

University of Potsdam

Institute of Environmental Science and Geography

Bachelor Thesis

Examiner: M.Sc. Nina Nesterova

Examiner: Prof. Dr. Guido Grosse

Date of submission: 26.03.2025

Bachelor of Science Geoecology

Topic: Variability of retrogressive thaw slumps across Siberia

By: Julia Heitz
Student ID number: 813339
julia.moritz@uni-potsdam.de
moritzjulia@yahoo.de

2

Abstract

Permafrost regions are thawing in the face of climate change. Permafrost thaw often

entails greenhouse gas emissions and landscape changes within a formerly stable

environment. One type of permafrost thaw feature are retrogressive thaw slumps (RTSs).

The interest in RTSs is rising, because of their large impact on the surrounding landscape

and the climate (Nesterova et al. 2024). To ease the scientific understanding and

communication regarding the variability of RTSs, this work analysed diƯerent RTS

properties. RTS spectral variability was the main focus, with the Pan-Arctic Visualization

of Landscape Change (2003-2022) and Validation Dataset 2 as key resources. Five study

areas, each 10,000km2 large, are spread across Siberia. Each of them contains 10

randomly located sub areas of 100km2. Each sub area contains known RTS outlines. The

spectral slope (the average change of spectral index over a specific timeframe) of RTSs

was compared between diƯerent study areas and, in addition, within the individual study

areas. Moreover, single RTSs were classified regarding their terrain position and their

morphology. RTSs within the same study areas and the same terrain position or

morphology class were also compared regarding their spectral slope. The results show a

clear variation regarding the spectral slope of diƯerent study areas, without any

significant similarity. While, on a smaller spatial scale, diƯerent sub areas within the

same study area are predominantly heterogeneous, a few significant similarities in

spectral slope have been found. And even single RTSs located within the same study area

did not have a clear correlation between either terrain position or morphology and their

spectral slope similarity. Additionally, hints of a connection between terrain position and

RTS morphology have been observed. The majority of RTS within 4 out of 5 areas are

located at the terrain position ’lake shore’, most of which exhibit a combined morphology

including features of both thermocirque and thermoterrace RTS. The key result of this

study is that the spectral slope of RTSs is strongly variable, and a RTS similarity

classification scheme was developed. This classification scheme has the potential to be

modified for the comparison of other RTS properties as well.

3

Table of Contents

1 Introduction ... 5

1.1 Retrogressive thaw slumps in Siberia ... 8

1.2 Description of the data .. 9

1.2.1 Validation Dataset 2 ... 10

1.2.2 Pan-Arctic Visualization of Landscape Change (2003-2022) 10

1.2.3 Esri World Imagery Map .. 12

1.2.4 JRC Global Surface Water Mapping Layers .. 12

1.2.5 Global Shoreline Dataset .. 12

1.2.6 Lake Dataset .. 12

2 Methods .. 13

2.1 Comparison of cumulative RTS spectral slopes between study areas 13

2.2 Spectral slope comparison within study areas .. 15

2.3 Terrain position and spectral slope similarity .. 17

2.4 Morphology and spectral slope similarity ... 20

3 Results .. 22

3.1 Comparison of cumulative RTS spectral slope between study areas 22

3.2 Spectral slope comparison within study areas .. 24

3.3 Terrain position and spectral slope similarity .. 26

3.4 Morphology and spectral slope similarity ... 33

3.5 Exploratory insight: terrain position and morphology combinations 38

4 Discussion ... 40

4.1 Impact of a 5 m inward buƯer towards the RTS polygons ... 40

4.2 Spectral slope trends .. 41

4.3 Range of variation in spectral slope, terrain position and morphology 42

4.4 RTS spectral slope versus geographical setting ... 43

5 Conclusion and Outlook ... 44

6 References ... 47

Appendix A: German Summary (Deutsche Zusammenfassung) ... 49

Appendix B: Declaration of authorship ... 51

Appendix C: Further tables and figures ... 52

Appendix C1: Table citing each Esri World Imagery Basemap image used. 52

Appendix C2: Histograms of spectral slope with area as y-axis plotted side-by-side. 54

Appendix C3: Percentage of RTS areas aƯected by the 5 m buƯer .. 55

Appendix C4: Correlation of the mean spectral slope of the study areas as a function of
latitude and longitude. ... 56

4

Appendix C5: Data preparation for sunburst visualization and associated rounding error
estimates .. 57

Appendix C6: DiƯerences in the generosity of mapped RTS outlines. 60

Appendix D: Analysis Code .. 60

List of Abbreviations

ALD Active layer detachment slide
ANOVA Analysis of variance
Approx. Approximately
Cf. Confer (compare)
CTL Cryogenic translational landslide
E.g. Example given
GCV Global shoreline vector
I.e. Id est (that is)
Resp. Respectively
RTS Retrogressive thaw slump
TCB Tasseled cap brightness
TCG Tasseled cap greenness
TCW Tasseled cap wetness
TP Terrain position
Vs. Versus
WGS World geodetic system

5

1 Introduction
The warming of the arctic is evident in hundreds of diƯerent changes in the polar

landscape. Changes within the polar landscape diƯer in scale, shape, impact and

recognition. This thesis discusses a specific thaw feature that is called retrogressive thaw

slump (RTS) and only occurs in permafrost regions.

RTSs generally are a type of slope failure (Mackay 1966). RTS formation requires two

conditions: the permafrost needs to have a high ground ice content (Nesterova et al.

2024; Mackay 1966) and the ground surface must be at a slope, often hillslope, where

gentle slopes of <5° degrees are suƯicient (Leibman et al. 2023). An overview of terms

used to describe the process of slope failure is described within table 2 of Nesterova et

al. 2024.

The first step of RTS formation is called genesis. Genesis starts when a trigger event (e.g.

wildfires, anthropogenic actions (e.g. mining) or coastal erosion) induces a “Mass-

wasting on seasonal ice at the base of the active layer” (Nesterova et al. 2024 p. 4802)

(Cryogenic translational landslide (CTL) or Active layer detachment slide (ALD)). If the

exposed ground ice is not covered by sediment and stabilized with vegetation regrowth,

the ground ice remains exposed to warm air and solar radiation, which induces a “[m]ass-

wasting on massive ground ice” (Nesterova et al. 2024, p. 4802) called ALD or cryogenic

earthflow. If this exposed ice is not covered with sediment and stabilized through

vegetation regrowth, further melting of massive ground ice (or thawing of ice-rich

permafrost) combined with denudational processes result in the formation of concave

hollows. The term “massive ground ice” can describe diƯerent types of ice: buried glacial

ice, thick ice layers, or large syngenetic ice wedges.

These concave hollows manifest in three primary morphologies: thermocirque,

thermoterrace and a combination of both (Nesterova et al. 2024). A schematic of RTS

formation is presented in Figure 1.

6

Figure 1: Diagram of the theoretical concept of RTS formation and the resulting landforms. Reproduced with

permission from Nesterova et al. 2024.

Thermocirques can be described as amphitheatrical or cirque-like hollows opposed to

thermoterraces that have a terrace-like or elongated shape (Nesterova et al. 2024).

Thermoterraces often occur at shorelines and result from ice cliƯ retreat. Thermocirques

are typically found at gullies, lake shores and river shores (Nesterova et al. 2024). Both

thermocirques and thermoterraces follow the same development scheme, as discussed

above. Sometimes the combination of both morphologies can be found.

RTSs have four required morphological features as shown in Figure 2. Several other

morphological features only occur in some RTSs depending on their local characteristics.

The four essential parts for RTSs are the headwall (“A steep retreating wall consisting of

ablating ice and frozen sediments at the back of the RTS”), the slump floor (the “area of

the hollow’s bottom”, that is low angle to horizontal), the mudflow (“The meltwater

stream that carries thawed viscous sediment material downslope across and out of the

slump floor”) and the edge (“The boundary line of the headwall or entire landform”)

(Nesterova et al. 2024 p. 4792).

7

Triggers for RTS formation are saturation of the active layer, fires, bank or coastal erosion,

extreme climate events, anthropogenic activities or earthquakes. The two main

conditions for the formation of RTSs are (hill-)slope and ground ice content, but many

other factors also influence RTS development. To list only a few of them: the aspect and

the major relief partly condition the amount of rainfall and absorbed solar radiation and

therefore the seasonal thaw depth and water saturation of the active layer, which

influences the mass-wasting. The slope angle and the soil cohesion (influenced e.g. by

soil micro structure) influence the speed of the mass-movement. The terrain position,

defined as direct spatial and physical proximity to a large terrain feature such as lakes or

rivers, strongly impacts processes of the RTS development such as abrasion of the lower

edge. Other parameters that influence the RTS formation include average ground

temperature and type of vegetation. To summarize: the geographical setting strongly

impacts RTS formation and development.

RTSs have a high impact on the topography of the landscape, the features can be up to

several tens of meters deep and the extent can reach several tens of hectares (Nesterova

et al. 2024). The number and the size of these features are rising. Moreover, the

disturbance of the vegetation harms the ecosystem and large amounts of sediments,

carbon, nutrients and, in some cases, contaminants are mobilized. These changes

influence the geochemical fluxes, increase the ratio of released CO2 and impact the

hydrology and water quality (Nesterova et al. 2024). Due to their enormous impacts the

research interest in RTSs is rising. One of the challenges is getting an accurate

understanding of the highly variable characteristics of RTSs (Nesterova et al. 2024). To

Figure 2: Essential Parts of RTSs: (1) Headwall, (2) Slump floor,
(3) Mudflow, (4) Edge. Image reproduced with permission from
(Nesterova et al. 2024), modified.

8

contribute to this important field and to deepen the understanding of RTSs, this work

investigates the variability of retrogressive thaw slumps across Siberia.

1.1 Retrogressive thaw slumps in Siberia

Siberia, the largest and most northern part of Russia, surrounds nearly half of the Arctic

Ocean. Its vast majority counts as permafrost which is defined as ground that stays at or

below 0°C for at least two years in a row (Shur et al. 2011). According to Obu et al. 2018

most of Siberia is underlain by continuous permafrost (90-100 % of the area is permafrost)

and according to Jones et al. 2022 a high percentage of the area has a high or medium

ground ice content (10% to >20% ice content). The high chance for ground ice and the

huge area makes Siberia the perfect place to look into the variability of RTSs, the high

ground ice content increases the probability of the appearance of retrogressive thaw

slumps and the huge area contains diƯerent geographical settings that most probably

increase the variability.

This study looks at five diƯerent regions (Southern Taymyr, Northern Olenek, Chokurdakh,

Iultinsky (Chukotka) and Southern Verkhoyansk Range) that are spread wide across

Siberia, visible on the map

(Figure 3). Each area is

10,000 km2 large and

contains 10 randomly

located sub-areas that

each are 100km2 large.

The rising interest in RTSs

and the lack of knowledge

about their variability in

their appearance and

characteristics raises

questions. What kind of parameters vary between RTSs? Are there patterns? How much

do they vary? Are there linear relationships between varying parameters and components

of the geographical setting?

Parameters that could be varying and are therefore interesting to look at are e.g. temporal

Figure 3: Overview of the study areas. Each yellow square is 10,000 km2 large.

9

dynamics (headwall retreat, change in size and numbers, link to air temperature or fires),

volume change, spectral variability (spectral slope = average change of spectral index

over specific timeframe) and morphometrical parameters (e.g. size, height of headwall,

length-width ratio). In the context of this study, the spectral slope appears to be the most

promising observable since it combines multiple types of information into three diƯerent

indices which can clearly identify landscape changes within RTSs. The main hypothesis

is supplemented with multiple sub-hypothesis to structure the research.

Main hypothesis Retrogressive thaw slumps within the study areas show

diƯerences in one or more parameters.

Sub-hypothesis 1 The combined spectral slope of the RTSs in one area is never the

same as the combined spectral slope of the RTSs in any of the

other areas.

Sub-hypothesis 2 The spectral slope of all the RTSs in one selected sub-area is never

the same as the spectral slope of all the RTSs in any of the other

sub-areas within the same main area.

Sub-hypothesis 3 The spectral slope of single RTSs that are located in a certain

terrain position is always the same as the spectral slope of single

RTSs that are located at the same terrain position within the same

main area.

Sub-hypothesis 4 The spectral slope of single RTSs that have a certain morphology

is always the same as the spectral slope of single RTSs that have

the same morphology within the same main area.

1.2 Description of the data

Multiple datasets have been combined in this study. While some datasets revealed

landscape changes over time, others provided information on features and their

location.

10

1.2.1 Validation Dataset 2

Nina Nesterova (orcid.org/0000-0001-7055-9852) is the contact person for Validation

Dataset 2 used in Nitze et al. 2024a. The geographic extent comprises eight diƯerent areas

of central and eastern Siberia, each site is approx. 10,000km² large and contains 10

randomly located 100km² squares. Within each square the outlines of all RTSs have been

manually mapped, drawn with a 5-meter buƯer, by Emma Schütt (overview is shown in

Figure 4). Only the areas 1,2,3,4 and 6 contain RTSs and therefore only these areas are

included in this study.

Figure 4: Validation dataset 2. 5 main areas, such as (a) Northern Olenek, located in various positions across Siberia

contain (b) 10 randomly located sub areas with (c-e) individual thaw slump features mapped out by Emma Schütt.

1.2.2 Pan-Arctic Visualization of Landscape Change (2003-2022)

The Pan-Arctic Visualization of Landscape Change (2003-2022), also referred to as ALEX

dataset, from Nitze et al. 2024b is based on Fraser et al. 2014; Nitze, Grosse 2016. The

contact person is Ingmar Nitze (orcid.org/0000-0002-1165-6852). The extend of the data

is pan-arctic, images of the satellites: Landsat-5 TM, Landsat-7 ETM+, and Landsat-8 OLI

were used to detect landscape changes, the spatial resolution of one pixel is 30m x 30m,

the temporal coverage spans from 2003-07-01 to 2022-08-31. The data shows spectral

information on land surface changes in form of tasseled cap index derivatives of wetness

(“TCW_slope”), greenness(“TCG_slope”) and brightness(“TCB_slope”). Each Pixel

contains one value per tasseled cap index. The data is provided by the Alfred Wegener

Institute Helmholtz Centre for Polar and Marine Research.

11

Each of the tasseled cap indices has an associated spectral slope, where ‘slope’ refers to

a linear trend, fitted through the tasseled cap index value calculated on annually

aggregated data (Nitze, Grosse 2016). The change of the spectral information recorded

over 20 years of time is summarized in one value per property and pixel, for each of the

raster cells. The three slope type values are represented in their corresponding colour

shown in Figure 5. The colour shows if there was an increase or

decrease of one or more slope types happening for each cell.

Since there are several ways of how e.g. a trend of increasing

brightness can appear in a landscape each of the colours that

can emerge by mixing red, green and blue can be the result of

several processes of the landscape. Importantly, the dataset

only shows how the landscape changed not what the change

was induced or controlled by.

RTSs are slope failure features with the essential characteristic of containing a headwall

(Nesterova et al. 2024). The headwall and parts of the slump floor, called scar zone, are

transitioning from vegetation to dark wet surfaces. Those parts appear blue in the ALEX

dataset, since the melting ice increases the wetness. The slump floor is often shown

colourful compared to the surrounding landscape. The colour depends on the intensity of

diƯerent change processes. Orange and yellow colours show stabilizing RTS parts, that

change from muddy surface to vegetation. Figure 6 displays a selection of diƯerent RTSs

and how they appear within the ALEX dataset. Notice that the area that got eroded during

the observation period, including the headwall, is always shown in blue. The combination

of having only one value per pixel that includes multiple types of information and the fact

that RTSs should be clearly visible due to their nature of altering the surface makes the

ALEX dataset perfect for looking at spectral variability and temporal dynamics of RTSs.

Figure 5: Colourmap of
spectral slope data. The
colour of each image pixel is
determined by the relative
strength of all three tasseled
cap index slopes at this point.

Figure 6: RTS appearance in the ALEX dataset. Example RTS from the Chokurdakh region show how diƯerent RTSs can
appear in terms of the spectral slope.

12

1.2.3 Esri World Imagery Map

Esri World Imagery Map (Esri, Maxar, Earthstar Geographics, and the GIS User

Community). The layer World Imagery was used, which includes one meter or better

satellite and aerial imagery in many parts of the world and lower resolution satellite

imagery worldwide. The single images are regularly updated (typically max. 3-5 years old).

The data is provided and managed by Esri. A table including the citations of each image

used can be found in the appendix (Appendix C1, Table 3).

1.2.4 JRC Global Surface Water Mapping Layers

The JRC Global Surface Water Mapping Layers, v1.4 (Pekel et al. 2016) dataset was

generated using scenes from Landsat 5, 7, and 8 acquired between 16 March 1984 and

31 December 2021. The spatial resolution is 30 m. The dataset has seven diƯerent bands

that include information on the presence of water: changes in occurrence, seasonality

and persistence. The data is provided by EC JRC/Google. In this work the layers

occurrence, seasonality, and change_abs were used.

1.2.5 Global Shoreline Dataset

The Global Shoreline Dataset (Sayre et al. 2019) was commissioned by the Group on Earth

Observations. The product is a Global Shoreline Vector (GCV) with 30-m spatial

resolution, developed from annual composites of 2014 Landsat satellite imagery. The

GSV separates terrestrial (land) from marine environments (sea). Three separate layers

indicate: continental mainland, islands greater than 1 km2, and islands smaller than 1

km2. The last update of the data set was on 2020-05-08. In this work only the mainland

polygon layer was used.

1.2.6 Lake Dataset

The currently unpublished Lake Dataset from Ingmar Nitze (orcid.org/0000-0002-1165-

6852) is a product with a spatial resolution of 30 meters. It is created by using satellite

data of Landsat 5, 7 and 8 and the methodology of Nitze et al. 2017; Nitze et al. 2018. The

temporal coverage includes the years 2000 to 2020. A pan-arctic extend is planned for the

dataset. The actual version comprises 20 diƯerent attributes of which geometry is the one

that is important for this work.

13

2 Methods
The analysis was performed in a Google Colaboratory Notebook (03.11.2024 - 12.01.2025

Version 1.1.0 (Colaboratory-team 2023); 13.01.2025 – 15.03.2025 Version 1.2.0

(Colaboratory-team 2024)) and in a QGIS 3.34 Prizren (QGIS Development Team 2023)

environment. The Google Colaboratory Notebook code is attached as an appendix

(Appendix D). Several toolboxes were used, the “ee” and the “geemap” (Wu 2020) toolbox

were part of the key tools. Details of the analysis are presented with respect to the (sub-)

hypothesis that they relate to.

2.1 Comparison of cumulative RTS spectral slopes between study areas

To compare the cumulative spectral slope between diƯerent areas (sub-hypothesis 1),

histograms that contain all RTS data for each region were calculated. First, the ALEX

dataset (section 1.2.2) was loaded as image collection and the Validation Dataset 2

(section 1.2.1) data was loaded as feature collections containing RTS outline geometries.

The data extraction and preparation workflow are summarized in Figure 7. The rescaling

step in Figure 7d was necessary, because the data was stored as 8 bit integers (numbers

from 0 to 255) and had to be restored to the original range of -0.12 to 0.12. It is important

to use the correct values for the plots to show more intuitively that half of the range shows

a decrease (-0.12 to 0) and half of it shows an increase (0 to 0.12) of the spectral index in

the observed time. Considering the spatial resolution (30 m x 30 m per pixel) of the data,

the histogram frequency axis can be rescaled to area (m2) by multiplication with 900.

To view the data within their geographical context and to compare diƯerences in spectral

slope between the areas the histograms were visualized on a map (Figure 11 in results).

The map is projected using the Russia Polar Stereographic coordinate system (EPSG:

5940) and overlaid with a WGS 84 graticule for orientation. Additionally, a violine plot of

the same data (Figure 12) shows the five distributions for a simplified comparison.

14

Figure 7: Workflow for calculating histograms that contain all RTS data for each region. (a) Selection of relevant

Alex images per region. (b) Creation of one ImageCollection per area with ALEX data that is clipped to the polygon

geometry of the RTSs. (c) Creation of one GeoDataframe (gdf) per area. (Only an excerpt of the data frame is shown.)

(d) Rescaling of the data to the range in which it was originally measured. (Only an excerpt of the data frame is shown.)

(e) Calculation of cumulative spectral slope histogram per area. (The small histograms contain the same axis labels

as the larger one.)

In a second step, the significance of diƯerences in spectral slope was validated using

statistical analysis. The normality of all groups (i.e., one group constitutes of all values of

one spectral slope type from one area) was assessed using both, the Shapiro-Wilk test

and the Anderson-Darling test. These tests were chosen because they diƯer in sensitivity

15

to deviations from normality: the Shapiro-Wilk test is more powerful, while the Anderson-

Darling test pays more attention to the tails of the distribution (Mohd Razali, Nornadiah

and Yap, Bee 2011). Since normality was not necessarily given, the Kruskal-Wallis test

was used as a non-parametric alternative to ANOVA to evaluate whether the groups

originated from the same distribution. This test determines diƯerences in the

distributions of the groups by comparing their ranked values rather than their means, with

the null hypothesis stating that all groups follow the same distribution (McDonald 2014).

Finally, a post-hoc Dunn-Bonferroni test was performed to conduct multiple pairwise

comparisons and identify which groups significantly diƯered from each other, while

controlling for the family-wise error rate. This adjustment is necessary to reduce the

likelihood of Type I errors that arise when conducting multiple statistical tests. (McDonald

2014). The null hypothesis for the Dunn-Bonferroni test states that there is no diƯerence

between the compared groups. Only the results of the last statistical test (Dunn-

Bonferroni) are shown in section 3.1, results, visualized as heat map (Figure 13), since the

results of the statistical tests are based on each other.

2.2 Spectral slope comparison within study areas

To analyse whether the sub areas within one main area show significant diƯerences

regarding spectral slope (sub-hypothesis 2), another statistical analysis was performed.

The analysis was conducted two times: one time with all values that are included in each

RTS geometry of each sub area. Another time where each RTS geometry had a 5 m inward

buƯer applied, to cancel out the 5 m buƯer that was added to each RTS geometry during

the data collection (see section 1.2.1). This was done to reduce the signal from values in

the RTS polygon buƯer areas, which aren’t part of the RTS themselves.

The statistical test routine was the same as the one for sub-hypothesis 1 (section 2.1).

With the exception that only the more powerful Shapiro-Wilk-test was used to test for

normal distribution and that, in this case, a group consists of all values of one spectral

slope type from one sub area.

The significant diƯerences between the groups were classified using the classification of

similarity shown in Figure 8. The classes span from highly heterogeneous (the sub area is

dissimilar to all other sub areas) to highly homogeneous (the sub area is similar to all

16

other sub areas). In between, there are the classes heterogeneous and homogeneous (the

sub area is dissimilar resp. similar to most other sub areas). The classification of the

single sub areas was done according to the scheme shown in Figure 9.

The resulting pie charts were visualized in an overview map to place them into

geographical context. The map (Figure 14) is shown in the Russia Polar Stereographic

coordinate system (EPSG: 5940) projection and is overlaid with a WGS 84 graticule for

orientation.

Definition of similarity classes:

Similarity classes describe the proportion of similar vs. dissimilar

central tendencies of the spectral slope of sub areas (sub areas within

the same main area were pairwise compared).

Figure 8: Classification scheme of spectral slope similarity. Applied after carrying out pairwise comparisons using

the Dunns-test to simplify the interpretation of the results.

17

Figure 9: Workflow for similarity classification. (a) Comparing one sub area (e.g. sub area 7) with all other sub areas

(e.g. sub areas 8,9,2,5) within the same main area (e.g. Northern Olenek) using statistical tests. (b) The results of the

pairwise comparison are recorded in a matrix, which is investigated row by row (e.g. row 3 corresponding to sub-area

7). The fraction of rejected null hypothesis (the compared sub-areas show a significant similarity), ignoring the self-

comparison, is expressed as percentage and classified using the classification scheme of Figure 8. (c) The classification

summary is displayed as one pie chart per main area.

2.3 Terrain position and spectral slope similarity

To conduct an analysis regarding similarities of spectral slope of those RTSs which are

both within the same main area and located at the same terrain position (sub-hypothesis

3), a new dictionary is needed. This dictionary should include data frames containing the

spectral slope data per RTS and link these to the terrain position (TP) of each RTS. To

create this dictionary, the spectral slope data from the geodata frames of sub-hypothesis

1 was divided into individual RTS data frames and supplemented with the terrain position

of each RTS, as well as the RTS geometry. Both terrain positions and RTS geometry were

taken from other datasets, as outlined below.

18

Within this work, terrain positions were sorted into the categories lake shore, sea shore,

river shore and gully. Out of necessity, an additional TP class for the combination of

ponds+gullies was introduced in the course of the analysis. Classification was performed

by comparison with the mainland polygons layer from the Global Shoreline Dataset

(section 1.2.5) and the Lake Dataset (section 1.2.6).

Sea shore category RTSs were found by overlaying the mainland polygon with the RTS

outline polygons and identifying those RTS polygons that are not fully contained in any of

the mainland polygons. Since the purpose of the mainland polygon is to separate land

and sea, polygons that include more than land need to be located at the sea shore. Figure

10a is a good example of a sea shore (TP class 1) RTS.

Lake shore RTSs (TP class 2) were identified by looking for intersections in between RTS

geometries and the geometry of lakes. Figure 10b is an excellent example for a lake shore

RTS.

The classes river (TP class 3) and gully (TP class 4) had to be assigned by hand because of

a lack of available Siberian river and gully datasets. The intermediate result dataframes

were imported into QGIS, where each un-categorized RTS was investigated individually.

Reference layers that aided the TP class assignment were Esri World Imagery Map (1.2.3)

and the layers occurrence, seasonality and change_abs from the JRC Global Surface

Water Mapping Layers (1.2.4). Esri world imagery helped to identify evident features such

as gullies or lakes.

The JRC Global Surface Water Mapping Layers aided with decisions involving unclear

waterbody shores and to assess the waterbody impact in general. Waterbody impact may

have occurred in the past if an RTS used to be located at the shore of a currently drained

lake. Indicators for waterbody impact are if the RTS is close to where water frequently

occurred in the time from 1984 to 2021 (JRC occurrence layer, scale 0 to 100%), and if the

layer change_abs indicates a strong absolute change in water occurrence in between two

timespans (1984-1999 vs 2000-2021, scale -100% to 100%) close to the RTS position.

Both options indicate that the RTS at said drained lake shore was strongly impacted by

the lake shore in the past and therefore a lake shore (TP class 2) assignment would be

appropriate. An image of such a TP class 2 assignment is presented in Figure 10c.

19

The guidelines for the individual class assignments were:

- RTSs that predominantly overlap with one terrain position feature are assigned to

that TP class

- RTSs that predominantly follow the outlines of a terrain position feature are

assigned to that TP class.

In the course of analysis, the classification scheme had to be expanded to include all

striking TP features. Several RTSs were observed close to ponds which were connected to

gullies. Since these RTS could be classified neither as lake nor as gully, a new TP class 6:

“pond + gully” was created (see example RTS in Figure 10d). All TP classes are shown in

Table 1. Fully categorized datasets were returned to the Google Colaboratory Notebook

for further analysis.

The geometries of the RTS polygons in the TP data

frames were used to divide the spectral slope data of

the buƯer corrected geodata frames of sub-hypothesis

2 (section 2.2) into new RTS specific data frames. The

dataset included the TP class and the main area from

which the RTS originated. This dataset enabled the

analysis of all RTS belonging to each TP class, for each main area. The analysis was

performed similar to that of sub-hypothesis 1 and 2. DiƯerent from the analysis of sub-

hypothesis 1, only the more powerful Shapiro-Wilk-test was used to test for normal

distribution and, this time, a group consisted of all values of one spectral slope type from

one RTS. The results were p-value matrixes that show if RTSs within the same main area

and the same TP class show significant similarities. The matrixes were classified

according to their similarity with the classification workflow shown in Figure 9, with the

diƯerence, that this time the classification applied to RTSs instead of sub areas.

The results are hierarchical, with more layers of complexity than a normal pie chart can

visualise. An alternative is the multilayered plot called ‘sunburst chart’. Starting from the

broadest category, the first layer of the plot represents a standard pie chart. The next layer

of detail represents the contents of the first layer pie slices, and so forth. The python

package plotly.express (Kruchten, N., Seier, A., Parmer, C. 2024) was used for sunburst

charts in this work. It is important to note that certain constraints apply to data accepted

Table 1: Classes of terrain positions

20

by sunburst plots. For example, it is mandatory to convert the percentages of the

similarity classes to proportional count values such that every pie piece has the right

dimension. The numbers visible in the charts (for example of Figure 17) are nevertheless

the original percentages. This conversion inherently suƯers from a rounding uncertainty,

since the percentages are rounded to 0 decimal places in the first step, and the count

numbers derived from the percentages are rounded again. The uncertainty varies for each

pie piece of the plot, depending on the corresponding count value. The formulas and error

tables for the conversion of percentages to count can be found in the appendix (Appendix

C5).

Figure 10: Examples for TP classification. The black outlines are the geometry of the RTSs, the background colours

correspond to the terrain type. (a) Example sea shoreline where the RTS polygon is not fully covered by the mainland

polygon, resulting in TP class 1 assignment. (b) Example lake shoreline where the RTS polygon and the lake polygon are

overlapping. This RTS is assigned to TP class 2. (c) Manual assignment example 1: this RTS is located far from the current

water level of the lake, however, both the occurrence and change_abs layers of the JRC Global Surface Water Mapping

Layers show the proximity of the water body in the past. The previous proximity to the lake implies a strong impact of the

lake in the RTS development. This RTS is assigned to TP class 2. (d) Manual assignment example 2: this RTS is located

at a small pond, which is connected to a gully. Since the RTS is neither located at a lake nor directly at a gully the TP

class 6 ‘pond + gully’ was created. This RTS is assigned to TP class 6.

