

RTS and is left unclassified as a result. A detailed examination of the TP class lake shows 

that the similarity class highly homogenous (1%) and homogeneous (56%) are weighed 

up against 43% heterogeneous, underlining that the lake shore RTSs of Southern Taymyr 

are slightly homogeneous in total. 
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Figure 18: Sunburst chart of Southern Taymyr, showing the similarity classes corresponding to the terrain 

positions. The majority of RTSs located at Southern Taymyr’s only TP class lake are in the similarity class homogeneous 

(56%). The TP class river contains only a single RTS and is therefore excluded from the similarity classification. 

In Figure 19, the sunburst chart of similarity classes corresponding to terrain positions for 

study area Southern Verkhoyansk Range is displayed. The first important diƯerence, 

compared to the other study areas, is that this area contains only 9 RTSs. The blending 

approach of the colour code shows at first glance that Southern Verkhoyansk Range 

shows very little similarity between RTSs within the same TP. The single TP classes are 

either coloured in blue (heterogeneous range) or in purple (highly heterogeneous range) 

colours. The central circle combines the similarity information for the whole area, it is also 

coloured light purple, which shows that the entire area is highly heterogeneous and nearly 

no similarity between the RTSs located at the same TP was found. Examining the TP 

classes in greater detail reveals that lake includes only two RTSs which have no similarity 

to each other in any of the spectral slope types, which results in the classification of 100% 

highly heterogeneous. The TP class river includes 6 RTSs, this TP class is dominated by 

the similarity class highly heterogeneous (39%) but the inclusion of 33% homogeneous 

and 28% heterogeneous keeps the river segment from turning purple.  
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Figure 19 Sunburst chart of Southern Verkhoyansk Range, showing the similarity classes corresponding to the 

terrain positions. Southern Verkhoyansk Range is dominated by the similarity class highly heterogeneous (100% of 

lake and 39% of river). The three bands of the spectral slope types of each RTS are compared individually between RTSs 

of the same TP. This, for example, leads to 18 comparisons for the 6 RTSs of TP class river and subsequently percentages 

of 33% homogeneous, 28% heterogeneous and 39% highly heterogeneous. The TP gully contains only a single RTS and 

is therefore excluded from the similarity classification. In total, the spectral slopes of the RTS of Southern Verkhoyansk 

Range are highly heterogeneous within their individual terrain positions. 

Figure 20 shows the sunburst chart of similarity classes corresponding to terrain positions 

for the study area Chokurdakh. One notable aspect regarding this area is that the 

implementation of the 5 m inwards buƯer resulted in one RTS polygon becoming so small 

that no spectral slope data could be assigned to it anymore. (This occurred because the 

ALEX dataset has a spatial resolution of 30 m, while the polygons width was reduced to 8 

m.) The lost RTS is not included in any TP class since it can’t take part in the spectral slope 

analysis. The blending approach of the colour code reveals at first glance that the RTSs 

within Chokurdakh are slightly homogeneous (very light yellow central circle). The TP 

classes are either coloured in blue (heterogeneous range), in very light yellow 

(homogeneous range), or in yellow (highly heterogeneous range). A closer look shows that 

the TP class lake is dominated by the similarity class heterogeneous (73%) while river is 

dominated by homogeneous (69%), and gully is dominated by highly homogeneous (61%) 

combined with 33% homogeneous. The lake class contains 69% of the RTS in this area 

(43 lake RTS versus 6 gully and 13 river RTSs), resulting in a very small general similarity 

for the entire area. The TP class gully of this area is the first TP class that shows a strong 

RTS similarity (highly homogeneous).  
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Figure 20: Sunburst chart of Chokurdakh, showing the similarity classes corresponding to the terrain positions. 

The TP class lake dominates the area Chokurdakh. 73% of lake are heterogeneous which results from about half of the 

similarity comparisons of the whole area. The very homogeneous TP class gully has a strong impact on the average 

similarity of RTSs at the same TP, which is why the average is slightly homogeneous.  

In Figure 21, the sunburst chart of similarity classes corresponding to terrain positions for 

study area Iultinsky is displayed. The blending approach of the colour code shows at first 

glance that Iultinsky shows a little similarity between RTSs within the same TP. The TP 

classes are either coloured light blue (heterogeneous range) or in yellow (homogeneous 

and highly homogenerous range). The central circle combines the similarity information 

for the whole area, it is also coloured light yellow, which shows that the homogeneous 

classes are dominant. A detailed examination of the TP class lake reveals that it is 

dominated by the similarity class homogeneous (76%), while 21% of the lake RTS were 

classified as highly homogeneous and only 2% were classified as heterogeneous. The 

other yellow TP class is Pond + Gully, of which 70% were classified as homogeneous, 18% 

as highly homogeneous and 12% as heterogeneous. The other TP classes (Sea, Gully and 

River) are all dominated by the similarity class heterogeneous.  
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Figure 21: Sunburst chart of Iultinsky (Chukotka), showing the similarity classes corresponding to the terrain 

positions. The area Iultinsky shows in general the similarity class homogeneous for RTS within the TPs lake and pond 

(+gully). The TP classes sea, river and gully are dominated by the similarity class heterogeneous. Overall homogeneous 

outweighs heterogeneous. 

To conclude: most RTSs within the same terrain position and the same main area are not 

very similar towards each other, except for Iultinsky. Because not all areas show an overall 

homogeneity, sub-hypothesis 3 needs to be rejected. 

3.4 Morphology and spectral slope similarity 

The extension of the terrain position data frames towards containing morphology 

information of each RTS (see section 2.4) made it possible to visualize the fraction of RTS 

per morphology for each study area. The three available morphology classes are 

thermocirque, thermoterrace, and the combination of both (see Figure 1). 

The pie charts of Figure 22 show that the morphology class ‘combination’ dominates the 

RTSs in Southern Taymyr (70%), Northern Olenek (75%), Chokurdakh (51%) and Iultinsky 

(57%). Southern Verkhoyansk Range is the only area where the morphology thermocirque 

is dominating (67%), but it also contains a relevant fraction of the morphology class 

combination (22%).   

Thermocirques also appear in each of the study areas but with very diƯerent amounts (6% 

in Northern Olenek to 67% in Southern Verkhoyansk Rang). The percentage of 

thermoterrace varies for the study areas Northern Olenek, Chokurdakh, Iultinsky and 

Southern Verkhoyansk Range from 7% to 33%.   
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The sub-hypothesis 4 states that the spectral slope of single RTSs that have a certain 

morphology is always the same as the spectral slope of single RTSs that have the same 

morphology within the same main area. If this would be completely true, the following 

plots (Figure 23 to Figure 27) would all be coloured completely yellow because yellow is 

the colour that represents the class highly homogeneous and the definition of highly 

homogeneous and sub-hypothesis 4 are basically the same (highly homogeneous: “the 

sub area is similar to all other sub areas” whereas sub area in this case is replaced with 

RTSs that have the same morphology.)  

The setup of the sunburst charts (Figure 23 to Figure 27) is the same as the one for the 

sunburst charts of sub-hypothesis 3, the only diƯerence is that the TP classes are 

replaced with the morphologies. 

Figure 23 shows the sunburst chart of similarity classes corresponding to RTS morphology 

for the study area Iultinsky. The blending approach of the colour code reveals at first 

glance that RTSs with the same morphology in Iultinsky show similarity. In fact, all three 

morphology classes and the center circle are coloured yellow (homogeneous range). A 

closer look shows that all morphology classes are dominated by the similarity class 

homogeneous (thermocirque 73%, thermoterrace 50%, combination 70%). The similarity 

Figure 22 Pie charts of percentages of morphology types for each area. The colour of the pie pieces corresponds to 
the terrain position 
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class highly homogeneous is also represented in all morphology classes (thermocirque 

13%, thermoterrace 25%, combination 11%). And the similarity class heterogeneous is 

also present in all morphology classes (thermocirque 17%, thermoterrace 25%, 

combination 17%).  

 

Figure 23: Sunburst chart of Iultinsky (Chukotka), showing the similarity classes corresponding to morphology. 

The dominant similarity class of Iultinsky is homogeneous (thermocirque 73%, thermoterrace 50%, combination 70%). 

The similarity classes highly homogeneous and heterogeneous are also present in each morphology class. The average 

similarity for the whole area is homogeneous.  

Figure 24 presents the sunburst chart of similarity classes corresponding to RTS 

morphology for study area Chokurdakh. The implementation of the 5m inwards buƯer 

resulted in one RTS polygon becoming so small, that no spectral slope data could be 

assigned to it anymore. The lost RTS is not included in any morphology class since it can’t 

take part in the spectral slope analysis. The blending approach of the colour code shows 

at first glance that in Chokurdakh RTSs with the same morphology are balanced, neither 

the class homogeneous nor heterogeneous predominates.. Examining the morphology 

classes in greater detail shows that thermoterrace and combination are both mostly 

heterogeneous (thermoterrace 52%, combination 70%). The morphology class 

thermocirque, however, is mostly homogeneous (57%) and, additionally, even contains 

the similarity class highly homogeneous (27%).  
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Figure 24: Sunburst chart of Chokurdakh, showing the similarity classes corresponding to morphology. In 

Chokurdakh, the morphology classes thermoterrace and combination have the similarity class heterogeneous 

(thermoterrace 52%, combination 70%) as largest component. Whereas the largest similarity class within the 

morphology class thermocirque is homogeneous (57%). Overall, no similarity class predominates this area.  

In Figure 25, the sunburst chart of similarity classes corresponding to morphology for 

study area Southern Verkhoyansk Range is displayed. The central circle combines the 

similarity information for the entire area and is coloured light purple, indicating that the 

heterogeneity classes are dominant. A detailed examination of the morphology classes 

reveals that the class combination (100% highly heterogeneous) contains only two RTSs 

which have no similarity to each other in any of the spectral slope types. The morphology 

class thermocirque contains the similarity classes heterogeneous (67%), homogeneous 

has 22% and highly heterogeneous 11%.  

Figure 25: Sunburst chart of Southern Verkhoyansk Range, showing the similarity classes corresponding to 

morphology. Southern Verkhoyansk Range only includes 9 RTSs. The dominating morphology is thermocirque, of which 



 

37 
 

67% is classified as heterogeneous. The morphology ‘combination’ is classified as highly heterogeneous (100%).  In 

total, the RTS of the region are highly heterogeneous within their morphology classes. The morphology thermoterrace 

contains only a single RTS and is therefore excluded from the similarity classification. 

The sunburst chart of similarity classes corresponding to RTS morphology for the study 

area Southern Taymyr is illustrated in Figure 26. In this study area, there is no predominant 

similarity class between RTSs with the same morphology. A closer look shows that the 

largest similarity class within the morphology class thermocirque is homogeneous (62%). 

On the other hand, the largest similarity class for the morphology class combination is 

heterogeneous (61%), followed be the similarity class homogeneous (39%). 

 

Figure 26: Sunburst chart of Southern Taymyr, showing the similarity classes corresponding to morphology. 

Southern Taymyr includes the two morphology classes thermocirque (62% homogeneous) and ‘combination’ (61% 

heterogenous). In total, there are more RTS associated with combination (70%) than with thermocirque, such that on 

average the RTS within their respective morphology classes are heterogeneous. The slight predominance of 

heterogeneity is negligible, and the entire area can be considered balanced.  

Figure 27 shows the sunburst chart of similarity classes corresponding to morphology for 

the study area Northern Olenek. In this study area, RTS are slightly heterogeneous within 

their morphology. Examining the morphology classes in greater detail shows that 

thermoterrace and combination are dominated by the similarity class heterogeneous 

(combination 68%, thermoterrace 83%). The morphology class thermocirque, on the 

other hand, has the equal similarity classes homogeneous (44%) and highly 

heterogeneous (44%), with an additional component in the similarity class highly 

homogeneous (11%). 
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Figure 27: Sunburst chart of Northern Olenek, showing the similarity classes corresponding to morphology. The 

largest fraction of RTSs are in the morphology class combination. 68% of the RTS within this morphology are 

heterogeneous. The second largest section of the plot represents the morphology thermoterrace which is also mostly 

heterogeneous (83%). In total, the RTS of Northern Olenek are heterogeneous within their morphology class. 

To conclude: most RTSs with the same morphology and within the same main area are not 

very similar towards each other. But there are exceptions, notably Iultinsky (Chukotka), 

where the RTS spectral slope is mostly homogeneous. Since only one area is 

homogeneous on average, sub-hypothesis 4 needs to be rejected.  

3.5 Exploratory insight: terrain position and morphology combinations 

A result that emerged during the data analysis, but is not central to this work, are the 

combinations of the TPs and the morphologies of the RTSs. An interactive sunburst chart 

representing this dataset can be found at https://zenodo.org/records/15041293 (Heitz 

2025). The html file can be downloaded and opened in a local browser. A static 

representation of the plot is shown in Figure 28 for reference. The reader is encouraged to 

explore the rich dataset by themselves. 

While most RTSs located at the terrain positions lake and sea have a combination 

morphology, most RTSs located at the TPs gully and pond + gully have a thermocirque 

morphology. The morphology of RTSs located at rivers varies strongly between the study 

areas. A common morphology for RTS at rivers could not be identified.  The observation 

that most terrain positions exhibit a specific morphology more frequently than others 
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supports the theory that terrain position and morphology may be linked. For example, the 

terrain position could influence erosion and thereby impact the RTS morphology. 

 

Figure 28: Screenshot of the interactive sunburst chart that shows the combinations of terrain positions and 

morphologies for the RTSs of each study area. Please find an interactive rendition of this dataset at 

https://zenodo.org/records/15041293 (Heitz 2025). Click on the single study areas or terrain positions to see a close up 

of a section with adapted fonts for better readability. Hovering over a section reveals additional information, such as the 

parameter “count” which contains the information on how many RTSs make up that section. The reader is strongly 

encouraged to experience the richness of the dataset for themselves. 
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4 Discussion 
The goal of this work is to gain new insights on the variability of RTSs in Siberia. The 

explored parameters are spectral variability, particularly the spectral slope of tasseled 

cap indices, the terrain positions and the morphologies. The discussion is organized 

around several external parameters, with each section following a structure similar to that 

of the methods (section 2) and results (section 3), grouped into comparisons between 

RTS at diƯerent levels of spatial detail. 

4.1 Impact of a 5 m inward buƯer towards the RTS polygons 

The analysis of the comparison of the spectral slope of the sub areas was conducted two 

times, one time including all values of each RTS geometry. Another time with a 5 m inward 

buƯer applied to each RTS geometry (see section 2.2). This inward buƯer counteracted a 

5 m buƯer applied to each RTS during the initial mapping. One would expect that merging 

data from the buƯer areas with the data from the RTS themselves, incorporating the initial 

5 m buƯer, might change the outcome. The comparison of the results (Figure 14 and 

Figure 15, section 3.2) show the impact of the 5 m buƯer on the spectral slope similarity 

in three of the five areas. When the buƯer area is removed in Southern Taymyr, the spectral 

slope similarity becomes more homogeneous. The area Iultinsky shows a strong change 

in the similarity class distribution (decrease of highly heterogeneous and of 

homogeneous and increase of heterogeneous). In contrast, the results in Northern 

Olenek remain mostly stable, with only a minor change in one similarity class. Further 

analysis shows, that the area within the 5 m buƯer zone can reach over 60% of the total 

area of one RTS, depending on its individual size and geometry. A detailed analysis of how 

much of the initial RTS geometry area is actually part of the buƯer is presented in Appendix 

C3.   

Since the results of the statistical analysis is influenced by the inclusion of spectral slope 

values from the buƯer regions, that aren’t part of the RTS themselves, all following 

analyses have been performed with buƯer-corrected RTS geometries (sub-hypothesis 3 

and 4). 
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4.2 Spectral slope trends 

Figure 12 of section 3.1 is a violin plot of the cumulative spectral slope (net increase or 

decrease over time) of each area, for each of the tasseled cap indices. The strongest 

changes are observed for the greenness index of Southern Taymyr, Northern Olenek and 

Iultinsky. All three areas experience increased greenness, which could suggest a 

stabilisation of the majority of the RTS areas since a stabilisation comes along with 

vegetation growth. The stabilisation mechanism is described in C.R. Burn and P.A. Friele 

1989. In short, if the meltwater disappears, the mudflow stops. Non-moving and nutrient 

rich mud promotes vegetation growth. The mean values for the other spectral slope types 

(brightness and wetness), on the other hand, experience no significant changes in the 

observed time frame. This is somewhat surprising, if the increase in greenness is indeed 

a sign for stabilisation. During the stabilisation process, the wetness and brightness 

indices should decrease due to less melt water availability, less mud movement and the 

connected vegetation growth.  

Southern Verkhoyansk Range, on the other hand, shows an increase of brightness and a 

decrease of greenness. These changes could indicate a new disruption of the vegetation 

that could be the result of the reinitialization (polycyclic nature) of the RTSs. The very small 

increase in wetness, however, does not support this theory. A reinitialization would be the 

result of further melting of massive ground ice which would increase the wetness index of 

the RTSs when new melt water/mud streams form. Moreover, the means of the spectral 

slope distributions of Southern Verkhoyansk Range show only minor changes, compared 

to the means of the other areas. The spectral slope distributions of the Chokurdakh area 

are very similar to those of Southern Verkhoyansk Range.  

The comparison of spectral slopes of single RTSs located within one area, either with 

respect to shared terrain position (sub-hypothesis 3) or shared morphology (sub-

hypothesis 4) is informative as well. On the surface, the result of both analyses is, that 

neither the terrain position nor the morphology directly impact or relate to the RTS 

spectral slope similarities. Therefore, sub-hypothesis 3 and 4 (cf. Table 2) are rejected.  

However, it appears that the spectral slope similarity trend across all areas is similar for 

both the TP and the morphology analyses. If an area shows a lot of similarity (e.g. 

Iultinsky), a medium amount of similarity (e.g. Chokurdakh) or nearly no similarity (e.g. 
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Southern Verkhoyansk Range), it will do so in both analyses. This parallel behaviour can 

have several reasons, one could be that the terrain position and the morphology might be 

strongly linked to each other. A strong link in between terrain position and morphology 

could, for example, exist for the terrain types gully and pond+gully. Both of these terrain 

positions appear strongly related to the morphology thermocirque. Possibly, there could 

be process based relation, e.g. erosion, between the terrain positions and the 

morphologies.  

Another explanation for such a link may be human error in the RTS mapping process. It 

might be, that areas with higher similarity scores contained more precisely drawn RTS 

polygons. Inspection of Validation Dataset 2 revealed that the 5m buƯer, that was applied 

to each polygon, was added with varying generosity, examples can be observed in 

Appendix C6, Figure 34. This mismatch impacts the spectral slope data and, therefore, 

the similarity of the spectral slope data. The area that shows the most similarity between 

the RTSs for both the TP and the morphology is Iultinsky. This is also the area where the 5 

m inward buƯer shows the strongest eƯect per RTS polygon. 49% of the RTSs in the 

Iultinsky area lose more than 20% of their area due to the buƯer (see Appendix C3). Such 

a large proportion of buƯer area has a strong eƯect on the similarity analysis through 

wrongly included values.  

4.3 Range of variation in spectral slope, terrain position and morphology  

In general, the parameters spectral slope, terrain position and morphology span a large 

range. The spectral slope of one RTS compared to another can take all values from 

completely similar to not similar at all (divided into 4 diƯerent similarity classes by 

definition, see Figure 8). However, not all of the study areas have similarity values across 

the full range within one terrain position or morphology class. Some classes show only 

one or two similarity classes. Examples are the terrain position class lake of Southern 

Verkhoyansk Range, which is 100% highly heterogeneous, or the morphology class 

thermoterrace of Chokurdakh, which only includes the similarity classes homogeneous 

(48%) and heterogeneous (52%). 

The terrain positions exhibit a high variability as well. All five TP classes appear together 

only once in the study area Iultinsky. In contrast, the smallest amount of TP classes is 
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found in Southern Taymyr with lake and river. A special finding is that the TP class pond + 

gully is found only in the study area Iultinsky (see section 3.3).  

In contrast, all study areas except for Southern Taymyr contain RTSs of all three 

morphology classes. Southern Taymyr has RTSs in only two morphology classes. 

4.4 RTS spectral slope versus geographical setting 

The structure of validation dataset 2 (section 1.2.1), with study areas spread across the 

entirety of Siberia (e.g. see Figure 11) suggests that there might be a geographical 

dependence of the spectral slope. Indeed, one might expect that the geographical setting, 

including local climate, influences the thawing of permafrost and RTS formation. The 

investigation of combined spectral slopes accumulated over each study area, such as 

presented in Figure 11, relate to sub-hypothesis 1: if indeed the geographical position 

influences the spectral slope the combined spectral slope of the study areas located in 

vastly diƯerent environments should share no similarity with one another. 

Further evidence for a geographical influence on the spectral slope may be found in the 

parallel results for morphology and terrain positions dependent spectral slope analysis 

(section 4.2). Since both morphology and terrain position are part of the geographical 

setting, similar results for each of the areas may indicate a link. 

The influence of the geographical setting might appear in the relationship between the 

mean spectral slope of the study areas compared to the geospatial position (latitude resp. 

longitude), since the geospatial position is an important aspect of the geographical 

setting. The plots of the mean spectral slope versus geospatial position are found as 

Figure 31 and Figure 32 in Appendix C4 However, the spectral slope means of the areas 

are uncorrelated with both latitude and longitude. On the one hand, this lack of 

correlation could indicate no relation between the combined spectral slope and the 

geographical setting. On the other hand, the assumed relationship between geospatial 

position and geographical setting may be highly oversimplified. Indeed, since the 

geographical setting includes many more parameters that should be strongly linked to 

RTS initiation and development, the assumption cannot be considered disproven. Some 

examples of relevant parameters are: ice content, ice development/history, deposit 

type/soils and local geology.    
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5 Conclusion and Outlook 
Within this study, it has been shown that the RTS in multiple study areas across Siberia 

are very variable. The spectral slope of three tasseled cap indices, recorded over a period 

of 20 years, was the observed variable. The RTS spectral slopes have been compared with 

one another within the study areas, as well as, correlated with other RTS properties terrain 

position and RTS morphology. Additionally, the combined spectral slopes of the study 

areas have been compared. 

Indeed, the RTS within this study have been found to be highly variable across all 

parameters. Therefore, the main hypothesis is accepted (cf. Table 2).  

To quantify the variability, a similarity classifier with a four-step scale (highly 

heterogeneous, heterogeneous, homogeneous and highly homogeneous) based on 

statistical comparison of spectral slope values has been introduced. This classification 

scheme enabled the statistical similarity analysis of RTS on diƯering spatial scale. No 

significant similarities were found comparing the combined spectral slope of the diƯerent 

main areas. A simple geospatial correlation was not found either. Therefore, sub-

hypothesis 1 was accepted. The lack of significant similarity in cross-study-area results 

indicates that the spectral slope variability on this scale overshadows similarity trends or 

patterns.  

Comparisons of the combined spectral slope of sub-areas within the main areas 

supported the hypothesis of high variability of sub-area combined spectral slope within 

the main areas. However, since a few significant correlations could be found, sub-

hypothesis 2 is partly rejected.  

The analysis of sub-hypothesis 3 and 4 showed that the parameters terrain position and 

morphology diƯer across the RTSs of the study areas. Moreover, both analyses widened 

the understanding of the variability of spectral slope regarding the level of singe RTS 

comparisons within the study areas. A summary of the hypothesis is presented in Table 

2. 
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Table 2: Overview of hypothesis acceptance/rejection  

Main hypothesis Retrogressive thaw slumps within the study areas 

show diƯerences in one or more parameters.  

Accepted  

Sub-hypothesis 1 The combined spectral slope of the RTSs in one 

area is never the same as the combined spectral 

slope of the RTSs in any of the other areas.  

Accepted 

Sub-hypothesis 2 The spectral slope of all the RTSs in one selected 

sub-area is never the same as the spectral slope 

of all the RTSs in any of the other sub-areas within 

the same main area.  

Partly rejected 

Sub-hypothesis 3 The spectral slope of single RTSs that are located 

in a certain terrain position is always the same as 

the spectral slope of single RTSs that are located 

at the same terrain position within the same main 

area.  