2.4 Morphology and spectral slope similarity

To investigate the similarities of RTS spectral slopes within the same main area and

containing the same RTS morphology (sub-hypothesis 4), the dictionary used for the

terrain position analysis above was expanded. In addition to the TP class and the RTS

geometry, information on the morphology was needed. Consequentially, each slump had

their morphology class assigned manually in QGIS. Possible classes are: thermocirque,

thermoterrace and the combination of both, as described in (Nesterova et al. 2024), see

Figure 1. Layers that were used for the assessment were the basemap: Esri World Imagery

Map (1.2.3) and the geometry of the RTS layers (1.2.1) themselves. The extended data

frames were imported back to the Google Colaboratory Notebook. The geometry of the

21

RTS polygons in the morphology/TP data frames were used to divide the spectral slope

data of the geodata frames of sub-hypothesis 2 (the ones that include the 5 m inward

buƯer) into new RTS specific data frames. The morphology class, the TP class and the

main area from which the RTS originates were included in the RTS data frame names.

From this point forward, the analysis followed that of sub-hypothesis 3, with the

diƯerence that morphology was considered instead of the terrain position. Again, the

statistical analysis was followed by similarity classification and, finally, the data was

presented in sunburst charts. The formulas and error tables for the conversion of

percentages to count during the sunburst chart visualization can be found in the appendix

(Appendix C5). The manually created terrain position and morphology data frames are

stored at the Alfred Wegener Institute, section Permafrost, group Permafrost Remote

Sensing, and are available upon request.

22

3 Results
To aid readability, the sub-chapters of the results section follow the order of the sub-

hypothesis, similar to the methods section above. Therefore, the results presented in

section 3.1 are the result of the methods described in section 2.1, and so on.

3.1 Comparison of cumulative RTS spectral slope between study areas

To compare the spectral properties and spatial relationships of the five study areas, the

cumulative spectral slope histograms are plotted on a map of Siberia in Figure 11. From

visual inspection, the distributions of the slope types shown in the histograms vary

between the study areas regardless of the distance of the areas towards each other. The

peak of the greenness distribution of the area Southern Verkhoyansk Range (outlined on

the map with an orange frame) shows the highest spectral slope decrease. For the area

Chokurdakh (outlined on map with a purple frame) all three distributions are quite centred

on top of each other but diƯer in height. The other three areas: Southern Taymyr (outlined

on the map with a blue frame), Northern Olenek (turquoise frame) and Iultinsky (pink

frame) all show diƯerences in the height of the distribution peaks and its centres.

Figure 11: Cumulative spectral slope and spatial relationship of all study areas. The outline colour of each
histogram corresponds to the outline colour of the corresponding area.

23

To ease the comparison of the individual distributions, they are presented in Figure 12 as

a violine plot. Evidently, no two spectra are exactly alike. However, there are some

features that appear in multiple spectra.

There is some consistency in that only slope type greenness (‘TCG_slope’) shows a

double peak. The double peak feature is observed strongly in three out of five distributions

(the greenness for the areas Southern Taymyr, Northern Olenek and Iultinsky), while the

other two have elongated tails. The greenness (‘TCG_slope’) distributions for Chokurdakh

and Southern Verkhoyansk Range have a mean value below zero, indicating that there is

a net reduction of greenness in these regions in the observed timeframe.

The distributions of brightness (‘TCB_slope’) tend to be flatter and longer than those of

wetness (‘TCW_slope’). The distributions of Southern Verkhoyansk Range for brightness

and wetness are noticeably shorter than those of the other areas. The area of Southern

Verkhoyansk Range that is aƯected by RTSs is very small. The elongated distribution of

Southern Verkhoyansk Range greenness must have strong outliers in the limited sample

set. In general, wetness distributions tend to be narrower.

Figure 12: Violine plot showing the spectral slope types of each study area. The x-axis shows the diƯerent spectral

slope types, the abbreviations TCB, TCW and TCG stand for the term tasseled cap index of brightness, wetness or

greenness. The distributions shown in the plot are not normalized and are based on diƯerent sample sizes.

The results of a Dunn-Bonferroni pairwise area comparison is presented in Figure 13. The

null hypothesis of the Dunn-Bonferroni test is that the compared areas are similar to each

other. Yellow fields of Figure 13 correspond to p-values that exceed the significance level

24

on 0.05 (don’t reject the null hypothesis). Since none of the oƯ-diagonal terms exceed the

significance level, the alternate hypothesis must be accepted: there is a diƯerence

between all the compared areas. Consequentially, the spectral slopes between the main

areas are significantly diƯerent and sub-hypothesis 1 cannot be rejected.

3.2 Spectral slope comparison within study areas

The process described in section 2.2 leads to a classification of the similarity of spectral

slopes, classified by the scale presented in Figure 8. A convenient visualisation of the

fraction of similar/dissimilar spectral slopes is to plot a pie chart of the similarity classes.

Figure 14 shows an overview of the spatial relationships between such pie charts of the

Figure 13: Heatmap of the Results of the Dunn-Bonferroni test. P-values that exceed the significant level of 0.05 are
shown in yellow. None of the oƯ-diagonal terms exceed the significance threshold. The diagonal terms are self-
comparisons of areas that don’t contribute valuable information on similarity.

25

distribution of sub area similarity classes for each main area.

If sub-hypothesis 2, all sub areas are dissimilar to all other sub areas, would be

completely true, all pie charts would be coloured dark purple and classified as highly

heterogeneous. Every pie chart contains a fraction of sub areas that are classified as

highly heterogeneous but, at the same time, each pie chart also contains at least one

other class. Therefore, sub hypothesis 2 can be neither rejected nor accepted. This is why

sub-hypothesis 2 is only partially rejected. The spectral slopes of the sub areas (within a

region) are mostly diƯerent, the classes highly heterogeneous and heterogeneous

combined always make up more than 50% of the pie, but there is always some similarity

between some of the sub areas. The amount of similarity varies a lot. Northern Olenek

and southern Taymyr include sub areas which are both homogeneous and highly

homogeneous. Iultinsky (Chukotka) includes the largest percentage of sub areas that

were classified as homogeneous. And Chokurdakh and Southern Verkhoyansk Range

only include sub areas of the similarity classes heterogeneous (a sub area is dissimilar to

most other sub areas) and highly heterogeneous.

Figure 14 Similarity class pie charts vs. study area location. The outline colour of each pie chart corresponds to the

outline colour of the area which is shown the pie chart.

26

One aspect to consider in a similarity inspection is that the RTS geometries were recorded

with a 5 m buƯer. Including non-RTS areas may influence the similarity analysis. Figure 15

shows the results of an identical analysis with an additional 5 m inward buƯer to

compensate the original buƯer. Slight changes are observed for two of the five areas,

compared to Figure 14. For Iultinsky the percentage of highly heterogeneous decreased

by 4% while the percentage of heterogeneous increased by 13%. The percentage of

homogeneous decreased by 9%. In Southern Taymyr the percentages of highly

homogeneous and of highly heterogeneous stayed the same, while heterogeneous

decreased by 10% and homogeneous increased by 10%. A more detailed analysis of the

impact of the 5 m buƯer on the RTS area can be found in the Appendix C3.

Figure 15 Similarity class pie charts with 5 m inward buƯer vs. study area location. The outline colour of each pie

chart corresponds to the outline colour of the area which is shown the pie chart. Note that the sum of the percentages

may exceed 100% due to rounding errors.

3.3 Terrain position and spectral slope similarity

The creation of the new data frames that contain the geometry and the terrain position of

each RTS (see section 2.3) made it possible to investigate the fractions of RTSs located

close to the terrain positions of the study areas.

27

The pie charts of Figure 16 show that the majority for the RTSs in Southern Taymyr (98%),

Northern Olenek (70%) and Chokurdakh (70%) belong to the terrain position class lake

shore. In Iultinsky lake shores are the TP for 46% of the RTS which is the largest pie piece

for that area. Southern Verkhoyansk Range is the only area where lake shores don’t make

up the largest pie piece, taking second place with 22%. This shows that lake shores are,

in general, the dominant TP.

River shore is a terrain position that is also included in all five study areas. Southern

Taymyr has the smallest portion with 2%, Iultinsky the second smallest with 7%, followed

by Northern Olenek with 8%. 21% of the RTSs in Chokurdakh are located at river shores

and in Southern Verkhoyansk Range river shores are the majority the terrain position with

67%. Gullies were found as terrain positions for the areas: Northern Olenek, Chokurdakh,

Iultinsky and Southern Verkhoyansk Range, with fractions between 8% and 11%. Iultinsky

was the only study area in which RTSs with the TP Pond + Gully were found.

The sub-hypothesis 3 states that: the spectral slope of single RTSs that are located at a

certain terrain position are always the same as the spectral slope of single RTSs that are

located at the same terrain position within the same main area. If this would be

completely true, all of the RTS should be classified as highly homogeneous (yellow),

Figure 16: Pie charts of the terrain position percentage for each area. The colour of the pie pieces corresponds to
the terrain position.

28

indicating that the RTS is similar to all other RTS located at the same terrain position (a

modification of the classification scheme in Figure 8).

Sunburst charts, such as Figure 17 to Figure 21 below, are visualisations of hierarchical

data. The central circle represents 100% of the RTSs of one area and is labelled with the

study area name and the total number of RTSs of that area. The next ring is divided into

segments corresponding to the fraction of the RTSs contained in each TP class, similar to

a standard pie chart. The segments are labelled with the name of their TP class and the

number of RTSs which are associated with them. The outermost ring shows the

distribution of similarity classes within each TP class. The colour scheme follows a

hierarchical blending approach. The outermost ring is coloured in colours that

correspond to the similarity classes (see legend of plots). The colours of the second ring

(the ones of the TP class) are the proportionally mixed colours of the outermost ring

(based on the size of the similarity classes). The colour of the central circle results from a

proportional blend of the TP class colours.

Figure 17 is a sunburst chart of similarity classes corresponding to RTS terrain positions

for the study area Northern Olenek. The blending approach of the colour code reveals at

first glance that Northern Olenek does not show much similarity between RTSs within the

same TP. The single TP classes are either coloured grey (neutral) or in light blue

(heterogenous range) colours. The central circle combines the similarity information in

the weighted colour mixing scheme and indicates that the RTSs at the same TP within

Northern Olenek are mostly heterogeneous. A closer look shows that the TP classes lake,

river and sea are mostly heterogeneous. Only the TP class gully is homogeneous as largest

similarity class (42%) but the classes heterogeneous (33%) and highly heterogeneous

(25%) combined shift the TP class back into the heterogeneous part of the scale. This can

be seen from the blue colour of the gully segment.

29

Figure 17: Sunburst chart of Northern Olenek, showing the similarity classes corresponding to the terrain

positions. The outermost ring shows the similarity class proportions of each TP. The second ring shows the fraction of

RTSs that belong to each TP, the number of RTSs of that fraction is displayed. The central circle contains the total number

of RTSs that are found in this area. The colour scheme follows a hierarchical blending approach. The initial colours are

those of the similarity classes shown in the outermost ring. The meaning of the colours is shown in the legend. The TPs

lake, river and sea are mostly heterogeneous (66%, 100%, 71%). The TP gully has a dominant similarity class of 42%

homogenous which is overshadowed by the combination of 33% heterogeneous and 25% highly heterogeneous. In

total, the RTS with similar TP in Northern Olenek are slightly heterogeneous regarding their spectral slope similarity.

The sunburst chart of similarity classes corresponding to terrain positions for the study

area Southern Taymyr is illustrated in Figure 18. The blending approach of the colour code

in the central circle reveals that Southern Taymyr leans slightly towards homogeneous in

total. However, Southern Taymyr has only one TP class that contains more than one RTS,

which is a requirement for the similarity classification. This TP class is lake shore and is

coloured in light yellow (slightly homogeneous). The TP class river contains just a single

RTS and is left unclassified as a result. A detailed examination of the TP class lake shows

that the similarity class highly homogenous (1%) and homogeneous (56%) are weighed

up against 43% heterogeneous, underlining that the lake shore RTSs of Southern Taymyr

are slightly homogeneous in total.

30

Figure 18: Sunburst chart of Southern Taymyr, showing the similarity classes corresponding to the terrain

positions. The majority of RTSs located at Southern Taymyr’s only TP class lake are in the similarity class homogeneous

(56%). The TP class river contains only a single RTS and is therefore excluded from the similarity classification.

In Figure 19, the sunburst chart of similarity classes corresponding to terrain positions for

study area Southern Verkhoyansk Range is displayed. The first important diƯerence,

compared to the other study areas, is that this area contains only 9 RTSs. The blending

approach of the colour code shows at first glance that Southern Verkhoyansk Range

shows very little similarity between RTSs within the same TP. The single TP classes are

either coloured in blue (heterogeneous range) or in purple (highly heterogeneous range)

colours. The central circle combines the similarity information for the whole area, it is also

coloured light purple, which shows that the entire area is highly heterogeneous and nearly

no similarity between the RTSs located at the same TP was found. Examining the TP

classes in greater detail reveals that lake includes only two RTSs which have no similarity

to each other in any of the spectral slope types, which results in the classification of 100%

highly heterogeneous. The TP class river includes 6 RTSs, this TP class is dominated by

the similarity class highly heterogeneous (39%) but the inclusion of 33% homogeneous

and 28% heterogeneous keeps the river segment from turning purple.

31

Figure 19 Sunburst chart of Southern Verkhoyansk Range, showing the similarity classes corresponding to the

terrain positions. Southern Verkhoyansk Range is dominated by the similarity class highly heterogeneous (100% of

lake and 39% of river). The three bands of the spectral slope types of each RTS are compared individually between RTSs

of the same TP. This, for example, leads to 18 comparisons for the 6 RTSs of TP class river and subsequently percentages

of 33% homogeneous, 28% heterogeneous and 39% highly heterogeneous. The TP gully contains only a single RTS and

is therefore excluded from the similarity classification. In total, the spectral slopes of the RTS of Southern Verkhoyansk

Range are highly heterogeneous within their individual terrain positions.

Figure 20 shows the sunburst chart of similarity classes corresponding to terrain positions

for the study area Chokurdakh. One notable aspect regarding this area is that the

implementation of the 5 m inwards buƯer resulted in one RTS polygon becoming so small

that no spectral slope data could be assigned to it anymore. (This occurred because the

ALEX dataset has a spatial resolution of 30 m, while the polygons width was reduced to 8

m.) The lost RTS is not included in any TP class since it can’t take part in the spectral slope

analysis. The blending approach of the colour code reveals at first glance that the RTSs

within Chokurdakh are slightly homogeneous (very light yellow central circle). The TP

classes are either coloured in blue (heterogeneous range), in very light yellow

(homogeneous range), or in yellow (highly heterogeneous range). A closer look shows that

the TP class lake is dominated by the similarity class heterogeneous (73%) while river is

dominated by homogeneous (69%), and gully is dominated by highly homogeneous (61%)

combined with 33% homogeneous. The lake class contains 69% of the RTS in this area

(43 lake RTS versus 6 gully and 13 river RTSs), resulting in a very small general similarity

for the entire area. The TP class gully of this area is the first TP class that shows a strong

RTS similarity (highly homogeneous).

32

Figure 20: Sunburst chart of Chokurdakh, showing the similarity classes corresponding to the terrain positions.

The TP class lake dominates the area Chokurdakh. 73% of lake are heterogeneous which results from about half of the

similarity comparisons of the whole area. The very homogeneous TP class gully has a strong impact on the average

similarity of RTSs at the same TP, which is why the average is slightly homogeneous.

In Figure 21, the sunburst chart of similarity classes corresponding to terrain positions for

study area Iultinsky is displayed. The blending approach of the colour code shows at first

glance that Iultinsky shows a little similarity between RTSs within the same TP. The TP

classes are either coloured light blue (heterogeneous range) or in yellow (homogeneous

and highly homogenerous range). The central circle combines the similarity information

for the whole area, it is also coloured light yellow, which shows that the homogeneous

classes are dominant. A detailed examination of the TP class lake reveals that it is

dominated by the similarity class homogeneous (76%), while 21% of the lake RTS were

classified as highly homogeneous and only 2% were classified as heterogeneous. The

other yellow TP class is Pond + Gully, of which 70% were classified as homogeneous, 18%

as highly homogeneous and 12% as heterogeneous. The other TP classes (Sea, Gully and

River) are all dominated by the similarity class heterogeneous.

33

Figure 21: Sunburst chart of Iultinsky (Chukotka), showing the similarity classes corresponding to the terrain

positions. The area Iultinsky shows in general the similarity class homogeneous for RTS within the TPs lake and pond

(+gully). The TP classes sea, river and gully are dominated by the similarity class heterogeneous. Overall homogeneous

outweighs heterogeneous.

To conclude: most RTSs within the same terrain position and the same main area are not

very similar towards each other, except for Iultinsky. Because not all areas show an overall

homogeneity, sub-hypothesis 3 needs to be rejected.

3.4 Morphology and spectral slope similarity

The extension of the terrain position data frames towards containing morphology

information of each RTS (see section 2.4) made it possible to visualize the fraction of RTS

per morphology for each study area. The three available morphology classes are

thermocirque, thermoterrace, and the combination of both (see Figure 1).

The pie charts of Figure 22 show that the morphology class ‘combination’ dominates the

RTSs in Southern Taymyr (70%), Northern Olenek (75%), Chokurdakh (51%) and Iultinsky

(57%). Southern Verkhoyansk Range is the only area where the morphology thermocirque

is dominating (67%), but it also contains a relevant fraction of the morphology class

combination (22%).

Thermocirques also appear in each of the study areas but with very diƯerent amounts (6%

in Northern Olenek to 67% in Southern Verkhoyansk Rang). The percentage of

thermoterrace varies for the study areas Northern Olenek, Chokurdakh, Iultinsky and

Southern Verkhoyansk Range from 7% to 33%.

34

The sub-hypothesis 4 states that the spectral slope of single RTSs that have a certain

morphology is always the same as the spectral slope of single RTSs that have the same

morphology within the same main area. If this would be completely true, the following

plots (Figure 23 to Figure 27) would all be coloured completely yellow because yellow is

the colour that represents the class highly homogeneous and the definition of highly

homogeneous and sub-hypothesis 4 are basically the same (highly homogeneous: “the

sub area is similar to all other sub areas” whereas sub area in this case is replaced with

RTSs that have the same morphology.)

The setup of the sunburst charts (Figure 23 to Figure 27) is the same as the one for the

sunburst charts of sub-hypothesis 3, the only diƯerence is that the TP classes are

replaced with the morphologies.

Figure 23 shows the sunburst chart of similarity classes corresponding to RTS morphology

for the study area Iultinsky. The blending approach of the colour code reveals at first

glance that RTSs with the same morphology in Iultinsky show similarity. In fact, all three

morphology classes and the center circle are coloured yellow (homogeneous range). A

closer look shows that all morphology classes are dominated by the similarity class

homogeneous (thermocirque 73%, thermoterrace 50%, combination 70%). The similarity

Figure 22 Pie charts of percentages of morphology types for each area. The colour of the pie pieces corresponds to
the terrain position

35

class highly homogeneous is also represented in all morphology classes (thermocirque

13%, thermoterrace 25%, combination 11%). And the similarity class heterogeneous is

also present in all morphology classes (thermocirque 17%, thermoterrace 25%,

combination 17%).

Figure 23: Sunburst chart of Iultinsky (Chukotka), showing the similarity classes corresponding to morphology.

The dominant similarity class of Iultinsky is homogeneous (thermocirque 73%, thermoterrace 50%, combination 70%).

The similarity classes highly homogeneous and heterogeneous are also present in each morphology class. The average

similarity for the whole area is homogeneous.

Figure 24 presents the sunburst chart of similarity classes corresponding to RTS

morphology for study area Chokurdakh. The implementation of the 5m inwards buƯer

resulted in one RTS polygon becoming so small, that no spectral slope data could be

assigned to it anymore. The lost RTS is not included in any morphology class since it can’t

take part in the spectral slope analysis. The blending approach of the colour code shows

at first glance that in Chokurdakh RTSs with the same morphology are balanced, neither

the class homogeneous nor heterogeneous predominates.. Examining the morphology

classes in greater detail shows that thermoterrace and combination are both mostly

heterogeneous (thermoterrace 52%, combination 70%). The morphology class

thermocirque, however, is mostly homogeneous (57%) and, additionally, even contains

the similarity class highly homogeneous (27%).

36

Figure 24: Sunburst chart of Chokurdakh, showing the similarity classes corresponding to morphology. In

Chokurdakh, the morphology classes thermoterrace and combination have the similarity class heterogeneous

(thermoterrace 52%, combination 70%) as largest component. Whereas the largest similarity class within the

morphology class thermocirque is homogeneous (57%). Overall, no similarity class predominates this area.

In Figure 25, the sunburst chart of similarity classes corresponding to morphology for

study area Southern Verkhoyansk Range is displayed. The central circle combines the

similarity information for the entire area and is coloured light purple, indicating that the

heterogeneity classes are dominant. A detailed examination of the morphology classes

reveals that the class combination (100% highly heterogeneous) contains only two RTSs

which have no similarity to each other in any of the spectral slope types. The morphology

class thermocirque contains the similarity classes heterogeneous (67%), homogeneous

has 22% and highly heterogeneous 11%.

Figure 25: Sunburst chart of Southern Verkhoyansk Range, showing the similarity classes corresponding to

morphology. Southern Verkhoyansk Range only includes 9 RTSs. The dominating morphology is thermocirque, of which

37

67% is classified as heterogeneous. The morphology ‘combination’ is classified as highly heterogeneous (100%). In

total, the RTS of the region are highly heterogeneous within their morphology classes. The morphology thermoterrace

contains only a single RTS and is therefore excluded from the similarity classification.

The sunburst chart of similarity classes corresponding to RTS morphology for the study

area Southern Taymyr is illustrated in Figure 26. In this study area, there is no predominant

similarity class between RTSs with the same morphology. A closer look shows that the

largest similarity class within the morphology class thermocirque is homogeneous (62%).

On the other hand, the largest similarity class for the morphology class combination is

heterogeneous (61%), followed be the similarity class homogeneous (39%).

Figure 26: Sunburst chart of Southern Taymyr, showing the similarity classes corresponding to morphology.

Southern Taymyr includes the two morphology classes thermocirque (62% homogeneous) and ‘combination’ (61%

heterogenous). In total, there are more RTS associated with combination (70%) than with thermocirque, such that on

average the RTS within their respective morphology classes are heterogeneous. The slight predominance of

heterogeneity is negligible, and the entire area can be considered balanced.

Figure 27 shows the sunburst chart of similarity classes corresponding to morphology for

the study area Northern Olenek. In this study area, RTS are slightly heterogeneous within

their morphology. Examining the morphology classes in greater detail shows that

thermoterrace and combination are dominated by the similarity class heterogeneous

(combination 68%, thermoterrace 83%). The morphology class thermocirque, on the

other hand, has the equal similarity classes homogeneous (44%) and highly

heterogeneous (44%), with an additional component in the similarity class highly

homogeneous (11%).

38

Figure 27: Sunburst chart of Northern Olenek, showing the similarity classes corresponding to morphology. The

largest fraction of RTSs are in the morphology class combination. 68% of the RTS within this morphology are

heterogeneous. The second largest section of the plot represents the morphology thermoterrace which is also mostly

heterogeneous (83%). In total, the RTS of Northern Olenek are heterogeneous within their morphology class.

To conclude: most RTSs with the same morphology and within the same main area are not

very similar towards each other. But there are exceptions, notably Iultinsky (Chukotka),

where the RTS spectral slope is mostly homogeneous. Since only one area is

homogeneous on average, sub-hypothesis 4 needs to be rejected.

3.5 Exploratory insight: terrain position and morphology combinations

A result that emerged during the data analysis, but is not central to this work, are the

combinations of the TPs and the morphologies of the RTSs. An interactive sunburst chart

representing this dataset can be found at https://zenodo.org/records/15041293 (Heitz

2025). The html file can be downloaded and opened in a local browser. A static

representation of the plot is shown in Figure 28 for reference. The reader is encouraged to

explore the rich dataset by themselves.

While most RTSs located at the terrain positions lake and sea have a combination

morphology, most RTSs located at the TPs gully and pond + gully have a thermocirque

morphology. The morphology of RTSs located at rivers varies strongly between the study

areas. A common morphology for RTS at rivers could not be identified. The observation

that most terrain positions exhibit a specific morphology more frequently than others

39

supports the theory that terrain position and morphology may be linked. For example, the

terrain position could influence erosion and thereby impact the RTS morphology.

Figure 28: Screenshot of the interactive sunburst chart that shows the combinations of terrain positions and

morphologies for the RTSs of each study area. Please find an interactive rendition of this dataset at

https://zenodo.org/records/15041293 (Heitz 2025). Click on the single study areas or terrain positions to see a close up

of a section with adapted fonts for better readability. Hovering over a section reveals additional information, such as the

parameter “count” which contains the information on how many RTSs make up that section. The reader is strongly

encouraged to experience the richness of the dataset for themselves.

40

4 Discussion
The goal of this work is to gain new insights on the variability of RTSs in Siberia. The

explored parameters are spectral variability, particularly the spectral slope of tasseled

cap indices, the terrain positions and the morphologies. The discussion is organized

around several external parameters, with each section following a structure similar to that

of the methods (section 2) and results (section 3), grouped into comparisons between

RTS at diƯerent levels of spatial detail.

4.1 Impact of a 5 m inward buƯer towards the RTS polygons

The analysis of the comparison of the spectral slope of the sub areas was conducted two

times, one time including all values of each RTS geometry. Another time with a 5 m inward

buƯer applied to each RTS geometry (see section 2.2). This inward buƯer counteracted a

5 m buƯer applied to each RTS during the initial mapping. One would expect that merging

data from the buƯer areas with the data from the RTS themselves, incorporating the initial

5 m buƯer, might change the outcome. The comparison of the results (Figure 14 and

Figure 15, section 3.2) show the impact of the 5 m buƯer on the spectral slope similarity

in three of the five areas. When the buƯer area is removed in Southern Taymyr, the spectral

slope similarity becomes more homogeneous. The area Iultinsky shows a strong change

in the similarity class distribution (decrease of highly heterogeneous and of

homogeneous and increase of heterogeneous). In contrast, the results in Northern

Olenek remain mostly stable, with only a minor change in one similarity class. Further

analysis shows, that the area within the 5 m buƯer zone can reach over 60% of the total

area of one RTS, depending on its individual size and geometry. A detailed analysis of how

much of the initial RTS geometry area is actually part of the buƯer is presented in Appendix

C3.

Since the results of the statistical analysis is influenced by the inclusion of spectral slope

values from the buƯer regions, that aren’t part of the RTS themselves, all following

analyses have been performed with buƯer-corrected RTS geometries (sub-hypothesis 3

and 4).

41

4.2 Spectral slope trends

Figure 12 of section 3.1 is a violin plot of the cumulative spectral slope (net increase or

decrease over time) of each area, for each of the tasseled cap indices. The strongest

changes are observed for the greenness index of Southern Taymyr, Northern Olenek and

Iultinsky. All three areas experience increased greenness, which could suggest a

stabilisation of the majority of the RTS areas since a stabilisation comes along with

vegetation growth. The stabilisation mechanism is described in C.R. Burn and P.A. Friele

1989. In short, if the meltwater disappears, the mudflow stops. Non-moving and nutrient

rich mud promotes vegetation growth. The mean values for the other spectral slope types

(brightness and wetness), on the other hand, experience no significant changes in the

observed time frame. This is somewhat surprising, if the increase in greenness is indeed

a sign for stabilisation. During the stabilisation process, the wetness and brightness

indices should decrease due to less melt water availability, less mud movement and the

connected vegetation growth.

Southern Verkhoyansk Range, on the other hand, shows an increase of brightness and a

decrease of greenness. These changes could indicate a new disruption of the vegetation

that could be the result of the reinitialization (polycyclic nature) of the RTSs. The very small

increase in wetness, however, does not support this theory. A reinitialization would be the

result of further melting of massive ground ice which would increase the wetness index of

the RTSs when new melt water/mud streams form. Moreover, the means of the spectral

slope distributions of Southern Verkhoyansk Range show only minor changes, compared

to the means of the other areas. The spectral slope distributions of the Chokurdakh area

are very similar to those of Southern Verkhoyansk Range.

The comparison of spectral slopes of single RTSs located within one area, either with

respect to shared terrain position (sub-hypothesis 3) or shared morphology (sub-

hypothesis 4) is informative as well. On the surface, the result of both analyses is, that

neither the terrain position nor the morphology directly impact or relate to the RTS

spectral slope similarities. Therefore, sub-hypothesis 3 and 4 (cf. Table 2) are rejected.

However, it appears that the spectral slope similarity trend across all areas is similar for

both the TP and the morphology analyses. If an area shows a lot of similarity (e.g.

Iultinsky), a medium amount of similarity (e.g. Chokurdakh) or nearly no similarity (e.g.

42

Southern Verkhoyansk Range), it will do so in both analyses. This parallel behaviour can

have several reasons, one could be that the terrain position and the morphology might be

strongly linked to each other. A strong link in between terrain position and morphology

could, for example, exist for the terrain types gully and pond+gully. Both of these terrain

positions appear strongly related to the morphology thermocirque. Possibly, there could

be process based relation, e.g. erosion, between the terrain positions and the

morphologies.

Another explanation for such a link may be human error in the RTS mapping process. It

might be, that areas with higher similarity scores contained more precisely drawn RTS

polygons. Inspection of Validation Dataset 2 revealed that the 5m buƯer, that was applied

to each polygon, was added with varying generosity, examples can be observed in

Appendix C6, Figure 34. This mismatch impacts the spectral slope data and, therefore,

the similarity of the spectral slope data. The area that shows the most similarity between

the RTSs for both the TP and the morphology is Iultinsky. This is also the area where the 5

m inward buƯer shows the strongest eƯect per RTS polygon. 49% of the RTSs in the

Iultinsky area lose more than 20% of their area due to the buƯer (see Appendix C3). Such

a large proportion of buƯer area has a strong eƯect on the similarity analysis through

wrongly included values.

4.3 Range of variation in spectral slope, terrain position and morphology

In general, the parameters spectral slope, terrain position and morphology span a large

range. The spectral slope of one RTS compared to another can take all values from

completely similar to not similar at all (divided into 4 diƯerent similarity classes by

definition, see Figure 8). However, not all of the study areas have similarity values across

the full range within one terrain position or morphology class. Some classes show only

one or two similarity classes. Examples are the terrain position class lake of Southern

Verkhoyansk Range, which is 100% highly heterogeneous, or the morphology class

thermoterrace of Chokurdakh, which only includes the similarity classes homogeneous

(48%) and heterogeneous (52%).

The terrain positions exhibit a high variability as well. All five TP classes appear together

only once in the study area Iultinsky. In contrast, the smallest amount of TP classes is

43

found in Southern Taymyr with lake and river. A special finding is that the TP class pond +

gully is found only in the study area Iultinsky (see section 3.3).

In contrast, all study areas except for Southern Taymyr contain RTSs of all three

morphology classes. Southern Taymyr has RTSs in only two morphology classes.

4.4 RTS spectral slope versus geographical setting

The structure of validation dataset 2 (section 1.2.1), with study areas spread across the

entirety of Siberia (e.g. see Figure 11) suggests that there might be a geographical

dependence of the spectral slope. Indeed, one might expect that the geographical setting,

including local climate, influences the thawing of permafrost and RTS formation. The

investigation of combined spectral slopes accumulated over each study area, such as

presented in Figure 11, relate to sub-hypothesis 1: if indeed the geographical position

influences the spectral slope the combined spectral slope of the study areas located in

vastly diƯerent environments should share no similarity with one another.

Further evidence for a geographical influence on the spectral slope may be found in the

parallel results for morphology and terrain positions dependent spectral slope analysis

(section 4.2). Since both morphology and terrain position are part of the geographical

setting, similar results for each of the areas may indicate a link.

The influence of the geographical setting might appear in the relationship between the

mean spectral slope of the study areas compared to the geospatial position (latitude resp.

longitude), since the geospatial position is an important aspect of the geographical

setting. The plots of the mean spectral slope versus geospatial position are found as

Figure 31 and Figure 32 in Appendix C4 However, the spectral slope means of the areas

are uncorrelated with both latitude and longitude. On the one hand, this lack of

correlation could indicate no relation between the combined spectral slope and the

geographical setting. On the other hand, the assumed relationship between geospatial

position and geographical setting may be highly oversimplified. Indeed, since the

geographical setting includes many more parameters that should be strongly linked to

RTS initiation and development, the assumption cannot be considered disproven. Some

examples of relevant parameters are: ice content, ice development/history, deposit

type/soils and local geology.

44

5 Conclusion and Outlook
Within this study, it has been shown that the RTS in multiple study areas across Siberia

are very variable. The spectral slope of three tasseled cap indices, recorded over a period

of 20 years, was the observed variable. The RTS spectral slopes have been compared with

one another within the study areas, as well as, correlated with other RTS properties terrain

position and RTS morphology. Additionally, the combined spectral slopes of the study

areas have been compared.

Indeed, the RTS within this study have been found to be highly variable across all

parameters. Therefore, the main hypothesis is accepted (cf. Table 2).

To quantify the variability, a similarity classifier with a four-step scale (highly

heterogeneous, heterogeneous, homogeneous and highly homogeneous) based on

statistical comparison of spectral slope values has been introduced. This classification

scheme enabled the statistical similarity analysis of RTS on diƯering spatial scale. No

significant similarities were found comparing the combined spectral slope of the diƯerent

main areas. A simple geospatial correlation was not found either. Therefore, sub-

hypothesis 1 was accepted. The lack of significant similarity in cross-study-area results

indicates that the spectral slope variability on this scale overshadows similarity trends or

patterns.

Comparisons of the combined spectral slope of sub-areas within the main areas

supported the hypothesis of high variability of sub-area combined spectral slope within

the main areas. However, since a few significant correlations could be found, sub-

hypothesis 2 is partly rejected.

The analysis of sub-hypothesis 3 and 4 showed that the parameters terrain position and

morphology diƯer across the RTSs of the study areas. Moreover, both analyses widened

the understanding of the variability of spectral slope regarding the level of singe RTS

comparisons within the study areas. A summary of the hypothesis is presented in Table

2.

45

Table 2: Overview of hypothesis acceptance/rejection

Main hypothesis Retrogressive thaw slumps within the study areas

show diƯerences in one or more parameters.

Accepted

Sub-hypothesis 1 The combined spectral slope of the RTSs in one

area is never the same as the combined spectral

slope of the RTSs in any of the other areas.

Accepted

Sub-hypothesis 2 The spectral slope of all the RTSs in one selected

sub-area is never the same as the spectral slope

of all the RTSs in any of the other sub-areas within

the same main area.

Partly rejected

Sub-hypothesis 3 The spectral slope of single RTSs that are located

in a certain terrain position is always the same as

the spectral slope of single RTSs that are located

at the same terrain position within the same main

area.

Rejected

Sub-hypothesis 4 The spectral slope of single RTSs that have a

certain morphology is always the same as the

spectral slope of single RTSs that have the same

morphology within the same main area.

Rejected

In conclusion, the observed spectral variability of retrogressive thaw slumps across

Siberia can be summarised: larger areas that are located distant from each other don’t

show similarities regarding the spectral slope. Smaller areas located closer to each other

are mostly diƯerent from each other, although a few similarities between some of the

areas could be found. Neither the terrain position nor the morphology directly relate to

the similarities that were found regarding the spectral slope. The result of the analysis is

that the spectral slope of RTSs is a property with high variability that requires further study.

One promising path to further understand the variability of retrogressive thaw slumps

would be to characterize RTSs according to their process stages (initiation, active phase,

stabilization) and to compare those to the spectral slope data. Since the spectral slope

data shows how the landscape changes, this process-based classification could be a

46

relatively strong tool to distinguish diƯerent RTS stages from other landscape changes.

Possibly, a fingerprint system that combines the three slope type values could be

developed. Furthermore, other parameters like RTS volume or dynamics could also be

correlated with spectral variability.

A weakness discovered in this work, that needs to be addressed in future studies, is the

human bias included in the manual assignment of the morphology classes. For example,

morphometrical parameters like an RTS length to width ratio could be promising. A

“roundness” factor, that would need to be developed, might be used as a human bias free

tool to determine which morphology class a RTS belongs to.

47

6 References
C.R. Burn and P.A. Friele (1989): Geomorphology, Vegetation Succession, Soil Characteristics
and Permafrost in Retrogressive Thaw Slumps near Mayo, Yukon Territory. In: Arctic (42), S. 31–
40.

Colaboratory-team (2023): Google Colab. Version 1.1.0: Google. Online verfügbar unter
https://colab.research.google.com/github/.

Colaboratory-team (2024): Google Colab. Version 1.2.0: Google. Online verfügbar unter
https://colab.research.google.com/github/.

Esri, Maxar, Earthstar Geographics, and the GIS User Community: World Imagery. Online
verfügbar unter
https://services.arcgisonline.com/ArcGIS/rest/services/World_Imagery/MapServer, zuletzt
geprüft am 26.02.2025.

Fraser, Robert; Olthof, Ian; Kokelj, Steven; Lantz, Trevor; Lacelle, Denis; Brooker, Alexander et al.
(2014): Detecting Landscape Changes in High Latitude Environments Using Landsat Trend
Analysis: 1. Visualization. In: Remote Sensing 6 (11), S. 11533–11557. DOI: 10.3390/rs61111533.

Heitz, Julia (2025): Combinations of terrain positions and morphologies for retrogressive thaw
slumps of diƯerent study areas across Siberia.

Jones, Benjamin M.; Grosse, Guido; Farquharson, Louise M.; Roy-Léveillée, Pascale; Veremeeva,
Alexandra; Kanevskiy, Mikhail Z. et al. (2022): Lake and drained lake basin systems in lowland
permafrost regions. In: Nat Rev Earth Environ 3 (1), S. 85–98. DOI: 10.1038/s43017-021-00238-9.

Kirchner, James (2001): Data Analysis Toolkit #5: Uncertainty Analysis and Error Propagation.
University Berkeley. Online verfügbar unter
https://seismo.berkeley.edu/~kirchner/eps_120/Toolkits/Toolkit_05.pdf, zuletzt geprüft am
25.03.2025.

Kruchten, N., Seier, A., Parmer, C. (2024): Plotly PY. An interactive, open-source, and browser-
based graphing library for Python (Version 5.24.1): Zenodo.

Leibman, Marina; Nesterova, Nina; Altukhov, Maxim (2023): Distribution and Morphometry of
Thermocirques in the North of West Siberia, Russia. In: Geosciences 13 (6), S. 167. DOI:
10.3390/geosciences13060167.

Mackay, J. Ross (1966): Segregated Epigenetic Ice and Slumps in Permafrost. Mackenzie Delta
Area, NWT: Geographical Bulletin (8).

McDonald, John (2014): Handbook of Biological Statistics. 3. Aufl. Baltimore, Maryland, U.S.A.:
SPARKY HOUSE PUBLISHING.

Mohd Razali, Nornadiah and Yap, Bee (2011): Power Comparisons of Shapiro-Wilk, Kolmogorov-
Smirnov, Lilliefors and Anderson-Darling Tests. In: J. Stat. Model. Analytics (2), Artikel 1, S. 21–
33.

Nesterova, Nina; Leibman, Marina; Kizyakov, Alexander; Lantuit, Hugues; Tarasevich, Ilya; Nitze,
Ingmar et al. (2024): Review article: Retrogressive thaw slump characteristics and terminology.
In: The Cryosphere 18 (10), S. 4787–4810. DOI: 10.5194/tc-18-4787-2024.

Nitze, Ingmar; Grosse, Guido (2016): Detection of landscape dynamics in the Arctic Lena Delta
with temporally dense Landsat time-series stacks. In: Remote Sensing of Environment 181, S.
27–41. DOI: 10.1016/j.rse.2016.03.038.

48

Nitze, Ingmar; Grosse, Guido; Jones, Benjamin; Arp, Christopher; Ulrich, Mathias; Fedorov,
Alexander; Veremeeva, Alexandra (2017): Landsat-Based Trend Analysis of Lake Dynamics
across Northern Permafrost Regions. In: Remote Sensing 9 (7), S. 640. DOI: 10.3390/rs9070640.

Nitze, Ingmar; Grosse, Guido; Jones, Benjamin M.; Romanovsky, Vladimir E.; Boike, Julia (2018):
Remote sensing quantifies widespread abundance of permafrost region disturbances across the
Arctic and Subarctic, Datasets.

Nitze, Ingmar; Heidler, Konrad; Nesterova, Nina; Küpper, Jonas; Schütt, Emma; Hölzer, Tobias et
al. (2024a): DARTS: Multi-year database of AI detected retrogressive thaw slumps (RTS) and
active layer detachment slides (ALD) in hotspots of the circum-arctic permafrost region - v1.

Nitze, Ingmar; Lübker, Tillmann; Grosse, Guido (2024b): Pan-Arctic Visualization of Landscape
Change (2003-2022), Arctic PASSION Permafrost Service.

Obu, Jaroslav; Westermann, Sebastian; Kääb, Andreas; Bartsch, Annett (2018): Ground
Temperature Map, 2000-2016, Northern Hemisphere Permafrost. Unter Mitarbeit von Alfred
Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven.

Pekel, Jean-François; Cottam, Andrew; Gorelick, Noel; Belward, Alan S. (2016): High-resolution
mapping of global surface water and its long-term changes. In: Nature 540 (7633), S. 418–422.
DOI: 10.1038/nature20584.

QGIS Development Team (2023): QGIS Geographic Information System. Prizren. Version 3.34:
Open Source Geospatial Foundation. Online verfügbar unter http://qgis.osgeo.org.

Sayre, Roger; Noble, Suzanne; Hamann, Sharon; Smith, Rebecca; Wright, Dawn; Breyer, Sean et
al. (2019): A new 30 meter resolution global shoreline vector and associated global islands
database for the development of standardized ecological coastal units. In: Journal of
Operational Oceanography 12 (sup2), S47-S56. DOI: 10.1080/1755876X.2018.1529714.

Shur, Yuri; Jorgenson, M. Torre; Kanevskiy, M. Z. (2011): Permafrost. In: Vijay P. Singh, Pratap
Singh und Umesh K. Haritashya (Hg.): Encyclopedia of Snow, Ice and Glaciers. Dordrecht:
Springer Netherlands (Encyclopedia of Earth Sciences Series), S. 841–848.

Wu, Qiusheng (2020): geemap: A Python package for interactive mapping with Google Earth
Engine. In: JOSS 5 (51), S. 2305. DOI: 10.21105/joss.02305.

49

Appendix A: German Summary (Deutsche Zusammenfassung)
Durch den Einfluss des Klimawandels tauen die Permafrost-Regionen der Erde. Das

Tauen von Permafrostböden geht häufig mit starken Landschaftsveränderungen und dem

Austritt von Treibhausgasen einher. Eine Art dieser durch das Tauen von Permafrost

bedingter Landschaftsveränderungen sind retrogressive thaw slumps (RTS), auf Deutsch

thermokarstische Rückzugsnischen. Das Interesse an RTSs steigt wegen ihrer großen

Bedeutung für das lokale Landschaftsbild und ihrem Einfluss auf globale

Klimaänderungen (Nesterova et al. 2024). Um das wissenschaftliche Verständnis

bezüglich RTSs zu erweitern, beschäftigt sich diese Arbeit mit verschiedenen

Eigenschaften von RTSs. Der Fokus liegt dabei auf der spektralen Variabilität von RTS,

konkret dem spectral slope, welcher die gemittelte Änderung eines spektralen Indexes

über eine bestimmte Zeitspanne darstellt. Die Datensätze, mit denen der Hauptteil der

Analyse durchgeführt wurde, sind: Pan-Arctic Visualization of Landscape Change (2003-

2022) und das Validation Dataset 2. Die Fünf Untersuchungsgebiete mit einer Größe von

jeweils 10.000 km2 liegen über Sibirien verteilt, jedes dieser Gebiete enthält 10 zufällig

positionierte Untergebiete von je 100 km2, innerhalb der Untergebiete sind die Umrisse

der RTSs bekannt. Der spectral slope der RTSs wurde zwischen den verschiedenen

Untersuchungsgebieten und, darüber hinaus, zwischen den Untergebieten innerhalb der

Untersuchungsgebiete verglichen. Zusätzlich wurden die RTSs einzeln nach ihrer Lage im

Gelände und nach ihrer Morphologie klassifiziert. RTSs innerhalb derselben

Untersuchungsgebiete und derselben Geländeposition bzw. Morphologieklasse wurden

ebenfalls hinsichtlich ihrer spectral slopes verglichen. Die Ergebnisse zeigen eine

deutliche Variation der spectral slopes der verschiedenen Untersuchungsgebiete, ohne

signifikante Ähnlichkeiten. Während auf einer kleineren räumlichen Ebene die

verschiedenen Untergebiete innerhalb desselben Untersuchungsgebiets überwiegend

heterogen sind, wurden einige signifikante Ähnlichkeiten in Bezug auf ihre spectral slopes

festgestellt. Der Vergleich einzelner RTSs, welche sich innerhalb desselben

Untersuchungsgebiets in derselben Geländeposition befanden oder dieselbe

Morphologie aufwiesen, zeigte keine Korrelation zwischen spectral slope Ähnlichkeit und

der Geländeposition oder Morphologie. Zusätzlich konnten Erkenntnisse über die

Häufigkeit der verschiedenen Morphologien in Zusammenhang mit verschiedenen

Geländepositionen gewonnen werden. In 4 von 5 Gebieten befinden sich die

50

überwiegende Anzahl der RTSs in der Geländeposition „Seeufer“, und die meisten von

ihnen weisen eine kombinierte Morphologie auf, die Merkmale sowohl von thermocirque

als auch von thermoterrace RTS enthält. Das wichtigste Ergebnis dieser Studie ist, dass

der spectral slope eine Eigenschaft ist, die in Bezug auf RTSs stark variabel ist. Es wurde

ein Schema zur Klassifizierung der RTS-Ähnlichkeit entwickelt. Dieses

Klassifizierungsschema kann auch für den Vergleich anderer RTS-Eigenschaften

modifiziert werden.

52

Appendix C: Further tables and figures

Appendix C1: Table citing each Esri World Imagery Basemap image used.

Table 3: Esri image citations. Directly accessed via Esri World Imagery wayback. The coordinates refer to the WGS 84
projection. Resolution and accuracy are the same for each image. Resolution: pixels in the source image represent a
ground distance of 1.2 meters. Accuracy: objects displayed in this image are within 5 meters of true location.

Coordinates (WGS 84) Citation
x: 97.1656 y: 72.8032

Maxar (WV02) image captured on Jul 28, 2024
as shown in the 2025-01-30 version of the
World Imagery map.

x: 97.7626 y: 72.8824

Maxar (WV03) image captured on Jul 7, 2024
as shown in the 2025-01-30 version of the
World Imagery map.

x: 97.5154 y: 72.6192

Maxar (WV02) image captured on Jul 28, 2024
as shown in the 2025-01-30 version of the
World Imagery map.

x: 97.9432 y: 72.6325

Maxar (WV03) image captured on Jul 7, 2024
as shown in the 2025-01-30 version of the
World Imagery map.

x: 98.4411 y: 72.7143

Maxar (WV03) image captured on Jul 7, 2024
as shown in the 2025-01-30 version of the
World Imagery map.

x: 97.1303 y: 72.4493

Maxar (WV03) image captured on Sep 7, 2016
as shown in the 2025-01-30 version of the
World Imagery map.

x: 97.8774 y: 72.4156

Maxar (WV02) image captured on Jul 20, 2019
as shown in the 2025-01-30 version of the
World Imagery map.

x: 116.5239 y: 73.6417

Maxar (WV02) image captured on Jul 30, 2023
as shown in the 2025-01-30 version of the
World Imagery map.

x: 116.6242 y: 73.5335

Maxar (WV03) image captured on Jul 4, 2024
as shown in the 2025-01-30 version of the
World Imagery map.

x: 118.0844 y: 73.5545

Maxar (WV03) image captured on Jun 8, 2024
as shown in the 2025-01-30 version of the
World Imagery map.

x: 117.5639 y: 73.2330

Maxar (WV02) image captured on Jun 29,
2024 as shown in the 2025-01-30 version of
the World Imagery map.

x: 116.1827 y: 73.0741

Maxar (WV03) image captured on Jul 4, 2024
as shown in the 2025-01-30 version of the
World Imagery map.

x: 145.1977 y: 71.5928

Maxar (WV02) image captured on Jun 30,
2020 as shown in the 2025-01-30 version of
the World Imagery map.

x: 146.5190 y: 71.5033

Maxar (WV03) image captured on Aug 10,
2022 as shown in the 2025-01-30 version of
the World Imagery map.

53

x: 147.1885 y: 71.5371

Maxar (WV02) image captured on Jun 12,
2019 as shown in the 2025-01-30 version of
the World Imagery map.

x: 145.6328 y: 71.2914

Maxar (WV02) image captured on Jun 15,
2020 as shown in the 2025-01-30 version of
the World Imagery map.

x: 147.1210 y: 71.1897

Maxar (WV03) image captured on Jun 17,
2019 as shown in the 2025-01-30 version of
the World Imagery map.

x: 144.6616 y: 71.0933

Maxar (WV02) image captured on Aug 9, 2021
as shown in the 2025-01-30 version of the
World Imagery map.

x: -174.1289 y: 67.0583 Maxar (WV02) image captured on Aug 6, 2020
as shown in the 2025-01-30 version of the
World Imagery map.

x: -173.8252 y: 66.9928

Maxar (WV03) image captured on Aug 20,
2021 as shown in the 2025-01-30 version of
the World Imagery map.

x: -173.9055 y: 66.7161

Maxar (WV02) image captured on May 30,
2022 as shown in the 2025-01-30 version of
the World Imagery map.

x: -174.0042 y: 66.4336

Maxar (WV02) image captured on Aug 30,
2023 as shown in the 2025-01-30 version of
the World Imagery map.

x: -174.7740 y: 66.8132

Maxar (WV02) image captured on Aug 13,
2020 as shown in the 2025-01-30 version of
the World Imagery map.

x: -175.1340 y: 66.9668

Maxar (GE01) image captured on Jul 14, 2021
as shown in the 2025-01-30 version of the
World Imagery map.

x: -175.4439 y: 66.6612

Maxar (GE01) image captured on Jul 14, 2021
as shown in the 2025-01-30 version of the
World Imagery map.

x: -175.8431 y: 66.8907

Maxar (WV03) image captured on Jun 16,
2020 as shown in the 2025-01-30 version of
the World Imagery map.

x: 131.5629 y: 63.9987

Maxar (WV03) image captured on Jun 30,
2020 as shown in the 2025-01-30 version of
the World Imagery map.

x: 131.7427 y: 63.8514

Maxar (GE01) image captured on Jun 2, 2024
as shown in the 2025-01-30 version of the
World Imagery map.

x: 130.3086 y: 63.7926

Maxar (WV02) image captured on Jun 5, 2024
as shown in the 2025-01-30 version of the
World Imagery map.

x: 131.7366 y: 63.3009

Maxar (GE01) image captured on Jun 2, 2024
as shown in the 2025-01-30 version of the
World Imagery map.

54

Appendix C2: Histograms of spectral slope with area as y-axis plotted side-

by-side.

The single histograms were plotted on the same y-axis (Figure 29) in units of area. This

enables the comparison of both the spectral slope distributions and the aƯected area.

Chokurdakh and Northern Olenek have the largest RTS covered area. Iultinsky (Chukotka)

has an intermediate amount of RTS area. The least RTS covered areas are found in the

Southern Taymyr and Southern Verkhoyansk Range areas. It is important to remember,

that the aƯected area corresponds to the integral over the distribution, such that the

distribution width and peak height are equally important. Generally, the distributions

either have their maximum at 0 (which means no change) or in the positive value range

(which indicates an increase in tasseled cap index). Only the maximum of greenness of

Southern Verkhoyansk Range and Chokurdakh, as well as, the maximum brightness of

Northern Olenek are in the negative value range.

55

Appendix C3: Percentage of RTS are as aƯected by the 5 m buƯer

Ap
pe

nd
ix

 C
3:

 P
er

ce
nt

ag
e

of
 R

TS
 a

re
as

 a
Ưe

ct
ed

 b
y

th
e

5
m

 b
uƯ

er

Fi
gu

re
 2

9:
 H

is
to

gr
am

s
of

 s
pe

ct
ra

l s
lo

pe
 w

it
h

ar
ea

 a
s

y-
ax

is
. S

ho
w

n
ne

xt
 to

 e
ac

h
ot

he
r f

or
 b

et
te

r c
om

pa
ra

bi
lit

y.
 N

ot
e

th
at

 th
e

y-
ax

is
 is

 in
 u

ni
ts

 o
f a

re
a.

Th
e

5
m

 b
uƯ

er
 zo

ne
 a

pp
lie

d
to

 e
ac

h
RT

S
ge

om
et

ry
 c

an
 b

e
a

su
bs

ta
nt

ia
l a

re
a

fra
ct

io
n

of
 e

ac
h

RT
S

ge
om

et
ry

. F
ig

ur
e

30
 s

ho
w

s
hi

st
og

ra
m

s
of

 th
e

bu
Ưe

r
ar

ea
 fr

ac
tio

n
fo

r
ea

ch
 R

TS
 w

ith
in

 t
he

 d
iƯ

er
en

t s
tu

dy
 a

re
as

. I
t i

s
no

ta
bl

e,
 fo

r
ex

am
pl

e,
 th

at
 4

9%
 o

f t
he

 R
TS

s
in

 Iu
lti

ns
ky

sh

rin
k

m
or

e
th

an
 2

0%
 in

 s
iz

e.
 T

he
 fr

ac
tio

n
of

 R
TS

s
aƯ

ec
te

d
by

 m
or

e
th

an
 2

0%
 in

 th
e

ot
he

r s
tu

dy
 a

re
as

 a
re

: S
ou

th
er

n
Ta

ym
yr

 =
 1

1%
,

N
or

th
er

n
O

le
ne

k
=

15
%

, C
ho

ku
rd

ak
h

=
17

%
, S

ou
th

er
n

Ve
rk

ho
ya

ns
k

R
an

ge
 =

 0
%

.

Fi
gu

re
 3

0:
 H

is
to

gr
am

s
sh

ow
in

g
th

e
pe

rc
en

ta
ge

 o
f t

he
 R

TS
 a

re
a

aƯ
ec

te
d

by
 th

e
5

m
 in

w
ar

d
bu

Ư
er

. T
he

 d
as

he
d

ve
rt

ic
al

 li
ne

 a
t 2

0%
 h

el
ps

 id
en

tif
y

RT
Ss

 w
he

re
 m

or
e

th
an

 2
0%

 o
f

th
e

ar
ea

 o
f t

he
 in

di
vi

du
al

 R
TS

 is
 a

Ưe
ct

ed
 b

y
th

e
bu

Ưe
r.

RT
Ss

 in
 th

e
ar

ea
 Iu

lti
ns

ky
 a

re
 m

os
t a

Ưe
ct

ed
 b

y
th

e
5

m
 b

uƯ
er

.

56

Appendix C4: Correlation of the mean spectral slope of the study areas as a

function of latitude and longitude.

The coloured background area shown within the Figure 32 and Figure 31 visualize the

uncertainty in the estimated regression lines themselves. The confidence interval

bounds, set at 95%, reflect the range within which the regression line is likely to fall. All

confidence intervals are large enough that each corresponding regression line could be

shown as horizontal line within the boundaries, which means that the trend shown by the

regression line has the same probability to be true as no trend at all (horizontal line). This

shows that no significant correlation was found.

Figure 32: Correlation of the means of the spectral slope types per area and longitude. No
trend can be found.

Figure 31: Correlation of the means of the spectral slope types per area and latitude. No
trend can be found.

57

Appendix C5: Data preparation for sunburst visualization and associated

rounding error estimates

Figure 33: Formulars that were used to calculate Count and Count error. Image compiled as summary of the relevant
parts in (Kirchner 2001).

Table 4: Rounding errors for the pie piece size calculation in terrain position related sunburst charts (Figure 17 to Figure
21). S.Percentage is the abbreviation of similarity percentage, which was rounded to 0 decimal places. This rounding
results in a +/- 0.5% error. Propagating this error results in a chart section specific count error. The size of the individual
sections of the sunburst chart was derived from Count. The count error describes the error in the visual size of each
section. Importantly, the count errors apply to the visualisation only and do not influence the statistical analysis in this
work.

Region Terrain
position

Classification S.Percentage
[%]

S.Percentage
error [%]

Count Count
error

Northern Olenek Sea Homogeneous 17 ±0.5 1.36 ±0.04

Northern Olenek Sea Heterogeneous 71 ±0.5 5.68 ±0.04

Northern Olenek Sea Highly
heterogeneous

12 ±0.5 0.96 ±0.04

Iultinsky
(Chukotka)

Sea Highly
homogeneous

6 ±0.5 0.72 ±0.06

Iultinsky
(Chukotka)

Sea Homogeneous 28 ±0.5 3.36 ±0.06

Iultinsky
(Chukotka)

Sea Heterogeneous 67 ±0.5 8.04 ±0.06

Southern Taymyr Lake Highly
homogeneous

1 ±0.5 0.46 ±0.23

Southern Taymyr Lake Homogeneous 56 ±0.5 25.76 ±0.23

Southern Taymyr Lake Heterogeneous 43 ±0.5 19.78 ±0.23

Northern Olenek Lake Highly
homogeneous

5 ±0.5 1.85 ±0.19

Northern Olenek Lake Homogeneous 30 ±0.5 11.1 ±0.18

Northern Olenek Lake Heterogeneous 66 ±0.5 24.42 ±0.19

Chokurdakh Lake Highly
homogeneous

2 ±0.5 0.88 ±0.22

Chokurdakh Lake Homogeneous 25 ±0.5 11.0 ±0.22

Chokurdakh Lake Heterogeneous 73 ±0.5 32.12 ±0.22

Iultinsky
(Chukotka)

Lake Highly
homogeneous

21 ±0.5 5.88 ±0.14

58

Iultinsky
(Chukotka)

Lake Homogeneous 76 ±0.5 21.28 ±0.14

Iultinsky
(Chukotka)

Lake Heterogeneous 2 ±0.5 0.56 ±0.14

Southern
Verkhoyansk
Range

Lake Highly
heterogeneous

100 ±0.5 2.0 ±0.01

Northern Olenek River Heterogeneous 100 ±0.5 4.0 ±0.02

Chokurdakh River Homogeneous 69 ±0.5 8.97 ±0.06

Chokurdakh River Heterogeneous 23 ±0.5 2.99 ±0.06

Chokurdakh River Highly
heterogeneous

8 ±0.5 1.04 ±0.06

Iultinsky
(Chukotka)

River Homogeneous 33 ±0.5 1.32 ±0.02

Iultinsky
(Chukotka)

River Heterogeneous 50 ±0.5 2.0 ±0.02

Iultinsky
(Chukotka)

River Highly
heterogeneous

17 ±0.5 0.68 ±0.02

Southern
Verkhoyansk
Range

River Homogeneous 33 ±0.5 1.98 ±0.03

Southern
Verkhoyansk
Range

River Heterogeneous 28 ±0.5 1.68 ±0.03

Southern
Verkhoyansk
Range

River Highly
heterogeneous

39 ±0.5 2.34 ±0.03

Northern Olenek Gully Homogeneous 42 ±0.5 1.68 ±0.02

Northern Olenek Gully Heterogeneous 33 ±0.5 1.32 ±0.02

Northern Olenek Gully Highly
heterogeneous

25 ±0.5 1.0 ±0.02

Chokurdakh Gully Highly
homogeneous

61 ±0.5 3.66 ±0.03

Chokurdakh Gully Homogeneous 33 ±0.5 1.98 ±0.03

Chokurdakh Gully Heterogeneous 6 ±0.5 0.36 ±0.03

Iultinsky
(Chukotka)

Gully Homogeneous 28 ±0.5 1.68 ±0.03

Iultinsky
(Chukotka)

Gully Heterogeneous 56 ±0.5 3.36 ±0.03

Iultinsky
(Chukotka)

Gully Highly
heterogeneous

17 ±0.5 1.02 ±0.03

Iultinsky
(Chukotka)

Ponds +
Gully

Heterogeneous 12 ±0.5 1.32 ±0.06

Iultinsky
(Chukotka)

Ponds +
Gully

Homogeneous 70 ±0.5 7.7 ±0.06

Iultinsky
(Chukotka)

Ponds +
Gully

Highly
homogeneous

18 ±0.5 1.98 ±0.05

Southern Taymyr River - 0 ±0.5 1.0 ±0.0

Southern
Verkhoyansk
Range

Gully - 0 ±0.5 1.0 ±0.0

59

Table 5: Table showing the rounding errors of the morphology related sunburst charts (Figure 23 to Figure 27).
S.Percentage is the abbreviation of similarity percentage, which was rounded to 0 decimal places. This rounding results
in a +/- 0.5% error. The Propagation of this error results in a section specific count error. The size of the individual
sections of the sunburst chart was derived from Count. The count error describes the error in the size of each section,
in other words, the error in the visualization. Importantly, the count errors apply to the visualisation only and do not
influence the statistical analysis in this work.