Rejected 

Sub-hypothesis 4 The spectral slope of single RTSs that have a 

certain morphology is always the same as the 

spectral slope of single RTSs that have the same 

morphology within the same main area. 

Rejected 

 

In conclusion, the observed spectral variability of retrogressive thaw slumps across 

Siberia can be summarised: larger areas that are located distant from each other don’t 

show similarities regarding the spectral slope. Smaller areas located closer to each other 

are mostly diƯerent from each other, although a few similarities between some of the 

areas could be found. Neither the terrain position nor the morphology directly relate to 

the similarities that were found regarding the spectral slope. The result of the analysis is 

that the spectral slope of RTSs is a property with high variability that requires further study.  

One promising path to further understand the variability of retrogressive thaw slumps 

would be to characterize RTSs according to their process stages (initiation, active phase, 

stabilization) and to compare those to the spectral slope data. Since the spectral slope 

data shows how the landscape changes, this process-based classification could be a 
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relatively strong tool to distinguish diƯerent RTS stages from other landscape changes. 

Possibly, a fingerprint system that combines the three slope type values could be 

developed. Furthermore, other parameters like RTS volume or dynamics could also be 

correlated with spectral variability.   

A weakness discovered in this work, that needs to be addressed in future studies, is the 

human bias included in the manual assignment of the morphology classes. For example, 

morphometrical parameters like an RTS length to width ratio could be promising. A 

“roundness” factor, that would need to be developed, might be used as a human bias free 

tool to determine which morphology class a RTS belongs to. 
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Appendix A: German Summary (Deutsche Zusammenfassung)  
Durch den Einfluss des Klimawandels tauen die Permafrost-Regionen der Erde. Das 

Tauen von Permafrostböden geht häufig mit starken Landschaftsveränderungen und dem 

Austritt von Treibhausgasen einher. Eine Art dieser durch das Tauen von Permafrost 

bedingter Landschaftsveränderungen sind retrogressive thaw slumps (RTS), auf Deutsch 

thermokarstische Rückzugsnischen. Das Interesse an RTSs steigt wegen ihrer großen 

Bedeutung für das lokale Landschaftsbild und ihrem Einfluss auf globale 

Klimaänderungen (Nesterova et al. 2024). Um das wissenschaftliche Verständnis 

bezüglich RTSs zu erweitern, beschäftigt sich diese Arbeit mit verschiedenen 

Eigenschaften von RTSs. Der Fokus liegt dabei auf der spektralen Variabilität von RTS, 

konkret dem spectral slope, welcher die gemittelte Änderung eines spektralen Indexes 

über eine bestimmte Zeitspanne darstellt. Die Datensätze, mit denen der Hauptteil der 

Analyse durchgeführt wurde, sind: Pan-Arctic Visualization of Landscape Change (2003-

2022) und das Validation Dataset 2. Die Fünf Untersuchungsgebiete mit einer Größe von 

jeweils 10.000 km2 liegen über Sibirien verteilt, jedes dieser Gebiete enthält 10 zufällig 

positionierte Untergebiete von je 100 km2, innerhalb der Untergebiete sind die Umrisse 

der RTSs bekannt. Der spectral slope der RTSs wurde zwischen den verschiedenen 

Untersuchungsgebieten und, darüber hinaus, zwischen den Untergebieten innerhalb der 

Untersuchungsgebiete verglichen. Zusätzlich wurden die RTSs einzeln nach ihrer Lage im 

Gelände und nach ihrer Morphologie klassifiziert. RTSs innerhalb derselben 

Untersuchungsgebiete und derselben Geländeposition bzw. Morphologieklasse wurden 

ebenfalls hinsichtlich ihrer spectral slopes verglichen. Die Ergebnisse zeigen eine 

deutliche Variation der spectral slopes der verschiedenen Untersuchungsgebiete, ohne 

signifikante Ähnlichkeiten. Während auf einer kleineren räumlichen Ebene die 

verschiedenen Untergebiete innerhalb desselben Untersuchungsgebiets überwiegend 

heterogen sind, wurden einige signifikante Ähnlichkeiten in Bezug auf ihre spectral slopes 

festgestellt. Der Vergleich einzelner RTSs, welche sich innerhalb desselben 

Untersuchungsgebiets in derselben Geländeposition befanden oder dieselbe 

Morphologie aufwiesen, zeigte keine Korrelation zwischen spectral slope Ähnlichkeit und 

der Geländeposition oder Morphologie. Zusätzlich konnten Erkenntnisse über die 

Häufigkeit der verschiedenen Morphologien in Zusammenhang mit verschiedenen 

Geländepositionen gewonnen werden. In 4 von 5 Gebieten befinden sich die 
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überwiegende Anzahl der RTSs in der Geländeposition „Seeufer“, und die meisten von 

ihnen weisen eine kombinierte Morphologie auf, die Merkmale sowohl von thermocirque 

als auch von thermoterrace RTS enthält.   Das wichtigste Ergebnis dieser Studie ist, dass 

der spectral slope eine Eigenschaft ist, die in Bezug auf RTSs stark variabel ist. Es wurde 

ein Schema zur Klassifizierung der RTS-Ähnlichkeit entwickelt. Dieses 

Klassifizierungsschema kann auch für den Vergleich anderer RTS-Eigenschaften 

modifiziert werden. 
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Appendix C: Further tables and figures 

Appendix C1: Table citing each Esri World Imagery Basemap image used. 

Table 3: Esri image citations. Directly accessed via Esri World Imagery wayback. The coordinates refer to the WGS 84 
projection. Resolution and accuracy are the same for each image. Resolution: pixels in the source image represent a 
ground distance of 1.2 meters. Accuracy: objects displayed in this image are within 5 meters of true location. 

Coordinates (WGS 84) Citation  
x: 97.1656 y: 72.8032 
 

Maxar (WV02) image captured on Jul 28, 2024 
as shown in the 2025-01-30 version of the 
World Imagery map. 

x: 97.7626 y: 72.8824 
 

Maxar (WV03) image captured on Jul 7, 2024 
as shown in the 2025-01-30 version of the 
World Imagery map. 

x: 97.5154 y: 72.6192 
 

Maxar (WV02) image captured on Jul 28, 2024 
as shown in the 2025-01-30 version of the 
World Imagery map. 

x: 97.9432 y: 72.6325 
 

Maxar (WV03) image captured on Jul 7, 2024 
as shown in the 2025-01-30 version of the 
World Imagery map. 

x: 98.4411 y: 72.7143 
 

Maxar (WV03) image captured on Jul 7, 2024 
as shown in the 2025-01-30 version of the 
World Imagery map. 

x: 97.1303 y: 72.4493 
 

Maxar (WV03) image captured on Sep 7, 2016 
as shown in the 2025-01-30 version of the 
World Imagery map. 

x: 97.8774 y: 72.4156 
 

Maxar (WV02) image captured on Jul 20, 2019 
as shown in the 2025-01-30 version of the 
World Imagery map. 

x: 116.5239 y: 73.6417 
 

Maxar (WV02) image captured on Jul 30, 2023 
as shown in the 2025-01-30 version of the 
World Imagery map. 

x: 116.6242 y: 73.5335 
 

Maxar (WV03) image captured on Jul 4, 2024 
as shown in the 2025-01-30 version of the 
World Imagery map. 

x: 118.0844 y: 73.5545 
 

Maxar (WV03) image captured on Jun 8, 2024 
as shown in the 2025-01-30 version of the 
World Imagery map. 

x: 117.5639 y: 73.2330 
 

Maxar (WV02) image captured on Jun 29, 
2024 as shown in the 2025-01-30 version of 
the World Imagery map. 

x: 116.1827 y: 73.0741 
 

Maxar (WV03) image captured on Jul 4, 2024 
as shown in the 2025-01-30 version of the 
World Imagery map. 

x: 145.1977 y: 71.5928 
 

Maxar (WV02) image captured on Jun 30, 
2020 as shown in the 2025-01-30 version of 
the World Imagery map. 

x: 146.5190 y: 71.5033 
 

Maxar (WV03) image captured on Aug 10, 
2022 as shown in the 2025-01-30 version of 
the World Imagery map. 
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x: 147.1885 y: 71.5371 
 

Maxar (WV02) image captured on Jun 12, 
2019 as shown in the 2025-01-30 version of 
the World Imagery map. 

x: 145.6328 y: 71.2914 
 

Maxar (WV02) image captured on Jun 15, 
2020 as shown in the 2025-01-30 version of 
the World Imagery map. 

x: 147.1210 y: 71.1897 
 

Maxar (WV03) image captured on Jun 17, 
2019 as shown in the 2025-01-30 version of 
the World Imagery map. 

x: 144.6616 y: 71.0933 
 

Maxar (WV02) image captured on Aug 9, 2021 
as shown in the 2025-01-30 version of the 
World Imagery map. 

x: -174.1289 y: 67.0583 Maxar (WV02) image captured on Aug 6, 2020 
as shown in the 2025-01-30 version of the 
World Imagery map. 

x: -173.8252 y: 66.9928 
 

Maxar (WV03) image captured on Aug 20, 
2021 as shown in the 2025-01-30 version of 
the World Imagery map. 

x: -173.9055 y: 66.7161 
 

Maxar (WV02) image captured on May 30, 
2022 as shown in the 2025-01-30 version of 
the World Imagery map. 

x: -174.0042 y: 66.4336 
 

Maxar (WV02) image captured on Aug 30, 
2023 as shown in the 2025-01-30 version of 
the World Imagery map. 

x: -174.7740 y: 66.8132 
 

Maxar (WV02) image captured on Aug 13, 
2020 as shown in the 2025-01-30 version of 
the World Imagery map. 

x: -175.1340 y: 66.9668 
 

Maxar (GE01) image captured on Jul 14, 2021 
as shown in the 2025-01-30 version of the 
World Imagery map. 

x: -175.4439 y: 66.6612 
 

Maxar (GE01) image captured on Jul 14, 2021 
as shown in the 2025-01-30 version of the 
World Imagery map. 

x: -175.8431 y: 66.8907 
 

Maxar (WV03) image captured on Jun 16, 
2020 as shown in the 2025-01-30 version of 
the World Imagery map. 

x: 131.5629 y: 63.9987 
 

Maxar (WV03) image captured on Jun 30, 
2020 as shown in the 2025-01-30 version of 
the World Imagery map. 

x: 131.7427 y: 63.8514 
 

Maxar (GE01) image captured on Jun 2, 2024 
as shown in the 2025-01-30 version of the 
World Imagery map. 

x: 130.3086 y: 63.7926 
 

Maxar (WV02) image captured on Jun 5, 2024 
as shown in the 2025-01-30 version of the 
World Imagery map. 

x: 131.7366 y: 63.3009 
 

Maxar (GE01) image captured on Jun 2, 2024 
as shown in the 2025-01-30 version of the 
World Imagery map. 
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Appendix C2: Histograms of spectral slope with area as y-axis plotted side-

by-side. 

The single histograms were plotted on the same y-axis (Figure 29)  in units of area. This 

enables the comparison of both the spectral slope distributions and the aƯected area. 

Chokurdakh and Northern Olenek have the largest RTS covered area. Iultinsky (Chukotka) 

has an intermediate amount of RTS area. The least RTS covered areas are found in the 

Southern Taymyr and Southern Verkhoyansk Range areas. It is important to remember, 

that the aƯected area corresponds to the integral over the distribution, such that the 

distribution width and peak height are equally important. Generally, the distributions 

either have their maximum at 0 (which means no change) or in the positive value range 

(which indicates an increase in tasseled cap index). Only the maximum of greenness of 

Southern Verkhoyansk Range and Chokurdakh, as well as, the maximum brightness of 

Northern Olenek are in the negative value range. 
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Appendix C3: Percentage of RTS are as aƯected by the 5 m buƯer 
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Appendix C4: Correlation of the mean spectral slope of the study areas as a 

function of latitude and longitude. 

The coloured background area shown within the Figure 32 and Figure 31 visualize the 

uncertainty in the estimated regression lines themselves. The confidence interval 

bounds, set at 95%, reflect the range within which the regression line is likely to fall. All 

confidence intervals are large enough that each corresponding regression line could be 

shown as horizontal line within the boundaries, which means that the trend shown by the 

regression line has the same probability to be true as no trend at all (horizontal line). This 

shows that no significant correlation was found.  

Figure 32: Correlation of the means of the spectral slope types per area and longitude. No 
trend can be found. 

Figure 31: Correlation of the means of the spectral slope types per area and latitude. No 
trend can be found. 
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Appendix C5: Data preparation for sunburst visualization and associated 

rounding error estimates  

 
Figure 33: Formulars that were used to calculate Count and Count error. Image compiled as summary of the relevant 
parts in (Kirchner 2001). 

Table 4: Rounding errors for the pie piece size calculation in terrain position related sunburst charts (Figure 17 to Figure 
21). S.Percentage is the abbreviation of similarity percentage, which was rounded to 0 decimal places. This rounding 
results in a +/- 0.5% error. Propagating this error results in a chart section specific count error. The size of the individual 
sections of the sunburst chart was derived from Count. The count error describes the error in the visual size of each 
section. Importantly, the count errors apply to the visualisation only and do not influence the statistical analysis in this 
work. 

Region Terrain 
position 

Classification S.Percentage 
[%] 

S.Percentage 
error [%] 

Count Count 
error 

Northern Olenek Sea Homogeneous 17 ±0.5 1.36 ±0.04 

Northern Olenek Sea Heterogeneous 71 ±0.5 5.68 ±0.04 

Northern Olenek Sea Highly 
heterogeneous 

12 ±0.5 0.96 ±0.04 

Iultinsky 
(Chukotka) 

Sea Highly 
homogeneous 

6 ±0.5 0.72 ±0.06 

Iultinsky 
(Chukotka) 

Sea Homogeneous 28 ±0.5 3.36 ±0.06 

Iultinsky 
(Chukotka) 

Sea Heterogeneous 67 ±0.5 8.04 ±0.06 

Southern Taymyr Lake Highly 
homogeneous 

1 ±0.5 0.46 ±0.23 

Southern Taymyr Lake Homogeneous 56 ±0.5 25.76 ±0.23 

Southern Taymyr Lake Heterogeneous 43 ±0.5 19.78 ±0.23 

Northern Olenek Lake Highly 
homogeneous 

5 ±0.5 1.85 ±0.19 

Northern Olenek Lake Homogeneous 30 ±0.5 11.1 ±0.18 

Northern Olenek Lake Heterogeneous 66 ±0.5 24.42 ±0.19 

Chokurdakh Lake Highly 
homogeneous 

2 ±0.5 0.88 ±0.22 

Chokurdakh Lake Homogeneous 25 ±0.5 11.0 ±0.22 

Chokurdakh Lake Heterogeneous 73 ±0.5 32.12 ±0.22 

Iultinsky 
(Chukotka) 

Lake Highly 
homogeneous 

21 ±0.5 5.88 ±0.14 
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Iultinsky 
(Chukotka) 

Lake Homogeneous 76 ±0.5 21.28 ±0.14 

Iultinsky 
(Chukotka) 

Lake Heterogeneous 2 ±0.5 0.56 ±0.14 

Southern 
Verkhoyansk 
Range 

Lake Highly 
heterogeneous 

100 ±0.5 2.0 ±0.01 

Northern Olenek River Heterogeneous 100 ±0.5 4.0 ±0.02 

Chokurdakh River Homogeneous 69 ±0.5 8.97 ±0.06 

Chokurdakh River Heterogeneous 23 ±0.5 2.99 ±0.06 

Chokurdakh River Highly 
heterogeneous 

8 ±0.5 1.04 ±0.06 

Iultinsky 
(Chukotka) 

River Homogeneous 33 ±0.5 1.32 ±0.02 

Iultinsky 
(Chukotka) 

River Heterogeneous 50 ±0.5 2.0 ±0.02 

Iultinsky 
(Chukotka) 

River Highly 
heterogeneous 

17 ±0.5 0.68 ±0.02 

Southern 
Verkhoyansk 
Range 

River Homogeneous 33 ±0.5 1.98 ±0.03 

Southern 
Verkhoyansk 
Range 

River Heterogeneous 28 ±0.5 1.68 ±0.03 

Southern 
Verkhoyansk 
Range 

River Highly 
heterogeneous 

39 ±0.5 2.34 ±0.03 

Northern Olenek Gully Homogeneous 42 ±0.5 1.68 ±0.02 

Northern Olenek Gully Heterogeneous 33 ±0.5 1.32 ±0.02 

Northern Olenek Gully Highly 
heterogeneous 

25 ±0.5 1.0 ±0.02 

Chokurdakh Gully Highly 
homogeneous 

61 ±0.5 3.66 ±0.03 

Chokurdakh Gully Homogeneous 33 ±0.5 1.98 ±0.03 

Chokurdakh Gully Heterogeneous 6 ±0.5 0.36 ±0.03 

Iultinsky 
(Chukotka) 

Gully Homogeneous 28 ±0.5 1.68 ±0.03 

Iultinsky 
(Chukotka) 

Gully Heterogeneous 56 ±0.5 3.36 ±0.03 

Iultinsky 
(Chukotka) 

Gully Highly 
heterogeneous 

17 ±0.5 1.02 ±0.03 

Iultinsky 
(Chukotka) 

Ponds + 
Gully 

Heterogeneous 12 ±0.5 1.32 ±0.06 

Iultinsky 
(Chukotka) 

Ponds + 
Gully 

Homogeneous 70 ±0.5 7.7 ±0.06 

Iultinsky 
(Chukotka) 

Ponds + 
Gully 

Highly 
homogeneous 

18 ±0.5 1.98 ±0.05 

Southern Taymyr River - 0 ±0.5 1.0 ±0.0 

Southern 
Verkhoyansk 
Range 

Gully - 0 ±0.5 1.0 ±0.0 
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Table 5: Table showing the rounding errors of the morphology related sunburst charts (Figure 23 to Figure 27). 
S.Percentage is the abbreviation of similarity percentage, which was rounded to 0 decimal places. This rounding results 
in a +/- 0.5% error. The Propagation of this error results in a section specific count error. The size of the individual 
sections of the sunburst chart was derived from Count. The count error describes the error in the size of each section, 
in other words, the error in the visualization. Importantly, the count errors apply to the visualisation only and do not 
influence the statistical analysis in this work. 

Region Morphology Classification S.Percentage 
[%] 

S.Percentage 
error [%] 

Count Count error 

Northern 
Olenek 

Thermoterrace Homogeneous 10 ±0.5 1.0 ±0.05 

Northern 
Olenek 

Thermoterrace Heterogeneous 83 ±0.5 8.3 ±0.05 

Northern 
Olenek 

Thermoterrace Highly 
heterogeneous 

7 ±0.5 0.7 ±0.05 

Chokurdakh Thermoterrace Homogeneous 48 ±0.5 10.08 ±0.1 
Chokurdakh Thermoterrace Heterogeneous 52 ±0.5 10.92 ±0.11 
Iultinsky 
(Chukotka) 

Thermoterrace Highly 
homogeneous 

25 ±0.5 1.0 ±0.02 

Iultinsky 
(Chukotka) 

Thermoterrace Homogeneous 50 ±0.5 2.0 ±0.02 

Iultinsky 
(Chukotka) 

Thermoterrace Heterogeneous 25 ±0.5 1.0 ±0.02 

Southern 
Taymyr 

Combination Homogeneous 39 ±0.5 12.87 ±0.16 

Southern 
Taymyr 

Combination Heterogeneous 61 ±0.5 20.13 ±0.16 

Northern 
Olenek 

Combination Highly 
homogeneous 

3 ±0.5 1.2 ±0.2 

Northern 
Olenek 

Combination Homogeneous 28 ±0.5 11.2 ±0.2 

Northern 
Olenek 

Combination Heterogeneous 68 ±0.5 27.2 ±0.2 

Chokurdakh Combination Homogeneous 29 ±0.5 9.28 ±0.16 
Chokurdakh Combination Heterogeneous 70 ±0.5 22.4 ±0.16 
Chokurdakh Combination Highly 

heterogeneous 
1 ±0.5 0.32 ±0.16 

Iultinsky 
(Chukotka) 

Combination Highly 
homogeneous 

13 ±0.5 4.55 ±0.18 

Iultinsky 
(Chukotka) 

Combination Homogeneous 70 ±0.5 24.5 ±0.18 

Iultinsky 
(Chukotka) 

Combination Heterogeneous 17 ±0.5 5.95 ±0.18 

Southern 
Verkhoyansk 
Range 

Combination Highly 
heterogeneous 

100 ±0.5 2.0 ±0.01 

Southern 
Taymyr 

Thermocirque Highly 
heterogeneous 

2 ±0.5 0.28 ±0.07 

Southern 
Taymyr 

Thermocirque Heterogeneous 33 ±0.5 4.62 ±0.07 

Southern 
Taymyr 

Thermocirque Homogeneous 62 ±0.5 8.68 ±0.07 

Southern 
Taymyr 

Thermocirque Highly 
homogeneous 

2 ±0.5 0.28 ±0.07 

Northern 
Olenek 

Thermocirque Highly 
heterogeneous 

44 ±0.5 1.32 ±0.02 

Northern 
Olenek 

Thermocirque Homogeneous 44 ±0.5 1.32 ±0.02 

Northern 
Olenek 

Thermocirque Highly 
homogeneous 

11 ±0.5 0.33 ±0.02 

Chokurdakh Thermocirque Heterogeneous 17 ±0.5 1.7 ±0.05 
Chokurdakh Thermocirque Homogeneous 57 ±0.5 5.7 ±0.05 
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Chokurdakh Thermocirque Highly 
homogeneous 

27 ±0.5 2.7 ±0.05 

Iultinsky 
(Chukotka) 

Thermocirque Heterogeneous 17 ±0.5 3.74 ±0.11 

Iultinsky 
(Chukotka) 

Thermocirque Homogeneous 73 ±0.5 16.06 ±0.11 

Iultinsky 
(Chukotka) 

Thermocirque Highly 
homogeneous 

11 ±0.5 2.42 ±0.11 

Southern 
Verkhoyansk 
Range 

Thermocirque Highly 
heterogeneous 

11 ±0.5 0.66 ±0.03 

Southern 
Verkhoyansk 
Range 

Thermocirque Heterogeneous 67 ±0.5 4.02 ±0.03 

Southern 
Verkhoyansk 
Range 

Thermocirque Homogeneous 22 ±0.5 1.32 ±0.03 

Southern 
Verkhoyansk 
Range 

Thermoterrace - 0 ±0.5 1.0 ±0.0 

       

Appendix C6: DiƯerences in the generosity of mapped RTS outlines. 

 

Figure 34: DiƯerences in the generosity of mapped RTS outlines. The figure shows variations in how RTS outlines 
were drawn. More generous outlines (c, d) include additional surrounding terrain, while stricter outlines (a, b) result in 
more confined RTS areas. 