Region Morphology Classification S.Percentage
[%]

S.Percentage
error [%]

Count Count error

Northern
Olenek

Thermoterrace Homogeneous 10 ±0.5 1.0 ±0.05

Northern
Olenek

Thermoterrace Heterogeneous 83 ±0.5 8.3 ±0.05

Northern
Olenek

Thermoterrace Highly
heterogeneous

7 ±0.5 0.7 ±0.05

Chokurdakh Thermoterrace Homogeneous 48 ±0.5 10.08 ±0.1
Chokurdakh Thermoterrace Heterogeneous 52 ±0.5 10.92 ±0.11
Iultinsky
(Chukotka)

Thermoterrace Highly
homogeneous

25 ±0.5 1.0 ±0.02

Iultinsky
(Chukotka)

Thermoterrace Homogeneous 50 ±0.5 2.0 ±0.02

Iultinsky
(Chukotka)

Thermoterrace Heterogeneous 25 ±0.5 1.0 ±0.02

Southern
Taymyr

Combination Homogeneous 39 ±0.5 12.87 ±0.16

Southern
Taymyr

Combination Heterogeneous 61 ±0.5 20.13 ±0.16

Northern
Olenek

Combination Highly
homogeneous

3 ±0.5 1.2 ±0.2

Northern
Olenek

Combination Homogeneous 28 ±0.5 11.2 ±0.2

Northern
Olenek

Combination Heterogeneous 68 ±0.5 27.2 ±0.2

Chokurdakh Combination Homogeneous 29 ±0.5 9.28 ±0.16
Chokurdakh Combination Heterogeneous 70 ±0.5 22.4 ±0.16
Chokurdakh Combination Highly

heterogeneous
1 ±0.5 0.32 ±0.16

Iultinsky
(Chukotka)

Combination Highly
homogeneous

13 ±0.5 4.55 ±0.18

Iultinsky
(Chukotka)

Combination Homogeneous 70 ±0.5 24.5 ±0.18

Iultinsky
(Chukotka)

Combination Heterogeneous 17 ±0.5 5.95 ±0.18

Southern
Verkhoyansk
Range

Combination Highly
heterogeneous

100 ±0.5 2.0 ±0.01

Southern
Taymyr

Thermocirque Highly
heterogeneous

2 ±0.5 0.28 ±0.07

Southern
Taymyr

Thermocirque Heterogeneous 33 ±0.5 4.62 ±0.07

Southern
Taymyr

Thermocirque Homogeneous 62 ±0.5 8.68 ±0.07

Southern
Taymyr

Thermocirque Highly
homogeneous

2 ±0.5 0.28 ±0.07

Northern
Olenek

Thermocirque Highly
heterogeneous

44 ±0.5 1.32 ±0.02

Northern
Olenek

Thermocirque Homogeneous 44 ±0.5 1.32 ±0.02

Northern
Olenek

Thermocirque Highly
homogeneous

11 ±0.5 0.33 ±0.02

Chokurdakh Thermocirque Heterogeneous 17 ±0.5 1.7 ±0.05
Chokurdakh Thermocirque Homogeneous 57 ±0.5 5.7 ±0.05

60

Chokurdakh Thermocirque Highly
homogeneous

27 ±0.5 2.7 ±0.05

Iultinsky
(Chukotka)

Thermocirque Heterogeneous 17 ±0.5 3.74 ±0.11

Iultinsky
(Chukotka)

Thermocirque Homogeneous 73 ±0.5 16.06 ±0.11

Iultinsky
(Chukotka)

Thermocirque Highly
homogeneous

11 ±0.5 2.42 ±0.11

Southern
Verkhoyansk
Range

Thermocirque Highly
heterogeneous

11 ±0.5 0.66 ±0.03

Southern
Verkhoyansk
Range

Thermocirque Heterogeneous 67 ±0.5 4.02 ±0.03

Southern
Verkhoyansk
Range

Thermocirque Homogeneous 22 ±0.5 1.32 ±0.03

Southern
Verkhoyansk
Range

Thermoterrace - 0 ±0.5 1.0 ±0.0

Appendix C6: DiƯerences in the generosity of mapped RTS outlines.

Figure 34: DiƯerences in the generosity of mapped RTS outlines. The figure shows variations in how RTS outlines
were drawn. More generous outlines (c, d) include additional surrounding terrain, while stricter outlines (a, b) result in
more confined RTS areas.

Appendix D: Analysis Code

1 # -*- coding: utf-8 -*-
2
3 # Insert GEE
4 """
5
6 import ee
7 import geemap
8
9 geemap.ee_initialize()

10
11 """# Loading ALEX"""
12
13 # Load the asset
14 alex = ee.ImageCollection('users/ingmarnitze/TCTrend_SR_2003-2022_TCVIS') #Every

image (of the 353 images) shows a different area
15 alex
16
17 """# Loading Validation Dataset 2"""
18
19 rtsT1 = ee.FeatureCollection('projects/ee-moritzjulia7/assets/RTS_T1')
20 rtsT2 = ee.FeatureCollection('projects/ee-moritzjulia7/assets/RTS_T2')
21 rtsT3 = ee.FeatureCollection('projects/ee-moritzjulia7/assets/RTS_T3')
22 rtsT4_all = ee.FeatureCollection('projects/ee-moritzjulia7/assets/RTS_T4_all')
23 rtsT6_all = ee.FeatureCollection('projects/ee-moritzjulia7/assets/RTS_T6_all')
24
25 """Extract uncertain rts from T4 and T6"""
26
27 rtsT4 = rtsT4_all.filter(ee.Filter.eq('Uncertain', 0))
28 rtsT6 = rtsT6_all.filter(ee.Filter.eq('Uncertain', 0))
29
30 area1 = ee.FeatureCollection('projects/ee-moritzjulia7/assets/Area_T1')
31 area2 = ee.FeatureCollection('projects/ee-moritzjulia7/assets/Area_T2')
32 area3 = ee.FeatureCollection('projects/ee-moritzjulia7/assets/Area_T3')
33 area4 = ee.FeatureCollection('projects/ee-moritzjulia7/assets/Area_T4')
34 area6 = ee.FeatureCollection('projects/ee-moritzjulia7/assets/Area_T6')
35
36 SubAreas1 = ee.FeatureCollection('projects/ee-moritzjulia7/assets/SubAreas_T1')
37 SubAreas2 = ee.FeatureCollection('projects/ee-moritzjulia7/assets/SubAreas_T2')
38 SubAreas3 = ee.FeatureCollection('projects/ee-moritzjulia7/assets/SubAreas_T3')
39 SubAreas4 = ee.FeatureCollection('projects/ee-moritzjulia7/assets/SubAreas_T4')
40 SubAreas6 = ee.FeatureCollection('projects/ee-moritzjulia7/assets/SubAreas_T6')
41
42 """What image of ALEX shows which study area?"""
43
44 image_index = 174 # Change this to the desired index (0 for first, 1 for second, 2

for third, etc.)
45 image = alex.toList(alex.size()).get(image_index)
46 image = ee.Image(image)
47
48 Map=geemap.Map()
49
50 style = {
51 'color': 'red', # Outline color
52 'fillColor': '00000000', # Transparent fill
53 'width': 2
54 }
55
56 Map.addLayer(image, {}, 'ALEX')
57 Map.addLayer(area1.style(**style), {}, "Area_T1")
58 Map.addLayer(area2.style(**style), {}, "Area_T2")
59 Map.addLayer(area3.style(**style), {}, "Area_T3")
60 Map.addLayer(area4.style(**style), {}, "Area_T4")
61 Map.addLayer(area6.style(**style), {}, "Area_T6")
62 Map.setCenter(98.39,72.71,3)
63 Map
64
65 ## Results:
66 # Area 1: 116
67 # Area 2: 140
68 # Area 3: 174
69 # Area 4: 351
70 # Area 6: 161

71
72 """Creating ALEX subset for each region"""
73
74 #Area 1
75 image_index = 116
76 image1 = alex.toList(alex.size()).get(image_index)
77 alex_area1 = ee.Image(image1)
78
79 #Area 2
80 image_index = 140
81 image2 = alex.toList(alex.size()).get(image_index)
82 alex_area2 = ee.Image(image2)
83
84 #Area 3
85 image_index = 174
86 image3 = alex.toList(alex.size()).get(image_index)
87 alex_area3 = ee.Image(image3)
88
89 #Area 4
90 image_index = 351
91 image4 = alex.toList(alex.size()).get(image_index)
92 alex_area4 = ee.Image(image4)
93
94 #Area 6
95 image_index = 161
96 image6 = alex.toList(alex.size()).get(image_index)
97 alex_area6 = ee.Image(image6)
98
99 """# Data Preparation per Region (sub-hypothesis 1)

100
101 Creating ImageCollection of ALEX data within RTS polygons per Area
102 """
103
104 ## Area 1
105
106 # Empty list to store the features
107 rtsT1_alex_features = []
108
109 # Get the number of features in the rtsT1 feature collection
110 rtsT1_size = rtsT1.size().getInfo()
111
112 # Iterate through each feature in rtsT1
113 for i in range(rtsT1_size):
114 # Get the current feature
115 rtsT1_feature = ee.Feature(rtsT1.toList(rtsT1_size).get(i))
116
117 # Clip alex_area1 to the current feature's geometry
118 single_rtsT1_alex_feature = alex_area1.clip(rtsT1_feature.geometry())
119
120 # Append the feature to the list
121 rtsT1_alex_features.append(single_rtsT1_alex_feature)
122
123 # Convert the list of features to a ImageCollection
124 rtsT1_alex_imagecollection = ee.ImageCollection(rtsT1_alex_features)
125
126
127 # Display the ImageCollection on a map
128 Map = geemap.Map()
129 Map.addLayer(rtsT1_alex_imagecollection, {}, 'ALEX Images')
130 Map.setCenter(98.39,72.71,12)
131 Map
132
133 ## Area 2
134
135 rtsT2_alex_features = []
136
137 rtsT2_size = rtsT2.size().getInfo()
138
139 for i in range(rtsT2_size):
140 rtsT2_feature = ee.Feature(rtsT2.toList(rtsT2_size).get(i))
141
142 single_rtsT2_alex_feature = alex_area2.clip(rtsT2_feature.geometry())

143
144 rtsT2_alex_features.append(single_rtsT2_alex_feature)
145
146 rtsT2_alex_imagecollection = ee.ImageCollection(rtsT2_alex_features)
147 rtsT2_alex_imagecollection
148
149 ## Area 3
150
151 rtsT3_alex_features = []
152
153 rtsT3_size = rtsT3.size().getInfo()
154
155 for i in range(rtsT3_size):
156 rtsT3_feature = ee.Feature(rtsT3.toList(rtsT3_size).get(i))
157
158 single_rtsT3_alex_feature = alex_area3.clip(rtsT3_feature.geometry())
159
160 rtsT3_alex_features.append(single_rtsT3_alex_feature)
161
162 rtsT3_alex_imagecollection = ee.ImageCollection(rtsT3_alex_features)
163 rtsT3_alex_imagecollection
164
165 ## Area 4
166
167 rtsT4_alex_features = []
168
169 rtsT4_size = rtsT4.size().getInfo()
170
171 for i in range(rtsT4_size):
172 rtsT4_feature = ee.Feature(rtsT4.toList(rtsT4_size).get(i))
173
174 single_rtsT4_alex_feature = alex_area4.clip(rtsT4_feature.geometry())
175
176 rtsT4_alex_features.append(single_rtsT4_alex_feature)
177
178 rtsT4_alex_imagecollection = ee.ImageCollection(rtsT4_alex_features)
179 rtsT4_alex_imagecollection
180
181 ## Area 6
182
183 rtsT6_alex_features = []
184
185 rtsT6_size = rtsT6.size().getInfo()
186
187 for i in range(rtsT6_size):
188 rtsT6_feature = ee.Feature(rtsT6.toList(rtsT6_size).get(i))
189
190 single_rtsT6_alex_feature = alex_area6.clip(rtsT6_feature.geometry())
191
192 rtsT6_alex_features.append(single_rtsT6_alex_feature)
193
194 rtsT6_alex_imagecollection = ee.ImageCollection(rtsT6_alex_features)
195 rtsT6_alex_imagecollection
196
197 """Funktion to build the GeoDataframes"""
198
199 import geopandas as gpd
200 import pandas as pd
201 from shapely.geometry import Point, Polygon
202 from shapely.geometry import shape
203
204 band_names = ['TCW_slope', 'TCB_slope', 'TCG_slope']
205
206 def image_to_geodataframe(image, bands, scale=30):
207 # Sample the image to get data as a FeatureCollection
208 fc = image.select(bands).sample(scale=scale, geometries=True)
209 geojson = fc.getInfo()
210
211 features = geojson['features']
212 rows = []
213 for feature in features:
214 properties = feature['properties']

215 coords = feature['geometry']['coordinates']
216 point_geometry = Point(coords)
217 rows.append({
218 **properties,
219 'geometry': point_geometry
220 })
221
222 gdf = gpd.GeoDataFrame(rows, crs="EPSG:4326")
223 return gdf
224
225 # Create GeoDataFrames for each image in the ImageCollection
226 def collection_to_geodataframes(image_collection, bands, scale=30):
227 images = image_collection.toList(image_collection.size())
228 num_images = image_collection.size().getInfo()
229
230 geodataframes = []
231 for i in range(num_images):
232 image = ee.Image(images.get(i))
233 gdf = image_to_geodataframe(image, bands, scale)
234 geodataframes.append(gdf)
235
236 return geodataframes
237
238 """Building DataFrame per single RTS for each study Area"""
239
240 ## Area 1
241 band_names = ['TCW_slope', 'TCB_slope', 'TCG_slope']
242 gdfs_T1 = collection_to_geodataframes(rtsT1_alex_imagecollection, band_names)
243
244 print(gdfs_T1[0])
245
246 ## Area 2
247 gdfs_T2 = collection_to_geodataframes(rtsT2_alex_imagecollection, band_names)
248
249 print(gdfs_T2[0])
250
251 ## Area 3
252 gdfs_T3 = collection_to_geodataframes(rtsT3_alex_imagecollection, band_names)
253
254 print(gdfs_T3[0])
255
256 ## Area 4
257 gdfs_T4 = collection_to_geodataframes(rtsT4_alex_imagecollection, band_names)
258
259 print(gdfs_T4[0])
260
261 ## Area 6
262 gdfs_T6 = collection_to_geodataframes(rtsT6_alex_imagecollection, band_names)
263
264 print(gdfs_T6[0])
265
266 """Create one Dataframe per Area containig all values"""
267
268 gdf_T1 = gpd.GeoDataFrame(pd.concat(gdfs_T1, ignore_index=True), crs=gdfs_T1[0].crs)
269 gdf_T2 = gpd.GeoDataFrame(pd.concat(gdfs_T2, ignore_index=True), crs=gdfs_T2[0].crs)
270 gdf_T3 = gpd.GeoDataFrame(pd.concat(gdfs_T3, ignore_index=True), crs=gdfs_T3[0].crs)
271 gdf_T4 = gpd.GeoDataFrame(pd.concat(gdfs_T4, ignore_index=True), crs=gdfs_T4[0].crs)
272 gdf_T6 = gpd.GeoDataFrame(pd.concat(gdfs_T6, ignore_index=True), crs=gdfs_T6[0].crs)
273
274 print(gdf_T1)
275
276 """Saving Dataframes with all data of RTSs per area (merged)"""
277
278 from google.colab import drive
279
280 #drive.mount('/content/drive')
281 #gdf_T1.to_file('/content/drive/My Drive/Colab Notebooks/Data/gdf_T1.shp')
282 #gdf_T2.to_file('/content/drive/My Drive/Colab Notebooks/Data/gdf_T2.shp')
283 #gdf_T3.to_file('/content/drive/My Drive/Colab Notebooks/Data/gdf_T3.shp')
284 #gdf_T4.to_file('/content/drive/My Drive/Colab Notebooks/Data/gdf_T4.shp')
285 #gdf_T6.to_file('/content/drive/My Drive/Colab Notebooks/Data/gdf_T6.shp')
286

287 """Load data frames with all data of RTSs per area (merged)"""
288
289 import geopandas as gpd
290 from google.colab import drive
291
292 drive.mount('/content/drive')
293 gdf_T1 = gpd.read_file('/content/drive/My Drive/Colab Notebooks/Data/gdf_T1.shp')
294 gdf_T2 = gpd.read_file('/content/drive/My Drive/Colab Notebooks/Data/gdf_T2.shp')
295 gdf_T3 = gpd.read_file('/content/drive/My Drive/Colab Notebooks/Data/gdf_T3.shp')
296 gdf_T4 = gpd.read_file('/content/drive/My Drive/Colab Notebooks/Data/gdf_T4.shp')
297 gdf_T6 = gpd.read_file('/content/drive/My Drive/Colab Notebooks/Data/gdf_T6.shp')
298
299 """Dataframes rescaling (normalisation)"""
300
301 gdf_T1_norm = gdf_T1[['TCB_slope', 'TCG_slope', 'TCW_slope']] / 255. *0.24 - 0.12
302 gdf_T1_norm['geometry'] = gdf_T1['geometry']
303 gdf_T2_norm = gdf_T2[['TCB_slope', 'TCG_slope', 'TCW_slope']] / 255. *0.24 - 0.12
304 gdf_T2_norm['geometry'] = gdf_T2['geometry']
305 gdf_T3_norm = gdf_T3[['TCB_slope', 'TCG_slope', 'TCW_slope']] / 255. *0.24 - 0.12
306 gdf_T3_norm['geometry'] = gdf_T3['geometry']
307 gdf_T4_norm = gdf_T4[['TCB_slope', 'TCG_slope', 'TCW_slope']] / 255. *0.24 - 0.12
308 gdf_T4_norm['geometry'] = gdf_T4['geometry']
309 gdf_T6_norm = gdf_T6[['TCB_slope', 'TCG_slope', 'TCW_slope']] / 255. *0.24 - 0.12
310 gdf_T6_norm['geometry'] = gdf_T6['geometry']
311
312 """## Histogramms of areas"""
313
314 import seaborn as sns
315 import matplotlib.pyplot as plt
316 import pandas as pd
317
318 #single Historgrams for overview map
319 colors = {
320 "TCB_slope": "#FF3333", # Middle red intense
321 "TCG_slope": "#00FF00", # Bright green intense
322 "TCW_slope": "#003366" # Middle blue intense
323 }
324
325 # Create the plot
326 plt.figure(figsize=(10, 6))
327
328 for column, color in colors.items():
329 sns.histplot(data=gdf_T6_norm, x=column, color=color, kde=True, label=column, bins

=30)
330
331 plt.axvline(0, color='black', linestyle='--', linewidth=1)
332 plt.grid(color='gray', linestyle='--', linewidth=0.5, alpha=0.7)
333
334 # Adjust the y-axis to represent area
335 ax = plt.gca() # Get the current Axes
336 y_ticks = ax.get_yticks() # Get current y-tick positions
337 ax.set_yticklabels([f"{int(y * 900):,}" for y in y_ticks]) # Convert frequency to

area (900 m² per count)
338
339
340 # Add labels and title
341 plt.xlabel("Slope Value")
342 plt.ylabel("Area (m²)")
343 plt.title("Histogram of the Spectral Slope of RTSs Covering the Region of Southern

Verkhoyansk Range, Siberia")
344 plt.legend(title="Slope Type")
345
346 #plt.savefig("Hist_Area6_SouthernVerkhoyanskRange.svg", format="svg")
347 plt.show()
348
349 # all Histograms on same y-axis
350 dataframes = [gdf_T1_norm, gdf_T2_norm, gdf_T3_norm, gdf_T4_norm, gdf_T6_norm]
351 titles = ["Southern Taymyr", "Northern Olenek", "Chokurdakh", "Iultinsky (Chukotka)",

"Southern Verkhoyansk Range"] #["Area 1", "Area 2", "Area 3", "Area 4", "Area 6"]
352
353 colors = {
354 "TCB_slope": "#FF3333",

355 "TCG_slope": "#00FF00",
356 "TCW_slope": "#003366"
357 }
358
359 # Create a figure
360 fig, axes = plt.subplots(1, 5, figsize=(20, 5), sharey=True)
361
362 # Iterate over datasets and plot each histogram in a separate subplot
363 for i, (ax, df, title) in enumerate(zip(axes, dataframes, titles)):
364 for column, color in colors.items():
365 sns.histplot(data=df, x=column, color=color, kde=True, label=column, bins=30,

ax=ax)
366 ax.axvline(0, color='black', linestyle='--', linewidth=1)
367 ax.grid(color='gray', linestyle='--', linewidth=0.5, alpha=0.7)
368 ax.set_title(title)
369 ax.set_xlabel("Slope Value")
370 if i == 0: # Add Y-axis label to the first subplot only
371 ax.set_ylabel("Area (m²)")
372 else:
373 ax.set_ylabel("")
374
375 ax = plt.gca() # Get the current Axes
376 y_ticks = ax.get_yticks() # Get current y-tick positions
377 ax.set_yticklabels([f"{int(y * 900):,}" for y in y_ticks]) # Convert frequency to

area (900 m² per count)
378
379 fig.suptitle("Histograms of the Spectral Slope of RTSs Covering Different Regions of

Siberia", fontsize=16)
380
381 axes[0].legend(title="Slope Type", loc='upper right')
382
383 # Adjust layout
384 plt.tight_layout(rect=[0, 0, 1, 0.95])
385 #plt.savefig("Hist_All_Areas_RegionNames.svg", format="svg")
386 plt.show()
387
388 """## Statistical tests Sub-Hyp-1"""
389
390 from scipy.stats import shapiro
391 from scipy.stats import anderson
392
393 """Testing normal distribution"""
394
395 ## shapiro - test
396 # List of dataframes
397 dataframes = [gdf_T1_norm, gdf_T2_norm, gdf_T3_norm, gdf_T4_norm, gdf_T6_norm]
398
399 # Columns to test
400 columns = ["TCB_slope", "TCG_slope", "TCW_slope"]
401
402 # Store the results
403 shapiro_results = {}
404
405 for i, df in enumerate(dataframes):
406 df_name = f"gdf_T{i+1}_norm" # Name for each dataframe
407 shapiro_results[df_name] = {}
408
409 for col in columns:
410 stat, p_value = shapiro(df[col])
411 shapiro_results[df_name][col] = {"statistic": stat, "p_value": p_value}
412
413 # Print the results
414 for df_name, results in shapiro_results.items():
415 print(f"\nShapiro-Wilk Test Results for {df_name}:")
416 for col, result in results.items():
417 print(f" {col}: statistic={result['statistic']:.4f}, p-value={result[

'p_value']:.4f}")
418
419 ##Anderson-Darling test
420 dataframes = [gdf_T1_norm, gdf_T2_norm, gdf_T3_norm, gdf_T4_norm, gdf_T6_norm]
421 columns_to_test = ["TCB_slope", "TCG_slope", "TCW_slope"]
422

423 # Loop through each DataFrame and each column
424 for i, df in enumerate(dataframes):
425 print(f"\nDataFrame {i+1}:")
426 for column in columns_to_test:
427 print(f"Testing column: {column}")
428 # Perform the Anderson-Darling test
429 result = anderson(df[column], dist="norm")
430
431 # Print the results
432 print(f" Statistic: {result.statistic:.4f}")
433 print(f" Critical Values:")
434 for level, critical_value in zip(result.significance_level, result.

critical_values):
435 print(f" {level}%: {critical_value:.4f}")
436
437 # Interpret results (using 5% significance level as an example)
438 if result.statistic > result.critical_values[2]: # 5% level
439 print(f" Result: The data does NOT follow a normal distribution (reject

H0).")
440 else:
441 print(f" Result: The data appears to follow a normal distribution (fail

to reject H0).")
442
443 """Using Kruskal-Wallis test to ceck if all medians for each group (TCW, TCB, TCG) of

all areas are equal"""
444
445 from scipy.stats import kruskal
446
447 ## Kruskal-Wallis H-test
448 dataframes = [gdf_T1_norm, gdf_T2_norm, gdf_T3_norm, gdf_T4_norm, gdf_T6_norm]
449 columns_to_test = ["TCB_slope", "TCG_slope", "TCW_slope"]
450
451 # Loop through each column and perform Kruskal-Wallis test
452 for column in columns_to_test:
453 print(f"\nTesting column: {column}")
454
455 # Extract the data for the current column from each DataFrame
456 data = [df[column].dropna() for df in dataframes]
457
458 # Perform the Kruskal-Wallis H-test
459 statistic, p_value = kruskal(*data)
460
461 # Print the results
462 print(f" H-statistic: {statistic:.4f}")
463 print(f" p-value: {p_value:.4f}")
464
465 # Interpretation based on a 5% significance level
466 if p_value < 0.05:
467 print(" Result: There is a significant difference between the sample sites

(reject H0).")
468 else:
469 print(" Result: No significant difference between the sample sites (fail to

reject H0).")
470
471 """Dunn's Test for Pairwise Comparisons"""
472
473 !pip install scikit-posthocs
474 # during analysis the version "0.11.2-py3-none-any.whl.metadata (5.8 kB)" was used.
475 #This version is no longer availabe, version 0.11.3 can produce slightly different

results.
476 import scikit_posthocs as sp
477 import pandas as pd
478
479 #Dunn's test
480 dataframes = [gdf_T1_norm, gdf_T2_norm, gdf_T3_norm, gdf_T4_norm, gdf_T6_norm]
481 columns_to_test = ["TCB_slope", "TCG_slope", "TCW_slope"]
482 sample_labels = ['T1', 'T2', 'T3', 'T4', 'T6']
483
484 # Loop through each column and perform Dunn's test
485 for column in columns_to_test:
486 print(f"\nTesting column: {column}")
487

488 # Create a list of the values for the column from each DataFrame
489 data = [df[column].dropna() for df in dataframes]
490
491 # Create a list of group labels
492 labels = []
493 for i, df in enumerate(dataframes):
494 labels.extend([sample_labels[i]] * len(df[column].dropna()))
495
496 # Perform Dunn's test (pairwise comparisons)
497 p_values = sp.posthoc_dunn(data, p_adjust="bonferroni") # Using Bonferroni

correction
498 print(p_values)
499
500 # Interpret results
501 print("Pairwise comparisons (p-values) with Bonferroni correction:")
502 for i in range(len(p_values.columns)):
503 for j in range(i+1, len(p_values.columns)):
504 p_val = p_values.iloc[i, j]
505 if p_val < 0.05:
506 print(f" Significant difference between {sample_labels[i]} and {

sample_labels[j]}: p = {p_val:.4f}")
507 else:
508 print(f" No significant difference between {sample_labels[i]} and {

sample_labels[j]}: p = {p_val:.4f}")
509
510 # Collecting dunns test results in df
511 dataframes = [gdf_T1_norm, gdf_T2_norm, gdf_T3_norm, gdf_T4_norm, gdf_T6_norm]
512 columns_to_test = ["TCB_slope", "TCG_slope", "TCW_slope"]
513 sample_labels = ["Southern Taymyr", "Northern Olenek", "Chokurdakh", "Iultinsky (C.)",