Appendix D: Analysis Code 
 



1   # -*- coding: utf-8 -*-
2   
3   # Insert GEE
4   """
5   
6   import ee
7   import geemap
8   
9   geemap.ee_initialize()

10   
11   """# Loading ALEX"""
12   
13   # Load the asset
14   alex = ee.ImageCollection('users/ingmarnitze/TCTrend_SR_2003-2022_TCVIS') #Every 

image (of the 353 images) shows a different area
15   alex
16   
17   """# Loading Validation Dataset 2"""
18   
19   rtsT1 = ee.FeatureCollection('projects/ee-moritzjulia7/assets/RTS_T1')
20   rtsT2 = ee.FeatureCollection('projects/ee-moritzjulia7/assets/RTS_T2')
21   rtsT3 = ee.FeatureCollection('projects/ee-moritzjulia7/assets/RTS_T3')
22   rtsT4_all = ee.FeatureCollection('projects/ee-moritzjulia7/assets/RTS_T4_all')
23   rtsT6_all = ee.FeatureCollection('projects/ee-moritzjulia7/assets/RTS_T6_all')
24   
25   """Extract uncertain rts from T4 and T6"""
26   
27   rtsT4 = rtsT4_all.filter(ee.Filter.eq('Uncertain', 0))
28   rtsT6 = rtsT6_all.filter(ee.Filter.eq('Uncertain', 0))
29   
30   area1 = ee.FeatureCollection('projects/ee-moritzjulia7/assets/Area_T1')
31   area2 = ee.FeatureCollection('projects/ee-moritzjulia7/assets/Area_T2')
32   area3 = ee.FeatureCollection('projects/ee-moritzjulia7/assets/Area_T3')
33   area4 = ee.FeatureCollection('projects/ee-moritzjulia7/assets/Area_T4')
34   area6 = ee.FeatureCollection('projects/ee-moritzjulia7/assets/Area_T6')
35   
36   SubAreas1 = ee.FeatureCollection('projects/ee-moritzjulia7/assets/SubAreas_T1')
37   SubAreas2 = ee.FeatureCollection('projects/ee-moritzjulia7/assets/SubAreas_T2')
38   SubAreas3 = ee.FeatureCollection('projects/ee-moritzjulia7/assets/SubAreas_T3')
39   SubAreas4 = ee.FeatureCollection('projects/ee-moritzjulia7/assets/SubAreas_T4')
40   SubAreas6 = ee.FeatureCollection('projects/ee-moritzjulia7/assets/SubAreas_T6')
41   
42   """What image of ALEX shows which study area?"""
43   
44   image_index = 174 # Change this to the desired index (0 for first, 1 for second, 2 

for third, etc.)
45   image = alex.toList(alex.size()).get(image_index)
46   image = ee.Image(image)
47   
48   Map=geemap.Map()
49   
50   style = {
51   'color': 'red', # Outline color
52   'fillColor': '00000000', # Transparent fill
53   'width': 2
54   }
55   
56   Map.addLayer(image, {}, 'ALEX')
57   Map.addLayer(area1.style(**style), {}, "Area_T1")
58   Map.addLayer(area2.style(**style), {}, "Area_T2")
59   Map.addLayer(area3.style(**style), {}, "Area_T3")
60   Map.addLayer(area4.style(**style), {}, "Area_T4")
61   Map.addLayer(area6.style(**style), {}, "Area_T6")
62   Map.setCenter(98.39,72.71,3)
63   Map
64   
65   ## Results:
66   # Area 1: 116
67   # Area 2: 140
68   # Area 3: 174
69   # Area 4: 351
70   # Area 6: 161



71   
72   """Creating ALEX subset for each region"""
73   
74   #Area 1
75   image_index = 116
76   image1 = alex.toList(alex.size()).get(image_index)
77   alex_area1 = ee.Image(image1)
78   
79   #Area 2
80   image_index = 140
81   image2 = alex.toList(alex.size()).get(image_index)
82   alex_area2 = ee.Image(image2)
83   
84   #Area 3
85   image_index = 174
86   image3 = alex.toList(alex.size()).get(image_index)
87   alex_area3 = ee.Image(image3)
88   
89   #Area 4
90   image_index = 351
91   image4 = alex.toList(alex.size()).get(image_index)
92   alex_area4 = ee.Image(image4)
93   
94   #Area 6
95   image_index = 161
96   image6 = alex.toList(alex.size()).get(image_index)
97   alex_area6 = ee.Image(image6)
98   
99   """# Data Preparation per Region (sub-hypothesis 1)

100   
101   Creating ImageCollection of ALEX data within RTS polygons per Area
102   """
103   
104   ## Area 1
105   
106   # Empty list to store the features
107   rtsT1_alex_features = []
108   
109   # Get the number of features in the rtsT1 feature collection
110   rtsT1_size = rtsT1.size().getInfo()
111   
112   # Iterate through each feature in rtsT1
113   for i in range(rtsT1_size):
114   # Get the current feature
115   rtsT1_feature = ee.Feature(rtsT1.toList(rtsT1_size).get(i))
116   
117   # Clip alex_area1 to the current feature's geometry
118   single_rtsT1_alex_feature = alex_area1.clip(rtsT1_feature.geometry())
119   
120   # Append the feature to the list
121   rtsT1_alex_features.append(single_rtsT1_alex_feature)
122   
123   # Convert the list of features to a ImageCollection
124   rtsT1_alex_imagecollection = ee.ImageCollection(rtsT1_alex_features)
125   
126   
127   # Display the ImageCollection on a map
128   Map = geemap.Map()
129   Map.addLayer(rtsT1_alex_imagecollection, {}, 'ALEX Images')
130   Map.setCenter(98.39,72.71,12)
131   Map
132   
133   ## Area 2
134   
135   rtsT2_alex_features = []
136   
137   rtsT2_size = rtsT2.size().getInfo()
138   
139   for i in range(rtsT2_size):
140   rtsT2_feature = ee.Feature(rtsT2.toList(rtsT2_size).get(i))
141   
142   single_rtsT2_alex_feature = alex_area2.clip(rtsT2_feature.geometry())



143   
144   rtsT2_alex_features.append(single_rtsT2_alex_feature)
145   
146   rtsT2_alex_imagecollection = ee.ImageCollection(rtsT2_alex_features)
147   rtsT2_alex_imagecollection
148   
149   ## Area 3
150   
151   rtsT3_alex_features = []
152   
153   rtsT3_size = rtsT3.size().getInfo()
154   
155   for i in range(rtsT3_size):
156   rtsT3_feature = ee.Feature(rtsT3.toList(rtsT3_size).get(i))
157   
158   single_rtsT3_alex_feature = alex_area3.clip(rtsT3_feature.geometry())
159   
160   rtsT3_alex_features.append(single_rtsT3_alex_feature)
161   
162   rtsT3_alex_imagecollection = ee.ImageCollection(rtsT3_alex_features)
163   rtsT3_alex_imagecollection
164   
165   ## Area 4
166   
167   rtsT4_alex_features = []
168   
169   rtsT4_size = rtsT4.size().getInfo()
170   
171   for i in range(rtsT4_size):
172   rtsT4_feature = ee.Feature(rtsT4.toList(rtsT4_size).get(i))
173   
174   single_rtsT4_alex_feature = alex_area4.clip(rtsT4_feature.geometry())
175   
176   rtsT4_alex_features.append(single_rtsT4_alex_feature)
177   
178   rtsT4_alex_imagecollection = ee.ImageCollection(rtsT4_alex_features)
179   rtsT4_alex_imagecollection
180   
181   ## Area 6
182   
183   rtsT6_alex_features = []
184   
185   rtsT6_size = rtsT6.size().getInfo()
186   
187   for i in range(rtsT6_size):
188   rtsT6_feature = ee.Feature(rtsT6.toList(rtsT6_size).get(i))
189   
190   single_rtsT6_alex_feature = alex_area6.clip(rtsT6_feature.geometry())
191   
192   rtsT6_alex_features.append(single_rtsT6_alex_feature)
193   
194   rtsT6_alex_imagecollection = ee.ImageCollection(rtsT6_alex_features)
195   rtsT6_alex_imagecollection
196   
197   """Funktion to build the GeoDataframes"""
198   
199   import geopandas as gpd
200   import pandas as pd
201   from shapely.geometry import Point, Polygon
202   from shapely.geometry import shape
203   
204   band_names = ['TCW_slope', 'TCB_slope', 'TCG_slope']
205   
206   def image_to_geodataframe(image, bands, scale=30):
207   # Sample the image to get data as a FeatureCollection
208   fc = image.select(bands).sample(scale=scale, geometries=True)
209   geojson = fc.getInfo()
210   
211   features = geojson['features']
212   rows = []
213   for feature in features:
214   properties = feature['properties']



215   coords = feature['geometry']['coordinates']
216   point_geometry = Point(coords)
217   rows.append({
218   **properties,
219   'geometry': point_geometry
220   })
221   
222   gdf = gpd.GeoDataFrame(rows, crs="EPSG:4326")
223   return gdf
224   
225   # Create GeoDataFrames for each image in the ImageCollection
226   def collection_to_geodataframes(image_collection, bands, scale=30):
227   images = image_collection.toList(image_collection.size())
228   num_images = image_collection.size().getInfo()
229   
230   geodataframes = []
231   for i in range(num_images):
232   image = ee.Image(images.get(i))
233   gdf = image_to_geodataframe(image, bands, scale)
234   geodataframes.append(gdf)
235   
236   return geodataframes
237   
238   """Building DataFrame per single RTS for each study Area"""
239   
240   ## Area 1
241   band_names = ['TCW_slope', 'TCB_slope', 'TCG_slope']
242   gdfs_T1 = collection_to_geodataframes(rtsT1_alex_imagecollection, band_names)
243   
244   print(gdfs_T1[0])
245   
246   ## Area 2
247   gdfs_T2 = collection_to_geodataframes(rtsT2_alex_imagecollection, band_names)
248   
249   print(gdfs_T2[0])
250   
251   ## Area 3
252   gdfs_T3 = collection_to_geodataframes(rtsT3_alex_imagecollection, band_names)
253   
254   print(gdfs_T3[0])
255   
256   ## Area 4
257   gdfs_T4 = collection_to_geodataframes(rtsT4_alex_imagecollection, band_names)
258   
259   print(gdfs_T4[0])
260   
261   ## Area 6
262   gdfs_T6 = collection_to_geodataframes(rtsT6_alex_imagecollection, band_names)
263   
264   print(gdfs_T6[0])
265   
266   """Create one Dataframe per Area containig all values"""
267   
268   gdf_T1 = gpd.GeoDataFrame(pd.concat(gdfs_T1, ignore_index=True), crs=gdfs_T1[0].crs)
269   gdf_T2 = gpd.GeoDataFrame(pd.concat(gdfs_T2, ignore_index=True), crs=gdfs_T2[0].crs)
270   gdf_T3 = gpd.GeoDataFrame(pd.concat(gdfs_T3, ignore_index=True), crs=gdfs_T3[0].crs)
271   gdf_T4 = gpd.GeoDataFrame(pd.concat(gdfs_T4, ignore_index=True), crs=gdfs_T4[0].crs)
272   gdf_T6 = gpd.GeoDataFrame(pd.concat(gdfs_T6, ignore_index=True), crs=gdfs_T6[0].crs)
273   
274   print(gdf_T1)
275   
276   """Saving Dataframes with all data of RTSs per area (merged)"""
277   
278   from google.colab import drive
279   
280   #drive.mount('/content/drive')
281   #gdf_T1.to_file('/content/drive/My Drive/Colab Notebooks/Data/gdf_T1.shp' )
282   #gdf_T2.to_file('/content/drive/My Drive/Colab Notebooks/Data/gdf_T2.shp' )
283   #gdf_T3.to_file('/content/drive/My Drive/Colab Notebooks/Data/gdf_T3.shp' )
284   #gdf_T4.to_file('/content/drive/My Drive/Colab Notebooks/Data/gdf_T4.shp' )
285   #gdf_T6.to_file('/content/drive/My Drive/Colab Notebooks/Data/gdf_T6.shp' )
286   



287   """Load data frames with all data of RTSs per area (merged)"""
288   
289   import geopandas as gpd
290   from google.colab import drive
291   
292   drive.mount('/content/drive')
293   gdf_T1 = gpd.read_file('/content/drive/My Drive/Colab Notebooks/Data/gdf_T1.shp' )
294   gdf_T2 = gpd.read_file('/content/drive/My Drive/Colab Notebooks/Data/gdf_T2.shp' )
295   gdf_T3 = gpd.read_file('/content/drive/My Drive/Colab Notebooks/Data/gdf_T3.shp' )
296   gdf_T4 = gpd.read_file('/content/drive/My Drive/Colab Notebooks/Data/gdf_T4.shp' )
297   gdf_T6 = gpd.read_file('/content/drive/My Drive/Colab Notebooks/Data/gdf_T6.shp' )
298   
299   """Dataframes rescaling (normalisation)"""
300   
301   gdf_T1_norm = gdf_T1[['TCB_slope', 'TCG_slope', 'TCW_slope']] / 255. *0.24 - 0.12
302   gdf_T1_norm['geometry'] = gdf_T1['geometry']
303   gdf_T2_norm = gdf_T2[['TCB_slope', 'TCG_slope', 'TCW_slope']] / 255. *0.24 - 0.12
304   gdf_T2_norm['geometry'] = gdf_T2['geometry']
305   gdf_T3_norm = gdf_T3[['TCB_slope', 'TCG_slope', 'TCW_slope']] / 255. *0.24 - 0.12
306   gdf_T3_norm['geometry'] = gdf_T3['geometry']
307   gdf_T4_norm = gdf_T4[['TCB_slope', 'TCG_slope', 'TCW_slope']] / 255. *0.24 - 0.12
308   gdf_T4_norm['geometry'] = gdf_T4['geometry']
309   gdf_T6_norm = gdf_T6[['TCB_slope', 'TCG_slope', 'TCW_slope']] / 255. *0.24 - 0.12
310   gdf_T6_norm['geometry'] = gdf_T6['geometry']
311   
312   """## Histogramms of areas"""
313   
314   import seaborn as sns
315   import matplotlib.pyplot as plt
316   import pandas as pd
317   
318   #single Historgrams for overview map
319   colors = {
320   "TCB_slope": "#FF3333", # Middle red intense
321   "TCG_slope": "#00FF00", # Bright green intense
322   "TCW_slope": "#003366" # Middle blue intense
323   }
324   
325   # Create the plot
326   plt.figure(figsize=(10, 6))
327   
328   for column, color in colors.items():
329   sns.histplot(data=gdf_T6_norm, x=column, color=color, kde=True, label=column, bins

=30)
330   
331   plt.axvline(0, color='black', linestyle='--', linewidth=1)
332   plt.grid(color='gray', linestyle='--', linewidth=0.5, alpha=0.7)
333   
334   # Adjust the y-axis to represent area
335   ax = plt.gca() # Get the current Axes
336   y_ticks = ax.get_yticks() # Get current y-tick positions
337   ax.set_yticklabels([f"{int(y * 900):,}" for y in y_ticks]) # Convert frequency to 

area (900 m² per count)
338   
339   
340   # Add labels and title
341   plt.xlabel("Slope Value")
342   plt.ylabel("Area (m²)")
343   plt.title("Histogram of the Spectral Slope of RTSs Covering the Region of Southern 

Verkhoyansk Range, Siberia")
344   plt.legend(title="Slope Type")
345   
346   #plt.savefig("Hist_Area6_SouthernVerkhoyanskRange.svg", format="svg")
347   plt.show()
348   
349   # all Histograms on same y-axis
350   dataframes = [gdf_T1_norm, gdf_T2_norm, gdf_T3_norm, gdf_T4_norm, gdf_T6_norm]
351   titles = ["Southern Taymyr", "Northern Olenek", "Chokurdakh", "Iultinsky (Chukotka)",

"Southern Verkhoyansk Range"] #["Area 1", "Area 2", "Area 3", "Area 4", "Area 6"]
352   
353   colors = {
354   "TCB_slope": "#FF3333",



355   "TCG_slope": "#00FF00",
356   "TCW_slope": "#003366"
357   }
358   
359   # Create a figure
360   fig, axes = plt.subplots(1, 5, figsize=(20, 5), sharey=True)
361   
362   # Iterate over datasets and plot each histogram in a separate subplot
363   for i, (ax, df, title) in enumerate(zip(axes, dataframes, titles)):
364   for column, color in colors.items():
365   sns.histplot(data=df, x=column, color=color, kde=True, label=column, bins=30,

ax=ax)
366   ax.axvline(0, color='black', linestyle='--', linewidth=1)
367   ax.grid(color='gray', linestyle='--', linewidth=0.5, alpha=0.7)
368   ax.set_title(title)
369   ax.set_xlabel("Slope Value")
370   if i == 0: # Add Y-axis label to the first subplot only
371   ax.set_ylabel("Area (m²)")
372   else:
373   ax.set_ylabel("")
374   
375   ax = plt.gca() # Get the current Axes
376   y_ticks = ax.get_yticks() # Get current y-tick positions
377   ax.set_yticklabels([f"{int(y * 900):,}" for y in y_ticks]) # Convert frequency to 

area (900 m² per count)
378   
379   fig.suptitle("Histograms of the Spectral Slope of RTSs Covering Different Regions of 

Siberia", fontsize=16)
380   
381   axes[0].legend(title="Slope Type", loc='upper right')
382   
383   # Adjust layout
384   plt.tight_layout(rect=[0, 0, 1, 0.95])
385   #plt.savefig("Hist_All_Areas_RegionNames.svg", format="svg")
386   plt.show()
387   
388   """## Statistical tests Sub-Hyp-1"""
389   
390   from scipy.stats import shapiro
391   from scipy.stats import anderson
392   
393   """Testing normal distribution"""
394   
395   ## shapiro - test
396   # List of dataframes
397   dataframes = [gdf_T1_norm, gdf_T2_norm, gdf_T3_norm, gdf_T4_norm, gdf_T6_norm]
398   
399   # Columns to test
400   columns = ["TCB_slope", "TCG_slope", "TCW_slope"]
401   
402   # Store the results
403   shapiro_results = {}
404   
405   for i, df in enumerate(dataframes):
406   df_name = f"gdf_T{i+1}_norm" # Name for each dataframe
407   shapiro_results[df_name] = {}
408   
409   for col in columns:
410   stat, p_value = shapiro(df[col])
411   shapiro_results[df_name][col] = {"statistic": stat, "p_value": p_value}
412   
413   # Print the results
414   for df_name, results in shapiro_results.items():
415   print(f"\nShapiro-Wilk Test Results for {df_name}:")
416   for col, result in results.items():
417   print(f"  {col}: statistic={result['statistic']:.4f}, p-value={result[

'p_value']:.4f}")
418   
419   ##Anderson-Darling test
420   dataframes = [gdf_T1_norm, gdf_T2_norm, gdf_T3_norm, gdf_T4_norm, gdf_T6_norm]
421   columns_to_test = ["TCB_slope", "TCG_slope", "TCW_slope"]
422   



423   # Loop through each DataFrame and each column
424   for i, df in enumerate(dataframes):
425   print(f"\nDataFrame {i+1}:")
426   for column in columns_to_test:
427   print(f"Testing column: {column}")
428   # Perform the Anderson-Darling test
429   result = anderson(df[column], dist="norm")
430   
431   # Print the results
432   print(f"  Statistic: {result.statistic:.4f}")
433   print(f"  Critical Values:")
434   for level, critical_value in zip(result.significance_level, result.

critical_values):
435   print(f"    {level}%: {critical_value:.4f}")
436   
437   # Interpret results (using 5% significance level as an example)
438   if result.statistic > result.critical_values[2]: # 5% level
439   print(f"  Result: The data does NOT follow a normal distribution (reject 

H0).")
440   else:
441   print(f"  Result: The data appears to follow a normal distribution (fail 

to reject H0).")
442   
443   """Using Kruskal-Wallis test to ceck if all medians for each group (TCW, TCB, TCG) of 

all areas are equal"""
444   
445   from scipy.stats import kruskal
446   
447   ## Kruskal-Wallis H-test
448   dataframes = [gdf_T1_norm, gdf_T2_norm, gdf_T3_norm, gdf_T4_norm, gdf_T6_norm]
449   columns_to_test = ["TCB_slope", "TCG_slope", "TCW_slope"]
450   
451   # Loop through each column and perform Kruskal-Wallis test
452   for column in columns_to_test:
453   print(f"\nTesting column: {column}")
454   
455   # Extract the data for the current column from each DataFrame
456   data = [df[column].dropna() for df in dataframes]
457   
458   # Perform the Kruskal-Wallis H-test
459   statistic, p_value = kruskal(*data)
460   
461   # Print the results
462   print(f"  H-statistic: {statistic:.4f}")
463   print(f"  p-value: {p_value:.4f}")
464   
465   # Interpretation based on a 5% significance level
466   if p_value < 0.05:
467   print("  Result: There is a significant difference between the sample sites 

(reject H0).")
468   else:
469   print("  Result: No significant difference between the sample sites (fail to 

reject H0).")
470   
471   """Dunn's Test for Pairwise Comparisons"""
472   
473   !pip install scikit-posthocs
474   # during analysis the version "0.11.2-py3-none-any.whl.metadata (5.8 kB)" was used.
475   #This version is no longer availabe, version 0.11.3 can produce slightly different 

results.
476   import scikit_posthocs as sp
477   import pandas as pd
478   
479   #Dunn's test
480   dataframes = [gdf_T1_norm, gdf_T2_norm, gdf_T3_norm, gdf_T4_norm, gdf_T6_norm]
481   columns_to_test = ["TCB_slope", "TCG_slope", "TCW_slope"]
482   sample_labels = ['T1', 'T2', 'T3', 'T4', 'T6']
483   
484   # Loop through each column and perform Dunn's test
485   for column in columns_to_test:
486   print(f"\nTesting column: {column}")
487   



488   # Create a list of the values for the column from each DataFrame
489   data = [df[column].dropna() for df in dataframes]
490   
491   # Create a list of group labels
492   labels = []
493   for i, df in enumerate(dataframes):
494   labels.extend([sample_labels[i]] * len(df[column].dropna()))
495   
496   # Perform Dunn's test (pairwise comparisons)
497   p_values = sp.posthoc_dunn(data, p_adjust="bonferroni") # Using Bonferroni 

correction
498   print(p_values)
499   
500   # Interpret results
501   print("Pairwise comparisons (p-values) with Bonferroni correction:")
502   for i in range(len(p_values.columns)):
503   for j in range(i+1, len(p_values.columns)):
504   p_val = p_values.iloc[i, j]
505   if p_val < 0.05:
506   print(f"  Significant difference between {sample_labels[i]} and {

sample_labels[j]}: p = {p_val:.4f}")
507   else:
508   print(f"  No significant difference between {sample_labels[i]} and {

sample_labels[j]}: p = {p_val:.4f}")
509   
510   # Collecting dunns test results in df
511   dataframes = [gdf_T1_norm, gdf_T2_norm, gdf_T3_norm, gdf_T4_norm, gdf_T6_norm]
512   columns_to_test = ["TCB_slope", "TCG_slope", "TCW_slope"]
513   sample_labels = ["Southern Taymyr", "Northern Olenek", "Chokurdakh", "Iultinsky (C.)",

"S. Verkhoyansk Range"] #['T1', 'T2', 'T3', 'T4', 'T6']
514   
515   
516   p_values_Dunn = {}
517   
518   for column in columns_to_test:
519   # Create a list of the values for the column from each DataFrame
520   data = [df[column].dropna() for df in dataframes]
521   
522   # Perform Dunn's test (pairwise comparisons)
523   p_values = sp.posthoc_dunn(data, p_adjust="bonferroni") # Using Bonferroni 

correction
524   
525   p_values_Dunn[column] = pd.DataFrame(
526   p_values.values,
527   columns=sample_labels,
528   index=sample_labels
529   )
530   p_values_Dunn
531   
532   """Visualize Statistics"""
533   
534   import matplotlib.pyplot as plt
535   import seaborn as sns
536   # older verion (v0.13.2) was used, new version is v0.14.0
537   import pandas as pd
538   import numpy as np
539   from matplotlib.colors import LinearSegmentedColormap, Normalize
540   
541   # Custom colormap with transitions starting at 0, 0.05 and 1
542   colors = [
543   (0.5, 0.1, 0.5),
544   (1, 0.8, 0.4), # Yellow starts at 0.05
545   (1, 0.8, 0.4)
546   ]
547   positions = [0.0000, 0.0500, 1] # Color start/end point
548   cmap_name = "custom_gradient_cmap"
549   smooth_cmap = LinearSegmentedColormap.from_list(cmap_name, list(zip(positions, colors

)))
550   
551   # Normalize to align colors with specific ranges
552   norm = Normalize(vmin=0, vmax=1)
553   



554   # Number of subplots (columns)
555   num_columns = len(p_values_Dunn)
556   fig, axes = plt.subplots(num_columns, 1, figsize=(7, 6 * num_columns), sharey=True)
557   
558   # Loop through the dictionary and plot each matrix
559   for ax, (column, matrix) in zip(axes, p_values_Dunn.items()):
560   sns.heatmap(
561   matrix,
562   annot=True,
563   fmt=".4f",
564   cmap=smooth_cmap,
565   norm=norm,
566   cbar_kws={'label': 'p-value'},
567   ax=ax
568   )
569   ax.set_title(f'Dunn-Bonferroni-Test P-Values: {column}')
570   ax.set_xlabel('Areas')
571   ax.set_ylabel('Areas')
572   
573   plt.tight_layout()
574   plt.show()
575   
576   """Violine Plots - Visualization of Areas"""
577   
578   # Combine data for all areas and slopes
579   df_combined = pd.concat([
580   gdf_T1_norm[['TCB_slope', 'TCW_slope', 'TCG_slope']].assign(site='Southern Taymyr'

),
581   gdf_T2_norm[['TCB_slope', 'TCW_slope', 'TCG_slope']].assign(site='Northern Olenek'

),
582   gdf_T3_norm[['TCB_slope', 'TCW_slope', 'TCG_slope']].assign(site='Chokurdakh'),
583   gdf_T4_norm[['TCB_slope', 'TCW_slope', 'TCG_slope']].assign(site='Iultinsky'),
584   gdf_T6_norm[['TCB_slope', 'TCW_slope', 'TCG_slope']].assign(site='S. Verkhoyansk 

Range')
585   ])
586   
587   # Melt the data for plotting
588   df_melted = df_combined.melt(id_vars=['site'], value_vars=['TCB_slope', 'TCW_slope',

'TCG_slope'],
589   var_name='Slope Type', value_name='Slope Value')
590   
591   # Set the palette for the plot
592   palette = sns.color_palette("Set2")
593   
594   # Create the violin plot for all bands
595   plt.figure(figsize=(15, 6))
596   sns.violinplot(x="Slope Type", y="Slope Value", hue="site", data=df_melted, palette=

palette, dodge=True)
597   
598   # Customize the plot
599   plt.title('Violin Plots of the Slopes (TCB, TCW, TCG) for All Areas')
600   plt.ylabel('Slope Value')
601   plt.xlabel('Slope Type')
602   plt.axhline(y=0, color='dimgrey', linestyle='--', zorder=1)
603   plt.legend(title="Areas", bbox_to_anchor=(1.05, 1), loc='upper left')
604   plt.tight_layout()
605   plt.show()
606   
607   """# Data collection for latitudes and longitudes plots"""
608   
609   import numpy as np
610   from shapely.geometry import Point
611   import pandas as pd
612   
613   AreaCollection = [gdf_T1_norm, gdf_T2_norm, gdf_T3_norm, gdf_T4_norm, gdf_T6_norm]
614   AreaCollection_names = ['Southern Taymyr', 'Northern Olenek', 'Chokurdakh',

'Iultinsky (C.)', 'S. Verkhoyansk Range']
615   
616   # Create an empty list to store the data for each area
617   data = []
618   
619   for ind in np.arange(len(AreaCollection)):



620   temp_df = AreaCollection[ind]
621   
622   # Calculate the center coordinates
623   mean_coordinates = np.mean(np.array([[geom.x, geom.y] for geom in temp_df.geometry

]), axis=0)
624   mean_coordinates = np.abs(mean_coordinates)
625   
626   # Calculate the mean values for each channel
627   meanVals = np.zeros(3)
628   meanVals[0] = np.mean(temp_df['TCB_slope'])
629   meanVals[1] = np.mean(temp_df['TCG_slope'])
630   meanVals[2] = np.mean(temp_df['TCW_slope'])
631   
632   # Append the data for the current area to the list
633   data.append([
634   AreaCollection_names[ind], # Area name
635   mean_coordinates[0], # Center X coordinate
636   mean_coordinates[1], # Center Y coordinate
637   Point(mean_coordinates), # Center point as a Point object
638   meanVals[0], # Mean TCB value
639   meanVals[1], # Mean TCG value
640   meanVals[2] # Mean TCW value
641   ])
642   
643   # Create a Pandas DataFrame from the data list
644   AreaOverview_df = pd.DataFrame(data, columns=[
645   'name', 'center_x', 'center_y', 'center_point',
646   'TCB_norm_mean', 'TCG_norm_mean', 'TCW_norm_mean'
647   ])
648   
649   print(AreaOverview_df)
650   
651   """## Longitude Latitude Plots"""
652   
653   import matplotlib.pyplot as plt
654   from matplotlib.lines import Line2D
655   import plotly.express as px
656   import pandas as pd
657   import numpy as np
658   import statsmodels.api as sm
659   
660   def plot_regression_with_ci(x, y, color, label):
661   
662   # Sort the data by x for consistent plotting
663   sort_idx = np.argsort(x)
664   x_sorted = x[sort_idx]
665   y_sorted = y[sort_idx]
666   
667   # Fit the regression model
668   X = sm.add_constant(x_sorted) # Add constant for the intercept
669   model = sm.OLS(y_sorted, X).fit() # Ordinary Least Squares regression
670   predictions = model.predict(X) # Predicted values
671   
672   # Get confidence intervals
673   prediction_summary = model.get_prediction(X).summary_frame(alpha=0.05) # 95% CI
674   ci_lower = prediction_summary["mean_ci_lower"]
675   ci_upper = prediction_summary["mean_ci_upper"]
676   
677   # Plot the regression line
678   plt.plot(x_sorted, predictions, color=color, linestyle="--", label=f"{label} 

Regression")
679   
680   # Plot the confidence interval
681   plt.fill_between(x_sorted, ci_lower, ci_upper, color=color, alpha=0.2, label=f"{

label} CI")
682   
683   plt.figure(figsize=(10, 6))
684   plt.scatter(AreaOverview_df["center_y"], AreaOverview_df["TCB_norm_mean"], color="red"

, label="TCB Mean", marker="x", linestyle="None")
685   plt.scatter(AreaOverview_df["center_y"], AreaOverview_df["TCG_norm_mean"], color=

"green", label="TCG Mean", marker="x", linestyle="None")
686   plt.scatter(AreaOverview_df["center_y"], AreaOverview_df["TCW_norm_mean"], color=



"blue", label="TCW Mean", marker="x", linestyle="None")
687   plot_regression_with_ci(AreaOverview_df["center_y"], AreaOverview_df["TCB_norm_mean"],

"red", "TCB")
688   plot_regression_with_ci(AreaOverview_df["center_y"], AreaOverview_df["TCG_norm_mean"],

"green", "TCG")
689   plot_regression_with_ci(AreaOverview_df["center_y"], AreaOverview_df["TCW_norm_mean"],

"blue", "TCW")
690   
691   
692   for i, area_name in enumerate(AreaOverview_df["name"]):
693   
694   plt.text(
695   AreaOverview_df["center_y"][i],
696   0.026, # Adjust annotation height for clarity
697   area_name,
698   fontsize=9,
699   ha="center",
700   rotation=90
701   )
702   
703   # Finalize the plot
704   plt.title("Mean of Slope per Area vs. Latitude")
705   plt.xlabel("Latitude")
706   plt.ylabel("Mean of Slope")
707   plt.legend(bbox_to_anchor=(1.05, 1), loc="upper left") # Legend outside the plot
708   plt.tight_layout()
709   plt.show()
710   
711   plt.figure(figsize=(10, 6))
712   plt.scatter(AreaOverview_df["center_x"], AreaOverview_df["TCB_norm_mean"], color="red"

, label="TCB Mean", marker="x", linestyle="None")
713   plt.scatter(AreaOverview_df["center_x"], AreaOverview_df["TCG_norm_mean"], color=

"green", label="TCG Mean", marker="x", linestyle="None")
714   plt.scatter(AreaOverview_df["center_x"], AreaOverview_df["TCW_norm_mean"], color=

"blue", label="TCW Mean", marker="x", linestyle="None")
715   plot_regression_with_ci(AreaOverview_df["center_x"], AreaOverview_df["TCB_norm_mean"],

"red", "TCB")
716   plot_regression_with_ci(AreaOverview_df["center_x"], AreaOverview_df["TCG_norm_mean"],

"green", "TCG")
717   plot_regression_with_ci(AreaOverview_df["center_x"], AreaOverview_df["TCW_norm_mean"],

"blue", "TCW")
718   
719   
720   for i, area_name in enumerate(AreaOverview_df["name"]):
721   
722   plt.text(
723   AreaOverview_df["center_x"][i],
724   0.027, # Adjust annotation height for clarity
725   area_name,
726   fontsize=9,
727   ha="center",
728   rotation=90
729   )
730   
731   # Finalize the plot
732   plt.title("Mean of Slope per Area vs. Longitude")
733   plt.xlabel("Longitude")
734   plt.ylabel("Mean of Slope")
735   plt.legend(bbox_to_anchor=(1.05, 1), loc="upper left") # Legend outside the plot
736   plt.tight_layout()
737   plt.show()
738   
739   """# Sub-Areas (sub-hypothsis 2)"""
740   
741   import geopandas as gpd
742   from shapely.geometry import shape
743   from shapely.geometry import Point
744   
745   """## Loop to generate dicts per Area containing sub area gdfs"""
746   
747   subareas = {
748   "SubAreas1": SubAreas1,



749   "SubAreas2": SubAreas2,
750   "SubAreas3": SubAreas3,
751   "SubAreas4": SubAreas4,
752   "SubAreas6": SubAreas6
753   }
754   
755   gdfs = {
756   "gdf_T1_norm": gdf_T1_norm,
757   "gdf_T2_norm": gdf_T2_norm,
758   "gdf_T3_norm": gdf_T3_norm,
759   "gdf_T4_norm": gdf_T4_norm,
760   "gdf_T6_norm": gdf_T6_norm
761   }
762   
763   all_gdf_SubAreas = {}
764   
765   # Loop through each subarea-feature-collection pair
766   for subarea_name, subarea_fc in subareas.items():
767   # Get the corresponding GeoDataFrame for the subarea
768   gdf_name = f"gdf_T{subarea_name[-1]}_norm"
769   gdf = gdfs[gdf_name]
770   
771   gdf_dict = {}
772   
773   # Iterate through the features (squares) in the current subarea
774   for i, square_feature in enumerate(subarea_fc.getInfo()['features']):
775   square_geometry = shape(square_feature['geometry'])
776   
777   filtered_points = gdf[gdf.geometry.apply(lambda geom: geom.within(

square_geometry))]
778   
779   if filtered_points.empty:
780   print(f"Warning: No points found in {subarea_name} square {i + 1}. 

Skipping this square.")
781   continue
782   
783   gdf_dict[f"{gdf_name}_{i + 1}"] = filtered_points
784   
785   all_gdf_SubAreas[subarea_name] = gdf_dict
786   
787   # Print keys of the current dictionary for verification
788   print(f"Created GeoDataFrames for {subarea_name}:", list(gdf_dict.keys()))
789   
790   """## Loop to calculate statistics for all sub areas of all areas"""
791   
792   from scipy.stats import shapiro
793   from scipy.stats import anderson
794   from scipy.stats import kruskal
795   !pip install scikit-posthocs
796   # during analysis the version "0.11.2-py3-none-any.whl.metadata (5.8 kB)" was used.
797   #Version 0.11.2 is no longer availabe, version 0.11.3 can produce slightly different 

results.
798   import scikit_posthocs as sp
799   import pandas as pd
800   import numpy as np
801   import matplotlib.pyplot as plt
802   import seaborn as sns
803   from matplotlib.colors import LinearSegmentedColormap, BoundaryNorm, Normalize
804   
805   # shapiro
806   columns = ["TCB_slope", "TCG_slope", "TCW_slope"]
807   
808   # Store the results
809   shapiro_results = {}
810   
811   # Iterate through all SubAreas in all_gdf_SubAreas
812   for subarea_name, subarea_data in all_gdf_SubAreas.items():
813   shapiro_results[subarea_name] = {}
814   
815   for df_name, df in subarea_data.items():
816   shapiro_results[subarea_name][df_name] = {}
817   



818   for col in columns:
819   try:
820   # Perform Shapiro-Wilk test
821   stat, p_value = shapiro(df[col])
822   shapiro_results[subarea_name][df_name][col] = {"statistic": stat,

"p_value": p_value}
823   except Exception as e:
824   # Handle cases where the test cannot be performed
825   shapiro_results[subarea_name][df_name][col] = {"statistic": None,

"p_value": None, "error": str(e)}
826   
827   # Print the results
828   for subarea_name, subarea_results in shapiro_results.items():
829   print(f"\nShapiro-Wilk Test Results for {subarea_name}:")
830   for df_name, results in subarea_results.items():
831   print(f"  DataFrame: {df_name}")
832   for col, result in results.items():
833   if result["statistic"] is not None:
834   print(f"    {col}: statistic={result['statistic']:.4f}, p-value={

result['p_value']:.4f}")
835   else:
836   print(f"    {col}: Test could not be performed. Error: {result['error'

]}")
837   
838   # Kruskal
839   
840   columns_to_test = ["TCB_slope", "TCG_slope", "TCW_slope"]
841   
842   # Loop through each SubArea in all_gdf_SubAreas
843   for subarea_key, subarea_df_dict in all_gdf_SubAreas.items():
844   print(f"\nTesting for {subarea_key}")
845   
846   # Loop through each column and perform Kruskal-Wallis test
847   for column in columns_to_test:
848   print(f"\n  Testing column: {column}")
849   
850   # Extract the data for the current column from each DataFrame in the current 

SubArea
851   data = [df[column].dropna() for df_name, df in subarea_df_dict.items()]
852   
853   # Perform the Kruskal-Wallis H-test
854   statistic, p_value = kruskal(*data)
855   
856   # Print the results
857   print(f"    H-statistic: {statistic:.4f}")
858   print(f"    p-value: {p_value:.4f}")
859   
860   # Interpretation based on a 5% significance level
861   if p_value < 0.05:
862   print("    Result: There is a significant difference between the sample 

sites (reject H0).")
863   else:
864   print("    Result: No significant difference between the sample sites 

(fail to reject H0).")
865   
866   # Dunn
867   columns_to_test = ["TCB_slope", "TCG_slope", "TCW_slope"]
868   
869   p_values_Dunn = {}
870   
871   # Loop through each SubArea in all_gdf_SubAreas
872   for subarea_key, subarea_df_dict in all_gdf_SubAreas.items():
873   print(f"\nPerforming Dunn's Test for {subarea_key}")
874   
875   p_values_Dunn[subarea_key] = {}
876   
877   # Loop through each column and perform Dunn's test
878   for column in columns_to_test:
879   print(f"  Testing column: {column}")
880   
881   # Create a list of the values for the column from each DataFrame in the 

current SubArea



882   data = [df[column].dropna() for df_name, df in subarea_df_dict.items()]
883   
884   sample_labels = [df_name.split('_')[-1] for df_name in subarea_df_dict.keys()]
885   
886   # Perform Dunn's test (pairwise comparisons)
887   p_values = sp.posthoc_dunn(data, p_adjust="bonferroni") # Using Bonferroni 

correction
888   
889   # Store the p-values as a DataFrame for the current column and SubArea
890   p_values_Dunn[subarea_key][column] = pd.DataFrame(
891   p_values.values,
892   columns=sample_labels,
893   index=sample_labels
894   )
895   
896   # To check the results for each SubArea and column, printing the p_values_Dunn 

dictionary
897   p_values_Dunn
898   
899   # Custom colormap
900   colors = [
901   (0.5, 0.1, 0.5),
902   (1, 0.8, 0.4), # Yellow starts at 0.05
903   (1, 0.8, 0.4)
904   ]
905   positions = [0.0000, 0.0500, 1] # Define where each color starts/ends
906   cmap_name = "custom_gradient_cmap"
907   smooth_cmap = LinearSegmentedColormap.from_list(cmap_name, list(zip(positions,

colors)))
908   
909   # Normalize to align colors with specific ranges
910   norm = Normalize(vmin=0, vmax=1)
911   
912   # Create a subplot grid with 1 row and number of columns based on the number of 

SubAreas
913   fig, axes = plt.subplots(5, 3, figsize=(20,20))
914   
915   axes_flat = axes.flatten()
916   
917   # Loop through the p_values_Dunn dictionary and plot each matrix
918   k = 0
919   for i, (subarea_key, subarea_p_values) in enumerate(p_values_Dunn.items()):
920   for j, (column, matrix) in enumerate(subarea_p_values.items()):
921   ax = axes_flat[k]
922   k += 1
923   
924   # Plot the heatmap for the current subarea and column
925   sample_labels = list(matrix.columns)
926   
927   # Plot heatmap for each SubArea and column
928   sns.heatmap(
929   matrix,
930   annot=True,
931   fmt=".4f",
932   cmap=smooth_cmap,
933   norm=norm,
934   cbar_kws={'label': 'p-value'},
935   ax=ax
936   )
937   
938   ax.set_title(f'Dunn-Bonferroni-Test P-Values: {subarea_key} - {column}')
939   ax.set_xlabel('Sub Areas')
940   ax.set_ylabel('Sub Areas')
941   
942   # Get the current x-tick locations
943   xticks = ax.get_xticks()
944   
945   # Set x-tick labels only for the available tick locations
946   ax.set_xticks(xticks)
947   ax.set_xticklabels(sample_labels[:len(xticks)], rotation=0, ha='right')
948   
949   # Similarly, for y-axis:



950   yticks = ax.get_yticks()
951   ax.set_yticks(yticks)
952   ax.set_yticklabels(sample_labels[:len(yticks)], rotation=0)
953   plt.tight_layout()
954   

#plt.savefig(r'C:\Users\morit\Documents\Geoökologie\Module\BachelorArbeit\Daten\Plot
s\Dunn-Bonnferroni-Test_Sub-Areas.svg')

955   #plt.savefig(f'/content/drive/My Drive/Colab 
Notebooks/Data/Dunn-Bonnferroni-Test_Sub-Areas.svg', format='svg')

956   plt.show()
957   
958   """## Classification of Dunn values (homogeneity/heterogeneity)"""
959   
960   import pandas as pd
961   import matplotlib.pyplot as plt
962   import matplotlib.colors as mcolors
963   from matplotlib.table import Table
964   import matplotlib.patches as patches
965   
966   # df that contains information on sub areas exceeding 0.05 (-> are similar)
967   data = p_values_Dunn
968   
969   # Initialize an empty list to store the results
970   results = []
971   
972   # Iterate through the subareas and slope types
973   for subarea_key, slopes in data.items():
974   for slope_key, matrix in slopes.items():
975   # Compute row counts exceeding 0.05
976   for row_index, row_values in matrix.iterrows():
977   total_columns = len(row_values) -1
978   exceed_count = (row_values > 0.05).sum() -1
979   percentage = (exceed_count / total_columns) * 100
980   modified_subarea_key = subarea_key[3:] # Remove first three character
981   modified_subarea_key = modified_subarea_key[:4] + modified_subarea_key[5:]

# Remove 8. character
982   results.append({
983   "Area": modified_subarea_key,
984   "Slope": slope_key,
985   "SubAreaIndex": row_index,
986   "TotalColumns": total_columns,
987   "Count>0.05": exceed_count,
988   "Percentage>0.05": percentage,
989   })
990   
991   # Convert results into a DataFrame
992   results_df = pd.DataFrame(results)
993   
994   # Display the results
995   print(results_df)
996   
997   ## create tables from df
998   # Function to get row colors based on Percentage
999   def get_row_color(percentage):

1000   if percentage == 0:
1001   return "darkviolet"
1002   elif percentage < 50:
1003   return "lavender"
1004   elif percentage >= 50 and percentage < 100:
1005   return "lightyellow"
1006   elif percentage == 100:
1007   return "gold"
1008   return "white"
1009   
1010   # Function to create a table in a specific subplot
1011   def create_styled_table_in_subplot(ax, df, title="Table"):
1012   ax.axis("off")
1013   ax.set_title(title, fontsize=16, pad=26)
1014   
1015   # Add a table
1016   table = Table(ax, bbox=[0, 0, 1, 1])
1017   nrows, ncols = df.shape



1018   
1019   # Column headers
1020   col_labels = df.columns
1021   for col_idx, label in enumerate(col_labels):
1022   table.add_cell(-1, col_idx, text=label, width=1, height=0.2, facecolor=

"lightgray", loc="center")
1023   
1024   # Row cells
1025   prev_subarea = None
1026   for row_idx, row in df.iterrows():
1027   current_subarea = row["Area"]
1028   edgecolor = "black"
1029   if prev_subarea != current_subarea:
1030   edgecolor = "black"
1031   
1032   prev_subarea = current_subarea
1033   
1034   for col_idx, value in enumerate(row):
1035   # Get cell color
1036   if col_labels[col_idx] == "Percentage>0.05":
1037   cell_color = get_row_color(row["Percentage>0.05"])
1038   else:
1039   cell_color = "white"
1040   
1041   table.add_cell(
1042   row_idx,
1043   col_idx,
1044   text=str(value),
1045   width=1,
1046   height=0.2,
1047   facecolor=cell_color,
1048   loc="center",
1049   edgecolor=edgecolor,
1050   )
1051   
1052   # Add the table to the subplot
1053   ax.add_table(table)
1054   
1055   # Prepare the DataFrame subsets and clean up slope names
1056   results_df_cleaned = results_df.drop(columns=["Slope"]) # Remove the Slope column
1057   unique_slopes = results_df["Slope"].unique()
1058   
1059   # Create subplots for the tables
1060   fig, axes = plt.subplots(1, len(unique_slopes), figsize=(24, 10)) # Increased size 

for higher resolution
1061   fig.tight_layout(pad=5)
1062   
1063   # Create a table for each slope type
1064   for ax, slope in zip(axes, unique_slopes):
1065   slope_df = results_df[results_df["Slope"] == slope].drop(columns=["Slope"])
1066   clean_title = f"Slope: {slope.replace('_slope', '')}" # Clean slope name
1067   create_styled_table_in_subplot(ax, slope_df, title=clean_title)
1068   
1069   plt.show()
1070   
1071   ## Summary of table in percentages: Calculate if sub areas in general are more equal 

or more random, for each sub area seperatly if it's more equal or more random, and 
what slope is most equal or most random

1072   # Function to create the summary DataFrame with percentages
1073   def create_summary_percentage_df(results_df):
1074   # Initialize the empty DataFrame to store results
1075   summary_data = []
1076   
1077   # Total number of rows
1078   total_rows = len(results_df)
1079   
1080   # SubArea specific rows (as percentage)
1081   subareas = results_df["Area"].unique()
1082   for subarea in subareas:
1083   subarea_df = results_df[results_df["Area"] == subarea]
1084   subarea_total = len(subarea_df) # Number of rows in the specific SubArea
1085   summary_data.append([f"{subarea}",



1086   (subarea_df["Percentage>0.05"] == 0).sum() /
subarea_total * 100,

1087   ((subarea_df["Percentage>0.05"] > 0) & (subarea_df[
"Percentage>0.05"] < 50)).sum() / subarea_total * 100,

1088   ((subarea_df["Percentage>0.05"] >= 50) & (subarea_df[
"Percentage>0.05"] < 100)).sum() / subarea_total * 100,

1089   (subarea_df["Percentage>0.05"] == 100).sum() /
subarea_total * 100])

1090   
1091   # Create DataFrame from the summary data
1092   summary_df = pd.DataFrame(summary_data, columns=["Area",
1093   "Highly heterogeneous [%]",
1094   "Heterogeneous [%]",
1095   "Homogeneous [%]",
1096   "Highly homogeneous [%]"])
1097   
1098   area_mapping = {
1099   "Area1": "Southern Taymyr",
1100   "Area2": "Northern Olenek",
1101   "Area3": "Chokurdakh",
1102   "Area4": "Iultinsky (Chukotka)",
1103   "Area6": "Southern Verkhoyansk Range"
1104   }
1105   
1106   # Replace area codes with names
1107   summary_df["Area"] = summary_df["Area"].replace(area_mapping)
1108   
1109   numeric_columns = ["Highly heterogeneous [%]", "Heterogeneous [%]", "Homogeneous 