"S. Verkhoyansk Range"] #['T1', 'T2', 'T3', 'T4', 'T6']
514
515
516 p_values_Dunn = {}
517
518 for column in columns_to_test:
519 # Create a list of the values for the column from each DataFrame
520 data = [df[column].dropna() for df in dataframes]
521
522 # Perform Dunn's test (pairwise comparisons)
523 p_values = sp.posthoc_dunn(data, p_adjust="bonferroni") # Using Bonferroni

correction
524
525 p_values_Dunn[column] = pd.DataFrame(
526 p_values.values,
527 columns=sample_labels,
528 index=sample_labels
529)
530 p_values_Dunn
531
532 """Visualize Statistics"""
533
534 import matplotlib.pyplot as plt
535 import seaborn as sns
536 # older verion (v0.13.2) was used, new version is v0.14.0
537 import pandas as pd
538 import numpy as np
539 from matplotlib.colors import LinearSegmentedColormap, Normalize
540
541 # Custom colormap with transitions starting at 0, 0.05 and 1
542 colors = [
543 (0.5, 0.1, 0.5),
544 (1, 0.8, 0.4), # Yellow starts at 0.05
545 (1, 0.8, 0.4)
546]
547 positions = [0.0000, 0.0500, 1] # Color start/end point
548 cmap_name = "custom_gradient_cmap"
549 smooth_cmap = LinearSegmentedColormap.from_list(cmap_name, list(zip(positions, colors

)))
550
551 # Normalize to align colors with specific ranges
552 norm = Normalize(vmin=0, vmax=1)
553

554 # Number of subplots (columns)
555 num_columns = len(p_values_Dunn)
556 fig, axes = plt.subplots(num_columns, 1, figsize=(7, 6 * num_columns), sharey=True)
557
558 # Loop through the dictionary and plot each matrix
559 for ax, (column, matrix) in zip(axes, p_values_Dunn.items()):
560 sns.heatmap(
561 matrix,
562 annot=True,
563 fmt=".4f",
564 cmap=smooth_cmap,
565 norm=norm,
566 cbar_kws={'label': 'p-value'},
567 ax=ax
568)
569 ax.set_title(f'Dunn-Bonferroni-Test P-Values: {column}')
570 ax.set_xlabel('Areas')
571 ax.set_ylabel('Areas')
572
573 plt.tight_layout()
574 plt.show()
575
576 """Violine Plots - Visualization of Areas"""
577
578 # Combine data for all areas and slopes
579 df_combined = pd.concat([
580 gdf_T1_norm[['TCB_slope', 'TCW_slope', 'TCG_slope']].assign(site='Southern Taymyr'

),
581 gdf_T2_norm[['TCB_slope', 'TCW_slope', 'TCG_slope']].assign(site='Northern Olenek'

),
582 gdf_T3_norm[['TCB_slope', 'TCW_slope', 'TCG_slope']].assign(site='Chokurdakh'),
583 gdf_T4_norm[['TCB_slope', 'TCW_slope', 'TCG_slope']].assign(site='Iultinsky'),
584 gdf_T6_norm[['TCB_slope', 'TCW_slope', 'TCG_slope']].assign(site='S. Verkhoyansk

Range')
585])
586
587 # Melt the data for plotting
588 df_melted = df_combined.melt(id_vars=['site'], value_vars=['TCB_slope', 'TCW_slope',

'TCG_slope'],
589 var_name='Slope Type', value_name='Slope Value')
590
591 # Set the palette for the plot
592 palette = sns.color_palette("Set2")
593
594 # Create the violin plot for all bands
595 plt.figure(figsize=(15, 6))
596 sns.violinplot(x="Slope Type", y="Slope Value", hue="site", data=df_melted, palette=

palette, dodge=True)
597
598 # Customize the plot
599 plt.title('Violin Plots of the Slopes (TCB, TCW, TCG) for All Areas')
600 plt.ylabel('Slope Value')
601 plt.xlabel('Slope Type')
602 plt.axhline(y=0, color='dimgrey', linestyle='--', zorder=1)
603 plt.legend(title="Areas", bbox_to_anchor=(1.05, 1), loc='upper left')
604 plt.tight_layout()
605 plt.show()
606
607 """# Data collection for latitudes and longitudes plots"""
608
609 import numpy as np
610 from shapely.geometry import Point
611 import pandas as pd
612
613 AreaCollection = [gdf_T1_norm, gdf_T2_norm, gdf_T3_norm, gdf_T4_norm, gdf_T6_norm]
614 AreaCollection_names = ['Southern Taymyr', 'Northern Olenek', 'Chokurdakh',

'Iultinsky (C.)', 'S. Verkhoyansk Range']
615
616 # Create an empty list to store the data for each area
617 data = []
618
619 for ind in np.arange(len(AreaCollection)):

620 temp_df = AreaCollection[ind]
621
622 # Calculate the center coordinates
623 mean_coordinates = np.mean(np.array([[geom.x, geom.y] for geom in temp_df.geometry

]), axis=0)
624 mean_coordinates = np.abs(mean_coordinates)
625
626 # Calculate the mean values for each channel
627 meanVals = np.zeros(3)
628 meanVals[0] = np.mean(temp_df['TCB_slope'])
629 meanVals[1] = np.mean(temp_df['TCG_slope'])
630 meanVals[2] = np.mean(temp_df['TCW_slope'])
631
632 # Append the data for the current area to the list
633 data.append([
634 AreaCollection_names[ind], # Area name
635 mean_coordinates[0], # Center X coordinate
636 mean_coordinates[1], # Center Y coordinate
637 Point(mean_coordinates), # Center point as a Point object
638 meanVals[0], # Mean TCB value
639 meanVals[1], # Mean TCG value
640 meanVals[2] # Mean TCW value
641])
642
643 # Create a Pandas DataFrame from the data list
644 AreaOverview_df = pd.DataFrame(data, columns=[
645 'name', 'center_x', 'center_y', 'center_point',
646 'TCB_norm_mean', 'TCG_norm_mean', 'TCW_norm_mean'
647])
648
649 print(AreaOverview_df)
650
651 """## Longitude Latitude Plots"""
652
653 import matplotlib.pyplot as plt
654 from matplotlib.lines import Line2D
655 import plotly.express as px
656 import pandas as pd
657 import numpy as np
658 import statsmodels.api as sm
659
660 def plot_regression_with_ci(x, y, color, label):
661
662 # Sort the data by x for consistent plotting
663 sort_idx = np.argsort(x)
664 x_sorted = x[sort_idx]
665 y_sorted = y[sort_idx]
666
667 # Fit the regression model
668 X = sm.add_constant(x_sorted) # Add constant for the intercept
669 model = sm.OLS(y_sorted, X).fit() # Ordinary Least Squares regression
670 predictions = model.predict(X) # Predicted values
671
672 # Get confidence intervals
673 prediction_summary = model.get_prediction(X).summary_frame(alpha=0.05) # 95% CI
674 ci_lower = prediction_summary["mean_ci_lower"]
675 ci_upper = prediction_summary["mean_ci_upper"]
676
677 # Plot the regression line
678 plt.plot(x_sorted, predictions, color=color, linestyle="--", label=f"{label}

Regression")
679
680 # Plot the confidence interval
681 plt.fill_between(x_sorted, ci_lower, ci_upper, color=color, alpha=0.2, label=f"{

label} CI")
682
683 plt.figure(figsize=(10, 6))
684 plt.scatter(AreaOverview_df["center_y"], AreaOverview_df["TCB_norm_mean"], color="red"

, label="TCB Mean", marker="x", linestyle="None")
685 plt.scatter(AreaOverview_df["center_y"], AreaOverview_df["TCG_norm_mean"], color=

"green", label="TCG Mean", marker="x", linestyle="None")
686 plt.scatter(AreaOverview_df["center_y"], AreaOverview_df["TCW_norm_mean"], color=

"blue", label="TCW Mean", marker="x", linestyle="None")
687 plot_regression_with_ci(AreaOverview_df["center_y"], AreaOverview_df["TCB_norm_mean"],

"red", "TCB")
688 plot_regression_with_ci(AreaOverview_df["center_y"], AreaOverview_df["TCG_norm_mean"],

"green", "TCG")
689 plot_regression_with_ci(AreaOverview_df["center_y"], AreaOverview_df["TCW_norm_mean"],

"blue", "TCW")
690
691
692 for i, area_name in enumerate(AreaOverview_df["name"]):
693
694 plt.text(
695 AreaOverview_df["center_y"][i],
696 0.026, # Adjust annotation height for clarity
697 area_name,
698 fontsize=9,
699 ha="center",
700 rotation=90
701)
702
703 # Finalize the plot
704 plt.title("Mean of Slope per Area vs. Latitude")
705 plt.xlabel("Latitude")
706 plt.ylabel("Mean of Slope")
707 plt.legend(bbox_to_anchor=(1.05, 1), loc="upper left") # Legend outside the plot
708 plt.tight_layout()
709 plt.show()
710
711 plt.figure(figsize=(10, 6))
712 plt.scatter(AreaOverview_df["center_x"], AreaOverview_df["TCB_norm_mean"], color="red"

, label="TCB Mean", marker="x", linestyle="None")
713 plt.scatter(AreaOverview_df["center_x"], AreaOverview_df["TCG_norm_mean"], color=

"green", label="TCG Mean", marker="x", linestyle="None")
714 plt.scatter(AreaOverview_df["center_x"], AreaOverview_df["TCW_norm_mean"], color=

"blue", label="TCW Mean", marker="x", linestyle="None")
715 plot_regression_with_ci(AreaOverview_df["center_x"], AreaOverview_df["TCB_norm_mean"],

"red", "TCB")
716 plot_regression_with_ci(AreaOverview_df["center_x"], AreaOverview_df["TCG_norm_mean"],

"green", "TCG")
717 plot_regression_with_ci(AreaOverview_df["center_x"], AreaOverview_df["TCW_norm_mean"],

"blue", "TCW")
718
719
720 for i, area_name in enumerate(AreaOverview_df["name"]):
721
722 plt.text(
723 AreaOverview_df["center_x"][i],
724 0.027, # Adjust annotation height for clarity
725 area_name,
726 fontsize=9,
727 ha="center",
728 rotation=90
729)
730
731 # Finalize the plot
732 plt.title("Mean of Slope per Area vs. Longitude")
733 plt.xlabel("Longitude")
734 plt.ylabel("Mean of Slope")
735 plt.legend(bbox_to_anchor=(1.05, 1), loc="upper left") # Legend outside the plot
736 plt.tight_layout()
737 plt.show()
738
739 """# Sub-Areas (sub-hypothsis 2)"""
740
741 import geopandas as gpd
742 from shapely.geometry import shape
743 from shapely.geometry import Point
744
745 """## Loop to generate dicts per Area containing sub area gdfs"""
746
747 subareas = {
748 "SubAreas1": SubAreas1,

749 "SubAreas2": SubAreas2,
750 "SubAreas3": SubAreas3,
751 "SubAreas4": SubAreas4,
752 "SubAreas6": SubAreas6
753 }
754
755 gdfs = {
756 "gdf_T1_norm": gdf_T1_norm,
757 "gdf_T2_norm": gdf_T2_norm,
758 "gdf_T3_norm": gdf_T3_norm,
759 "gdf_T4_norm": gdf_T4_norm,
760 "gdf_T6_norm": gdf_T6_norm
761 }
762
763 all_gdf_SubAreas = {}
764
765 # Loop through each subarea-feature-collection pair
766 for subarea_name, subarea_fc in subareas.items():
767 # Get the corresponding GeoDataFrame for the subarea
768 gdf_name = f"gdf_T{subarea_name[-1]}_norm"
769 gdf = gdfs[gdf_name]
770
771 gdf_dict = {}
772
773 # Iterate through the features (squares) in the current subarea
774 for i, square_feature in enumerate(subarea_fc.getInfo()['features']):
775 square_geometry = shape(square_feature['geometry'])
776
777 filtered_points = gdf[gdf.geometry.apply(lambda geom: geom.within(

square_geometry))]
778
779 if filtered_points.empty:
780 print(f"Warning: No points found in {subarea_name} square {i + 1}.

Skipping this square.")
781 continue
782
783 gdf_dict[f"{gdf_name}_{i + 1}"] = filtered_points
784
785 all_gdf_SubAreas[subarea_name] = gdf_dict
786
787 # Print keys of the current dictionary for verification
788 print(f"Created GeoDataFrames for {subarea_name}:", list(gdf_dict.keys()))
789
790 """## Loop to calculate statistics for all sub areas of all areas"""
791
792 from scipy.stats import shapiro
793 from scipy.stats import anderson
794 from scipy.stats import kruskal
795 !pip install scikit-posthocs
796 # during analysis the version "0.11.2-py3-none-any.whl.metadata (5.8 kB)" was used.
797 #Version 0.11.2 is no longer availabe, version 0.11.3 can produce slightly different

results.
798 import scikit_posthocs as sp
799 import pandas as pd
800 import numpy as np
801 import matplotlib.pyplot as plt
802 import seaborn as sns
803 from matplotlib.colors import LinearSegmentedColormap, BoundaryNorm, Normalize
804
805 # shapiro
806 columns = ["TCB_slope", "TCG_slope", "TCW_slope"]
807
808 # Store the results
809 shapiro_results = {}
810
811 # Iterate through all SubAreas in all_gdf_SubAreas
812 for subarea_name, subarea_data in all_gdf_SubAreas.items():
813 shapiro_results[subarea_name] = {}
814
815 for df_name, df in subarea_data.items():
816 shapiro_results[subarea_name][df_name] = {}
817

818 for col in columns:
819 try:
820 # Perform Shapiro-Wilk test
821 stat, p_value = shapiro(df[col])
822 shapiro_results[subarea_name][df_name][col] = {"statistic": stat,

"p_value": p_value}
823 except Exception as e:
824 # Handle cases where the test cannot be performed
825 shapiro_results[subarea_name][df_name][col] = {"statistic": None,

"p_value": None, "error": str(e)}
826
827 # Print the results
828 for subarea_name, subarea_results in shapiro_results.items():
829 print(f"\nShapiro-Wilk Test Results for {subarea_name}:")
830 for df_name, results in subarea_results.items():
831 print(f" DataFrame: {df_name}")
832 for col, result in results.items():
833 if result["statistic"] is not None:
834 print(f" {col}: statistic={result['statistic']:.4f}, p-value={

result['p_value']:.4f}")
835 else:
836 print(f" {col}: Test could not be performed. Error: {result['error'

]}")
837
838 # Kruskal
839
840 columns_to_test = ["TCB_slope", "TCG_slope", "TCW_slope"]
841
842 # Loop through each SubArea in all_gdf_SubAreas
843 for subarea_key, subarea_df_dict in all_gdf_SubAreas.items():
844 print(f"\nTesting for {subarea_key}")
845
846 # Loop through each column and perform Kruskal-Wallis test
847 for column in columns_to_test:
848 print(f"\n Testing column: {column}")
849
850 # Extract the data for the current column from each DataFrame in the current

SubArea
851 data = [df[column].dropna() for df_name, df in subarea_df_dict.items()]
852
853 # Perform the Kruskal-Wallis H-test
854 statistic, p_value = kruskal(*data)
855
856 # Print the results
857 print(f" H-statistic: {statistic:.4f}")
858 print(f" p-value: {p_value:.4f}")
859
860 # Interpretation based on a 5% significance level
861 if p_value < 0.05:
862 print(" Result: There is a significant difference between the sample

sites (reject H0).")
863 else:
864 print(" Result: No significant difference between the sample sites

(fail to reject H0).")
865
866 # Dunn
867 columns_to_test = ["TCB_slope", "TCG_slope", "TCW_slope"]
868
869 p_values_Dunn = {}
870
871 # Loop through each SubArea in all_gdf_SubAreas
872 for subarea_key, subarea_df_dict in all_gdf_SubAreas.items():
873 print(f"\nPerforming Dunn's Test for {subarea_key}")
874
875 p_values_Dunn[subarea_key] = {}
876
877 # Loop through each column and perform Dunn's test
878 for column in columns_to_test:
879 print(f" Testing column: {column}")
880
881 # Create a list of the values for the column from each DataFrame in the

current SubArea

882 data = [df[column].dropna() for df_name, df in subarea_df_dict.items()]
883
884 sample_labels = [df_name.split('_')[-1] for df_name in subarea_df_dict.keys()]
885
886 # Perform Dunn's test (pairwise comparisons)
887 p_values = sp.posthoc_dunn(data, p_adjust="bonferroni") # Using Bonferroni

correction
888
889 # Store the p-values as a DataFrame for the current column and SubArea
890 p_values_Dunn[subarea_key][column] = pd.DataFrame(
891 p_values.values,
892 columns=sample_labels,
893 index=sample_labels
894)
895
896 # To check the results for each SubArea and column, printing the p_values_Dunn

dictionary
897 p_values_Dunn
898
899 # Custom colormap
900 colors = [
901 (0.5, 0.1, 0.5),
902 (1, 0.8, 0.4), # Yellow starts at 0.05
903 (1, 0.8, 0.4)
904]
905 positions = [0.0000, 0.0500, 1] # Define where each color starts/ends
906 cmap_name = "custom_gradient_cmap"
907 smooth_cmap = LinearSegmentedColormap.from_list(cmap_name, list(zip(positions,

colors)))
908
909 # Normalize to align colors with specific ranges
910 norm = Normalize(vmin=0, vmax=1)
911
912 # Create a subplot grid with 1 row and number of columns based on the number of

SubAreas
913 fig, axes = plt.subplots(5, 3, figsize=(20,20))
914
915 axes_flat = axes.flatten()
916
917 # Loop through the p_values_Dunn dictionary and plot each matrix
918 k = 0
919 for i, (subarea_key, subarea_p_values) in enumerate(p_values_Dunn.items()):
920 for j, (column, matrix) in enumerate(subarea_p_values.items()):
921 ax = axes_flat[k]
922 k += 1
923
924 # Plot the heatmap for the current subarea and column
925 sample_labels = list(matrix.columns)
926
927 # Plot heatmap for each SubArea and column
928 sns.heatmap(
929 matrix,
930 annot=True,
931 fmt=".4f",
932 cmap=smooth_cmap,
933 norm=norm,
934 cbar_kws={'label': 'p-value'},
935 ax=ax
936)
937
938 ax.set_title(f'Dunn-Bonferroni-Test P-Values: {subarea_key} - {column}')
939 ax.set_xlabel('Sub Areas')
940 ax.set_ylabel('Sub Areas')
941
942 # Get the current x-tick locations
943 xticks = ax.get_xticks()
944
945 # Set x-tick labels only for the available tick locations
946 ax.set_xticks(xticks)
947 ax.set_xticklabels(sample_labels[:len(xticks)], rotation=0, ha='right')
948
949 # Similarly, for y-axis:

950 yticks = ax.get_yticks()
951 ax.set_yticks(yticks)
952 ax.set_yticklabels(sample_labels[:len(yticks)], rotation=0)
953 plt.tight_layout()
954

#plt.savefig(r'C:\Users\morit\Documents\Geoökologie\Module\BachelorArbeit\Daten\Plot
s\Dunn-Bonnferroni-Test_Sub-Areas.svg')

955 #plt.savefig(f'/content/drive/My Drive/Colab
Notebooks/Data/Dunn-Bonnferroni-Test_Sub-Areas.svg', format='svg')

956 plt.show()
957
958 """## Classification of Dunn values (homogeneity/heterogeneity)"""
959
960 import pandas as pd
961 import matplotlib.pyplot as plt
962 import matplotlib.colors as mcolors
963 from matplotlib.table import Table
964 import matplotlib.patches as patches
965
966 # df that contains information on sub areas exceeding 0.05 (-> are similar)
967 data = p_values_Dunn
968
969 # Initialize an empty list to store the results
970 results = []
971
972 # Iterate through the subareas and slope types
973 for subarea_key, slopes in data.items():
974 for slope_key, matrix in slopes.items():
975 # Compute row counts exceeding 0.05
976 for row_index, row_values in matrix.iterrows():
977 total_columns = len(row_values) -1
978 exceed_count = (row_values > 0.05).sum() -1
979 percentage = (exceed_count / total_columns) * 100
980 modified_subarea_key = subarea_key[3:] # Remove first three character
981 modified_subarea_key = modified_subarea_key[:4] + modified_subarea_key[5:]

Remove 8. character
982 results.append({
983 "Area": modified_subarea_key,
984 "Slope": slope_key,
985 "SubAreaIndex": row_index,
986 "TotalColumns": total_columns,
987 "Count>0.05": exceed_count,
988 "Percentage>0.05": percentage,
989 })
990
991 # Convert results into a DataFrame
992 results_df = pd.DataFrame(results)
993
994 # Display the results
995 print(results_df)
996
997 ## create tables from df
998 # Function to get row colors based on Percentage
999 def get_row_color(percentage):

1000 if percentage == 0:
1001 return "darkviolet"
1002 elif percentage < 50:
1003 return "lavender"
1004 elif percentage >= 50 and percentage < 100:
1005 return "lightyellow"
1006 elif percentage == 100:
1007 return "gold"
1008 return "white"
1009
1010 # Function to create a table in a specific subplot
1011 def create_styled_table_in_subplot(ax, df, title="Table"):
1012 ax.axis("off")
1013 ax.set_title(title, fontsize=16, pad=26)
1014
1015 # Add a table
1016 table = Table(ax, bbox=[0, 0, 1, 1])
1017 nrows, ncols = df.shape

1018
1019 # Column headers
1020 col_labels = df.columns
1021 for col_idx, label in enumerate(col_labels):
1022 table.add_cell(-1, col_idx, text=label, width=1, height=0.2, facecolor=

"lightgray", loc="center")
1023
1024 # Row cells
1025 prev_subarea = None
1026 for row_idx, row in df.iterrows():
1027 current_subarea = row["Area"]
1028 edgecolor = "black"
1029 if prev_subarea != current_subarea:
1030 edgecolor = "black"
1031
1032 prev_subarea = current_subarea
1033
1034 for col_idx, value in enumerate(row):
1035 # Get cell color
1036 if col_labels[col_idx] == "Percentage>0.05":
1037 cell_color = get_row_color(row["Percentage>0.05"])
1038 else:
1039 cell_color = "white"
1040
1041 table.add_cell(
1042 row_idx,
1043 col_idx,
1044 text=str(value),
1045 width=1,
1046 height=0.2,
1047 facecolor=cell_color,
1048 loc="center",
1049 edgecolor=edgecolor,
1050)
1051
1052 # Add the table to the subplot
1053 ax.add_table(table)
1054
1055 # Prepare the DataFrame subsets and clean up slope names
1056 results_df_cleaned = results_df.drop(columns=["Slope"]) # Remove the Slope column
1057 unique_slopes = results_df["Slope"].unique()
1058
1059 # Create subplots for the tables
1060 fig, axes = plt.subplots(1, len(unique_slopes), figsize=(24, 10)) # Increased size

for higher resolution
1061 fig.tight_layout(pad=5)
1062
1063 # Create a table for each slope type
1064 for ax, slope in zip(axes, unique_slopes):
1065 slope_df = results_df[results_df["Slope"] == slope].drop(columns=["Slope"])
1066 clean_title = f"Slope: {slope.replace('_slope', '')}" # Clean slope name
1067 create_styled_table_in_subplot(ax, slope_df, title=clean_title)
1068
1069 plt.show()
1070
1071 ## Summary of table in percentages: Calculate if sub areas in general are more equal

or more random, for each sub area seperatly if it's more equal or more random, and
what slope is most equal or most random

1072 # Function to create the summary DataFrame with percentages
1073 def create_summary_percentage_df(results_df):
1074 # Initialize the empty DataFrame to store results
1075 summary_data = []
1076
1077 # Total number of rows
1078 total_rows = len(results_df)
1079
1080 # SubArea specific rows (as percentage)
1081 subareas = results_df["Area"].unique()
1082 for subarea in subareas:
1083 subarea_df = results_df[results_df["Area"] == subarea]
1084 subarea_total = len(subarea_df) # Number of rows in the specific SubArea
1085 summary_data.append([f"{subarea}",

1086 (subarea_df["Percentage>0.05"] == 0).sum() /
subarea_total * 100,

1087 ((subarea_df["Percentage>0.05"] > 0) & (subarea_df[
"Percentage>0.05"] < 50)).sum() / subarea_total * 100,

1088 ((subarea_df["Percentage>0.05"] >= 50) & (subarea_df[
"Percentage>0.05"] < 100)).sum() / subarea_total * 100,

1089 (subarea_df["Percentage>0.05"] == 100).sum() /
subarea_total * 100])

1090
1091 # Create DataFrame from the summary data
1092 summary_df = pd.DataFrame(summary_data, columns=["Area",
1093 "Highly heterogeneous [%]",
1094 "Heterogeneous [%]",
1095 "Homogeneous [%]",
1096 "Highly homogeneous [%]"])
1097
1098 area_mapping = {
1099 "Area1": "Southern Taymyr",
1100 "Area2": "Northern Olenek",
1101 "Area3": "Chokurdakh",
1102 "Area4": "Iultinsky (Chukotka)",
1103 "Area6": "Southern Verkhoyansk Range"
1104 }
1105
1106 # Replace area codes with names
1107 summary_df["Area"] = summary_df["Area"].replace(area_mapping)
1108
1109 numeric_columns = ["Highly heterogeneous [%]", "Heterogeneous [%]", "Homogeneous

[%]", "Highly homogeneous [%]"]
1110 summary_df[numeric_columns] = summary_df[numeric_columns].round(0).astype(int)
1111
1112
1113 return summary_df
1114
1115 # Create the summary DataFrame with percentages
1116 summary_percentage_df = create_summary_percentage_df(results_df)
1117
1118 # Display the summary DataFrame with percentages
1119 print(summary_percentage_df)
1120
1121 """## Pie Charts of Homogeneity vers Heterogeneity"""
1122
1123 import matplotlib.pyplot as plt
1124 import os
1125 #from google.colab import drive
1126 #drive.mount('/content/drive')
1127
1128 # Single pie charts for overview map
1129 def save_single_pie_chart(summary_df, area_name, save_path):
1130 # Define the colors for each category
1131 colors = {
1132 "Highly heterogeneous [%]": "darkviolet",
1133 "Heterogeneous [%]": "lavender",
1134 "Homogeneous [%]": "lightyellow",
1135 "Highly homogeneous [%]": "gold"
1136 }
1137
1138 # Filter data for the specified area
1139 row = summary_df[summary_df['Area'] == area_name].iloc[0]
1140
1141 # Data for the pie chart
1142 labels = ["Highly heterogeneous [%]", "Heterogeneous [%]", "Homogeneous [%]",

"Highly homogeneous [%]"]
1143 sizes = [row[label] for label in labels]
1144
1145 # Filter out categories with zero values
1146 filtered_labels = [label for label, size in zip(labels, sizes) if size > 0]
1147 filtered_sizes = [size for size in sizes if size > 0]
1148 filtered_colors = [colors[label] for label in filtered_labels]
1149
1150 # Create a figure and axis
1151 fig, ax = plt.subplots(figsize=(4, 4))

1152
1153 # Create the pie chart
1154 wedges, texts, autotexts = ax.pie(filtered_sizes, colors=filtered_colors,
1155 autopct='%1.0f%%', startangle=140, wedgeprops={'edgecolor': 'black'})
1156
1157 ax.set_title(f"{area_name}", fontsize=18, weight="bold", y=0.95)
1158
1159 for autotext in autotexts:
1160 autotext.set_fontsize(18)
1161
1162 # Adjust layout for better spacing
1163 plt.tight_layout()
1164
1165 # Save the plot to a file
1166 fig.savefig(save_path)
1167 print(f"Saved plot as {save_path}")
1168
1169 # Show the plot
1170 plt.show()
1171
1172 titles = ["Southern Taymyr", "Northern Olenek", "Chokurdakh", "Iultinsky (Chukotka)",

"Southern Verkhoyansk Range"] #["Area 1", "Area 2", "Area 3", "Area 4", "Area 6"]
1173
1174 save_single_pie_chart(summary_percentage_df, "Southern Verkhoyansk Range",

'/content/drive/My Drive/Colab
Notebooks/Data/Plots/SouthernTaymyrSimilarityClassesPie.svg')

1175
1176 """# Calculation of the impact of the 5 m buffer area
1177
1178 Calculation of buffer area
1179 """
1180
1181 import geopandas as gpd
1182 from shapely.geometry import shape
1183 import seaborn as sns
1184 import matplotlib.pyplot as plt
1185 import pandas as pd
1186
1187 """This UTM zones correspond to the study areas
1188
1189 * Area 1 - UTM Zone 47N (EPSG:32647)
1190 * Area 2 - UTM Zone 50N (EPSG:32650)
1191 * Area 3 - UTM Zone 54N (EPSG:32654)
1192 * Area 4 - UTM Zone 1N (EPSG:32601)
1193 * Area 6 - UTM Zone 51N (EPSG:32651)
1194
1195 """
1196
1197 def gee_featurecollection_to_gdf(feature_collection, UTMz):
1198
1199 # Convert FeatureCollection to a list
1200 feature_list = feature_collection.toList(feature_collection.size()).getInfo()
1201
1202 gdf = gpd.GeoDataFrame(
1203 [
1204 {'id': feature['id'], 'geometry': shape(feature['geometry'])}
1205 for feature in feature_list
1206],
1207 geometry='geometry',
1208 crs="EPSG:4326" # WGS 84 (Latitude/Longitude)
1209)
1210
1211 # Reproject to UTM zone for accurate area calculation
1212 gdf = gdf.to_crs(epsg=UTMz)
1213
1214 # Compute original area in square kilometers
1215 gdf['area_m2'] = gdf['geometry'].area
1216
1217 # Compute inward 5m buffer (negative buffer shrinks the polygon)
1218 gdf['buffer_5m'] = gdf['geometry'].buffer(-5)
1219
1220 # Compute area of the inward 5m buffer (handle invalid geometries)

1221 gdf['area-5m_m2'] = gdf['buffer_5m'].apply(
1222 lambda geom: geom.area if geom.is_valid and not geom.is_empty else 0
1223)
1224 gdf['area_5m_buffer_m2'] = gdf['area_m2'] - gdf['area-5m_m2']
1225
1226 # Compute the percentage of the total area that was removed by buffering
1227 gdf['buffer_percentage'] = gdf.apply(
1228 lambda row: (row['area_5m_buffer_m2'] / row['area_m2']) * 100 if row['area_m2'