[%]", "Highly homogeneous [%]"]
1110   summary_df[numeric_columns] = summary_df[numeric_columns].round(0).astype(int)
1111   
1112   
1113   return summary_df
1114   
1115   # Create the summary DataFrame with percentages
1116   summary_percentage_df = create_summary_percentage_df(results_df)
1117   
1118   # Display the summary DataFrame with percentages
1119   print(summary_percentage_df)
1120   
1121   """## Pie Charts of Homogeneity vers Heterogeneity"""
1122   
1123   import matplotlib.pyplot as plt
1124   import os
1125   #from google.colab import drive
1126   #drive.mount('/content/drive')
1127   
1128   # Single pie charts for overview map
1129   def save_single_pie_chart(summary_df, area_name, save_path):
1130   # Define the colors for each category
1131   colors = {
1132   "Highly heterogeneous [%]": "darkviolet",
1133   "Heterogeneous [%]": "lavender",
1134   "Homogeneous [%]": "lightyellow",
1135   "Highly homogeneous [%]": "gold"
1136   }
1137   
1138   # Filter data for the specified area
1139   row = summary_df[summary_df['Area'] == area_name].iloc[0]
1140   
1141   # Data for the pie chart
1142   labels = ["Highly heterogeneous [%]", "Heterogeneous [%]", "Homogeneous [%]",

"Highly homogeneous [%]"]
1143   sizes = [row[label] for label in labels]
1144   
1145   # Filter out categories with zero values
1146   filtered_labels = [label for label, size in zip(labels, sizes) if size > 0]
1147   filtered_sizes = [size for size in sizes if size > 0]
1148   filtered_colors = [colors[label] for label in filtered_labels]
1149   
1150   # Create a figure and axis
1151   fig, ax = plt.subplots(figsize=(4, 4))



1152   
1153   # Create the pie chart
1154   wedges, texts, autotexts = ax.pie(filtered_sizes, colors=filtered_colors,
1155   autopct='%1.0f%%', startangle=140, wedgeprops={'edgecolor': 'black'})
1156   
1157   ax.set_title(f"{area_name}", fontsize=18, weight="bold", y=0.95)
1158   
1159   for autotext in autotexts:
1160   autotext.set_fontsize(18)
1161   
1162   # Adjust layout for better spacing
1163   plt.tight_layout()
1164   
1165   # Save the plot to a file
1166   fig.savefig(save_path)
1167   print(f"Saved plot as {save_path}")
1168   
1169   # Show the plot
1170   plt.show()
1171   
1172   titles = ["Southern Taymyr", "Northern Olenek", "Chokurdakh", "Iultinsky (Chukotka)",

"Southern Verkhoyansk Range"] #["Area 1", "Area 2", "Area 3", "Area 4", "Area 6"]
1173   
1174   save_single_pie_chart(summary_percentage_df, "Southern Verkhoyansk Range",

'/content/drive/My Drive/Colab 
Notebooks/Data/Plots/SouthernTaymyrSimilarityClassesPie.svg')

1175   
1176   """# Calculation of the impact of the 5 m buffer area
1177   
1178   Calculation of buffer area
1179   """
1180   
1181   import geopandas as gpd
1182   from shapely.geometry import shape
1183   import seaborn as sns
1184   import matplotlib.pyplot as plt
1185   import pandas as pd
1186   
1187   """This UTM zones correspond to the study areas
1188   
1189   *   Area 1 - UTM Zone 47N (EPSG:32647)
1190   *   Area 2 - UTM Zone 50N (EPSG:32650)
1191   *   Area 3 - UTM Zone 54N (EPSG:32654)
1192   *   Area 4 - UTM Zone 1N (EPSG:32601)
1193   *   Area 6 - UTM Zone 51N (EPSG:32651)
1194   
1195   """
1196   
1197   def gee_featurecollection_to_gdf(feature_collection, UTMz):
1198   
1199   # Convert FeatureCollection to a list
1200   feature_list = feature_collection.toList(feature_collection.size()).getInfo()
1201   
1202   gdf = gpd.GeoDataFrame(
1203   [
1204   {'id': feature['id'], 'geometry': shape(feature['geometry'])}
1205   for feature in feature_list
1206   ],
1207   geometry='geometry',
1208   crs="EPSG:4326" # WGS 84 (Latitude/Longitude)
1209   )
1210   
1211   # Reproject to UTM zone for accurate area calculation
1212   gdf = gdf.to_crs(epsg=UTMz)
1213   
1214   # Compute original area in square kilometers
1215   gdf['area_m2'] = gdf['geometry'].area
1216   
1217   # Compute inward 5m buffer (negative buffer shrinks the polygon)
1218   gdf['buffer_5m'] = gdf['geometry'].buffer(-5)
1219   
1220   # Compute area of the inward 5m buffer (handle invalid geometries)



1221   gdf['area-5m_m2'] = gdf['buffer_5m'].apply(
1222   lambda geom: geom.area if geom.is_valid and not geom.is_empty else 0
1223   )
1224   gdf['area_5m_buffer_m2'] = gdf['area_m2'] - gdf['area-5m_m2']
1225   
1226   # Compute the percentage of the total area that was removed by buffering
1227   gdf['buffer_percentage'] = gdf.apply(
1228   lambda row: (row['area_5m_buffer_m2'] / row['area_m2']) * 100 if row['area_m2'

] > 0 else 0,
1229   axis=1
1230   )
1231   
1232   # Add the updated geometry of the polygon after extracting the -5m buffer
1233   gdf['geometry2'] = gdf['buffer_5m']
1234   
1235   # Convert back to WGS 84 for geographic consistency
1236   gdf = gdf.to_crs(epsg=4326)
1237   
1238   return gdf.drop(columns=['buffer_5m'])
1239   
1240   rtsT1_gdf = gee_featurecollection_to_gdf(rtsT1, 32647)
1241   
1242   rtsT2_gdf = gee_featurecollection_to_gdf(rtsT2, 32650)
1243   
1244   rtsT3_gdf = gee_featurecollection_to_gdf(rtsT3, 32654)
1245   
1246   rtsT4_gdf = gee_featurecollection_to_gdf(rtsT4, 32601)
1247   
1248   rtsT6_gdf = gee_featurecollection_to_gdf(rtsT6, 32651)
1249   
1250   """Plotting Buffer Area with Histograms"""
1251   
1252   # Create a new column for each GeoDataFrame indicating the source
1253   rtsT1_gdf['area'] = 'T1'
1254   rtsT2_gdf['area'] = 'T2'
1255   rtsT3_gdf['area'] = 'T3'
1256   rtsT4_gdf['area'] = 'T4'
1257   rtsT6_gdf['area'] = 'T6'
1258   
1259   # Concatenate the buffer_percentage columns with the source column
1260   combined_df = pd.concat([
1261   rtsT1_gdf[['buffer_percentage', 'area']],
1262   rtsT2_gdf[['buffer_percentage', 'area']],
1263   rtsT3_gdf[['buffer_percentage', 'area']],
1264   rtsT4_gdf[['buffer_percentage', 'area']],
1265   rtsT6_gdf[['buffer_percentage', 'area']]
1266   ])
1267   
1268   # Dictionary to map abbreviations to full names
1269   area_mapping = {
1270   'T1': "Southern Taymyr",
1271   'T2': "Northern Olenek",
1272   'T3': "Chokurdakh",
1273   'T4': "Iultinsky (Chukotka)",
1274   'T6': "S. Verkhoyansk Range"
1275   }
1276   
1277   # Set up the FacetGrid with separate histograms for each source
1278   g = sns.FacetGrid(combined_df, col="area", col_wrap=5, height=4, aspect=1)
1279   
1280   # Plot the histograms in the individual plots and add a grey vertical line at x=20
1281   def plot_with_line(*args, **kwargs):
1282   # Plot the histogram without color argument
1283   sns.histplot(*args, **kwargs, kde=True)
1284   # Add the vertical line at x=20
1285   plt.axvline(x=20, color='grey', linestyle='--', linewidth=1)
1286   
1287   g.map(plot_with_line, 'buffer_percentage')
1288   
1289   # Manually update titles using the area_mapping dictionary
1290   for ax in g.axes.flat:
1291   # Get the current title (which is the 'area' value, e.g., 'T1')



1292   current_title = ax.get_title().split(' = ')[-1] # Extract the area abbreviation
1293   # Map it to the full name and set the new title
1294   ax.set_title(area_mapping.get(current_title, current_title))
1295   
1296   # Set axis labels
1297   g.set_axis_labels('Buffer Percentage', 'Frequency')
1298   
1299   plt.tight_layout()
1300   
1301   # Show the plot
1302   plt.show()
1303   
1304   """Only area 4 seams to have large parts of the rtss beeing buffer zone.
1305   
1306   How much percent of RTSs per study area show an impact of the buffer area for more 

than 20% of their feature area?
1307   """
1308   
1309   # prompt: calculate the percentage (round (0)) for how much of the gdf the column 

gdf['buffer_percentage'] is higher than 20
1310   
1311   percentage_higher_than_20 = (rtsT1_gdf[rtsT1_gdf['buffer_percentage'] > 20].shape[0] /

rtsT1_gdf.shape[0]) * 100
1312   rounded_percentage = round(percentage_higher_than_20, 0)
1313   print(f"{rounded_percentage}% of the gdf has a 'buffer_percentage' higher than 20.")
1314   
1315   """Percentage of RTSs of which their area is more than 20% coverdy by the 5 m buffer: 

T1 = 11%, T2 = 15%, T3 = 17% , T4 = 49%, T6 = 0%
1316   
1317   ## Apply new geometry (5m inward buffer) to RTSs of sub areas and repeat the Dunns 

test
1318   """
1319   
1320   import geopandas as gpd
1321   
1322   # Converting dataframes to GeoDataFrame
1323   gdf_T1_norm = gpd.GeoDataFrame(gdf_T1_norm, geometry='geometry')
1324   gdf_T2_norm = gpd.GeoDataFrame(gdf_T2_norm, geometry='geometry')
1325   gdf_T3_norm = gpd.GeoDataFrame(gdf_T3_norm, geometry='geometry')
1326   gdf_T4_norm = gpd.GeoDataFrame(gdf_T4_norm, geometry='geometry')
1327   gdf_T6_norm = gpd.GeoDataFrame(gdf_T6_norm, geometry='geometry')
1328   
1329   rtsT1_gdf = gpd.GeoDataFrame(rtsT1_gdf, geometry='geometry2')
1330   rtsT2_gdf = gpd.GeoDataFrame(rtsT2_gdf, geometry='geometry2')
1331   rtsT3_gdf = gpd.GeoDataFrame(rtsT3_gdf, geometry='geometry2')
1332   rtsT4_gdf = gpd.GeoDataFrame(rtsT4_gdf, geometry='geometry2')
1333   rtsT6_gdf = gpd.GeoDataFrame(rtsT6_gdf, geometry='geometry2')
1334   
1335   # Set the CRS to WGS 84 (EPSG:4326)
1336   gdf_T1_norm = gdf_T1_norm.set_crs(epsg=4326)
1337   gdf_T2_norm = gdf_T2_norm.set_crs(epsg=4326)
1338   gdf_T3_norm = gdf_T3_norm.set_crs(epsg=4326)
1339   gdf_T4_norm = gdf_T4_norm.set_crs(epsg=4326)
1340   gdf_T6_norm = gdf_T6_norm.set_crs(epsg=4326)
1341   
1342   rtsT1_gdf = rtsT1_gdf.to_crs(epsg=4326)
1343   rtsT2_gdf = rtsT2_gdf.to_crs(epsg=4326)
1344   rtsT3_gdf = rtsT3_gdf.to_crs(epsg=4326)
1345   rtsT4_gdf = rtsT4_gdf.to_crs(epsg=4326)
1346   rtsT6_gdf = rtsT6_gdf.to_crs(epsg=4326)
1347   
1348   # Create a mask to check if each point in gdf_T1_norm_2 is within any polygon in 

gdf['geometry2']
1349   mask = gdf_T1_norm['geometry'].apply(lambda point: rtsT1_gdf['geometry2'].apply(lambda

poly: poly.contains(point)).any())
1350   gdf_T1_norm_2 = gdf_T1_norm[mask]
1351   
1352   print(len(gdf_T1_norm_2))
1353   print("Original number of rows:", len(gdf_T1_norm))
1354   
1355   mask = gdf_T2_norm['geometry'].apply(lambda point: rtsT2_gdf['geometry2'].apply(lambda

poly: poly.contains(point)).any())



1356   gdf_T2_norm_2 = gdf_T2_norm[mask]
1357   
1358   print("New number of rows:",len(gdf_T2_norm_2))
1359   print("Original number of rows:", len(gdf_T2_norm))
1360   
1361   mask = gdf_T3_norm['geometry'].apply(lambda point: rtsT3_gdf['geometry2'].apply(lambda

poly: poly.contains(point)).any())
1362   gdf_T3_norm_2 = gdf_T3_norm[mask]
1363   
1364   print("New number of rows:",len(gdf_T3_norm_2))
1365   print("Original number of rows:", len(gdf_T3_norm))
1366   
1367   mask = gdf_T4_norm['geometry'].apply(lambda point: rtsT4_gdf['geometry2'].apply(lambda

poly: poly.contains(point)).any())
1368   gdf_T4_norm_2 = gdf_T4_norm[mask]
1369   
1370   print("New number of rows:",len(gdf_T4_norm_2))
1371   print("Original number of rows:", len(gdf_T4_norm))
1372   
1373   mask = gdf_T6_norm['geometry'].apply(lambda point: rtsT6_gdf['geometry2'].apply(lambda

poly: poly.contains(point)).any())
1374   gdf_T6_norm_2 = gdf_T6_norm[mask]
1375   
1376   print("New number of rows:",len(gdf_T6_norm_2))
1377   print("Original number of rows:", len(gdf_T6_norm))
1378   
1379   subareas = {
1380   "SubAreas1": SubAreas1,
1381   "SubAreas2": SubAreas2,
1382   "SubAreas3": SubAreas3,
1383   "SubAreas4": SubAreas4,
1384   "SubAreas6": SubAreas6
1385   }
1386   
1387   gdfs = {
1388   "gdf_T1_norm": gdf_T1_norm_2,
1389   "gdf_T2_norm": gdf_T2_norm_2,
1390   "gdf_T3_norm": gdf_T3_norm_2,
1391   "gdf_T4_norm": gdf_T4_norm_2,
1392   "gdf_T6_norm": gdf_T6_norm_2
1393   }
1394   
1395   all_gdf_SubAreas = {}
1396   
1397   # Loop through each subarea-feature-collection pair
1398   for subarea_name, subarea_fc in subareas.items():
1399   # Get the corresponding GeoDataFrame for the subarea
1400   gdf_name = f"gdf_T{subarea_name[-1]}_norm"
1401   gdf = gdfs[gdf_name]
1402   
1403   gdf_dict = {}
1404   
1405   # Iterate through the features (squares) in the current subarea
1406   for i, square_feature in enumerate(subarea_fc.getInfo()['features']):
1407   # Extract the geometry of the current square
1408   square_geometry = shape(square_feature['geometry'])
1409   
1410   # Filter the points that fall within the current square
1411   filtered_points = gdf[gdf.geometry.apply(lambda geom: geom.within(

square_geometry))]
1412   
1413   # Check if filtered_points is empty
1414   if filtered_points.empty:
1415   print(f"Warning: No points found in {subarea_name} square {i + 1}. 

Skipping this square.")
1416   continue # Skip to the next square
1417   
1418   gdf_dict[f"{gdf_name}_{i + 1}"] = filtered_points
1419   
1420   all_gdf_SubAreas[subarea_name] = gdf_dict
1421   
1422   # Print keys of the current dictionary for verification



1423   print(f"Created GeoDataFrames for {subarea_name}:", list(gdf_dict.keys()))
1424   
1425   from scipy.stats import shapiro
1426   from scipy.stats import anderson
1427   from scipy.stats import kruskal
1428   !pip install scikit-posthocs
1429   # during analysis the version "0.11.2-py3-none-any.whl.metadata (5.8 kB)" was used.
1430   #That version is no longer availabe and version 0.11.3 can produce slightly different 

results.
1431   import scikit_posthocs as sp
1432   import pandas as pd
1433   import numpy as np
1434   import matplotlib.pyplot as plt
1435   import seaborn as sns
1436   from matplotlib.colors import LinearSegmentedColormap, BoundaryNorm, Normalize
1437   
1438   # Dunn
1439   columns_to_test = ["TCB_slope", "TCG_slope", "TCW_slope"]
1440   
1441   p_values_Dunn = {}
1442   
1443   # Loop through each SubArea in all_gdf_SubAreas
1444   for subarea_key, subarea_df_dict in all_gdf_SubAreas.items():
1445   print(f"\nPerforming Dunn's Test for {subarea_key}")
1446   
1447   p_values_Dunn[subarea_key] = {}
1448   
1449   # Loop through each column and perform Dunn's test
1450   for column in columns_to_test:
1451   print(f"  Testing column: {column}")
1452   
1453   # Create a list of the values for the column from each DataFrame in the 

current SubArea
1454   data = [df[column].dropna() for df_name, df in subarea_df_dict.items()]
1455   
1456   # Get dynamic sample labels based on available sub-areas
1457   sample_labels = [df_name.split('_')[-1] for df_name in subarea_df_dict.keys()]
1458   
1459   # Perform Dunn's test (pairwise comparisons)
1460   p_values = sp.posthoc_dunn(data, p_adjust="bonferroni") # Using Bonferroni 

correction
1461   
1462   # Store the p-values as a DataFrame for the current column and SubArea
1463   p_values_Dunn[subarea_key][column] = pd.DataFrame(
1464   p_values.values,
1465   columns=sample_labels,
1466   index=sample_labels
1467   )
1468   
1469   # To check the results for each SubArea and column, printing the p_values_Dunn 

dictionary
1470   p_values_Dunn
1471   
1472   # Custom colormap
1473   colors = [
1474   (0.5, 0.1, 0.5),
1475   (1, 0.8, 0.4), # Yellow starts at 0.05
1476   (1, 0.8, 0.4)
1477   ]
1478   positions = [0.0000, 0.0500, 1]
1479   cmap_name = "custom_gradient_cmap"
1480   smooth_cmap = LinearSegmentedColormap.from_list(cmap_name, list(zip(positions, colors

)))
1481   
1482   # Normalize to align colors with specific ranges
1483   norm = Normalize(vmin=0, vmax=1)
1484   
1485   # Create a subplot grid with 1 row and number of columns based on the number of 

SubAreas
1486   fig, axes = plt.subplots(5, 3, figsize=(20,20))
1487   
1488   axes_flat = axes.flatten()



1489   
1490   # Loop through the p_values_Dunn dictionary and plot each matrix
1491   k = 0
1492   for i, (subarea_key, subarea_p_values) in enumerate(p_values_Dunn.items()):
1493   for j, (column, matrix) in enumerate(subarea_p_values.items()):
1494   # Get the current subplot axis
1495   ax = axes_flat[k]
1496   k += 1
1497   
1498   # Plot the heatmap for the current subarea and column
1499   sample_labels = list(matrix.columns)
1500   
1501   # Plot heatmap for each SubArea and column
1502   sns.heatmap(
1503   matrix,
1504   annot=True,
1505   fmt=".4f",
1506   cmap=smooth_cmap,
1507   norm=norm,
1508   cbar_kws={'label': 'p-value'},
1509   ax=ax
1510   )
1511   
1512   ax.set_title(f'Dunn-Bonferroni-Test P-Values: {subarea_key} - {column}')
1513   ax.set_xlabel('Sub Areas')
1514   ax.set_ylabel('Sub Areas')
1515   
1516   # Get the current x-tick locations
1517   xticks = ax.get_xticks()
1518   
1519   # Set x-tick labels only for the available tick locations
1520   ax.set_xticks(xticks)
1521   ax.set_xticklabels(sample_labels[:len(xticks)], rotation=0, ha='right')
1522   
1523   # Similarly, for y-axis:
1524   yticks = ax.get_yticks()
1525   ax.set_yticks(yticks)
1526   ax.set_yticklabels(sample_labels[:len(yticks)], rotation=0)
1527   plt.tight_layout()
1528   #plt.savefig(f'/content/drive/My Drive/Colab 

Notebooks/Data/Dunn-Bonnferroni-Test_Sub-Areas.svg', format='svg')
1529   plt.show()
1530   
1531   """## Analysis Dunn values -5 m buffer (homogeneity/heterogeneity)"""
1532   
1533   import pandas as pd
1534   import matplotlib.pyplot as plt
1535   import matplotlib.colors as mcolors
1536   from matplotlib.table import Table
1537   import matplotlib.patches as patches
1538   
1539   # df that contains information on sub areas exceeding 0.05 (-> are similar)
1540   data = p_values_Dunn
1541   
1542   results = []
1543   
1544   # Iterate through the subareas and slope types
1545   for subarea_key, slopes in data.items():
1546   for slope_key, matrix in slopes.items():
1547   # Compute row counts exceeding 0.05
1548   for row_index, row_values in matrix.iterrows():
1549   total_columns = len(row_values) -1
1550   exceed_count = (row_values > 0.05).sum() -1
1551   percentage = (exceed_count / total_columns) * 100
1552   modified_subarea_key = subarea_key[3:] # Remove first three character
1553   modified_subarea_key = modified_subarea_key[:4] + modified_subarea_key[5:]

# Remove 8. character
1554   results.append({
1555   "Area": modified_subarea_key,
1556   "Slope": slope_key,
1557   "SubAreaIndex": row_index,
1558   "TotalColumns": total_columns,



1559   "Count>0.05": exceed_count,
1560   "Percentage>0.05": percentage,
1561   })
1562   
1563   results_df = pd.DataFrame(results)
1564   
1565   # Display the results
1566   print(results_df)
1567   
1568   ## create tables from df
1569   # Function to get row colors based on Percentage
1570   def get_row_color(percentage):
1571   if percentage == 0:
1572   return "darkviolet"
1573   elif percentage < 50:
1574   return "lavender"
1575   elif percentage >= 50 and percentage < 100:
1576   return "lightyellow"
1577   elif percentage == 100:
1578   return "gold"
1579   return "white"
1580   
1581   # Function to create a table in a specific subplot
1582   def create_styled_table_in_subplot(ax, df, title="Table"):
1583   ax.axis("off")
1584   ax.set_title(title, fontsize=16, pad=26)
1585   
1586   table = Table(ax, bbox=[0, 0, 1, 1])
1587   nrows, ncols = df.shape
1588   
1589   # Column headers
1590   col_labels = df.columns
1591   for col_idx, label in enumerate(col_labels):
1592   table.add_cell(-1, col_idx, text=label, width=1, height=0.2, facecolor=

"lightgray", loc="center")
1593   
1594   # Row cells
1595   prev_subarea = None
1596   for row_idx, row in df.iterrows():
1597   current_subarea = row["Area"]
1598   edgecolor = "black"
1599   if prev_subarea != current_subarea:
1600   edgecolor = "black"
1601   
1602   prev_subarea = current_subarea
1603   
1604   for col_idx, value in enumerate(row):
1605   # Get cell color
1606   if col_labels[col_idx] == "Percentage>0.05":
1607   cell_color = get_row_color(row["Percentage>0.05"])
1608   else:
1609   cell_color = "white"
1610   
1611   table.add_cell(
1612   row_idx,
1613   col_idx,
1614   text=str(value),
1615   width=1,
1616   height=0.2,
1617   facecolor=cell_color,
1618   loc="center",
1619   edgecolor=edgecolor,
1620   )
1621   
1622   ax.add_table(table)
1623   
1624   # Prepare the DataFrame subsets and clean up slope names
1625   results_df_cleaned = results_df.drop(columns=["Slope"]) # Remove the Slope column
1626   unique_slopes = results_df["Slope"].unique()
1627   
1628   # Create subplots for the tables
1629   fig, axes = plt.subplots(1, len(unique_slopes), figsize=(24, 10)) # Increased size 



for higher resolution
1630   fig.tight_layout(pad=5)
1631   
1632   # Create a table for each slope type
1633   for ax, slope in zip(axes, unique_slopes):
1634   slope_df = results_df[results_df["Slope"] == slope].drop(columns=["Slope"])
1635   clean_title = f"Slope: {slope.replace('_slope', '')}" # Clean slope name
1636   create_styled_table_in_subplot(ax, slope_df, title=clean_title)
1637   
1638   plt.show()
1639   
1640   ## Summary of table in percentages: Calculate if sub areas in general are more equal 

or more random, for each sub area seperatly if it's more equal or more random, and 
what slope is most equal or most random