] > 0 else 0,
1229 axis=1
1230)
1231
1232 # Add the updated geometry of the polygon after extracting the -5m buffer
1233 gdf['geometry2'] = gdf['buffer_5m']
1234
1235 # Convert back to WGS 84 for geographic consistency
1236 gdf = gdf.to_crs(epsg=4326)
1237
1238 return gdf.drop(columns=['buffer_5m'])
1239
1240 rtsT1_gdf = gee_featurecollection_to_gdf(rtsT1, 32647)
1241
1242 rtsT2_gdf = gee_featurecollection_to_gdf(rtsT2, 32650)
1243
1244 rtsT3_gdf = gee_featurecollection_to_gdf(rtsT3, 32654)
1245
1246 rtsT4_gdf = gee_featurecollection_to_gdf(rtsT4, 32601)
1247
1248 rtsT6_gdf = gee_featurecollection_to_gdf(rtsT6, 32651)
1249
1250 """Plotting Buffer Area with Histograms"""
1251
1252 # Create a new column for each GeoDataFrame indicating the source
1253 rtsT1_gdf['area'] = 'T1'
1254 rtsT2_gdf['area'] = 'T2'
1255 rtsT3_gdf['area'] = 'T3'
1256 rtsT4_gdf['area'] = 'T4'
1257 rtsT6_gdf['area'] = 'T6'
1258
1259 # Concatenate the buffer_percentage columns with the source column
1260 combined_df = pd.concat([
1261 rtsT1_gdf[['buffer_percentage', 'area']],
1262 rtsT2_gdf[['buffer_percentage', 'area']],
1263 rtsT3_gdf[['buffer_percentage', 'area']],
1264 rtsT4_gdf[['buffer_percentage', 'area']],
1265 rtsT6_gdf[['buffer_percentage', 'area']]
1266])
1267
1268 # Dictionary to map abbreviations to full names
1269 area_mapping = {
1270 'T1': "Southern Taymyr",
1271 'T2': "Northern Olenek",
1272 'T3': "Chokurdakh",
1273 'T4': "Iultinsky (Chukotka)",
1274 'T6': "S. Verkhoyansk Range"
1275 }
1276
1277 # Set up the FacetGrid with separate histograms for each source
1278 g = sns.FacetGrid(combined_df, col="area", col_wrap=5, height=4, aspect=1)
1279
1280 # Plot the histograms in the individual plots and add a grey vertical line at x=20
1281 def plot_with_line(*args, **kwargs):
1282 # Plot the histogram without color argument
1283 sns.histplot(*args, **kwargs, kde=True)
1284 # Add the vertical line at x=20
1285 plt.axvline(x=20, color='grey', linestyle='--', linewidth=1)
1286
1287 g.map(plot_with_line, 'buffer_percentage')
1288
1289 # Manually update titles using the area_mapping dictionary
1290 for ax in g.axes.flat:
1291 # Get the current title (which is the 'area' value, e.g., 'T1')

1292 current_title = ax.get_title().split(' = ')[-1] # Extract the area abbreviation
1293 # Map it to the full name and set the new title
1294 ax.set_title(area_mapping.get(current_title, current_title))
1295
1296 # Set axis labels
1297 g.set_axis_labels('Buffer Percentage', 'Frequency')
1298
1299 plt.tight_layout()
1300
1301 # Show the plot
1302 plt.show()
1303
1304 """Only area 4 seams to have large parts of the rtss beeing buffer zone.
1305
1306 How much percent of RTSs per study area show an impact of the buffer area for more

than 20% of their feature area?
1307 """
1308
1309 # prompt: calculate the percentage (round (0)) for how much of the gdf the column

gdf['buffer_percentage'] is higher than 20
1310
1311 percentage_higher_than_20 = (rtsT1_gdf[rtsT1_gdf['buffer_percentage'] > 20].shape[0] /

rtsT1_gdf.shape[0]) * 100
1312 rounded_percentage = round(percentage_higher_than_20, 0)
1313 print(f"{rounded_percentage}% of the gdf has a 'buffer_percentage' higher than 20.")
1314
1315 """Percentage of RTSs of which their area is more than 20% coverdy by the 5 m buffer:

T1 = 11%, T2 = 15%, T3 = 17% , T4 = 49%, T6 = 0%
1316
1317 ## Apply new geometry (5m inward buffer) to RTSs of sub areas and repeat the Dunns

test
1318 """
1319
1320 import geopandas as gpd
1321
1322 # Converting dataframes to GeoDataFrame
1323 gdf_T1_norm = gpd.GeoDataFrame(gdf_T1_norm, geometry='geometry')
1324 gdf_T2_norm = gpd.GeoDataFrame(gdf_T2_norm, geometry='geometry')
1325 gdf_T3_norm = gpd.GeoDataFrame(gdf_T3_norm, geometry='geometry')
1326 gdf_T4_norm = gpd.GeoDataFrame(gdf_T4_norm, geometry='geometry')
1327 gdf_T6_norm = gpd.GeoDataFrame(gdf_T6_norm, geometry='geometry')
1328
1329 rtsT1_gdf = gpd.GeoDataFrame(rtsT1_gdf, geometry='geometry2')
1330 rtsT2_gdf = gpd.GeoDataFrame(rtsT2_gdf, geometry='geometry2')
1331 rtsT3_gdf = gpd.GeoDataFrame(rtsT3_gdf, geometry='geometry2')
1332 rtsT4_gdf = gpd.GeoDataFrame(rtsT4_gdf, geometry='geometry2')
1333 rtsT6_gdf = gpd.GeoDataFrame(rtsT6_gdf, geometry='geometry2')
1334
1335 # Set the CRS to WGS 84 (EPSG:4326)
1336 gdf_T1_norm = gdf_T1_norm.set_crs(epsg=4326)
1337 gdf_T2_norm = gdf_T2_norm.set_crs(epsg=4326)
1338 gdf_T3_norm = gdf_T3_norm.set_crs(epsg=4326)
1339 gdf_T4_norm = gdf_T4_norm.set_crs(epsg=4326)
1340 gdf_T6_norm = gdf_T6_norm.set_crs(epsg=4326)
1341
1342 rtsT1_gdf = rtsT1_gdf.to_crs(epsg=4326)
1343 rtsT2_gdf = rtsT2_gdf.to_crs(epsg=4326)
1344 rtsT3_gdf = rtsT3_gdf.to_crs(epsg=4326)
1345 rtsT4_gdf = rtsT4_gdf.to_crs(epsg=4326)
1346 rtsT6_gdf = rtsT6_gdf.to_crs(epsg=4326)
1347
1348 # Create a mask to check if each point in gdf_T1_norm_2 is within any polygon in

gdf['geometry2']
1349 mask = gdf_T1_norm['geometry'].apply(lambda point: rtsT1_gdf['geometry2'].apply(lambda

poly: poly.contains(point)).any())
1350 gdf_T1_norm_2 = gdf_T1_norm[mask]
1351
1352 print(len(gdf_T1_norm_2))
1353 print("Original number of rows:", len(gdf_T1_norm))
1354
1355 mask = gdf_T2_norm['geometry'].apply(lambda point: rtsT2_gdf['geometry2'].apply(lambda

poly: poly.contains(point)).any())

1356 gdf_T2_norm_2 = gdf_T2_norm[mask]
1357
1358 print("New number of rows:",len(gdf_T2_norm_2))
1359 print("Original number of rows:", len(gdf_T2_norm))
1360
1361 mask = gdf_T3_norm['geometry'].apply(lambda point: rtsT3_gdf['geometry2'].apply(lambda

poly: poly.contains(point)).any())
1362 gdf_T3_norm_2 = gdf_T3_norm[mask]
1363
1364 print("New number of rows:",len(gdf_T3_norm_2))
1365 print("Original number of rows:", len(gdf_T3_norm))
1366
1367 mask = gdf_T4_norm['geometry'].apply(lambda point: rtsT4_gdf['geometry2'].apply(lambda

poly: poly.contains(point)).any())
1368 gdf_T4_norm_2 = gdf_T4_norm[mask]
1369
1370 print("New number of rows:",len(gdf_T4_norm_2))
1371 print("Original number of rows:", len(gdf_T4_norm))
1372
1373 mask = gdf_T6_norm['geometry'].apply(lambda point: rtsT6_gdf['geometry2'].apply(lambda

poly: poly.contains(point)).any())
1374 gdf_T6_norm_2 = gdf_T6_norm[mask]
1375
1376 print("New number of rows:",len(gdf_T6_norm_2))
1377 print("Original number of rows:", len(gdf_T6_norm))
1378
1379 subareas = {
1380 "SubAreas1": SubAreas1,
1381 "SubAreas2": SubAreas2,
1382 "SubAreas3": SubAreas3,
1383 "SubAreas4": SubAreas4,
1384 "SubAreas6": SubAreas6
1385 }
1386
1387 gdfs = {
1388 "gdf_T1_norm": gdf_T1_norm_2,
1389 "gdf_T2_norm": gdf_T2_norm_2,
1390 "gdf_T3_norm": gdf_T3_norm_2,
1391 "gdf_T4_norm": gdf_T4_norm_2,
1392 "gdf_T6_norm": gdf_T6_norm_2
1393 }
1394
1395 all_gdf_SubAreas = {}
1396
1397 # Loop through each subarea-feature-collection pair
1398 for subarea_name, subarea_fc in subareas.items():
1399 # Get the corresponding GeoDataFrame for the subarea
1400 gdf_name = f"gdf_T{subarea_name[-1]}_norm"
1401 gdf = gdfs[gdf_name]
1402
1403 gdf_dict = {}
1404
1405 # Iterate through the features (squares) in the current subarea
1406 for i, square_feature in enumerate(subarea_fc.getInfo()['features']):
1407 # Extract the geometry of the current square
1408 square_geometry = shape(square_feature['geometry'])
1409
1410 # Filter the points that fall within the current square
1411 filtered_points = gdf[gdf.geometry.apply(lambda geom: geom.within(

square_geometry))]
1412
1413 # Check if filtered_points is empty
1414 if filtered_points.empty:
1415 print(f"Warning: No points found in {subarea_name} square {i + 1}.

Skipping this square.")
1416 continue # Skip to the next square
1417
1418 gdf_dict[f"{gdf_name}_{i + 1}"] = filtered_points
1419
1420 all_gdf_SubAreas[subarea_name] = gdf_dict
1421
1422 # Print keys of the current dictionary for verification

1423 print(f"Created GeoDataFrames for {subarea_name}:", list(gdf_dict.keys()))
1424
1425 from scipy.stats import shapiro
1426 from scipy.stats import anderson
1427 from scipy.stats import kruskal
1428 !pip install scikit-posthocs
1429 # during analysis the version "0.11.2-py3-none-any.whl.metadata (5.8 kB)" was used.
1430 #That version is no longer availabe and version 0.11.3 can produce slightly different

results.
1431 import scikit_posthocs as sp
1432 import pandas as pd
1433 import numpy as np
1434 import matplotlib.pyplot as plt
1435 import seaborn as sns
1436 from matplotlib.colors import LinearSegmentedColormap, BoundaryNorm, Normalize
1437
1438 # Dunn
1439 columns_to_test = ["TCB_slope", "TCG_slope", "TCW_slope"]
1440
1441 p_values_Dunn = {}
1442
1443 # Loop through each SubArea in all_gdf_SubAreas
1444 for subarea_key, subarea_df_dict in all_gdf_SubAreas.items():
1445 print(f"\nPerforming Dunn's Test for {subarea_key}")
1446
1447 p_values_Dunn[subarea_key] = {}
1448
1449 # Loop through each column and perform Dunn's test
1450 for column in columns_to_test:
1451 print(f" Testing column: {column}")
1452
1453 # Create a list of the values for the column from each DataFrame in the

current SubArea
1454 data = [df[column].dropna() for df_name, df in subarea_df_dict.items()]
1455
1456 # Get dynamic sample labels based on available sub-areas
1457 sample_labels = [df_name.split('_')[-1] for df_name in subarea_df_dict.keys()]
1458
1459 # Perform Dunn's test (pairwise comparisons)
1460 p_values = sp.posthoc_dunn(data, p_adjust="bonferroni") # Using Bonferroni

correction
1461
1462 # Store the p-values as a DataFrame for the current column and SubArea
1463 p_values_Dunn[subarea_key][column] = pd.DataFrame(
1464 p_values.values,
1465 columns=sample_labels,
1466 index=sample_labels
1467)
1468
1469 # To check the results for each SubArea and column, printing the p_values_Dunn

dictionary
1470 p_values_Dunn
1471
1472 # Custom colormap
1473 colors = [
1474 (0.5, 0.1, 0.5),
1475 (1, 0.8, 0.4), # Yellow starts at 0.05
1476 (1, 0.8, 0.4)
1477]
1478 positions = [0.0000, 0.0500, 1]
1479 cmap_name = "custom_gradient_cmap"
1480 smooth_cmap = LinearSegmentedColormap.from_list(cmap_name, list(zip(positions, colors

)))
1481
1482 # Normalize to align colors with specific ranges
1483 norm = Normalize(vmin=0, vmax=1)
1484
1485 # Create a subplot grid with 1 row and number of columns based on the number of

SubAreas
1486 fig, axes = plt.subplots(5, 3, figsize=(20,20))
1487
1488 axes_flat = axes.flatten()

1489
1490 # Loop through the p_values_Dunn dictionary and plot each matrix
1491 k = 0
1492 for i, (subarea_key, subarea_p_values) in enumerate(p_values_Dunn.items()):
1493 for j, (column, matrix) in enumerate(subarea_p_values.items()):
1494 # Get the current subplot axis
1495 ax = axes_flat[k]
1496 k += 1
1497
1498 # Plot the heatmap for the current subarea and column
1499 sample_labels = list(matrix.columns)
1500
1501 # Plot heatmap for each SubArea and column
1502 sns.heatmap(
1503 matrix,
1504 annot=True,
1505 fmt=".4f",
1506 cmap=smooth_cmap,
1507 norm=norm,
1508 cbar_kws={'label': 'p-value'},
1509 ax=ax
1510)
1511
1512 ax.set_title(f'Dunn-Bonferroni-Test P-Values: {subarea_key} - {column}')
1513 ax.set_xlabel('Sub Areas')
1514 ax.set_ylabel('Sub Areas')
1515
1516 # Get the current x-tick locations
1517 xticks = ax.get_xticks()
1518
1519 # Set x-tick labels only for the available tick locations
1520 ax.set_xticks(xticks)
1521 ax.set_xticklabels(sample_labels[:len(xticks)], rotation=0, ha='right')
1522
1523 # Similarly, for y-axis:
1524 yticks = ax.get_yticks()
1525 ax.set_yticks(yticks)
1526 ax.set_yticklabels(sample_labels[:len(yticks)], rotation=0)
1527 plt.tight_layout()
1528 #plt.savefig(f'/content/drive/My Drive/Colab

Notebooks/Data/Dunn-Bonnferroni-Test_Sub-Areas.svg', format='svg')
1529 plt.show()
1530
1531 """## Analysis Dunn values -5 m buffer (homogeneity/heterogeneity)"""
1532
1533 import pandas as pd
1534 import matplotlib.pyplot as plt
1535 import matplotlib.colors as mcolors
1536 from matplotlib.table import Table
1537 import matplotlib.patches as patches
1538
1539 # df that contains information on sub areas exceeding 0.05 (-> are similar)
1540 data = p_values_Dunn
1541
1542 results = []
1543
1544 # Iterate through the subareas and slope types
1545 for subarea_key, slopes in data.items():
1546 for slope_key, matrix in slopes.items():
1547 # Compute row counts exceeding 0.05
1548 for row_index, row_values in matrix.iterrows():
1549 total_columns = len(row_values) -1
1550 exceed_count = (row_values > 0.05).sum() -1
1551 percentage = (exceed_count / total_columns) * 100
1552 modified_subarea_key = subarea_key[3:] # Remove first three character
1553 modified_subarea_key = modified_subarea_key[:4] + modified_subarea_key[5:]

Remove 8. character
1554 results.append({
1555 "Area": modified_subarea_key,
1556 "Slope": slope_key,
1557 "SubAreaIndex": row_index,
1558 "TotalColumns": total_columns,

1559 "Count>0.05": exceed_count,
1560 "Percentage>0.05": percentage,
1561 })
1562
1563 results_df = pd.DataFrame(results)
1564
1565 # Display the results
1566 print(results_df)
1567
1568 ## create tables from df
1569 # Function to get row colors based on Percentage
1570 def get_row_color(percentage):
1571 if percentage == 0:
1572 return "darkviolet"
1573 elif percentage < 50:
1574 return "lavender"
1575 elif percentage >= 50 and percentage < 100:
1576 return "lightyellow"
1577 elif percentage == 100:
1578 return "gold"
1579 return "white"
1580
1581 # Function to create a table in a specific subplot
1582 def create_styled_table_in_subplot(ax, df, title="Table"):
1583 ax.axis("off")
1584 ax.set_title(title, fontsize=16, pad=26)
1585
1586 table = Table(ax, bbox=[0, 0, 1, 1])
1587 nrows, ncols = df.shape
1588
1589 # Column headers
1590 col_labels = df.columns
1591 for col_idx, label in enumerate(col_labels):
1592 table.add_cell(-1, col_idx, text=label, width=1, height=0.2, facecolor=

"lightgray", loc="center")
1593
1594 # Row cells
1595 prev_subarea = None
1596 for row_idx, row in df.iterrows():
1597 current_subarea = row["Area"]
1598 edgecolor = "black"
1599 if prev_subarea != current_subarea:
1600 edgecolor = "black"
1601
1602 prev_subarea = current_subarea
1603
1604 for col_idx, value in enumerate(row):
1605 # Get cell color
1606 if col_labels[col_idx] == "Percentage>0.05":
1607 cell_color = get_row_color(row["Percentage>0.05"])
1608 else:
1609 cell_color = "white"
1610
1611 table.add_cell(
1612 row_idx,
1613 col_idx,
1614 text=str(value),
1615 width=1,
1616 height=0.2,
1617 facecolor=cell_color,
1618 loc="center",
1619 edgecolor=edgecolor,
1620)
1621
1622 ax.add_table(table)
1623
1624 # Prepare the DataFrame subsets and clean up slope names
1625 results_df_cleaned = results_df.drop(columns=["Slope"]) # Remove the Slope column
1626 unique_slopes = results_df["Slope"].unique()
1627
1628 # Create subplots for the tables
1629 fig, axes = plt.subplots(1, len(unique_slopes), figsize=(24, 10)) # Increased size

for higher resolution
1630 fig.tight_layout(pad=5)
1631
1632 # Create a table for each slope type
1633 for ax, slope in zip(axes, unique_slopes):
1634 slope_df = results_df[results_df["Slope"] == slope].drop(columns=["Slope"])
1635 clean_title = f"Slope: {slope.replace('_slope', '')}" # Clean slope name
1636 create_styled_table_in_subplot(ax, slope_df, title=clean_title)
1637
1638 plt.show()
1639
1640 ## Summary of table in percentages: Calculate if sub areas in general are more equal

or more random, for each sub area seperatly if it's more equal or more random, and
what slope is most equal or most random

1641 # Function to create the summary DataFrame with percentages
1642 def create_summary_percentage_df(results_df):
1643 summary_data = []
1644
1645 total_rows = len(results_df)
1646
1647 # SubArea specific rows (as percentage)
1648 subareas = results_df["Area"].unique()
1649 for subarea in subareas:
1650 subarea_df = results_df[results_df["Area"] == subarea]
1651 subarea_total = len(subarea_df)
1652 summary_data.append([f"{subarea}",
1653 (subarea_df["Percentage>0.05"] == 0).sum() /

subarea_total * 100,
1654 ((subarea_df["Percentage>0.05"] > 0) & (subarea_df[

"Percentage>0.05"] < 50)).sum() / subarea_total * 100,
1655 ((subarea_df["Percentage>0.05"] >= 50) & (subarea_df[

"Percentage>0.05"] < 100)).sum() / subarea_total * 100,
1656 (subarea_df["Percentage>0.05"] == 100).sum() /

subarea_total * 100])
1657
1658 summary_df = pd.DataFrame(summary_data, columns=["Area",
1659 "Highly heterogeneous [%]",
1660 "Heterogeneous [%]",
1661 "Homogeneous [%]",
1662 "Highly homogeneous [%]"])
1663 area_mapping = {
1664 "Area1": "Southern Taymyr",
1665 "Area2": "Northern Olenek",
1666 "Area3": "Chokurdakh",
1667 "Area4": "Iultinsky (Chukotka)",
1668 "Area6": "Southern Verkhoyansk Range"
1669 }
1670
1671 # Replace area codes with names
1672 summary_df["Area"] = summary_df["Area"].replace(area_mapping)
1673
1674 numeric_columns = ["Highly heterogeneous [%]", "Heterogeneous [%]", "Homogeneous

[%]", "Highly homogeneous [%]"]
1675 summary_df[numeric_columns] = summary_df[numeric_columns].round(0).astype(int)
1676
1677
1678 return summary_df
1679
1680 # Create the summary DataFrame with percentages
1681 summary_percentage_df = create_summary_percentage_df(results_df)
1682
1683 # Display the summary DataFrame with percentages
1684 print(summary_percentage_df)
1685
1686 # pie charts for overview map
1687 def save_single_pie_chart(summary_df, area_name, save_path):
1688 # Define the colors for each category
1689 colors = {
1690 "Highly heterogeneous [%]": "darkviolet",
1691 "Heterogeneous [%]": "lavender",
1692 "Homogeneous [%]": "lightyellow",
1693 "Highly homogeneous [%]": "gold"

1694 }
1695
1696 # Filter data for the specified area
1697 row = summary_df[summary_df['Area'] == area_name].iloc[0]
1698
1699 # Data for the pie chart
1700 labels = ["Highly heterogeneous [%]", "Heterogeneous [%]", "Homogeneous [%]",

"Highly homogeneous [%]"]
1701 sizes = [row[label] for label in labels]
1702
1703 # Filter out categories with zero values
1704 filtered_labels = [label for label, size in zip(labels, sizes) if size > 0]
1705 filtered_sizes = [size for size in sizes if size > 0]
1706 filtered_colors = [colors[label] for label in filtered_labels]
1707
1708 # Create a figure and axis
1709 fig, ax = plt.subplots(figsize=(4, 4))
1710
1711 # Create the pie chart
1712 wedges, texts, autotexts = ax.pie(filtered_sizes, colors=filtered_colors,
1713 autopct='%1.0f%%', startangle=140, wedgeprops={'edgecolor': 'black'},

pctdistance=0.83)
1714
1715 ax.set_title(f"{area_name}", fontsize=18, weight="bold", y=0.95)
1716
1717 for autotext in autotexts:
1718 autotext.set_fontsize(18)
1719
1720 plt.tight_layout()
1721
1722 # Save the plot to a file
1723 fig.savefig(save_path)
1724 print(f"Saved plot as {save_path}")
1725
1726 # Show the plot
1727 plt.show()
1728
1729 titles = ["Southern Taymyr", "Iultinsky (Chukotka)"] #["Area 1", "Area 2", "Area 3",

"Area 4", "Area 6"]
1730
1731 save_single_pie_chart(summary_percentage_df, "Iultinsky (Chukotka)",

'/content/drive/My Drive/Colab
Notebooks/Data/Plots/SouthernTaymyrSimilarityClassesPie.svg')

1732
1733 """# Terrain position (TP) detection"""
1734
1735 import pandas as pd
1736 import geopandas as gpd
1737
1738 """Converting the lakes data set to shp file and storring it as gee asset"""
1739
1740 #Lakes = gpd.read_parquet('/content/drive/My Drive/Colab

Notebooks/Data/filtered_full_set_v2.parquet')
1741 #Lakes_gdf = gpd.GeoDataFrame(Lakes, geometry="geometry", crs="EPSG:4326")
1742 #Lakes_gdf.to_file("/content/drive/My Drive/Colab Notebooks/Data/Lakes.shp",

driver="ESRI Shapefile")
1743
1744 """## Shore line"""
1745
1746 # Install required libraries
1747 !pip install geemap geopandas
1748
1749 import geemap
1750 import geopandas as gpd
1751 import pandas as pd
1752
1753 # Load the FeatureCollections
1754
1755 MainlandPolygon = ee.FeatureCollection(

'projects/sat-io/open-datasets/shoreline/mainlands')
1756
1757 def check_shore_overlap(feature):

1758
1759 # Find polygons that intersect with the feature
1760 intersects = MainlandPolygon.filterBounds(feature.geometry())
1761
1762 # Get the first intersecting polygon (or null if none found)
1763 first_intersecting_polygon = intersects.first()
1764
1765 # Check if the feature is fully contained within the mainland polygon
1766 fully_contained = ee.Algorithms.If(
1767 first_intersecting_polygon, # Condition: if intersecting polygon exists
1768 first_intersecting_polygon.geometry().contains(feature.geometry()), # If

true: perform 'contains'
1769 False # If false: assume 'not fully overlapping' (set to False)
1770)
1771
1772 # Assigns 0 (fully overlaps) or 1 (not fully overlapping) to TP property
1773 updated_feature = feature.set("TP", ee.Algorithms.If(fully_contained, 0, 1))
1774
1775 # Select only relevant properties (mimics Pandas .loc[:, columns_to_keep])
1776 columns_to_keep = ["geometry", "TP", "id", "fid"]
1777 selected_properties = updated_feature.select(columns_to_keep)
1778
1779 return selected_properties
1780
1781 # Apply the function shore overlap to Area 1
1782 TP_rtsT1 = rtsT1.map(check_shore_overlap)
1783
1784 # Convert to GeoJSON
1785 geojson_TP_rtsT1 = geemap.ee_to_geojson(TP_rtsT1)
1786 # Convert to GeoDataFrame
1787 gdf_TP_rtsT1 = gpd.GeoDataFrame.from_features(geojson_TP_rtsT1)
1788
1789 print("Number of rows where TP == 1:", len(gdf_TP_rtsT1[gdf_TP_rtsT1['TP'] == 1]))
1790
1791 # Apply the function shore overlap to Area 2
1792 TP_rtsT2 = rtsT2.map(check_shore_overlap)
1793
1794 # Convert to GeoJSON
1795 geojson_TP_rtsT2 = geemap.ee_to_geojson(TP_rtsT2)
1796 # Convert to GeoDataFrame
1797 gdf_TP_rtsT2 = gpd.GeoDataFrame.from_features(geojson_TP_rtsT2)
1798
1799 print("Number of rows where TP == 1:", len(gdf_TP_rtsT2[gdf_TP_rtsT2['TP'] == 1]))
1800
1801 # Apply the function shore overlap to Area 4
1802 TP_rtsT4 = rtsT4.map(check_shore_overlap)
1803
1804 # Convert to GeoJSON
1805 geojson_TP_rtsT4 = geemap.ee_to_geojson(TP_rtsT4)
1806 # Convert to GeoDataFrame
1807 gdf_TP_rtsT4 = gpd.GeoDataFrame.from_features(geojson_TP_rtsT4)
1808
1809 print("Number of rows where TP == 1:", len(gdf_TP_rtsT4[gdf_TP_rtsT4['TP'] == 1]))
1810
1811 # Apply the function shore overlap to Area 6
1812 TP_rtsT6 = rtsT6.map(check_shore_overlap)
1813
1814 # Convert to GeoJSON
1815 geojson_TP_rtsT6 = geemap.ee_to_geojson(TP_rtsT6)
1816 # Convert to GeoDataFrame
1817 gdf_TP_rtsT6 = gpd.GeoDataFrame.from_features(geojson_TP_rtsT6)
1818
1819 print("Number of rows where TP == 1:", len(gdf_TP_rtsT6[gdf_TP_rtsT6['TP'] == 1]))
1820
1821 # creating same gdf for Area 3
1822 def add_tp_column(feature):
1823 """Adds a TP property to the feature and sets its value to 0."""
1824 return feature.set('TP', 0)
1825
1826 # Map the function to the FeatureCollection
1827 rtsT3_with_tp = rtsT3.map(add_tp_column)
1828

1829 # Select only the desired columns
1830 rtsT3_selected = rtsT3_with_tp.select(['geometry', 'id', 'fid', 'TP'])
1831 # Convert the FeatureCollection to a GeoDataFrame
1832 geojson_TP_rtsT3 = geemap.ee_to_geojson(rtsT3_selected)
1833 gdf_TP_rtsT3 = gpd.GeoDataFrame.from_features(geojson_TP_rtsT3)
1834
1835 # Display the first few rows to verify
1836 print(gdf_TP_rtsT3.head())
1837
1838 """Check results visualy"""
1839
1840 #prepaire data for visualization
1841 gdf_TP_rtsT2.set_crs(epsg=4326, inplace=True) # Set CRS directly on gdf_TP_rtsT2

with inplace=True
1842 TP_rtsT2_fc = geemap.geopandas_to_ee(gdf_TP_rtsT2)
1843 TP_rtsT2_fc_2 = TP_rtsT2_fc.filter(ee.Filter.eq('TP', 1))
1844
1845 polygon_style = {
1846 'color': 'red',
1847 'width': 2,
1848 'fillColor': '00000000' # Transparent fill
1849 }
1850
1851 Map = geemap.Map(center=[73.25, 116.5], zoom=5)
1852
1853 # Add the filtered polygons (only overlap = 1)
1854 Map.addLayer(TP_rtsT2_fc_2.style(**polygon_style), {}, "Filtered Polygons (overlap =

1)")
1855
1856 # Display map
1857 Map
1858
1859 """## Lakes"""
1860
1861 Lakes = ee.FeatureCollection("projects/ee-moritzjulia7/assets/Lakes")
1862
1863 # Define FeatureCollections
1864 rtsT_collections = {
1865 "rtsT1": rtsT1,
1866 "rtsT2": rtsT2,
1867 "rtsT3": rtsT3,
1868 "rtsT4": rtsT4,
1869 "rtsT6": rtsT6
1870 }
1871
1872 gdf_TP_dict = {
1873 "rtsT1": gdf_TP_rtsT1,
1874 "rtsT2": gdf_TP_rtsT2,
1875 "rtsT3": gdf_TP_rtsT3,
1876 "rtsT4": gdf_TP_rtsT4,
1877 "rtsT6": gdf_TP_rtsT6
1878 }
1879
1880 # Function to check intersection in GEE and update TP value
1881 def update_tp_if_intersects(rts_fc, gdf_TP):
1882 def check_overlap(feature):
1883 """Check if the feature intersects with any polygon in Lakes."""
1884 intersects = Lakes.filterBounds(feature.geometry()).size().gt(0)
1885 return feature.set("TP", ee.Algorithms.If(intersects, 2, feature.get("TP")))
1886
1887 # Apply intersection check to each polygon in the rtsT FeatureCollection
1888 updated_fc = rts_fc.map(check_overlap)
1889
1890 # Convert updated FeatureCollection to a Pandas DataFrame
1891 updated_gdf = geemap.ee_to_geojson(updated_fc)
1892 updated_gdf = gpd.GeoDataFrame.from_features(updated_gdf)
1893
1894 # Merge to keep original structure but update TP where needed
1895 gdf_TP.set_index("fid", inplace=True)
1896 updated_gdf.set_index("fid", inplace=True)
1897
1898 # Update only the TP values

1899 gdf_TP.update(updated_gdf["TP"])
1900
1901 # Reset index after updating
1902 gdf_TP.reset_index(inplace=True)
1903
1904 return gdf_TP
1905
1906 # Process all rtsT datasets
1907 for key, rts_fc in rtsT_collections.items():
1908 gdf_TP_dict[key] = update_tp_if_intersects(rts_fc, gdf_TP_dict[key])
1909
1910 """Check results visualy"""
1911
1912 #prepaire data for visualization
1913 gdf_TP_rtsT2.set_crs(epsg=4326, inplace=True) # Set CRS directly on gdf_TP_rtsT2

with inplace=True
1914 TP_rtsT2_fc = geemap.geopandas_to_ee(gdf_TP_rtsT2)
1915 TP_rtsT2_fc_2 = TP_rtsT2_fc.filter(ee.Filter.eq('TP', 2))
1916
1917 polygon_style = {
1918 'color': 'red',
1919 'width': 2,
1920 'fillColor': '00000000' # Transparent fill
1921 }
1922
1923 Map = geemap.Map(center=[73.25, 116.5], zoom=5)
1924
1925 # Add the filtered polygons (only overlap = 2)
1926 Map.addLayer(TP_rtsT2_fc_2.style(**polygon_style), {}, "Filtered Polygons (overlap =

2)")
1927
1928 # Display map
1929 Map
1930
1931 """Downloading the data frames"""
1932
1933 from google.colab import drive
1934 import os
1935 import shutil
1936
1937 # Mount Google Drive
1938 #drive.mount('/content/drive')
1939
1940 # Define the directory in Google Drive where files will be saved
1941 #save_dir = "/content/drive/My Drive/Colab Notebooks/Data/TP shp Verion 1"
1942
1943 # Ensure the directory exists
1944 #os.makedirs(save_dir, exist_ok=True)
1945
1946 # Loop through each GeoDataFrame and save as a Shapefile
1947 #for name, gdf in gdf_TP_dict.items():
1948 # shp_dir = os.path.join(save_dir, name) # Each shapefile needs its own folder
1949 # os.makedirs(shp_dir, exist_ok=True) # Create a folder for the shapefile

components#
1950
1951 # file_path = os.path.join(shp_dir, name + ".shp")
1952 # gdf.to_file(file_path, driver="ESRI Shapefile")
1953
1954 # print(f"Saved {name} as a Shapefile in {shp_dir}")
1955
1956 """## Loading the manually enhanced data sets"""
1957
1958 from google.colab import drive
1959 import geopandas as gpd
1960 import geemap
1961
1962 drive.mount('/content/drive')
1963
1964 rtsT1_v2 = gpd.read_file('/content/drive/My Drive/Colab Notebooks/Data/TP shp version

2/rtsT1_v2.shp')
1965 rtsT2_v2 = gpd.read_file('/content/drive/My Drive/Colab Notebooks/Data/TP shp version

2/rtsT2_v2.shp')

1966 rtsT3_v2 = gpd.read_file('/content/drive/My Drive/Colab Notebooks/Data/TP shp version
2/rtsT3_v2.shp')

1967 rtsT4_v2 = gpd.read_file('/content/drive/My Drive/Colab Notebooks/Data/TP shp version
2/rtsT4_v2.shp')

1968 rtsT6_v2 = gpd.read_file('/content/drive/My Drive/Colab Notebooks/Data/TP shp version
2/rtsT6_v2.shp')

1969
1970 """## Analyse TP Data"""
1971
1972 import geopandas as gpd
1973 import pandas as pd
1974
1975 ## Merging the TP data frames to one large data frame
1976 gdf_list = [
1977 (rtsT1_v2, 1),
1978 (rtsT2_v2, 2),
1979 (rtsT3_v2, 3),
1980 (rtsT4_v2, 4),
1981 (rtsT6_v2, 6),
1982]
1983
1984 # Create a list of GeoDataFrames with the added 'area' column
1985 gdfs_with_area = [
1986 gdf[['fid', 'TP', 'Shpe', 'geometry']].assign(area=area)
1987 for gdf, area in gdf_list
1988]
1989
1990 # Merge them into a single GeoDataFrame
1991 rts_TP_all = gpd.GeoDataFrame(pd.concat(gdfs_with_area, ignore_index=True))
1992
1993 # Check the result
1994 print(rts_TP_all)
1995
1996 import matplotlib.pyplot as plt
1997
1998 def create_tp_pie_charts(rts_TP_all, save_path=None):
1999
2000 tp_labels = {
2001 1: "Sea Shore",
2002 2: "Lake Shore",
2003 3: "River Shore",
2004 4: "Gully",
2005 # 5: "Others",
2006 6: "Ponds (+Gully)"
2007 }
2008
2009 tp_colors = {
2010 1: '#00008B', # Dark Blue
2011 2: '#0000FF', # Blue
2012 3: '#ADD8E6', # Light Blue
2013 4: '#FFA500', # Orange
2014 # 5: '#FF0000', # Red
2015 6: '#800000', # Maroon
2016 }
2017
2018 area_name_mapping = {
2019 1: "Southern Taymyr",
2020 2: "Northern Olenek",
2021 3: "Chokurdakh",
2022 4: "Iultinsky (Chukotka)",
2023 6: "Southern Verkhoyansk Range"
2024 }
2025
2026 # Replace area names in the 'area' column using the mapping
2027 rts_TP_all['area'] = rts_TP_all['area'].replace(area_name_mapping)
2028
2029 # Get the unique areas
2030 unique_areas = rts_TP_all['area'].unique()
2031 num_areas = len(unique_areas)
2032
2033 # Create subplots: arrange them in a row
2034 fig, axes = plt.subplots(1, num_areas, figsize=(6 * num_areas, 6))

2035
2036 # If only one area
2037 if num_areas == 1:
2038 axes = [axes]
2039
2040 # Iterate through each area and create a pie chart
2041 for idx, area in enumerate(unique_areas):
2042 area_df = rts_TP_all[rts_TP_all['area'] == area]
2043 tp_counts = area_df['TP'].value_counts()
2044
2045 # Get sizes and colors
2046 sizes = tp_counts.values
2047 colors = [tp_colors[tp] for tp in tp_counts.index]
2048
2049 # Create the pie chart
2050 wedges, _, autotexts = axes[idx].pie(
2051 sizes, autopct='%1.0f%%', colors=colors,
2052 startangle=140, wedgeprops={'edgecolor': 'black'},
2053 pctdistance=1.2 # Adjust percentage placement
2054)
2055
2056 axes[idx].set_title(f"{area}", fontsize=24, y=1.05)
2057
2058 for autotext in autotexts:
2059 autotext.set_fontsize(18)
2060
2061 # Create a shared legend at the bottom
2062 legend_labels = [f"{tp_labels[tp]}" for tp in tp_labels]
2063 legend_colors = [tp_colors[tp] for tp in tp_labels]
2064
2065 # Create legend patches
2066 legend_patches = [plt.Line2D([0], [0], marker='o', color='w',
2067 markerfacecolor=color, markersize=12) for color in

legend_colors]
2068
2069 # Add legend below all plots
2070 fig.legend(legend_patches, legend_labels, loc="lower center",
2071 fontsize=18, ncol=5, bbox_to_anchor=(0.5, -0.05))
2072
2073 # Adjust layout for better spacing
2074 plt.tight_layout(rect=[0, 0.1, 1, 1])
2075
2076 # Set a bold title for the entire figure
2077 fig.suptitle(
2078 "Distribution of TP Values Across Areas",
2079 fontsize=28, weight="bold", y=1.12
2080)
2081
2082 if save_path:
2083 plt.savefig(save_path, bbox_inches="tight")
2084 print(f"Saved plot as {save_path}")
2085
2086 plt.show()
2087
2088 create_tp_pie_charts(rts_TP_all)
2089
2090 """## Analyse morphology Data"""
2091
2092 import geopandas as gpd
2093 import pandas as pd
2094
2095 import matplotlib.pyplot as plt
2096
2097 def create_morphology_pie_charts(rts_TP_all, save_path=None):
2098
2099 morphology_labels = {
2100 0: "Thermocirque",
2101 1: "Thermoterrace",
2102 2: "Combination",
2103 }
2104
2105 m_colors = {

2106 0: '#800000',
2107 1: '#5FAF00',
2108 2: '#BEAA3C'
2109 }
2110
2111 area_name_mapping = {
2112 1: "Southern Taymyr",
2113 2: "Northern Olenek",
2114 3: "Chokurdakh",
2115 4: "Iultinsky (Chukotka)",
2116 6: "Southern Verkhoyansk Range"
2117 }
2118
2119 # Replace area names in the 'area' column using the mapping
2120 rts_TP_all['area'] = rts_TP_all['area'].replace(area_name_mapping)
2121
2122 # Get the unique areas
2123 unique_areas = rts_TP_all['area'].unique()
2124 num_areas = len(unique_areas)
2125
2126 # Create subplots: arrange them in a row
2127 fig, axes = plt.subplots(1, num_areas, figsize=(6 * num_areas, 6))
2128
2129 # If only one area
2130 if num_areas == 1:
2131 axes = [axes]
2132
2133 # Iterate through each area and create a pie chart
2134 for idx, area in enumerate(unique_areas):
2135 area_df = rts_TP_all[rts_TP_all['area'] == area]
2136 m_counts = area_df['Shpe'].value_counts()
2137
2138 # Get sizes and colors
2139 sizes = m_counts.values
2140 colors = [m_colors[m] for m in m_counts.index]
2141
2142 # Create the pie chart
2143 wedges, _, autotexts = axes[idx].pie(
2144 sizes, autopct='%1.0f%%', colors=colors,
2145 startangle=140, wedgeprops={'edgecolor': 'black'},
2146 pctdistance=1.2
2147)
2148
2149 axes[idx].set_title(f"{area}", fontsize=24, y=1.05)
2150
2151 for autotext in autotexts:
2152 autotext.set_fontsize(18)
2153
2154 # Create a shared legend at the bottom
2155 legend_labels = [f"{morphology_labels[m]}" for m in morphology_labels]
2156 legend_colors = [m_colors[m] for m in morphology_labels]
2157
2158 # Create legend patches
2159 legend_patches = [plt.Line2D([0], [0], marker='o', color='w',
2160 markerfacecolor=color, markersize=12) for color in

legend_colors]
2161
2162 # Add legend below all plots
2163 fig.legend(legend_patches, legend_labels, loc="lower center",
2164 fontsize=18, ncol=5, bbox_to_anchor=(0.5, -0.05))
2165
2166 # Adjust layout for better spacing
2167 plt.tight_layout(rect=[0, 0.1, 1, 1])
2168
2169 fig.suptitle(
2170 "Distribution of Morphology Types Across Study Areas",
2171 fontsize=28, weight="bold", y=1.12
2172)
2173
2174 if save_path:
2175 plt.savefig(save_path, bbox_inches="tight")
2176 print(f"Saved plot as {save_path}")

2177
2178 plt.show()
2179
2180 create_morphology_pie_charts(rts_TP_all)
2181
2182 """# Terrain Position, spectral slope similarity compairison (sub-hypothesis 3)
2183
2184 Singe gdf creation per RTS. Names of gdf include value of main area, slumps fid, TP

value and Shape(=Morphology) value
2185 """
2186
2187 import geopandas as gpd
2188 import pandas as pd
2189 from collections import defaultdict
2190
2191 polygon_layers = {
2192 "rtsT1_v2": rtsT1_v2,
2193 "rtsT2_v2": rtsT2_v2,
2194 "rtsT3_v2": rtsT3_v2,
2195 "rtsT4_v2": rtsT4_v2,
2196 "rtsT6_v2": rtsT6_v2
2197 }
2198
2199 point_layers = {
2200 "gdf_T1_norm": gdf_T1_norm_2, #_2 are the df that have the 5 m inward buffer

already applyed
2201 "gdf_T2_norm": gdf_T2_norm_2,
2202 "gdf_T3_norm": gdf_T3_norm_2,
2203 "gdf_T4_norm": gdf_T4_norm_2,
2204 "gdf_T6_norm": gdf_T6_norm_2
2205 }
2206
2207 gdf_singleRTSs_plus_Property = {}
2208
2209 # Iterate through each polygon layer
2210 for poly_name, poly_gdf in polygon_layers.items():
2211 T_number = poly_name[4] # Extract T number (e.g., '1' from 'rtsT1_v2')
2212 point_gdf_name = f"gdf_T{T_number}_norm"
2213
2214 if point_gdf_name not in point_layers:
2215 print(f"Warning: No matching point layer found for {poly_name}. Skipping.")
2216 continue
2217
2218 point_gdf = point_layers[point_gdf_name]
2219
2220 gdf_dict = {}
2221
2222 # Iterate over each polygon in the layer
2223 for idx, polygon in poly_gdf.iterrows():
2224 polygon_geometry = polygon.geometry
2225 TP_value = polygon["TP"]
2226 fid = polygon["fid"]
2227 shape_number = polygon["Shpe"]
2228
2229 # Filter points within the polygon
2230 filtered_points = point_gdf[point_gdf.geometry.apply(lambda geom: geom.within(

polygon_geometry))]
2231
2232
2233 # Check if filtered points exist
2234 if filtered_points.empty:
2235 print(f"Warning: No points found in {poly_name} for polygon {fid}.

Skipping.")
2236 continue
2237
2238 # Create the dictionary key name
2239 gdf_key = f"T{T_number}_fid{fid}_TP{TP_value}_Shape{shape_number}"
2240
2241 # Store in dictionary
2242 gdf_dict[gdf_key] = filtered_points
2243
2244 # Store the dictionary for this polygon layer

2245 gdf_singleRTSs_plus_Property[f"T{T_number}"] = gdf_dict
2246
2247 print(f"Processed {poly_name}: {len(gdf_dict)} RTS dfs created.")
2248
2249 #Overview of created geodataframes
2250
2251 summary_data = defaultdict(lambda: {"Total_GDFs": 0})
2252
2253 # Iterate over all created GDFs
2254 for T_key, sub_gdfs in gdf_singleRTSs_plus_Property.items():
2255 for gdf_name in sub_gdfs.keys():
2256 # Extract TP value and Shape number from the GDF name
2257 parts = gdf_name.split("_")
2258 TP_value = int(parts[2][2:]) # Extract TP value from 'TPX'
2259 Shape_value = int(parts[3][5:]) # Extract Shape number from 'ShapeX'
2260
2261 # Increment counts
2262 summary_data[T_key][f"TP_{TP_value}"] = summary_data[T_key].get(f"TP_{TP_value

}", 0) + 1
2263 summary_data[T_key][f"Shape_{Shape_value}"] = summary_data[T_key].get(

f"Shape_{Shape_value}", 0) + 1
2264 summary_data[T_key]["Total_GDFs"] += 1
2265
2266 # Convert to Pandas DataFrame
2267 summary_df = pd.DataFrame.from_dict(summary_data, orient="index").fillna(0)
2268
2269 # Display the summary table
2270 print(summary_df)
2271
2272 """**Areas:** "T1": "Southern Taymyr", "T2": "Northern Olenek", "T3": "Chokurdakh",

"T4": "Iultinsky (Chukotka)", "T6": "Southern Verkhoyansk Range"
2273
2274 **Terrain Position Names:** "TP_1": "Sea", "TP_2": "Lake", "TP_3": "River", "TP_4":

"Gully", "TP_5": "Others", "TP_6": "Ponds + Gully"
2275
2276 **Morphology Names:** "Shape_0": "Thermocirque", "Shape_1": "Thermoterrace",

"Shape_2": "Combination"
2277
2278 ## Calcutaion of statistics for all slumps
2279 """
2280
2281 from scipy.stats import shapiro
2282 !pip install scikit-posthocs
2283 # during analysis the version "0.11.2-py3-none-any.whl.metadata (5.8 kB)" was used.
2284 #That version is no longer availabe and version 0.11.3 can produce slightly different

results.
2285 import scipy.stats as stats
2286 import scikit_posthocs as sp
2287 import pandas as pd
2288
2289 # shapiro -> normal distribution
2290
2291 # Define the numerical columns to check for normality
2292 columns = ["TCB_slope", "TCG_slope", "TCW_slope"]
2293
2294 shapiro_results = {}
2295
2296 # Iterate through all areas (T1, T2, etc.)
2297 for T_key, sub_gdfs in gdf_singleRTSs_plus_Property.items():
2298 shapiro_results[T_key] = {}
2299
2300 # Iterate through all created GeoDataFrames
2301 for df_name, df in sub_gdfs.items():
2302 shapiro_results[T_key][df_name] = {}
2303
2304 for col in columns:
2305 try:
2306 # Perform Shapiro-Wilk test only if the column exists
2307 if col in df.columns and len(df[col].dropna()) > 3:
2308 stat, p_value = shapiro(df[col].dropna()) # Remove NaN values
2309 shapiro_results[T_key][df_name][col] = {"statistic": stat,

"p_value": p_value}

2310 else:
2311 shapiro_results[T_key][df_name][col] = {"statistic": None,

"p_value": None, "error": "Insufficient data"}
2312 except Exception as e:
2313 # Handle errors (e.g., not enough data points)
2314 shapiro_results[T_key][df_name][col] = {"statistic": None, "p_value":

None, "error": str(e)}
2315
2316 # Print the results in a readable format
2317 for T_key, subarea_results in shapiro_results.items():
2318 print(📊f"\n Shapiro-Wilk Test Results for {T_key}:")
2319 for df_name, results in subarea_results.items():
2320 print(📂f" DataFrame: {df_name}")
2321 for col, result in results.items():
2322 if result["statistic"] is not None:
2323 print(f" {col}: statistic={result['statistic']:.4f}, p-value={

result['p_value']:.4f}")
2324 else:
2325 print(f" {col ❌}: Test could not be performed. Error: {result[

'error']}")
2326
2327 """Majority of RTSs are **not** normaly distributed.
2328
2329
2330 """
2331
2332 ### Dunn’s Test and Kruskal-Wallis tests
2333
2334 # Define numerical columns to compare
2335 columns = ["TCB_slope", "TCG_slope", "TCW_slope"]
2336
2337 comparison_results = {}
2338
2339 # Group GDFs by T number (Area) and TP value
2340 for T_key, sub_gdfs in gdf_singleRTSs_plus_Property.items():
2341 tp_groups = {} # Dictionary to store groups by TP value
2342
2343 # Organize GDFs by TP value
2344 for df_name, df in sub_gdfs.items():
2345 parts = df_name.split("_")
2346 TP_value = int(parts[2][2:]) # Extract TP value from 'TPX'
2347
2348 if TP_value not in tp_groups:
2349 tp_groups[TP_value] = []
2350
2351 tp_groups[TP_value].append(df)
2352
2353 # Perform statistical comparisons within each TP group
2354 for TP_value, gdf_list in tp_groups.items():
2355 if len(gdf_list) > 1: # Only compare if we have multiple GDFs
2356 comparison_results[f"T{T_key}_TP{TP_value}"] = {}
2357
2358 for col in columns:
2359 # Combine data from all GDFs in this group
2360 combined_data = [gdf[col].dropna().values for gdf in gdf_list]
2361
2362 # Kruskal-Wallis test (checks if there's any difference)
2363 H_stat, p_kw = stats.kruskal(*combined_data)
2364
2365 if p_kw < 0.05: # If significant, perform Dunn’s test
2366 dunn_results = sp.posthoc_dunn(combined_data, p_adjust=

"bonferroni")
2367 comparison_results[f"T{T_key}_TP{TP_value}"][col] = {"Kruskal_p":

p_kw, "Dunn": dunn_results}
2368 else:
2369 comparison_results[f"T{T_key}_TP{TP_value}"][col] = {"Kruskal_p":

p_kw, "Dunn": None}
2370
2371 # Print results
2372 for group, results in comparison_results.items():
2373 print(📊f"\n Statistical Comparisons for {group}:")
2374 for col, stats_dict in results.items():

2375 print(🔹f" {col}: Kruskal-Wallis p-value = {stats_dict['Kruskal_p']:.4f}")
2376 if stats_dict["Dunn"] is not None:
2377 print(f" Dunn's test results:\n{stats_dict['Dunn']}")
2378 else:
2379 print(" No significant differences found.")
2380
2381 """## Homogenitiy classification"""
2382
2383 import matplotlib.pyplot as plt
2384 from matplotlib.table import Table
2385
2386 results = []
2387
2388 # Iterate over each group (T, TP)
2389 for group, group_results in comparison_results.items():
2390 # Extract T and TP from the group string
2391 T_value, TP_value = group.split('_')[0][1:], group.split('_')[1][2:]
2392
2393 # Process each column in the group's results
2394 for slope_key, stats_dict in group_results.items():
2395 # If Dunn's test is available
2396 if stats_dict['Dunn'] is not None:
2397 matrix = stats_dict['Dunn']
2398
2399 # Iterate over the rows of the matrix
2400 for row_index, row_values in matrix.iterrows():
2401 total_columns = len(row_values) - 1 # Subtracting 1 to exclude the

comparison with itself
2402 exceed_count = (row_values > 0.05).sum() - 1 # Count values

exceeding 0.05
2403 percentage = (exceed_count / total_columns) * 100
2404
2405 # Append the result to the results list
2406 results.append({
2407 "Area": T_value, # Extracted T value
2408 "TP": TP_value, # Extracted TP value
2409 "Slope": slope_key, # The slope key (e.g., 'TCB_slope')
2410 "RTSIndex": row_index, # The row index (single slump index)
2411 "TotalColumns": total_columns, # Total columns in the matrix

(excluding the diagonal)
2412 "Count>0.05": exceed_count, # Count of values exceeding 0.05
2413 "Percentage>0.05": percentage # Percentage of values exceeding

0.05
2414 })
2415
2416 # Print the results (or you could save them to a DataFrame)
2417 results_df = pd.DataFrame(results)
2418 print(results_df)
2419
2420 ## create tables from df, cecking if patterns are visible
2421 # Function to get row colors based on Percentage
2422 def get_row_color(percentage):
2423 if percentage == 0:
2424 return "darkviolet"
2425 elif percentage < 50:
2426 return "lavender"
2427 elif percentage >= 50 and percentage < 100:
2428 return "lightyellow"
2429 elif percentage == 100:
2430 return "gold"
2431 return "white"
2432
2433 # Function to create a table in a specific subplot
2434 def create_styled_table_in_subplot(ax, df, title="Table"):
2435 ax.axis("off")
2436 ax.set_title(title, fontsize=16, pad=26)
2437
2438 table = Table(ax, bbox=[0, 0, 1, 1])
2439 nrows, ncols = df.shape
2440
2441 col_labels = df.columns
2442 for col_idx, label in enumerate(col_labels):

2443 table.add_cell(-1, col_idx, text=label, width=1, height=0.2, facecolor=
"lightgray", loc="center")

2444
2445 # Row cells
2446 prev_subarea = None
2447 for row_idx, row in df.iterrows():
2448 current_subarea = row["Area"]
2449 edgecolor = "black"
2450 if prev_subarea != current_subarea:
2451 edgecolor = "black"
2452
2453 prev_subarea = current_subarea
2454
2455 for col_idx, value in enumerate(row):
2456 # Get cell color
2457 if col_labels[col_idx] == "Percentage>0.05":
2458 cell_color = get_row_color(row["Percentage>0.05"])
2459 else:
2460 cell_color = "white"
2461
2462 table.add_cell(
2463 row_idx,
2464 col_idx,
2465 text=str(value),
2466 width=1,
2467 height=0.2,
2468 facecolor=cell_color,
2469 loc="center",
2470 edgecolor=edgecolor,
2471)
2472
2473 # Add the table to the subplot
2474 ax.add_table(table)
2475
2476 # Prepare the DataFrame subsets and clean up slope names
2477 results_df_cleaned = results_df.drop(columns=["Slope"]) # Remove the Slope column
2478 unique_slopes = results_df["Slope"].unique()
2479
2480 # Create subplots for the tables
2481 fig, axes = plt.subplots(1, len(unique_slopes), figsize=(54, 40)) # Increased size

for higher resolution
2482 fig.tight_layout(pad=5)
2483
2484 # Create a table for each slope type
2485 for ax, slope in zip(axes, unique_slopes):
2486 slope_df = results_df[results_df["Slope"] == slope].drop(columns=["Slope"])
2487 clean_title = f"Slope: {slope.replace('_slope', '')}" # Clean slope name
2488 create_styled_table_in_subplot(ax, slope_df, title=clean_title)
2489
2490 plt.show()
2491
2492 def create_tp_summary_percentage_df(results_df):
2493 summary_dfs = {} # Dictionary to store summary DataFrames for each TP
2494
2495 # Get unique TP values
2496 tp_values = results_df["TP"].unique()
2497
2498 for tp in tp_values:
2499 # Filter for current TP
2500 tp_df = results_df[results_df["TP"] == tp]
2501
2502 summary_data = []
2503 areas = tp_df["Area"].unique()
2504
2505 for area in areas:
2506 area_df = tp_df[tp_df["Area"] == area]
2507 area_total = len(area_df)
2508
2509 summary_data.append([
2510 f"{area}",
2511 (area_df["Percentage>0.05"] == 0).sum() / area_total * 100, # Highly

homogeneous

2512 ((area_df["Percentage>0.05"] > 0) & (area_df["Percentage>0.05"] < 50
)).sum() / area_total * 100, # Homogeneous

2513 ((area_df["Percentage>0.05"] >= 50) & (area_df["Percentage>0.05"] <
100)).sum() / area_total * 100, # Heterogeneous

2514 (area_df["Percentage>0.05"] == 100).sum() / area_total * 100 #
Highly heterogeneous

2515])
2516
2517 summary_df = pd.DataFrame(summary_data, columns=[
2518 "Area",
2519 "Highly heterogeneous [%]",
2520 "Heterogeneous [%]",
2521 "Homogeneous [%]",
2522 "Highly homogeneous [%]"
2523])
2524
2525 area_mapping = {
2526 "T1": "Southern Taymyr",
2527 "T2": "Northern Olenek",
2528 "T3": "Chokurdakh",
2529 "T4": "Iultinsky (Chukotka)",
2530 "T6": "Southern Verkhoyansk Range"
2531 }
2532
2533 summary_df["Area"] = summary_df["Area"].replace(area_mapping)
2534
2535 # Round numeric columns
2536 numeric_cols = ["Highly homogeneous [%]", "Homogeneous [%]", "Heterogeneous

[%]", "Highly heterogeneous [%]"]
2537 summary_df[numeric_cols] = summary_df[numeric_cols].round(0).astype(int)
2538
2539 # Store DataFrame
2540 summary_dfs[f"TP_{tp}"] = summary_df
2541
2542 return summary_dfs
2543
2544 summary_results = create_tp_summary_percentage_df(results_df)
2545 summary_results
2546
2547 """## Plotting"""
2548
2549 import pandas as pd
2550 import plotly.express as px
2551 !pip install ipdb
2552 import numpy as np
2553 from collections import defaultdict
2554
2555 """https://plotly.com/python/sunburst-charts/
2556
2557 Creating the structure df for sunburst chart
2558 """
2559
2560 rts_datasets = { # collection of RTSs per area
2561 "T1": rtsT1_v2,
2562 "T2": rtsT2_v2,
2563 "T3": rtsT3_v2,
2564 "T4": rtsT4_v2,
2565 "T6": rtsT6_v2
2566 }
2567 # Table of propability of TPs per area
2568 rts_condensed = defaultdict(lambda: defaultdict(int))
2569 Terraintypes = np.arange(5)+1
2570 Regions = ["T1","T2","T3","T4","T6"]
2571 TP_lookup = ["TP_1","TP_2","TP_3","TP_4","TP_6"]
2572 ClassIndex = np.arange(4)
2573 Classifiers = ["Highly homogeneous [%]","Homogeneous [%]","Heterogeneous [%]","Highly

heterogeneous [%]"]
2574
2575 for key in Regions: # key = region
2576 for tptype in [1,2,3,4,6]: # ttype = art
2577 rts_condensed[key][tptype] = np.sum(np.array(rts_datasets[key]["TP"])==tptype)
2578