1641   # Function to create the summary DataFrame with percentages
1642   def create_summary_percentage_df(results_df):
1643   summary_data = []
1644   
1645   total_rows = len(results_df)
1646   
1647   # SubArea specific rows (as percentage)
1648   subareas = results_df["Area"].unique()
1649   for subarea in subareas:
1650   subarea_df = results_df[results_df["Area"] == subarea]
1651   subarea_total = len(subarea_df)
1652   summary_data.append([f"{subarea}",
1653   (subarea_df["Percentage>0.05"] == 0).sum() /

subarea_total * 100,
1654   ((subarea_df["Percentage>0.05"] > 0) & (subarea_df[

"Percentage>0.05"] < 50)).sum() / subarea_total * 100,
1655   ((subarea_df["Percentage>0.05"] >= 50) & (subarea_df[

"Percentage>0.05"] < 100)).sum() / subarea_total * 100,
1656   (subarea_df["Percentage>0.05"] == 100).sum() /

subarea_total * 100])
1657   
1658   summary_df = pd.DataFrame(summary_data, columns=["Area",
1659   "Highly heterogeneous [%]",
1660   "Heterogeneous [%]",
1661   "Homogeneous [%]",
1662   "Highly homogeneous [%]"])
1663   area_mapping = {
1664   "Area1": "Southern Taymyr",
1665   "Area2": "Northern Olenek",
1666   "Area3": "Chokurdakh",
1667   "Area4": "Iultinsky (Chukotka)",
1668   "Area6": "Southern Verkhoyansk Range"
1669   }
1670   
1671   # Replace area codes with names
1672   summary_df["Area"] = summary_df["Area"].replace(area_mapping)
1673   
1674   numeric_columns = ["Highly heterogeneous [%]", "Heterogeneous [%]", "Homogeneous 

[%]", "Highly homogeneous [%]"]
1675   summary_df[numeric_columns] = summary_df[numeric_columns].round(0).astype(int)
1676   
1677   
1678   return summary_df
1679   
1680   # Create the summary DataFrame with percentages
1681   summary_percentage_df = create_summary_percentage_df(results_df)
1682   
1683   # Display the summary DataFrame with percentages
1684   print(summary_percentage_df)
1685   
1686   # pie charts for overview map
1687   def save_single_pie_chart(summary_df, area_name, save_path):
1688   # Define the colors for each category
1689   colors = {
1690   "Highly heterogeneous [%]": "darkviolet",
1691   "Heterogeneous [%]": "lavender",
1692   "Homogeneous [%]": "lightyellow",
1693   "Highly homogeneous [%]": "gold"



1694   }
1695   
1696   # Filter data for the specified area
1697   row = summary_df[summary_df['Area'] == area_name].iloc[0]
1698   
1699   # Data for the pie chart
1700   labels = ["Highly heterogeneous [%]", "Heterogeneous [%]", "Homogeneous [%]",

"Highly homogeneous [%]"]
1701   sizes = [row[label] for label in labels]
1702   
1703   # Filter out categories with zero values
1704   filtered_labels = [label for label, size in zip(labels, sizes) if size > 0]
1705   filtered_sizes = [size for size in sizes if size > 0]
1706   filtered_colors = [colors[label] for label in filtered_labels]
1707   
1708   # Create a figure and axis
1709   fig, ax = plt.subplots(figsize=(4, 4))
1710   
1711   # Create the pie chart
1712   wedges, texts, autotexts = ax.pie(filtered_sizes, colors=filtered_colors,
1713   autopct='%1.0f%%', startangle=140, wedgeprops={'edgecolor': 'black'},

pctdistance=0.83)
1714   
1715   ax.set_title(f"{area_name}", fontsize=18, weight="bold", y=0.95)
1716   
1717   for autotext in autotexts:
1718   autotext.set_fontsize(18)
1719   
1720   plt.tight_layout()
1721   
1722   # Save the plot to a file
1723   fig.savefig(save_path)
1724   print(f"Saved plot as {save_path}")
1725   
1726   # Show the plot
1727   plt.show()
1728   
1729   titles = ["Southern Taymyr", "Iultinsky (Chukotka)"] #["Area 1", "Area 2", "Area 3", 

"Area 4", "Area 6"]
1730   
1731   save_single_pie_chart(summary_percentage_df, "Iultinsky (Chukotka)",

'/content/drive/My Drive/Colab 
Notebooks/Data/Plots/SouthernTaymyrSimilarityClassesPie.svg')

1732   
1733   """# Terrain position (TP) detection"""
1734   
1735   import pandas as pd
1736   import geopandas as gpd
1737   
1738   """Converting the lakes data set to shp file and storring it as gee asset"""
1739   
1740   #Lakes = gpd.read_parquet('/content/drive/My Drive/Colab 

Notebooks/Data/filtered_full_set_v2.parquet')
1741   #Lakes_gdf = gpd.GeoDataFrame(Lakes, geometry="geometry", crs="EPSG:4326")
1742   #Lakes_gdf.to_file("/content/drive/My Drive/Colab Notebooks/Data/Lakes.shp", 

driver="ESRI Shapefile")
1743   
1744   """## Shore line"""
1745   
1746   # Install required libraries
1747   !pip install geemap geopandas
1748   
1749   import geemap
1750   import geopandas as gpd
1751   import pandas as pd
1752   
1753   # Load the FeatureCollections
1754   
1755   MainlandPolygon = ee.FeatureCollection(

'projects/sat-io/open-datasets/shoreline/mainlands')
1756   
1757   def check_shore_overlap(feature):



1758   
1759   # Find polygons that intersect with the feature
1760   intersects = MainlandPolygon.filterBounds(feature.geometry())
1761   
1762   # Get the first intersecting polygon (or null if none found)
1763   first_intersecting_polygon = intersects.first()
1764   
1765   # Check if the feature is fully contained within the mainland polygon
1766   fully_contained = ee.Algorithms.If(
1767   first_intersecting_polygon, # Condition: if intersecting polygon exists
1768   first_intersecting_polygon.geometry().contains(feature.geometry()), # If 

true: perform 'contains'
1769   False # If false: assume 'not fully overlapping' (set to False)
1770   )
1771   
1772   # Assigns 0 (fully overlaps) or 1 (not fully overlapping) to TP property
1773   updated_feature = feature.set("TP", ee.Algorithms.If(fully_contained, 0, 1))
1774   
1775   # Select only relevant properties (mimics Pandas .loc[:, columns_to_keep])
1776   columns_to_keep = ["geometry", "TP", "id", "fid"]
1777   selected_properties = updated_feature.select(columns_to_keep)
1778   
1779   return selected_properties
1780   
1781   # Apply the function shore overlap to Area 1
1782   TP_rtsT1 = rtsT1.map(check_shore_overlap)
1783   
1784   # Convert to GeoJSON
1785   geojson_TP_rtsT1 = geemap.ee_to_geojson(TP_rtsT1)
1786   # Convert to GeoDataFrame
1787   gdf_TP_rtsT1 = gpd.GeoDataFrame.from_features(geojson_TP_rtsT1)
1788   
1789   print("Number of rows where TP == 1:", len(gdf_TP_rtsT1[gdf_TP_rtsT1['TP'] == 1]))
1790   
1791   # Apply the function shore overlap to Area 2
1792   TP_rtsT2 = rtsT2.map(check_shore_overlap)
1793   
1794   # Convert to GeoJSON
1795   geojson_TP_rtsT2 = geemap.ee_to_geojson(TP_rtsT2)
1796   # Convert to GeoDataFrame
1797   gdf_TP_rtsT2 = gpd.GeoDataFrame.from_features(geojson_TP_rtsT2)
1798   
1799   print("Number of rows where TP == 1:", len(gdf_TP_rtsT2[gdf_TP_rtsT2['TP'] == 1]))
1800   
1801   # Apply the function shore overlap to Area 4
1802   TP_rtsT4 = rtsT4.map(check_shore_overlap)
1803   
1804   # Convert to GeoJSON
1805   geojson_TP_rtsT4 = geemap.ee_to_geojson(TP_rtsT4)
1806   # Convert to GeoDataFrame
1807   gdf_TP_rtsT4 = gpd.GeoDataFrame.from_features(geojson_TP_rtsT4)
1808   
1809   print("Number of rows where TP == 1:", len(gdf_TP_rtsT4[gdf_TP_rtsT4['TP'] == 1]))
1810   
1811   # Apply the function shore overlap to Area 6
1812   TP_rtsT6 = rtsT6.map(check_shore_overlap)
1813   
1814   # Convert to GeoJSON
1815   geojson_TP_rtsT6 = geemap.ee_to_geojson(TP_rtsT6)
1816   # Convert to GeoDataFrame
1817   gdf_TP_rtsT6 = gpd.GeoDataFrame.from_features(geojson_TP_rtsT6)
1818   
1819   print("Number of rows where TP == 1:", len(gdf_TP_rtsT6[gdf_TP_rtsT6['TP'] == 1]))
1820   
1821   # creating same gdf for Area 3
1822   def add_tp_column(feature):
1823   """Adds a TP property to the feature and sets its value to 0."""
1824   return feature.set('TP', 0)
1825   
1826   # Map the function to the FeatureCollection
1827   rtsT3_with_tp = rtsT3.map(add_tp_column)
1828   



1829   # Select only the desired columns
1830   rtsT3_selected = rtsT3_with_tp.select(['geometry', 'id', 'fid', 'TP'])
1831   # Convert the FeatureCollection to a GeoDataFrame
1832   geojson_TP_rtsT3 = geemap.ee_to_geojson(rtsT3_selected)
1833   gdf_TP_rtsT3 = gpd.GeoDataFrame.from_features(geojson_TP_rtsT3)
1834   
1835   # Display the first few rows to verify
1836   print(gdf_TP_rtsT3.head())
1837   
1838   """Check results visualy"""
1839   
1840   #prepaire data for visualization
1841   gdf_TP_rtsT2.set_crs(epsg=4326, inplace=True) # Set CRS directly on gdf_TP_rtsT2 

with inplace=True
1842   TP_rtsT2_fc = geemap.geopandas_to_ee(gdf_TP_rtsT2)
1843   TP_rtsT2_fc_2 = TP_rtsT2_fc.filter(ee.Filter.eq('TP', 1))
1844   
1845   polygon_style = {
1846   'color': 'red',
1847   'width': 2,
1848   'fillColor': '00000000' # Transparent fill
1849   }
1850   
1851   Map = geemap.Map(center=[73.25, 116.5], zoom=5)
1852   
1853   # Add the filtered polygons (only overlap = 1)
1854   Map.addLayer(TP_rtsT2_fc_2.style(**polygon_style), {}, "Filtered Polygons (overlap = 

1)")
1855   
1856   # Display map
1857   Map
1858   
1859   """## Lakes"""
1860   
1861   Lakes = ee.FeatureCollection("projects/ee-moritzjulia7/assets/Lakes")
1862   
1863   # Define FeatureCollections
1864   rtsT_collections = {
1865   "rtsT1": rtsT1,
1866   "rtsT2": rtsT2,
1867   "rtsT3": rtsT3,
1868   "rtsT4": rtsT4,
1869   "rtsT6": rtsT6
1870   }
1871   
1872   gdf_TP_dict = {
1873   "rtsT1": gdf_TP_rtsT1,
1874   "rtsT2": gdf_TP_rtsT2,
1875   "rtsT3": gdf_TP_rtsT3,
1876   "rtsT4": gdf_TP_rtsT4,
1877   "rtsT6": gdf_TP_rtsT6
1878   }
1879   
1880   # Function to check intersection in GEE and update TP value
1881   def update_tp_if_intersects(rts_fc, gdf_TP):
1882   def check_overlap(feature):
1883   """Check if the feature intersects with any polygon in Lakes."""
1884   intersects = Lakes.filterBounds(feature.geometry()).size().gt(0)
1885   return feature.set("TP", ee.Algorithms.If(intersects, 2, feature.get("TP")))
1886   
1887   # Apply intersection check to each polygon in the rtsT FeatureCollection
1888   updated_fc = rts_fc.map(check_overlap)
1889   
1890   # Convert updated FeatureCollection to a Pandas DataFrame
1891   updated_gdf = geemap.ee_to_geojson(updated_fc)
1892   updated_gdf = gpd.GeoDataFrame.from_features(updated_gdf)
1893   
1894   # Merge to keep original structure but update TP where needed
1895   gdf_TP.set_index("fid", inplace=True)
1896   updated_gdf.set_index("fid", inplace=True)
1897   
1898   # Update only the TP values



1899   gdf_TP.update(updated_gdf["TP"])
1900   
1901   # Reset index after updating
1902   gdf_TP.reset_index(inplace=True)
1903   
1904   return gdf_TP
1905   
1906   # Process all rtsT datasets
1907   for key, rts_fc in rtsT_collections.items():
1908   gdf_TP_dict[key] = update_tp_if_intersects(rts_fc, gdf_TP_dict[key])
1909   
1910   """Check results visualy"""
1911   
1912   #prepaire data for visualization
1913   gdf_TP_rtsT2.set_crs(epsg=4326, inplace=True) # Set CRS directly on gdf_TP_rtsT2 

with inplace=True
1914   TP_rtsT2_fc = geemap.geopandas_to_ee(gdf_TP_rtsT2)
1915   TP_rtsT2_fc_2 = TP_rtsT2_fc.filter(ee.Filter.eq('TP', 2))
1916   
1917   polygon_style = {
1918   'color': 'red',
1919   'width': 2,
1920   'fillColor': '00000000' # Transparent fill
1921   }
1922   
1923   Map = geemap.Map(center=[73.25, 116.5], zoom=5)
1924   
1925   # Add the filtered polygons (only overlap = 2)
1926   Map.addLayer(TP_rtsT2_fc_2.style(**polygon_style), {}, "Filtered Polygons (overlap = 

2)")
1927   
1928   # Display map
1929   Map
1930   
1931   """Downloading the data frames"""
1932   
1933   from google.colab import drive
1934   import os
1935   import shutil
1936   
1937   # Mount Google Drive
1938   #drive.mount('/content/drive')
1939   
1940   # Define the directory in Google Drive where files will be saved
1941   #save_dir = "/content/drive/My Drive/Colab Notebooks/Data/TP shp Verion 1"
1942   
1943   # Ensure the directory exists
1944   #os.makedirs(save_dir, exist_ok=True)
1945   
1946   # Loop through each GeoDataFrame and save as a Shapefile
1947   #for name, gdf in gdf_TP_dict.items():
1948   #    shp_dir = os.path.join(save_dir, name)  # Each shapefile needs its own folder
1949   #    os.makedirs(shp_dir, exist_ok=True)  # Create a folder for the shapefile 

components#
1950   
1951   #    file_path = os.path.join(shp_dir, name + ".shp")
1952   #    gdf.to_file(file_path, driver="ESRI Shapefile")
1953   
1954   #    print(f"Saved {name} as a Shapefile in {shp_dir}")
1955   
1956   """## Loading the manually enhanced data sets"""
1957   
1958   from google.colab import drive
1959   import geopandas as gpd
1960   import geemap
1961   
1962   drive.mount('/content/drive')
1963   
1964   rtsT1_v2 = gpd.read_file('/content/drive/My Drive/Colab Notebooks/Data/TP shp version 

2/rtsT1_v2.shp' )
1965   rtsT2_v2 = gpd.read_file('/content/drive/My Drive/Colab Notebooks/Data/TP shp version 

2/rtsT2_v2.shp')



1966   rtsT3_v2 = gpd.read_file('/content/drive/My Drive/Colab Notebooks/Data/TP shp version 
2/rtsT3_v2.shp')

1967   rtsT4_v2 = gpd.read_file('/content/drive/My Drive/Colab Notebooks/Data/TP shp version 
2/rtsT4_v2.shp')

1968   rtsT6_v2 = gpd.read_file('/content/drive/My Drive/Colab Notebooks/Data/TP shp version 
2/rtsT6_v2.shp')

1969   
1970   """## Analyse TP Data"""
1971   
1972   import geopandas as gpd
1973   import pandas as pd
1974   
1975   ## Merging the TP data frames to one large data frame
1976   gdf_list = [
1977   (rtsT1_v2, 1),
1978   (rtsT2_v2, 2),
1979   (rtsT3_v2, 3),
1980   (rtsT4_v2, 4),
1981   (rtsT6_v2, 6),
1982   ]
1983   
1984   # Create a list of GeoDataFrames with the added 'area' column
1985   gdfs_with_area = [
1986   gdf[['fid', 'TP', 'Shpe', 'geometry']].assign(area=area)
1987   for gdf, area in gdf_list
1988   ]
1989   
1990   # Merge them into a single GeoDataFrame
1991   rts_TP_all = gpd.GeoDataFrame(pd.concat(gdfs_with_area, ignore_index=True))
1992   
1993   # Check the result
1994   print(rts_TP_all)
1995   
1996   import matplotlib.pyplot as plt
1997   
1998   def create_tp_pie_charts(rts_TP_all, save_path=None):
1999   
2000   tp_labels = {
2001   1: "Sea Shore",
2002   2: "Lake Shore",
2003   3: "River Shore",
2004   4: "Gully",
2005   # 5: "Others",
2006   6: "Ponds (+Gully)"
2007   }
2008   
2009   tp_colors = {
2010   1: '#00008B', # Dark Blue
2011   2: '#0000FF', # Blue
2012   3: '#ADD8E6', # Light Blue
2013   4: '#FFA500', # Orange
2014   # 5: '#FF0000',   # Red
2015   6: '#800000', # Maroon
2016   }
2017   
2018   area_name_mapping = {
2019   1: "Southern Taymyr",
2020   2: "Northern Olenek",
2021   3: "Chokurdakh",
2022   4: "Iultinsky (Chukotka)",
2023   6: "Southern Verkhoyansk Range"
2024   }
2025   
2026   # Replace area names in the 'area' column using the mapping
2027   rts_TP_all['area'] = rts_TP_all['area'].replace(area_name_mapping)
2028   
2029   # Get the unique areas
2030   unique_areas = rts_TP_all['area'].unique()
2031   num_areas = len(unique_areas)
2032   
2033   # Create subplots: arrange them in a row
2034   fig, axes = plt.subplots(1, num_areas, figsize=(6 * num_areas, 6))



2035   
2036   # If only one area
2037   if num_areas == 1:
2038   axes = [axes]
2039   
2040   # Iterate through each area and create a pie chart
2041   for idx, area in enumerate(unique_areas):
2042   area_df = rts_TP_all[rts_TP_all['area'] == area]
2043   tp_counts = area_df['TP'].value_counts()
2044   
2045   # Get sizes and colors
2046   sizes = tp_counts.values
2047   colors = [tp_colors[tp] for tp in tp_counts.index]
2048   
2049   # Create the pie chart
2050   wedges, _, autotexts = axes[idx].pie(
2051   sizes, autopct='%1.0f%%', colors=colors,
2052   startangle=140, wedgeprops={'edgecolor': 'black'},
2053   pctdistance=1.2 # Adjust percentage placement
2054   )
2055   
2056   axes[idx].set_title(f"{area}", fontsize=24, y=1.05)
2057   
2058   for autotext in autotexts:
2059   autotext.set_fontsize(18)
2060   
2061   # Create a shared legend at the bottom
2062   legend_labels = [f"{tp_labels[tp]}" for tp in tp_labels]
2063   legend_colors = [tp_colors[tp] for tp in tp_labels]
2064   
2065   # Create legend patches
2066   legend_patches = [plt.Line2D([0], [0], marker='o', color='w',
2067   markerfacecolor=color, markersize=12) for color in

legend_colors]
2068   
2069   # Add legend below all plots
2070   fig.legend(legend_patches, legend_labels, loc="lower center",
2071   fontsize=18, ncol=5, bbox_to_anchor=(0.5, -0.05))
2072   
2073   # Adjust layout for better spacing
2074   plt.tight_layout(rect=[0, 0.1, 1, 1])
2075   
2076   # Set a bold title for the entire figure
2077   fig.suptitle(
2078   "Distribution of TP Values Across Areas",
2079   fontsize=28, weight="bold", y=1.12
2080   )
2081   
2082   if save_path:
2083   plt.savefig(save_path, bbox_inches="tight")
2084   print(f"Saved plot as {save_path}")
2085   
2086   plt.show()
2087   
2088   create_tp_pie_charts(rts_TP_all)
2089   
2090   """## Analyse morphology Data"""
2091   
2092   import geopandas as gpd
2093   import pandas as pd
2094   
2095   import matplotlib.pyplot as plt
2096   
2097   def create_morphology_pie_charts(rts_TP_all, save_path=None):
2098   
2099   morphology_labels = {
2100   0: "Thermocirque",
2101   1: "Thermoterrace",
2102   2: "Combination",
2103   }
2104   
2105   m_colors = {



2106   0: '#800000',
2107   1: '#5FAF00',
2108   2: '#BEAA3C'
2109   }
2110   
2111   area_name_mapping = {
2112   1: "Southern Taymyr",
2113   2: "Northern Olenek",
2114   3: "Chokurdakh",
2115   4: "Iultinsky (Chukotka)",
2116   6: "Southern Verkhoyansk Range"
2117   }
2118   
2119   # Replace area names in the 'area' column using the mapping
2120   rts_TP_all['area'] = rts_TP_all['area'].replace(area_name_mapping)
2121   
2122   # Get the unique areas
2123   unique_areas = rts_TP_all['area'].unique()
2124   num_areas = len(unique_areas)
2125   
2126   # Create subplots: arrange them in a row
2127   fig, axes = plt.subplots(1, num_areas, figsize=(6 * num_areas, 6))
2128   
2129   # If only one area
2130   if num_areas == 1:
2131   axes = [axes]
2132   
2133   # Iterate through each area and create a pie chart
2134   for idx, area in enumerate(unique_areas):
2135   area_df = rts_TP_all[rts_TP_all['area'] == area]
2136   m_counts = area_df['Shpe'].value_counts()
2137   
2138   # Get sizes and colors
2139   sizes = m_counts.values
2140   colors = [m_colors[m] for m in m_counts.index]
2141   
2142   # Create the pie chart
2143   wedges, _, autotexts = axes[idx].pie(
2144   sizes, autopct='%1.0f%%', colors=colors,
2145   startangle=140, wedgeprops={'edgecolor': 'black'},
2146   pctdistance=1.2
2147   )
2148   
2149   axes[idx].set_title(f"{area}", fontsize=24, y=1.05)
2150   
2151   for autotext in autotexts:
2152   autotext.set_fontsize(18)
2153   
2154   # Create a shared legend at the bottom
2155   legend_labels = [f"{morphology_labels[m]}" for m in morphology_labels]
2156   legend_colors = [m_colors[m] for m in morphology_labels]
2157   
2158   # Create legend patches
2159   legend_patches = [plt.Line2D([0], [0], marker='o', color='w',
2160   markerfacecolor=color, markersize=12) for color in

legend_colors]
2161   
2162   # Add legend below all plots
2163   fig.legend(legend_patches, legend_labels, loc="lower center",
2164   fontsize=18, ncol=5, bbox_to_anchor=(0.5, -0.05))
2165   
2166   # Adjust layout for better spacing
2167   plt.tight_layout(rect=[0, 0.1, 1, 1])
2168   
2169   fig.suptitle(
2170   "Distribution of Morphology Types Across Study Areas",
2171   fontsize=28, weight="bold", y=1.12
2172   )
2173   
2174   if save_path:
2175   plt.savefig(save_path, bbox_inches="tight")
2176   print(f"Saved plot as {save_path}")



2177   
2178   plt.show()
2179   
2180   create_morphology_pie_charts(rts_TP_all)
2181   
2182   """# Terrain Position, spectral slope similarity compairison (sub-hypothesis 3)
2183   
2184   Singe gdf creation per RTS. Names of gdf include value of main area, slumps fid, TP 

value and Shape(=Morphology) value
2185   """
2186   
2187   import geopandas as gpd
2188   import pandas as pd
2189   from collections import defaultdict
2190   
2191   polygon_layers = {
2192   "rtsT1_v2": rtsT1_v2,
2193   "rtsT2_v2": rtsT2_v2,
2194   "rtsT3_v2": rtsT3_v2,
2195   "rtsT4_v2": rtsT4_v2,
2196   "rtsT6_v2": rtsT6_v2
2197   }
2198   
2199   point_layers = {
2200   "gdf_T1_norm": gdf_T1_norm_2, #_2 are the df that have the 5 m inward buffer 

already applyed
2201   "gdf_T2_norm": gdf_T2_norm_2,
2202   "gdf_T3_norm": gdf_T3_norm_2,
2203   "gdf_T4_norm": gdf_T4_norm_2,
2204   "gdf_T6_norm": gdf_T6_norm_2
2205   }
2206   
2207   gdf_singleRTSs_plus_Property = {}
2208   
2209   # Iterate through each polygon layer
2210   for poly_name, poly_gdf in polygon_layers.items():
2211   T_number = poly_name[4] # Extract T number (e.g., '1' from 'rtsT1_v2')
2212   point_gdf_name = f"gdf_T{T_number}_norm"
2213   
2214   if point_gdf_name not in point_layers:
2215   print(f"Warning: No matching point layer found for {poly_name}. Skipping.")
2216   continue
2217   
2218   point_gdf = point_layers[point_gdf_name]
2219   
2220   gdf_dict = {}
2221   
2222   # Iterate over each polygon in the layer
2223   for idx, polygon in poly_gdf.iterrows():
2224   polygon_geometry = polygon.geometry
2225   TP_value = polygon["TP"]
2226   fid = polygon["fid"]
2227   shape_number = polygon["Shpe"]
2228   
2229   # Filter points within the polygon
2230   filtered_points = point_gdf[point_gdf.geometry.apply(lambda geom: geom.within(

polygon_geometry))]
2231   
2232   
2233   # Check if filtered points exist
2234   if filtered_points.empty:
2235   print(f"Warning: No points found in {poly_name} for polygon {fid}. 

Skipping.")
2236   continue
2237   
2238   # Create the dictionary key name
2239   gdf_key = f"T{T_number}_fid{fid}_TP{TP_value}_Shape{shape_number}"
2240   
2241   # Store in dictionary
2242   gdf_dict[gdf_key] = filtered_points
2243   
2244   # Store the dictionary for this polygon layer



2245   gdf_singleRTSs_plus_Property[f"T{T_number}"] = gdf_dict
2246   
2247   print(f"Processed {poly_name}: {len(gdf_dict)} RTS dfs created.")
2248   
2249   #Overview of created geodataframes
2250   
2251   summary_data = defaultdict(lambda: {"Total_GDFs": 0})
2252   
2253   # Iterate over all created GDFs
2254   for T_key, sub_gdfs in gdf_singleRTSs_plus_Property.items():
2255   for gdf_name in sub_gdfs.keys():
2256   # Extract TP value and Shape number from the GDF name
2257   parts = gdf_name.split("_")
2258   TP_value = int(parts[2][2:]) # Extract TP value from 'TPX'
2259   Shape_value = int(parts[3][5:]) # Extract Shape number from 'ShapeX'
2260   
2261   # Increment counts
2262   summary_data[T_key][f"TP_{TP_value}"] = summary_data[T_key].get(f"TP_{TP_value

}", 0) + 1
2263   summary_data[T_key][f"Shape_{Shape_value}"] = summary_data[T_key].get(

f"Shape_{Shape_value}", 0) + 1
2264   summary_data[T_key]["Total_GDFs"] += 1
2265   
2266   # Convert to Pandas DataFrame
2267   summary_df = pd.DataFrame.from_dict(summary_data, orient="index").fillna(0)
2268   
2269   # Display the summary table
2270   print(summary_df)
2271   
2272   """**Areas:** "T1": "Southern Taymyr", "T2": "Northern Olenek", "T3": "Chokurdakh", 

"T4": "Iultinsky (Chukotka)", "T6": "Southern Verkhoyansk Range"
2273   
2274   **Terrain Position Names:** "TP_1": "Sea", "TP_2": "Lake", "TP_3": "River", "TP_4": 

"Gully", "TP_5": "Others",  "TP_6": "Ponds + Gully"
2275   
2276   **Morphology Names:** "Shape_0": "Thermocirque", "Shape_1": "Thermoterrace", 

"Shape_2": "Combination"
2277   
2278   ## Calcutaion of statistics for all slumps
2279   """
2280   
2281   from scipy.stats import shapiro
2282   !pip install scikit-posthocs
2283   # during analysis the version "0.11.2-py3-none-any.whl.metadata (5.8 kB)" was used.
2284   #That version is no longer availabe and version 0.11.3 can produce slightly different 

results.
2285   import scipy.stats as stats
2286   import scikit_posthocs as sp
2287   import pandas as pd
2288   
2289   # shapiro -> normal distribution
2290   
2291   # Define the numerical columns to check for normality
2292   columns = ["TCB_slope", "TCG_slope", "TCW_slope"]
2293   
2294   shapiro_results = {}
2295   
2296   # Iterate through all areas (T1, T2, etc.)
2297   for T_key, sub_gdfs in gdf_singleRTSs_plus_Property.items():
2298   shapiro_results[T_key] = {}
2299   
2300   # Iterate through all created GeoDataFrames
2301   for df_name, df in sub_gdfs.items():
2302   shapiro_results[T_key][df_name] = {}
2303   
2304   for col in columns:
2305   try:
2306   # Perform Shapiro-Wilk test only if the column exists
2307   if col in df.columns and len(df[col].dropna()) > 3:
2308   stat, p_value = shapiro(df[col].dropna()) # Remove NaN values
2309   shapiro_results[T_key][df_name][col] = {"statistic": stat,

"p_value": p_value}



2310   else:
2311   shapiro_results[T_key][df_name][col] = {"statistic": None,

"p_value": None, "error": "Insufficient data"}
2312   except Exception as e:
2313   # Handle errors (e.g., not enough data points)
2314   shapiro_results[T_key][df_name][col] = {"statistic": None, "p_value":

None, "error": str(e)}
2315   
2316   # Print the results in a readable format
2317   for T_key, subarea_results in shapiro_results.items():
2318   print( 📊f"\n  Shapiro-Wilk Test Results for {T_key}:")
2319   for df_name, results in subarea_results.items():
2320   print( 📂f"   DataFrame: {df_name}")
2321   for col, result in results.items():
2322   if result["statistic"] is not None:
2323   print(f"    {col}: statistic={result['statistic']:.4f}, p-value={

result['p_value']:.4f}")
2324   else:
2325   print(f"    {col ❌}:  Test could not be performed. Error: {result[

'error']}")
2326   
2327   """Majority of RTSs are **not** normaly distributed.
2328   
2329   
2330   """
2331   
2332   ### Dunn’s Test and Kruskal-Wallis tests
2333   
2334   # Define numerical columns to compare
2335   columns = ["TCB_slope", "TCG_slope", "TCW_slope"]
2336   
2337   comparison_results = {}
2338   
2339   # Group GDFs by T number (Area) and TP value
2340   for T_key, sub_gdfs in gdf_singleRTSs_plus_Property.items():
2341   tp_groups = {} # Dictionary to store groups by TP value
2342   
2343   # Organize GDFs by TP value
2344   for df_name, df in sub_gdfs.items():
2345   parts = df_name.split("_")
2346   TP_value = int(parts[2][2:]) # Extract TP value from 'TPX'
2347   
2348   if TP_value not in tp_groups:
2349   tp_groups[TP_value] = []
2350   
2351   tp_groups[TP_value].append(df)
2352   
2353   # Perform statistical comparisons within each TP group
2354   for TP_value, gdf_list in tp_groups.items():
2355   if len(gdf_list) > 1: # Only compare if we have multiple GDFs
2356   comparison_results[f"T{T_key}_TP{TP_value}"] = {}
2357   
2358   for col in columns:
2359   # Combine data from all GDFs in this group
2360   combined_data = [gdf[col].dropna().values for gdf in gdf_list]
2361   
2362   # Kruskal-Wallis test (checks if there's any difference)
2363   H_stat, p_kw = stats.kruskal(*combined_data)
2364   
2365   if p_kw < 0.05: # If significant, perform Dunn’s test
2366   dunn_results = sp.posthoc_dunn(combined_data, p_adjust=

"bonferroni")
2367   comparison_results[f"T{T_key}_TP{TP_value}"][col] = {"Kruskal_p":

p_kw, "Dunn": dunn_results}
2368   else:
2369   comparison_results[f"T{T_key}_TP{TP_value}"][col] = {"Kruskal_p":

p_kw, "Dunn": None}
2370   
2371   # Print results
2372   for group, results in comparison_results.items():
2373   print( 📊f"\n  Statistical Comparisons for {group}:")
2374   for col, stats_dict in results.items():



2375   print( 🔹f"   {col}: Kruskal-Wallis p-value = {stats_dict['Kruskal_p']:.4f}")
2376   if stats_dict["Dunn"] is not None:
2377   print(f"     Dunn's test results:\n{stats_dict['Dunn']}")
2378   else:
2379   print("     No significant differences found.")
2380   
2381   """## Homogenitiy classification"""
2382   
2383   import matplotlib.pyplot as plt
2384   from matplotlib.table import Table
2385   
2386   results = []
2387   
2388   # Iterate over each group (T, TP)
2389   for group, group_results in comparison_results.items():
2390   # Extract T and TP from the group string
2391   T_value, TP_value = group.split('_')[0][1:], group.split('_')[1][2:]
2392   
2393   # Process each column in the group's results
2394   for slope_key, stats_dict in group_results.items():
2395   # If Dunn's test is available
2396   if stats_dict['Dunn'] is not None:
2397   matrix = stats_dict['Dunn']
2398   
2399   # Iterate over the rows of the matrix
2400   for row_index, row_values in matrix.iterrows():
2401   total_columns = len(row_values) - 1 # Subtracting 1 to exclude the 

comparison with itself
2402   exceed_count = (row_values > 0.05).sum() - 1 # Count values 

exceeding 0.05
2403   percentage = (exceed_count / total_columns) * 100
2404   
2405   # Append the result to the results list
2406   results.append({
2407   "Area": T_value, # Extracted T value
2408   "TP": TP_value, # Extracted TP value
2409   "Slope": slope_key, # The slope key (e.g., 'TCB_slope')
2410   "RTSIndex": row_index, # The row index (single slump index)
2411   "TotalColumns": total_columns, # Total columns in the matrix 

(excluding the diagonal)
2412   "Count>0.05": exceed_count, # Count of values exceeding 0.05
2413   "Percentage>0.05": percentage # Percentage of values exceeding 

0.05
2414   })
2415   
2416   # Print the results (or you could save them to a DataFrame)
2417   results_df = pd.DataFrame(results)
2418   print(results_df)
2419   
2420   ## create tables from df, cecking if patterns are visible
2421   # Function to get row colors based on Percentage
2422   def get_row_color(percentage):
2423   if percentage == 0:
2424   return "darkviolet"
2425   elif percentage < 50:
2426   return "lavender"
2427   elif percentage >= 50 and percentage < 100:
2428   return "lightyellow"
2429   elif percentage == 100:
2430   return "gold"
2431   return "white"
2432   
2433   # Function to create a table in a specific subplot
2434   def create_styled_table_in_subplot(ax, df, title="Table"):
2435   ax.axis("off")
2436   ax.set_title(title, fontsize=16, pad=26)
2437   
2438   table = Table(ax, bbox=[0, 0, 1, 1])
2439   nrows, ncols = df.shape
2440   
2441   col_labels = df.columns
2442   for col_idx, label in enumerate(col_labels):



2443   table.add_cell(-1, col_idx, text=label, width=1, height=0.2, facecolor=
"lightgray", loc="center")

2444   
2445   # Row cells
2446   prev_subarea = None
2447   for row_idx, row in df.iterrows():
2448   current_subarea = row["Area"]
2449   edgecolor = "black"
2450   if prev_subarea != current_subarea:
2451   edgecolor = "black"
2452   
2453   prev_subarea = current_subarea
2454   
2455   for col_idx, value in enumerate(row):
2456   # Get cell color
2457   if col_labels[col_idx] == "Percentage>0.05":
2458   cell_color = get_row_color(row["Percentage>0.05"])
2459   else:
2460   cell_color = "white"
2461   
2462   table.add_cell(
2463   row_idx,
2464   col_idx,
2465   text=str(value),
2466   width=1,
2467   height=0.2,
2468   facecolor=cell_color,
2469   loc="center",
2470   edgecolor=edgecolor,
2471   )
2472   
2473   # Add the table to the subplot
2474   ax.add_table(table)
2475   
2476   # Prepare the DataFrame subsets and clean up slope names
2477   results_df_cleaned = results_df.drop(columns=["Slope"]) # Remove the Slope column
2478   unique_slopes = results_df["Slope"].unique()
2479   
2480   # Create subplots for the tables
2481   fig, axes = plt.subplots(1, len(unique_slopes), figsize=(54, 40)) # Increased size 

for higher resolution
2482   fig.tight_layout(pad=5)
2483   
2484   # Create a table for each slope type
2485   for ax, slope in zip(axes, unique_slopes):
2486   slope_df = results_df[results_df["Slope"] == slope].drop(columns=["Slope"])
2487   clean_title = f"Slope: {slope.replace('_slope', '')}" # Clean slope name
2488   create_styled_table_in_subplot(ax, slope_df, title=clean_title)
2489   
2490   plt.show()
2491   
2492   def create_tp_summary_percentage_df(results_df):
2493   summary_dfs = {} # Dictionary to store summary DataFrames for each TP
2494   
2495   # Get unique TP values
2496   tp_values = results_df["TP"].unique()
2497   
2498   for tp in tp_values:
2499   # Filter for current TP
2500   tp_df = results_df[results_df["TP"] == tp]
2501   
2502   summary_data = []
2503   areas = tp_df["Area"].unique()
2504   
2505   for area in areas:
2506   area_df = tp_df[tp_df["Area"] == area]
2507   area_total = len(area_df)
2508   
2509   summary_data.append([
2510   f"{area}",
2511   (area_df["Percentage>0.05"] == 0).sum() / area_total * 100, # Highly 

homogeneous



2512   ((area_df["Percentage>0.05"] > 0) & (area_df["Percentage>0.05"] < 50
)).sum() / area_total * 100, # Homogeneous

2513   ((area_df["Percentage>0.05"] >= 50) & (area_df["Percentage>0.05"] <
100)).sum() / area_total * 100, # Heterogeneous

2514   (area_df["Percentage>0.05"] == 100).sum() / area_total * 100 # 
Highly heterogeneous

2515   ])
2516   
2517   summary_df = pd.DataFrame(summary_data, columns=[
2518   "Area",
2519   "Highly heterogeneous [%]",
2520   "Heterogeneous [%]",
2521   "Homogeneous [%]",
2522   "Highly homogeneous [%]"
2523   ])
2524   
2525   area_mapping = {
2526   "T1": "Southern Taymyr",
2527   "T2": "Northern Olenek",
2528   "T3": "Chokurdakh",
2529   "T4": "Iultinsky (Chukotka)",
2530   "T6": "Southern Verkhoyansk Range"
2531   }
2532   
2533   summary_df["Area"] = summary_df["Area"].replace(area_mapping)
2534   
2535   # Round numeric columns
2536   numeric_cols = ["Highly homogeneous [%]", "Homogeneous [%]", "Heterogeneous 

[%]", "Highly heterogeneous [%]"]
2537   summary_df[numeric_cols] = summary_df[numeric_cols].round(0).astype(int)
2538   
2539   # Store DataFrame
2540   summary_dfs[f"TP_{tp}"] = summary_df
2541   
2542   return summary_dfs
2543   
2544   summary_results = create_tp_summary_percentage_df(results_df)
2545   summary_results
2546   
2547   """## Plotting"""
2548   
2549   import pandas as pd
2550   import plotly.express as px
2551   !pip install ipdb
2552   import numpy as np
2553   from collections import defaultdict
2554   
2555   """https://plotly.com/python/sunburst-charts/
2556   
2557   Creating the structure df for sunburst chart
2558   """
2559   
2560   rts_datasets = { # collection of RTSs per area
2561   "T1": rtsT1_v2,
2562   "T2": rtsT2_v2,
2563   "T3": rtsT3_v2,
2564   "T4": rtsT4_v2,
2565   "T6": rtsT6_v2
2566   }
2567   # Table of propability of TPs per area
2568   rts_condensed = defaultdict(lambda: defaultdict(int))
2569   Terraintypes = np.arange(5)+1
2570   Regions = ["T1","T2","T3","T4","T6"]
2571   TP_lookup = ["TP_1","TP_2","TP_3","TP_4","TP_6"]
2572   ClassIndex = np.arange(4)
2573   Classifiers = ["Highly homogeneous [%]","Homogeneous [%]","Heterogeneous [%]","Highly 

heterogeneous [%]"]
2574   
2575   for key in Regions: # key = region
2576   for tptype in [1,2,3,4,6]: # ttype = art
2577   rts_condensed[key][tptype] = np.sum(np.array(rts_datasets[key]["TP"])==tptype)
2578   



2579   # Mapping of dataset names (T1, T2, etc.) to their corresponding Region
2580   region_mapping = {
2581   "T1": "Southern Taymyr",
2582   "T2": "Northern Olenek",
2583   "T3": "Chokurdakh",
2584   "T4": "Iultinsky (Chukotka)",
2585   "T6": "Southern Verkhoyansk Range"
2586   }
2587   
2588   # Mapping Terrain Position Names
2589   terrain_mapping = {
2590   "TP_1": "Sea",
2591   "TP_2": "Lake",
2592   "TP_3": "River",
2593   "TP_4": "Gully",
2594   "TP_5": "Others",
2595   "TP_6": "Ponds + Gully"
2596   }
2597   
2598   summary_results # Data frame sorted by TP (+ area and similarity classification)
2599   
2600   # Goal: Region | Terrain Position | Similarity Classification | Classification Number 

(for colour scheme)| Counts
2601   
2602   Results = pd.DataFrame(columns=['Region','Terrain Position','Classification',

'ClassificationNumber','Count', "S.Percentage"])
2603   
2604   # generate a vector of coordinates for areas and TPs
2605   grid1, grid2, grid3 = np.meshgrid(Regions, Terraintypes, ClassIndex)
2606   Stepvector = np.array(list(zip(grid1.ravel(), grid2.ravel(), grid3.ravel())))
2607   
2608   # Results Dataframe line by line
2609   for ll in np.arange(Stepvector.shape[0]):
2610   tmp_Region = region_mapping[Stepvector[ll,0]]
2611   tmp_TP = terrain_mapping[TP_lookup[int(Stepvector[ll,1])-1]]
2612   tmp_Class = Classifiers[int(Stepvector[ll,2])]
2613   tmp_total_Count = rts_condensed[Stepvector[ll,0]][int(Stepvector[ll,1])]
2614   
2615   # Add statistical results (similarity classification)
2616   tmp_table = summary_results[TP_lookup[int(Stepvector[ll,1])-1]]
2617   tmp_table2 = tmp_table[tmp_table['Area'] == tmp_Region]
2618   
2619   tmp_Class_num = int(Stepvector[ll,2])+1
2620   
2621   if tmp_table2[tmp_Class].empty:
2622   tmp_Count = 0 # null slumps is default
2623   tmp_class_value = 0
2624   else:
2625   tmp_class_value = tmp_table2[tmp_Class].values[0]
2626   # normalize with totaltpcounts
2627   tmp_Count = np.round(tmp_class_value*tmp_total_Count/100,2)
2628   
2629   Results.loc[ll] = pd.Series({'Region':tmp_Region, 'Terrain Position':tmp_TP,

'Classification':tmp_Class,'ClassificationNumber':tmp_Class_num, 'Count':tmp_Count,
"S.Percentage":tmp_class_value})

2630   
2631   Results
2632   
2633   # Remove rows with Count == 0
2634   TP_SS_Results = Results[Results['Count'] != 0]
2635   
2636   # Adding the values for TP_6 that the algorithim could not finde by hand
2637   TP_SS_Results.loc[80] = ['Iultinsky (Chukotka)', 'Ponds + Gully', "Heterogeneous [%]",

3, (np.round(12*11/100,2)), 12]
2638   TP_SS_Results.loc[81] = ['Iultinsky (Chukotka)', 'Ponds + Gully', "Homogeneous [%]", 2

, (np.round(70*11/100,2)), 70]
2639   TP_SS_Results.loc[82] = ['Iultinsky (Chukotka)', 'Ponds + Gully', "Highly homogeneous 

[%]", 1, (np.round(18*11/100,2)), 18]
2640   
2641   # Adding the values for single slumps that the algorithim could not finde by hand
2642   TP_SS_Results.loc[83] = ['Southern Taymyr', 'River', "Highly heterogeneous [%]", 4,

1.00, 0]



2643   TP_SS_Results.loc[84] = ['Southern Verkhoyansk Range', 'Gully', "Highly heterogeneous 
[%]", 4, 1.00, 0]

2644   
2645   #Define ClassificationNumber as integer for color sheme
2646   TP_SS_Results['ClassificationNumber'] = TP_SS_Results['ClassificationNumber'].astype(

int)
2647   TP_SS_Results
2648   
2649   # save the data
2650   from google.colab import drive
2651   import pandas as pd
2652   #drive.mount('/content/drive')
2653   
2654   #TP_SS_Results.to_csv('/content/drive/My Drive/Colab 

Notebooks/Data/TP_SS_Results.csv' )
2655   
2656   # load the data
2657   #TP_SS_Results = pd.read_csv('/content/drive/My Drive/Colab 

Notebooks/Data/TP_SS_Results.csv')
2658   #TP_SS_Results
2659   
2660   # create sunburst chart
2661   import plotly.express as px
2662   import numpy as np
2663   
2664   # Custom continuous color scale with specific colors
2665   custom_continuous_colors = [
2666   [0, "gold"], # Lower end of the scale (smallest values)
2667   [0.33, "lightyellow"], # Midpoint of the scale
2668   [0.66, "lavender"], # Further midpoint
2669   [1, "darkviolet"] # Upper end of the scale (largest values)
2670   ]
2671   
2672   fig = px.sunburst(TP_SS_Results,
2673   path=['Region', 'Terrain Position', 'Classification'],
2674   values='Count',
2675   color='ClassificationNumber',
2676   color_continuous_scale=custom_continuous_colors,
2677   )
2678   fig.update_layout(
2679   showlegend=True,
2680   coloraxis=dict(colorscale=custom_continuous_colors),
2681   coloraxis_colorbar=dict(
2682   tickvals=[4, 3, 2, 1], # Define the tick values for the 

colorbar
2683   ticktext=["Highly heterogeneous", "Heterogeneous", "Homogeneous"

, "Highly homogeneous"]
2684   )
2685   )
2686   fig.show()
2687   
2688   """Error calculation"""
2689   
2690   TP_SS_Error = TP_SS_Results
2691   # table with error calculations
2692   TP_SS_Error["S.Percentage Error"] = 0.5
2693   TP_SS_Error["Count Error"] = 0 # Initialize 'Count Error' column to 0
2694   
2695   # Use a loop or apply to calculate "Count Error" based on conditions
2696   for index in TP_SS_Error.index:
2697   if TP_SS_Error.loc[index, "S.Percentage"] != 0: # Check for non-zero percentage
2698   TP_SS_Error.loc[index, "Count Error"] = np.round(np.sqrt((TP_SS_Error.loc[

index, "S.Percentage Error"] / TP_SS_Error.loc[index, "S.Percentage"]) ** 2) *
TP_SS_Error.loc[index, "Count"],2)

2699   
2700   # Select required columns
2701   TP_SS_Error = TP_SS_Error[["Region", "Terrain Position", "Classification",

"S.Percentage", "S.Percentage Error", "Count", "Count Error"]]
2702   
2703   TP_SS_Error
2704   
2705   """# Morphology, spectral slope similarity compairison (sub-hypothesis 4)



2706   
2707   ## Calcutaion of statistics for all slumps
2708   """
2709   
2710   from scipy.stats import shapiro
2711   !pip install scikit-posthocs
2712   # during analysis the version "0.11.2-py3-none-any.whl.metadata (5.8 kB)" was used.
2713   #That version is no longer availabe and version 0.11.3 can produce slightly different 

results.
2714   import scipy.stats as stats
2715   import scikit_posthocs as sp
2716   import pandas as pd
2717   
2718   ### Dunn’s Test and Kruskal-Wallis tests
2719   
2720   # Define numerical columns to compare
2721   columns = ["TCB_slope", "TCG_slope", "TCW_slope"]
2722   
2723   comparison_results = {}
2724   
2725   # Group GDFs by T number (Area) and Shape value
2726   for T_key, sub_gdfs in gdf_singleRTSs_plus_Property.items():
2727   shape_groups = {} # Dictionary to store groups by Shape value
2728   
2729   # Organize GDFs by Shape value
2730   for df_name, df in sub_gdfs.items():
2731   parts = df_name.split("_")
2732   Shape_value = int(parts[3][5:]) # Extract Shape value from 'ShapeX'
2733   
2734   if Shape_value not in shape_groups:
2735   shape_groups[Shape_value] = []
2736   
2737   shape_groups[Shape_value].append(df)
2738   
2739   # Perform statistical comparisons within each Shape group
2740   for Shape_value, gdf_list in shape_groups.items():
2741   if len(gdf_list) > 1: # Only compare if we have multiple GDFs
2742   comparison_results[f"T{T_key}_Shape{Shape_value}"] = {}
2743   
2744   for col in columns:
2745   # Combine data from all GDFs in this group
2746   combined_data = [gdf[col].dropna().values for gdf in gdf_list]
2747   
2748   # Kruskal-Wallis test (checks if there's any difference)
2749   H_stat, p_kw = stats.kruskal(*combined_data)
2750   
2751   if p_kw < 0.05: # If significant, perform Dunn’s test
2752   dunn_results = sp.posthoc_dunn(combined_data, p_adjust=

"bonferroni")
2753   comparison_results[f"T{T_key}_Shape{Shape_value}"][col] = {

"Kruskal_p": p_kw, "Dunn": dunn_results}
2754   else:
2755   comparison_results[f"T{T_key}_Shape{Shape_value}"][col] = {

"Kruskal_p": p_kw, "Dunn": None}
2756   
2757   # Print results
2758   for group, results in comparison_results.items():
2759   print( 📊f"\n  Statistical Comparisons for {group}:")
2760   for col, stats_dict in results.items():
2761   print( 🔹f"   {col}: Kruskal-Wallis p-value = {stats_dict['Kruskal_p']:.4f}")
2762   if stats_dict["Dunn"] is not None:
2763   print(f"     Dunn's test results:\n{stats_dict['Dunn']}")
2764   else:
2765   print("     No significant differences found.")
2766   
2767   import matplotlib.pyplot as plt
2768   from matplotlib.table import Table
2769   
2770   results = []
2771   
2772   # Iterate over each group (T, Shape)
2773   for group, group_results in comparison_results.items():



2774   # Extract T and Shape from the group string
2775   T_value, Shape_value = group.split('_')[0][1:], group.split('_')[1][5:]
2776   
2777   # Process each column in the group's results
2778   for slope_key, stats_dict in group_results.items():
2779   # If Dunn's test is available
2780   if stats_dict['Dunn'] is not None:
2781   matrix = stats_dict['Dunn']
2782   
2783   # Iterate over the rows of the matrix
2784   for row_index, row_values in matrix.iterrows():
2785   total_columns = len(row_values) - 1 # Subtracting 1 to exclude the 

comparison with itself
2786   exceed_count = (row_values > 0.05).sum() - 1 # Count values 

exceeding 0.05
2787   percentage = (exceed_count / total_columns) * 100
2788   
2789   # Append the result to the results list
2790   results.append({
2791   "Area": T_value, # Extracted T value
2792   "Shape": Shape_value, # Extracted TP value
2793   "Slope": slope_key, # The slope key (e.g., 'TCB_slope')
2794   "RTSIndex": row_index, # The row index (single slump index)
2795   "TotalColumns": total_columns, # Total columns in the matrix 

(excluding the diagonal)
2796   "Count>0.05": exceed_count, # Count of values exceeding 0.05
2797   "Percentage>0.05": percentage # Percentage of values exceeding 

0.05
2798   })
2799   
2800   # Print the results
2801   results_df = pd.DataFrame(results)
2802   print(results_df)
2803   
2804   """## Homogenitiy classification"""
2805   
2806   ## create tables from df, cecking if patterns are visible
2807   # Function to get row colors based on Percentage
2808   def get_row_color(percentage):
2809   if percentage == 0:
2810   return "darkviolet"
2811   elif percentage < 50:
2812   return "lavender"
2813   elif percentage >= 50 and percentage < 100:
2814   return "lightyellow"
2815   elif percentage == 100:
2816   return "gold"
2817   return "white"
2818   
2819   # Function to create a table in a specific subplot
2820   def create_styled_table_in_subplot(ax, df, title="Table"):
2821   ax.axis("off")
2822   ax.set_title(title, fontsize=16, pad=26)
2823   
2824   table = Table(ax, bbox=[0, 0, 1, 1])
2825   nrows, ncols = df.shape
2826   
2827   col_labels = df.columns
2828   for col_idx, label in enumerate(col_labels):
2829   table.add_cell(-1, col_idx, text=label, width=1, height=0.2, facecolor=

"lightgray", loc="center")
2830   
2831   # Row cells
2832   prev_subarea = None
2833   for row_idx, row in df.iterrows():
2834   current_subarea = row["Area"]
2835   edgecolor = "black"
2836   if prev_subarea != current_subarea:
2837   edgecolor = "black"
2838   
2839   prev_subarea = current_subarea
2840   



2841   for col_idx, value in enumerate(row):
2842   # Get cell color
2843   if col_labels[col_idx] == "Percentage>0.05":
2844   cell_color = get_row_color(row["Percentage>0.05"])
2845   else:
2846   cell_color = "white"
2847   
2848   table.add_cell(
2849   row_idx,
2850   col_idx,
2851   text=str(value),
2852   width=1,
2853   height=0.2,
2854   facecolor=cell_color,
2855   loc="center",
2856   edgecolor=edgecolor,
2857   )
2858   
2859   # Add the table to the subplot
2860   ax.add_table(table)
2861   
2862   # Prepare the DataFrame subsets and clean up slope names
2863   results_df_cleaned = results_df.drop(columns=["Slope"]) # Remove the Slope column
2864   unique_slopes = results_df["Slope"].unique()
2865   
2866   # Create subplots for the tables
2867   fig, axes = plt.subplots(1, len(unique_slopes), figsize=(54, 40)) # Increased size 

for higher resolution
2868   fig.tight_layout(pad=5)
2869   
2870   # Create a table for each slope type
2871   for ax, slope in zip(axes, unique_slopes):
2872   slope_df = results_df[results_df["Slope"] == slope].drop(columns=["Slope"])
2873   clean_title = f"Slope: {slope.replace('_slope', '')}" # Clean slope name
2874   create_styled_table_in_subplot(ax, slope_df, title=clean_title)
2875   
2876   plt.show()
2877   
2878   def create_tp_summary_percentage_df(results_df):
2879   summary_dfs = {} # Dictionary to store summary DataFrames for each Shape
2880   
2881   # Get unique Shape values
2882   Shape_values = results_df["Shape"].unique()
2883   
2884   for shape in Shape_values:
2885   # Filter for current Shape
2886   shape_df = results_df[results_df["Shape"] == shape]
2887   
2888   summary_data = []
2889   areas = shape_df["Area"].unique()
2890   
2891   for area in areas:
2892   area_df = shape_df[shape_df["Area"] == area]
2893   area_total = len(area_df)
2894   
2895   summary_data.append([
2896   f"{area}",
2897   (area_df["Percentage>0.05"] == 0).sum() / area_total * 100, # Highly 

heterogeneous
2898   ((area_df["Percentage>0.05"] > 0) & (area_df["Percentage>0.05"] < 50

)).sum() / area_total * 100, # Heterogeneous
2899   ((area_df["Percentage>0.05"] >= 50) & (area_df["Percentage>0.05"] <

100)).sum() / area_total * 100, # Homogeneous
2900   (area_df["Percentage>0.05"] == 100).sum() / area_total * 100 # 

Highly homogeneous
2901   ])
2902   
2903   # Create DataFrame
2904   summary_df = pd.DataFrame(summary_data, columns=[
2905   "Area",
2906   "Highly heterogeneous [%]",
2907   "Heterogeneous [%]",



2908   "Homogeneous [%]",
2909   "Highly homogeneous [%]"
2910   ])
2911   
2912   area_mapping = {
2913   "T1": "Southern Taymyr",
2914   "T2": "Northern Olenek",
2915   "T3": "Chokurdakh",
2916   "T4": "Iultinsky (Chukotka)",
2917   "T6": "Southern Verkhoyansk Range"
2918   }
2919   
2920   summary_df["Area"] = summary_df["Area"].replace(area_mapping)
2921   
2922   # Round numeric columns
2923   numeric_cols = ["Highly homogeneous [%]", "Homogeneous [%]", "Heterogeneous 

[%]", "Highly heterogeneous [%]"]
2924   summary_df[numeric_cols] = summary_df[numeric_cols].round(0).astype(int)
2925   
2926   # Store DataFrame
2927   summary_dfs[f"Shape_{shape}"] = summary_df
2928   
2929   return summary_dfs
2930   
2931   summary_results = create_tp_summary_percentage_df(results_df)
2932   summary_results
2933   
2934   """## Plotting"""
2935   
2936   import pandas as pd
2937   import plotly.express as px
2938   !pip install ipdb
2939   import numpy as np
2940   from collections import defaultdict
2941   
2942   rts_datasets = {
2943   "T1": rtsT1_v2,
2944   "T2": rtsT2_v2,
2945   "T3": rtsT3_v2,
2946   "T4": rtsT4_v2,
2947   "T6": rtsT6_v2
2948   }
2949   
2950   rts_condensed = defaultdict(lambda: defaultdict(int))
2951   Shapetypes = np.arange(2)+1
2952   Regions = ["T1","T2","T3","T4","T6"]
2953   Shape_lookup = ["Shape_0", "Shape_1", "Shape_2"]
2954   ClassIndex = np.arange(4)
2955   Classifiers = ["Highly homogeneous [%]","Homogeneous [%]","Heterogeneous [%]","Highly 

heterogeneous [%]"]
2956   
2957   for key in Regions: # key = region
2958   for shtype in [1,2,3,4,6]: # ttype = art
2959   rts_condensed[key][shtype] = np.sum(np.array(rts_datasets[key]["Shpe"])==shtype)
2960   
2961   # Mapping of dataset names (T1, T2, etc.) to their corresponding Region
2962   region_mapping = {
2963   "T1": "Southern Taymyr",
2964   "T2": "Northern Olenek",
2965   "T3": "Chokurdakh",
2966   "T4": "Iultinsky (Chukotka)",
2967   "T6": "Southern Verkhoyansk Range"
2968   }
2969   
2970   # Mapping Morphology Names
2971   Shape_mapping = {
2972   "Shape_0": "Thermocirque",
2973   "Shape_1": "Thermoterrace",
2974   "Shape_2": "Combination"
2975   }
2976   
2977   summary_results # Data frame sorted by shape class/morphology ("Shape_*")



2978   
2979   
2980   Results = pd.DataFrame(columns=['Region','Morphology','Classification',

'ClassificationNumber','Count', "S.Percentage"])
2981   
2982   # generate a vector of coordinates for areas and Shapes
2983   grid1, grid2, grid3 = np.meshgrid(Regions, Shapetypes, ClassIndex)
2984   Stepvector = np.array(list(zip(grid1.ravel(), grid2.ravel(), grid3.ravel())))
2985   
2986   # Results Dataframe line by line
2987   for ll in np.arange(Stepvector.shape[0]):
2988   tmp_Region = region_mapping[Stepvector[ll,0]]
2989   tmp_Shape = Shape_mapping[Shape_lookup[int(Stepvector[ll,1])]]#-1!!!!!!
2990   tmp_Class = Classifiers[int(Stepvector[ll,2])]
2991   tmp_total_Count = rts_condensed[Stepvector[ll,0]][int(Stepvector[ll,1])]
2992   
2993   tmp_table = summary_results[Shape_lookup[int(Stepvector[ll,1])]]#-1!!!!!!!!!
2994   tmp_table2 = tmp_table[tmp_table['Area'] == tmp_Region]
2995   
2996   tmp_Class_num = int(Stepvector[ll,2])+1
2997   
2998   if tmp_table2[tmp_Class].empty:
2999   tmp_Count = 0
3000   else:
3001   tmp_class_value = tmp_table2[tmp_Class].values[0]
3002   
3003   tmp_Count = np.round(tmp_class_value*tmp_total_Count/100,2)
3004   
3005   Results.loc[ll] = pd.Series({'Region':tmp_Region, 'Morphology':tmp_Shape,

'Classification':tmp_Class,'ClassificationNumber':tmp_Class_num, 'Count':tmp_Count,
"S.Percentage": tmp_class_value})

3006   
3007   Results
3008   
3009   # Delet if Count == 0
3010   Shape_SS_Results = Results[Results['Count'] != 0]
3011   
3012   # Adding the values for TP_6 that the algorithim could not finde by hand
3013   Shape_SS_Results.loc[50] = ['Southern Taymyr', 'Thermocirque', "Highly heterogeneous 

[%]", 4, (np.round(2*14/100,2)), 2]
3014   Shape_SS_Results.loc[51] = ['Southern Taymyr', 'Thermocirque', "Heterogeneous [%]", 3,

(np.round(33*14/100,2)), 33]
3015   Shape_SS_Results.loc[52] = ['Southern Taymyr', 'Thermocirque', "Homogeneous [%]", 2, (

np.round(62*14/100,2)), 62]
3016   Shape_SS_Results.loc[53] = ['Southern Taymyr', 'Thermocirque', "Highly homogeneous 

[%]", 1, (np.round(2*14/100,2)), 2]
3017   
3018   Shape_SS_Results.loc[54] = ['Northern Olenek', 'Thermocirque', "Highly heterogeneous 

[%]", 4, (np.round(44*3/100,2)), 44]
3019   Shape_SS_Results.loc[55] = ['Northern Olenek', 'Thermocirque', "Homogeneous [%]", 2, (

np.round(44*3/100,2)), 44]
3020   Shape_SS_Results.loc[56] = ['Northern Olenek', 'Thermocirque', "Highly homogeneous 

[%]", 1, (np.round(11*3/100,2)), 11]
3021   
3022   Shape_SS_Results.loc[57] = ['Chokurdakh', 'Thermocirque', "Heterogeneous [%]", 3, (np.

round(17*10/100,2)), 17]
3023   Shape_SS_Results.loc[58] = ['Chokurdakh', 'Thermocirque', "Homogeneous [%]", 2, (np.

round(57*10/100,2)), 57]
3024   Shape_SS_Results.loc[59] = ['Chokurdakh', 'Thermocirque', "Highly homogeneous [%]", 1,

(np.round(27*10/100,2)), 27]
3025   
3026   Shape_SS_Results.loc[60] = ['Iultinsky (Chukotka)', 'Thermocirque', "Heterogeneous 

[%]", 3, (np.round(17*22/100,2)), 17]
3027   Shape_SS_Results.loc[61] = ['Iultinsky (Chukotka)', 'Thermocirque', "Homogeneous [%]",

2, (np.round(73*22/100,2)), 73]
3028   Shape_SS_Results.loc[62] = ['Iultinsky (Chukotka)', 'Thermocirque', "Highly 

homogeneous [%]", 1, (np.round(11*22/100,2)), 11]
3029   
3030   Shape_SS_Results.loc[63] = ['Southern Verkhoyansk Range', 'Thermocirque', "Highly 

heterogeneous [%]", 4, (np.round(11*6/100,2)), 11]
3031   Shape_SS_Results.loc[64] = ['Southern Verkhoyansk Range', 'Thermocirque',

"Heterogeneous [%]", 3, (np.round(67*6/100,2)), 67]



3032   Shape_SS_Results.loc[65] = ['Southern Verkhoyansk Range', 'Thermocirque',
"Homogeneous [%]", 2, (np.round(22*6/100,2)), 22]

3033   
3034   # Adding the values for single slumps that the algorithim could not finde by hand
3035   Shape_SS_Results.loc[83] = ['Southern Verkhoyansk Range', 'Thermoterrace', "Highly 

heterogeneous [%]", 4, 1.00, 0]
3036   
3037   #Define ClassificationNumber as integer for color scheme
3038   Shape_SS_Results['ClassificationNumber'] = Shape_SS_Results['ClassificationNumber'].

astype(int)
3039   Shape_SS_Results
3040   
3041   # Save the data
3042   from google.colab import drive
3043   import pandas as pd
3044   #drive.mount('/content/drive')
3045   
3046   #TP_SS_Results.to_csv('/content/drive/My Drive/Colab 

Notebooks/Data/TP_SS_Results.csv' )
3047   
3048   #load the data
3049   #TP_SS_Results = pd.read_csv('/content/drive/My Drive/Colab 

Notebooks/Data/TP_SS_Results.csv')
3050   #TP_SS_Results
3051   
3052   # create sunburst chart
3053   # Continuous color scale with specific colors
3054   custom_continuous_colors = [
3055   [0, "gold"], # Lower end of the scale (smallest values)
3056   [0.33, "lightyellow"], # Midpoint of the scale
3057   [0.66, "lavender"], # Further midpoint
3058   [1, "darkviolet"] # Upper end of the scale (largest values)
3059   ]
3060   fig = px.sunburst(Shape_SS_Results,
3061   path=['Region', 'Morphology', 'Classification'],
3062   values='Count',
3063   color='ClassificationNumber',
3064   color_continuous_scale=custom_continuous_colors,
3065   )
3066   fig.update_layout(
3067   showlegend=True,
3068   coloraxis=dict(colorscale=custom_continuous_colors),
3069   coloraxis_colorbar=dict(
3070   tickvals=[4, 3, 2, 1], # Define the tick values for the 

colorbar
3071   ticktext=["Highly heterogeneous", "Heterogeneous", "Homogeneous"

, "Highly homogeneous"]
3072   )
3073   )
3074   fig.show()
3075   
3076   """Error calculation"""
3077   
3078   Shape_SS_Error = Shape_SS_Results
3079   # table with error calculations
3080   Shape_SS_Error["S.Percentage Error"] = 0.5
3081   Shape_SS_Error["Count Error"] = 0 # Initialize 'Count Error' column to 0
3082   
3083   # Use a loop or apply to calculate "Count Error" based on conditions
3084   for index in Shape_SS_Error.index:
3085   if Shape_SS_Error.loc[index, "S.Percentage"] != 0: # Check for non-zero 

percentage
3086   Shape_SS_Error.loc[index, "Count Error"] = np.round(np.sqrt((Shape_SS_Error.

loc[index, "S.Percentage Error"] / Shape_SS_Error.loc[index, "S.Percentage"])
** 2) * Shape_SS_Error.loc[index, "Count"],2)

3087   
3088   # Select required columns
3089   Shape_SS_Error = Shape_SS_Error[["Region", "Morphology", "Classification",

"S.Percentage", "S.Percentage Error", "Count", "Count Error"]]
3090   
3091   Shape_SS_Error
3092   



3093   """# Relation of morphologie and terrain positions
3094   
3095   
3096   """
3097   
3098   import pandas as pd
3099   from collections import Counter
3100   import plotly.express as px
3101   import numpy as np
3102   
3103   from shapely.geometry import MultiPoint, Polygon
3104   import pandas as pd
3105   from collections import Counter
3106   ## Data with center coordinates of Regions for Zenodo
3107   # Region Name Mapping & Corresponding FeatureCollection IDs
3108   region_mapping = {
3109   "T1": "Southern Taymyr",
3110   "T2": "Northern Olenek",
3111   "T3": "Chokurdakh",
3112   "T4": "Iultinsky (Chukotka)",
3113   "T6": "Southern Verkhoyansk Range"
3114   }
3115   
3116   region_feature_collections = {
3117   "T1": "projects/ee-moritzjulia7/assets/Area_T1",
3118   "T2": "projects/ee-moritzjulia7/assets/Area_T2",
3119   "T3": "projects/ee-moritzjulia7/assets/Area_T3",
3120   "T4": "projects/ee-moritzjulia7/assets/Area_T4",
3121   "T6": "projects/ee-moritzjulia7/assets/Area_T6"
3122   }
3123   
3124   # Morphology Name Mapping
3125   Shape_mapping = {
3126   "Shape0": "Thermocirque",
3127   "Shape1": "Thermoterrace",
3128   "Shape2": "Combination"
3129   }
3130   
3131   # Terrain Position Mapping
3132   terrain_mapping = {
3133   "TP1": "Sea",
3134   "TP2": "Lake",
3135   "TP3": "River",
3136   "TP4": "Gully",
3137   "TP5": "Others",
3138   "TP6": "Ponds + Gully"
3139   }
3140   
3141   # Compute centroid for each region's FeatureCollection
3142   centroid_mapping = {}
3143   
3144   for region, asset_id in region_feature_collections.items():
3145   feature_collection = ee.FeatureCollection(asset_id) # Load FeatureCollection 

from GEE
3146   region_feature = feature_collection.first() # Get the first (and only) feature
3147   coordinates = region_feature.geometry().coordinates().getInfo()[0] # Extract 

polygon coordinates
3148   
3149   # Convert coordinates to Shapely Polygon and compute centroid
3150   polygon = Polygon(coordinates)
3151   centroid = polygon.centroid
3152   centroid_mapping[region_mapping[region]] = (centroid.x, centroid.y)
3153   
3154   # Flatten dictionary and collect all df names
3155   df_keys = [df_key for sub_dict in gdf_singleRTSs_plus_Property.values() for df_key in

sub_dict.keys()]
3156   
3157   # Parse and clean keys
3158   parsed_keys = []
3159   region_terrain_counts = Counter()
3160   
3161   for df_key in df_keys:



3162   parts = df_key.split("_")
3163   region, terrain_position, morphology = parts[0], parts[2], parts[3] # Ignore 

`fid`
3164   
3165   # Apply mappings
3166   region_name = region_mapping.get(region, region) # Map region, fallback to 

original if missing
3167   terrain_name = terrain_mapping.get(terrain_position, terrain_position) # Map 

terrain, fallback if missing
3168   morphology_name = Shape_mapping.get(morphology, morphology) # Map morphology, 

fallback if missing
3169   
3170   parsed_keys.append((region_name, terrain_name, morphology_name))
3171   region_terrain_counts[(region_name, terrain_name)] += 1 # Count (Region, Terrain 

Position) pairs
3172   
3173   # Count occurrences of unique (Region, Terrain Position, Morphology)
3174   df_count = Counter(parsed_keys)
3175   
3176   # Create DataFrame
3177   data = []
3178   for (region_name, terrain_name, morphology_name), count in df_count.items():
3179   total_count = region_terrain_counts[(region_name, terrain_name)] # Get count for 

(Region, Terrain Position)
3180   row_percentage = (count / total_count) * 100 # Compute percentage
3181   centroid_coords = centroid_mapping.get(region_name, (None, None)) # Fetch 

centroid
3182   
3183   data.append([region_name, terrain_name, morphology_name, count, centroid_coords])
3184   
3185   df_result = pd.DataFrame(data, columns=["Region", "Terrain Position", "Morphology",

"Count", "Region Center Coordinates"])
3186   
3187   # Display result
3188   print(df_result)
3189   
3190   df_result.to_csv('Data_RTS_Morphology-TP_Siberia.csv', index=False) # Save CSV 

without the index
3191   
3192   #create sunburst chart
3193   fig = px.sunburst(df_result,
3194   path=['Region', 'Terrain Position', 'Morphology'],
3195   values='Count',
3196   color="Region", # Coloring by Region
3197   color_discrete_map={
3198   "Southern Taymyr": "lightblue",
3199   "Northern Olenek": "blue",
3200   "Chokurdakh": "orange",
3201   "Iultinsky (Chukotka)": "#734F96",
3202   "Southern Verkhoyansk Range": "darkred"})
3203   
3204   fig.update_layout(
3205   showlegend=True
3206   )
3207   fig.show()
3208   #fig.write_html("/content/drive/My Drive/Colab 

Notebooks/Data/sunburst_Morphology-TP.html")