2579 # Mapping of dataset names (T1, T2, etc.) to their corresponding Region
2580 region_mapping = {
2581 "T1": "Southern Taymyr",
2582 "T2": "Northern Olenek",
2583 "T3": "Chokurdakh",
2584 "T4": "Iultinsky (Chukotka)",
2585 "T6": "Southern Verkhoyansk Range"
2586 }
2587
2588 # Mapping Terrain Position Names
2589 terrain_mapping = {
2590 "TP_1": "Sea",
2591 "TP_2": "Lake",
2592 "TP_3": "River",
2593 "TP_4": "Gully",
2594 "TP_5": "Others",
2595 "TP_6": "Ponds + Gully"
2596 }
2597
2598 summary_results # Data frame sorted by TP (+ area and similarity classification)
2599
2600 # Goal: Region | Terrain Position | Similarity Classification | Classification Number

(for colour scheme)| Counts
2601
2602 Results = pd.DataFrame(columns=['Region','Terrain Position','Classification',

'ClassificationNumber','Count', "S.Percentage"])
2603
2604 # generate a vector of coordinates for areas and TPs
2605 grid1, grid2, grid3 = np.meshgrid(Regions, Terraintypes, ClassIndex)
2606 Stepvector = np.array(list(zip(grid1.ravel(), grid2.ravel(), grid3.ravel())))
2607
2608 # Results Dataframe line by line
2609 for ll in np.arange(Stepvector.shape[0]):
2610 tmp_Region = region_mapping[Stepvector[ll,0]]
2611 tmp_TP = terrain_mapping[TP_lookup[int(Stepvector[ll,1])-1]]
2612 tmp_Class = Classifiers[int(Stepvector[ll,2])]
2613 tmp_total_Count = rts_condensed[Stepvector[ll,0]][int(Stepvector[ll,1])]
2614
2615 # Add statistical results (similarity classification)
2616 tmp_table = summary_results[TP_lookup[int(Stepvector[ll,1])-1]]
2617 tmp_table2 = tmp_table[tmp_table['Area'] == tmp_Region]
2618
2619 tmp_Class_num = int(Stepvector[ll,2])+1
2620
2621 if tmp_table2[tmp_Class].empty:
2622 tmp_Count = 0 # null slumps is default
2623 tmp_class_value = 0
2624 else:
2625 tmp_class_value = tmp_table2[tmp_Class].values[0]
2626 # normalize with totaltpcounts
2627 tmp_Count = np.round(tmp_class_value*tmp_total_Count/100,2)
2628
2629 Results.loc[ll] = pd.Series({'Region':tmp_Region, 'Terrain Position':tmp_TP,

'Classification':tmp_Class,'ClassificationNumber':tmp_Class_num, 'Count':tmp_Count,
"S.Percentage":tmp_class_value})

2630
2631 Results
2632
2633 # Remove rows with Count == 0
2634 TP_SS_Results = Results[Results['Count'] != 0]
2635
2636 # Adding the values for TP_6 that the algorithim could not finde by hand
2637 TP_SS_Results.loc[80] = ['Iultinsky (Chukotka)', 'Ponds + Gully', "Heterogeneous [%]",

3, (np.round(12*11/100,2)), 12]
2638 TP_SS_Results.loc[81] = ['Iultinsky (Chukotka)', 'Ponds + Gully', "Homogeneous [%]", 2

, (np.round(70*11/100,2)), 70]
2639 TP_SS_Results.loc[82] = ['Iultinsky (Chukotka)', 'Ponds + Gully', "Highly homogeneous

[%]", 1, (np.round(18*11/100,2)), 18]
2640
2641 # Adding the values for single slumps that the algorithim could not finde by hand
2642 TP_SS_Results.loc[83] = ['Southern Taymyr', 'River', "Highly heterogeneous [%]", 4,

1.00, 0]

2643 TP_SS_Results.loc[84] = ['Southern Verkhoyansk Range', 'Gully', "Highly heterogeneous
[%]", 4, 1.00, 0]

2644
2645 #Define ClassificationNumber as integer for color sheme
2646 TP_SS_Results['ClassificationNumber'] = TP_SS_Results['ClassificationNumber'].astype(

int)
2647 TP_SS_Results
2648
2649 # save the data
2650 from google.colab import drive
2651 import pandas as pd
2652 #drive.mount('/content/drive')
2653
2654 #TP_SS_Results.to_csv('/content/drive/My Drive/Colab

Notebooks/Data/TP_SS_Results.csv')
2655
2656 # load the data
2657 #TP_SS_Results = pd.read_csv('/content/drive/My Drive/Colab

Notebooks/Data/TP_SS_Results.csv')
2658 #TP_SS_Results
2659
2660 # create sunburst chart
2661 import plotly.express as px
2662 import numpy as np
2663
2664 # Custom continuous color scale with specific colors
2665 custom_continuous_colors = [
2666 [0, "gold"], # Lower end of the scale (smallest values)
2667 [0.33, "lightyellow"], # Midpoint of the scale
2668 [0.66, "lavender"], # Further midpoint
2669 [1, "darkviolet"] # Upper end of the scale (largest values)
2670]
2671
2672 fig = px.sunburst(TP_SS_Results,
2673 path=['Region', 'Terrain Position', 'Classification'],
2674 values='Count',
2675 color='ClassificationNumber',
2676 color_continuous_scale=custom_continuous_colors,
2677)
2678 fig.update_layout(
2679 showlegend=True,
2680 coloraxis=dict(colorscale=custom_continuous_colors),
2681 coloraxis_colorbar=dict(
2682 tickvals=[4, 3, 2, 1], # Define the tick values for the

colorbar
2683 ticktext=["Highly heterogeneous", "Heterogeneous", "Homogeneous"

, "Highly homogeneous"]
2684)
2685)
2686 fig.show()
2687
2688 """Error calculation"""
2689
2690 TP_SS_Error = TP_SS_Results
2691 # table with error calculations
2692 TP_SS_Error["S.Percentage Error"] = 0.5
2693 TP_SS_Error["Count Error"] = 0 # Initialize 'Count Error' column to 0
2694
2695 # Use a loop or apply to calculate "Count Error" based on conditions
2696 for index in TP_SS_Error.index:
2697 if TP_SS_Error.loc[index, "S.Percentage"] != 0: # Check for non-zero percentage
2698 TP_SS_Error.loc[index, "Count Error"] = np.round(np.sqrt((TP_SS_Error.loc[

index, "S.Percentage Error"] / TP_SS_Error.loc[index, "S.Percentage"]) ** 2) *
TP_SS_Error.loc[index, "Count"],2)

2699
2700 # Select required columns
2701 TP_SS_Error = TP_SS_Error[["Region", "Terrain Position", "Classification",

"S.Percentage", "S.Percentage Error", "Count", "Count Error"]]
2702
2703 TP_SS_Error
2704
2705 """# Morphology, spectral slope similarity compairison (sub-hypothesis 4)

2706
2707 ## Calcutaion of statistics for all slumps
2708 """
2709
2710 from scipy.stats import shapiro
2711 !pip install scikit-posthocs
2712 # during analysis the version "0.11.2-py3-none-any.whl.metadata (5.8 kB)" was used.
2713 #That version is no longer availabe and version 0.11.3 can produce slightly different

results.
2714 import scipy.stats as stats
2715 import scikit_posthocs as sp
2716 import pandas as pd
2717
2718 ### Dunn’s Test and Kruskal-Wallis tests
2719
2720 # Define numerical columns to compare
2721 columns = ["TCB_slope", "TCG_slope", "TCW_slope"]
2722
2723 comparison_results = {}
2724
2725 # Group GDFs by T number (Area) and Shape value
2726 for T_key, sub_gdfs in gdf_singleRTSs_plus_Property.items():
2727 shape_groups = {} # Dictionary to store groups by Shape value
2728
2729 # Organize GDFs by Shape value
2730 for df_name, df in sub_gdfs.items():
2731 parts = df_name.split("_")
2732 Shape_value = int(parts[3][5:]) # Extract Shape value from 'ShapeX'
2733
2734 if Shape_value not in shape_groups:
2735 shape_groups[Shape_value] = []
2736
2737 shape_groups[Shape_value].append(df)
2738
2739 # Perform statistical comparisons within each Shape group
2740 for Shape_value, gdf_list in shape_groups.items():
2741 if len(gdf_list) > 1: # Only compare if we have multiple GDFs
2742 comparison_results[f"T{T_key}_Shape{Shape_value}"] = {}
2743
2744 for col in columns:
2745 # Combine data from all GDFs in this group
2746 combined_data = [gdf[col].dropna().values for gdf in gdf_list]
2747
2748 # Kruskal-Wallis test (checks if there's any difference)
2749 H_stat, p_kw = stats.kruskal(*combined_data)
2750
2751 if p_kw < 0.05: # If significant, perform Dunn’s test
2752 dunn_results = sp.posthoc_dunn(combined_data, p_adjust=

"bonferroni")
2753 comparison_results[f"T{T_key}_Shape{Shape_value}"][col] = {

"Kruskal_p": p_kw, "Dunn": dunn_results}
2754 else:
2755 comparison_results[f"T{T_key}_Shape{Shape_value}"][col] = {

"Kruskal_p": p_kw, "Dunn": None}
2756
2757 # Print results
2758 for group, results in comparison_results.items():
2759 print(📊f"\n Statistical Comparisons for {group}:")
2760 for col, stats_dict in results.items():
2761 print(🔹f" {col}: Kruskal-Wallis p-value = {stats_dict['Kruskal_p']:.4f}")
2762 if stats_dict["Dunn"] is not None:
2763 print(f" Dunn's test results:\n{stats_dict['Dunn']}")
2764 else:
2765 print(" No significant differences found.")
2766
2767 import matplotlib.pyplot as plt
2768 from matplotlib.table import Table
2769
2770 results = []
2771
2772 # Iterate over each group (T, Shape)
2773 for group, group_results in comparison_results.items():

2774 # Extract T and Shape from the group string
2775 T_value, Shape_value = group.split('_')[0][1:], group.split('_')[1][5:]
2776
2777 # Process each column in the group's results
2778 for slope_key, stats_dict in group_results.items():
2779 # If Dunn's test is available
2780 if stats_dict['Dunn'] is not None:
2781 matrix = stats_dict['Dunn']
2782
2783 # Iterate over the rows of the matrix
2784 for row_index, row_values in matrix.iterrows():
2785 total_columns = len(row_values) - 1 # Subtracting 1 to exclude the

comparison with itself
2786 exceed_count = (row_values > 0.05).sum() - 1 # Count values

exceeding 0.05
2787 percentage = (exceed_count / total_columns) * 100
2788
2789 # Append the result to the results list
2790 results.append({
2791 "Area": T_value, # Extracted T value
2792 "Shape": Shape_value, # Extracted TP value
2793 "Slope": slope_key, # The slope key (e.g., 'TCB_slope')
2794 "RTSIndex": row_index, # The row index (single slump index)
2795 "TotalColumns": total_columns, # Total columns in the matrix

(excluding the diagonal)
2796 "Count>0.05": exceed_count, # Count of values exceeding 0.05
2797 "Percentage>0.05": percentage # Percentage of values exceeding

0.05
2798 })
2799
2800 # Print the results
2801 results_df = pd.DataFrame(results)
2802 print(results_df)
2803
2804 """## Homogenitiy classification"""
2805
2806 ## create tables from df, cecking if patterns are visible
2807 # Function to get row colors based on Percentage
2808 def get_row_color(percentage):
2809 if percentage == 0:
2810 return "darkviolet"
2811 elif percentage < 50:
2812 return "lavender"
2813 elif percentage >= 50 and percentage < 100:
2814 return "lightyellow"
2815 elif percentage == 100:
2816 return "gold"
2817 return "white"
2818
2819 # Function to create a table in a specific subplot
2820 def create_styled_table_in_subplot(ax, df, title="Table"):
2821 ax.axis("off")
2822 ax.set_title(title, fontsize=16, pad=26)
2823
2824 table = Table(ax, bbox=[0, 0, 1, 1])
2825 nrows, ncols = df.shape
2826
2827 col_labels = df.columns
2828 for col_idx, label in enumerate(col_labels):
2829 table.add_cell(-1, col_idx, text=label, width=1, height=0.2, facecolor=

"lightgray", loc="center")
2830
2831 # Row cells
2832 prev_subarea = None
2833 for row_idx, row in df.iterrows():
2834 current_subarea = row["Area"]
2835 edgecolor = "black"
2836 if prev_subarea != current_subarea:
2837 edgecolor = "black"
2838
2839 prev_subarea = current_subarea
2840

2841 for col_idx, value in enumerate(row):
2842 # Get cell color
2843 if col_labels[col_idx] == "Percentage>0.05":
2844 cell_color = get_row_color(row["Percentage>0.05"])
2845 else:
2846 cell_color = "white"
2847
2848 table.add_cell(
2849 row_idx,
2850 col_idx,
2851 text=str(value),
2852 width=1,
2853 height=0.2,
2854 facecolor=cell_color,
2855 loc="center",
2856 edgecolor=edgecolor,
2857)
2858
2859 # Add the table to the subplot
2860 ax.add_table(table)
2861
2862 # Prepare the DataFrame subsets and clean up slope names
2863 results_df_cleaned = results_df.drop(columns=["Slope"]) # Remove the Slope column
2864 unique_slopes = results_df["Slope"].unique()
2865
2866 # Create subplots for the tables
2867 fig, axes = plt.subplots(1, len(unique_slopes), figsize=(54, 40)) # Increased size

for higher resolution
2868 fig.tight_layout(pad=5)
2869
2870 # Create a table for each slope type
2871 for ax, slope in zip(axes, unique_slopes):
2872 slope_df = results_df[results_df["Slope"] == slope].drop(columns=["Slope"])
2873 clean_title = f"Slope: {slope.replace('_slope', '')}" # Clean slope name
2874 create_styled_table_in_subplot(ax, slope_df, title=clean_title)
2875
2876 plt.show()
2877
2878 def create_tp_summary_percentage_df(results_df):
2879 summary_dfs = {} # Dictionary to store summary DataFrames for each Shape
2880
2881 # Get unique Shape values
2882 Shape_values = results_df["Shape"].unique()
2883
2884 for shape in Shape_values:
2885 # Filter for current Shape
2886 shape_df = results_df[results_df["Shape"] == shape]
2887
2888 summary_data = []
2889 areas = shape_df["Area"].unique()
2890
2891 for area in areas:
2892 area_df = shape_df[shape_df["Area"] == area]
2893 area_total = len(area_df)
2894
2895 summary_data.append([
2896 f"{area}",
2897 (area_df["Percentage>0.05"] == 0).sum() / area_total * 100, # Highly

heterogeneous
2898 ((area_df["Percentage>0.05"] > 0) & (area_df["Percentage>0.05"] < 50

)).sum() / area_total * 100, # Heterogeneous
2899 ((area_df["Percentage>0.05"] >= 50) & (area_df["Percentage>0.05"] <

100)).sum() / area_total * 100, # Homogeneous
2900 (area_df["Percentage>0.05"] == 100).sum() / area_total * 100 #

Highly homogeneous
2901])
2902
2903 # Create DataFrame
2904 summary_df = pd.DataFrame(summary_data, columns=[
2905 "Area",
2906 "Highly heterogeneous [%]",
2907 "Heterogeneous [%]",

2908 "Homogeneous [%]",
2909 "Highly homogeneous [%]"
2910])
2911
2912 area_mapping = {
2913 "T1": "Southern Taymyr",
2914 "T2": "Northern Olenek",
2915 "T3": "Chokurdakh",
2916 "T4": "Iultinsky (Chukotka)",
2917 "T6": "Southern Verkhoyansk Range"
2918 }
2919
2920 summary_df["Area"] = summary_df["Area"].replace(area_mapping)
2921
2922 # Round numeric columns
2923 numeric_cols = ["Highly homogeneous [%]", "Homogeneous [%]", "Heterogeneous

[%]", "Highly heterogeneous [%]"]
2924 summary_df[numeric_cols] = summary_df[numeric_cols].round(0).astype(int)
2925
2926 # Store DataFrame
2927 summary_dfs[f"Shape_{shape}"] = summary_df
2928
2929 return summary_dfs
2930
2931 summary_results = create_tp_summary_percentage_df(results_df)
2932 summary_results
2933
2934 """## Plotting"""
2935
2936 import pandas as pd
2937 import plotly.express as px
2938 !pip install ipdb
2939 import numpy as np
2940 from collections import defaultdict
2941
2942 rts_datasets = {
2943 "T1": rtsT1_v2,
2944 "T2": rtsT2_v2,
2945 "T3": rtsT3_v2,
2946 "T4": rtsT4_v2,
2947 "T6": rtsT6_v2
2948 }
2949
2950 rts_condensed = defaultdict(lambda: defaultdict(int))
2951 Shapetypes = np.arange(2)+1
2952 Regions = ["T1","T2","T3","T4","T6"]
2953 Shape_lookup = ["Shape_0", "Shape_1", "Shape_2"]
2954 ClassIndex = np.arange(4)
2955 Classifiers = ["Highly homogeneous [%]","Homogeneous [%]","Heterogeneous [%]","Highly

heterogeneous [%]"]
2956
2957 for key in Regions: # key = region
2958 for shtype in [1,2,3,4,6]: # ttype = art
2959 rts_condensed[key][shtype] = np.sum(np.array(rts_datasets[key]["Shpe"])==shtype)
2960
2961 # Mapping of dataset names (T1, T2, etc.) to their corresponding Region
2962 region_mapping = {
2963 "T1": "Southern Taymyr",
2964 "T2": "Northern Olenek",
2965 "T3": "Chokurdakh",
2966 "T4": "Iultinsky (Chukotka)",
2967 "T6": "Southern Verkhoyansk Range"
2968 }
2969
2970 # Mapping Morphology Names
2971 Shape_mapping = {
2972 "Shape_0": "Thermocirque",
2973 "Shape_1": "Thermoterrace",
2974 "Shape_2": "Combination"
2975 }
2976
2977 summary_results # Data frame sorted by shape class/morphology ("Shape_*")

2978
2979
2980 Results = pd.DataFrame(columns=['Region','Morphology','Classification',

'ClassificationNumber','Count', "S.Percentage"])
2981
2982 # generate a vector of coordinates for areas and Shapes
2983 grid1, grid2, grid3 = np.meshgrid(Regions, Shapetypes, ClassIndex)
2984 Stepvector = np.array(list(zip(grid1.ravel(), grid2.ravel(), grid3.ravel())))
2985
2986 # Results Dataframe line by line
2987 for ll in np.arange(Stepvector.shape[0]):
2988 tmp_Region = region_mapping[Stepvector[ll,0]]
2989 tmp_Shape = Shape_mapping[Shape_lookup[int(Stepvector[ll,1])]]#-1!!!!!!
2990 tmp_Class = Classifiers[int(Stepvector[ll,2])]
2991 tmp_total_Count = rts_condensed[Stepvector[ll,0]][int(Stepvector[ll,1])]
2992
2993 tmp_table = summary_results[Shape_lookup[int(Stepvector[ll,1])]]#-1!!!!!!!!!
2994 tmp_table2 = tmp_table[tmp_table['Area'] == tmp_Region]
2995
2996 tmp_Class_num = int(Stepvector[ll,2])+1
2997
2998 if tmp_table2[tmp_Class].empty:
2999 tmp_Count = 0
3000 else:
3001 tmp_class_value = tmp_table2[tmp_Class].values[0]
3002
3003 tmp_Count = np.round(tmp_class_value*tmp_total_Count/100,2)
3004
3005 Results.loc[ll] = pd.Series({'Region':tmp_Region, 'Morphology':tmp_Shape,

'Classification':tmp_Class,'ClassificationNumber':tmp_Class_num, 'Count':tmp_Count,
"S.Percentage": tmp_class_value})

3006
3007 Results
3008
3009 # Delet if Count == 0
3010 Shape_SS_Results = Results[Results['Count'] != 0]
3011
3012 # Adding the values for TP_6 that the algorithim could not finde by hand
3013 Shape_SS_Results.loc[50] = ['Southern Taymyr', 'Thermocirque', "Highly heterogeneous

[%]", 4, (np.round(2*14/100,2)), 2]
3014 Shape_SS_Results.loc[51] = ['Southern Taymyr', 'Thermocirque', "Heterogeneous [%]", 3,

(np.round(33*14/100,2)), 33]
3015 Shape_SS_Results.loc[52] = ['Southern Taymyr', 'Thermocirque', "Homogeneous [%]", 2, (

np.round(62*14/100,2)), 62]
3016 Shape_SS_Results.loc[53] = ['Southern Taymyr', 'Thermocirque', "Highly homogeneous

[%]", 1, (np.round(2*14/100,2)), 2]
3017
3018 Shape_SS_Results.loc[54] = ['Northern Olenek', 'Thermocirque', "Highly heterogeneous

[%]", 4, (np.round(44*3/100,2)), 44]
3019 Shape_SS_Results.loc[55] = ['Northern Olenek', 'Thermocirque', "Homogeneous [%]", 2, (

np.round(44*3/100,2)), 44]
3020 Shape_SS_Results.loc[56] = ['Northern Olenek', 'Thermocirque', "Highly homogeneous

[%]", 1, (np.round(11*3/100,2)), 11]
3021
3022 Shape_SS_Results.loc[57] = ['Chokurdakh', 'Thermocirque', "Heterogeneous [%]", 3, (np.

round(17*10/100,2)), 17]
3023 Shape_SS_Results.loc[58] = ['Chokurdakh', 'Thermocirque', "Homogeneous [%]", 2, (np.

round(57*10/100,2)), 57]
3024 Shape_SS_Results.loc[59] = ['Chokurdakh', 'Thermocirque', "Highly homogeneous [%]", 1,

(np.round(27*10/100,2)), 27]
3025
3026 Shape_SS_Results.loc[60] = ['Iultinsky (Chukotka)', 'Thermocirque', "Heterogeneous

[%]", 3, (np.round(17*22/100,2)), 17]
3027 Shape_SS_Results.loc[61] = ['Iultinsky (Chukotka)', 'Thermocirque', "Homogeneous [%]",

2, (np.round(73*22/100,2)), 73]
3028 Shape_SS_Results.loc[62] = ['Iultinsky (Chukotka)', 'Thermocirque', "Highly

homogeneous [%]", 1, (np.round(11*22/100,2)), 11]
3029
3030 Shape_SS_Results.loc[63] = ['Southern Verkhoyansk Range', 'Thermocirque', "Highly

heterogeneous [%]", 4, (np.round(11*6/100,2)), 11]
3031 Shape_SS_Results.loc[64] = ['Southern Verkhoyansk Range', 'Thermocirque',

"Heterogeneous [%]", 3, (np.round(67*6/100,2)), 67]

3032 Shape_SS_Results.loc[65] = ['Southern Verkhoyansk Range', 'Thermocirque',
"Homogeneous [%]", 2, (np.round(22*6/100,2)), 22]

3033
3034 # Adding the values for single slumps that the algorithim could not finde by hand
3035 Shape_SS_Results.loc[83] = ['Southern Verkhoyansk Range', 'Thermoterrace', "Highly

heterogeneous [%]", 4, 1.00, 0]
3036
3037 #Define ClassificationNumber as integer for color scheme
3038 Shape_SS_Results['ClassificationNumber'] = Shape_SS_Results['ClassificationNumber'].

astype(int)
3039 Shape_SS_Results
3040
3041 # Save the data
3042 from google.colab import drive
3043 import pandas as pd
3044 #drive.mount('/content/drive')
3045
3046 #TP_SS_Results.to_csv('/content/drive/My Drive/Colab

Notebooks/Data/TP_SS_Results.csv')
3047
3048 #load the data
3049 #TP_SS_Results = pd.read_csv('/content/drive/My Drive/Colab

Notebooks/Data/TP_SS_Results.csv')
3050 #TP_SS_Results
3051
3052 # create sunburst chart
3053 # Continuous color scale with specific colors
3054 custom_continuous_colors = [
3055 [0, "gold"], # Lower end of the scale (smallest values)
3056 [0.33, "lightyellow"], # Midpoint of the scale
3057 [0.66, "lavender"], # Further midpoint
3058 [1, "darkviolet"] # Upper end of the scale (largest values)
3059]
3060 fig = px.sunburst(Shape_SS_Results,
3061 path=['Region', 'Morphology', 'Classification'],
3062 values='Count',
3063 color='ClassificationNumber',
3064 color_continuous_scale=custom_continuous_colors,
3065)
3066 fig.update_layout(
3067 showlegend=True,
3068 coloraxis=dict(colorscale=custom_continuous_colors),
3069 coloraxis_colorbar=dict(
3070 tickvals=[4, 3, 2, 1], # Define the tick values for the

colorbar
3071 ticktext=["Highly heterogeneous", "Heterogeneous", "Homogeneous"

, "Highly homogeneous"]
3072)
3073)
3074 fig.show()
3075
3076 """Error calculation"""
3077
3078 Shape_SS_Error = Shape_SS_Results
3079 # table with error calculations
3080 Shape_SS_Error["S.Percentage Error"] = 0.5
3081 Shape_SS_Error["Count Error"] = 0 # Initialize 'Count Error' column to 0
3082
3083 # Use a loop or apply to calculate "Count Error" based on conditions
3084 for index in Shape_SS_Error.index:
3085 if Shape_SS_Error.loc[index, "S.Percentage"] != 0: # Check for non-zero

percentage
3086 Shape_SS_Error.loc[index, "Count Error"] = np.round(np.sqrt((Shape_SS_Error.

loc[index, "S.Percentage Error"] / Shape_SS_Error.loc[index, "S.Percentage"])
** 2) * Shape_SS_Error.loc[index, "Count"],2)

3087
3088 # Select required columns
3089 Shape_SS_Error = Shape_SS_Error[["Region", "Morphology", "Classification",

"S.Percentage", "S.Percentage Error", "Count", "Count Error"]]
3090
3091 Shape_SS_Error
3092

3093 """# Relation of morphologie and terrain positions
3094
3095
3096 """
3097
3098 import pandas as pd
3099 from collections import Counter
3100 import plotly.express as px
3101 import numpy as np
3102
3103 from shapely.geometry import MultiPoint, Polygon
3104 import pandas as pd
3105 from collections import Counter
3106 ## Data with center coordinates of Regions for Zenodo
3107 # Region Name Mapping & Corresponding FeatureCollection IDs
3108 region_mapping = {
3109 "T1": "Southern Taymyr",
3110 "T2": "Northern Olenek",
3111 "T3": "Chokurdakh",
3112 "T4": "Iultinsky (Chukotka)",
3113 "T6": "Southern Verkhoyansk Range"
3114 }
3115
3116 region_feature_collections = {
3117 "T1": "projects/ee-moritzjulia7/assets/Area_T1",
3118 "T2": "projects/ee-moritzjulia7/assets/Area_T2",
3119 "T3": "projects/ee-moritzjulia7/assets/Area_T3",
3120 "T4": "projects/ee-moritzjulia7/assets/Area_T4",
3121 "T6": "projects/ee-moritzjulia7/assets/Area_T6"
3122 }
3123
3124 # Morphology Name Mapping
3125 Shape_mapping = {
3126 "Shape0": "Thermocirque",
3127 "Shape1": "Thermoterrace",
3128 "Shape2": "Combination"
3129 }
3130
3131 # Terrain Position Mapping
3132 terrain_mapping = {
3133 "TP1": "Sea",
3134 "TP2": "Lake",
3135 "TP3": "River",
3136 "TP4": "Gully",
3137 "TP5": "Others",
3138 "TP6": "Ponds + Gully"
3139 }
3140
3141 # Compute centroid for each region's FeatureCollection
3142 centroid_mapping = {}
3143
3144 for region, asset_id in region_feature_collections.items():
3145 feature_collection = ee.FeatureCollection(asset_id) # Load FeatureCollection

from GEE
3146 region_feature = feature_collection.first() # Get the first (and only) feature
3147 coordinates = region_feature.geometry().coordinates().getInfo()[0] # Extract

polygon coordinates
3148
3149 # Convert coordinates to Shapely Polygon and compute centroid
3150 polygon = Polygon(coordinates)
3151 centroid = polygon.centroid
3152 centroid_mapping[region_mapping[region]] = (centroid.x, centroid.y)
3153
3154 # Flatten dictionary and collect all df names
3155 df_keys = [df_key for sub_dict in gdf_singleRTSs_plus_Property.values() for df_key in

sub_dict.keys()]
3156
3157 # Parse and clean keys
3158 parsed_keys = []
3159 region_terrain_counts = Counter()
3160
3161 for df_key in df_keys:

3162 parts = df_key.split("_")
3163 region, terrain_position, morphology = parts[0], parts[2], parts[3] # Ignore

`fid`
3164
3165 # Apply mappings
3166 region_name = region_mapping.get(region, region) # Map region, fallback to

original if missing
3167 terrain_name = terrain_mapping.get(terrain_position, terrain_position) # Map

terrain, fallback if missing
3168 morphology_name = Shape_mapping.get(morphology, morphology) # Map morphology,

fallback if missing
3169
3170 parsed_keys.append((region_name, terrain_name, morphology_name))
3171 region_terrain_counts[(region_name, terrain_name)] += 1 # Count (Region, Terrain

Position) pairs
3172
3173 # Count occurrences of unique (Region, Terrain Position, Morphology)
3174 df_count = Counter(parsed_keys)
3175
3176 # Create DataFrame
3177 data = []
3178 for (region_name, terrain_name, morphology_name), count in df_count.items():
3179 total_count = region_terrain_counts[(region_name, terrain_name)] # Get count for

(Region, Terrain Position)
3180 row_percentage = (count / total_count) * 100 # Compute percentage
3181 centroid_coords = centroid_mapping.get(region_name, (None, None)) # Fetch

centroid
3182
3183 data.append([region_name, terrain_name, morphology_name, count, centroid_coords])
3184
3185 df_result = pd.DataFrame(data, columns=["Region", "Terrain Position", "Morphology",

"Count", "Region Center Coordinates"])
3186
3187 # Display result
3188 print(df_result)
3189
3190 df_result.to_csv('Data_RTS_Morphology-TP_Siberia.csv', index=False) # Save CSV

without the index
3191
3192 #create sunburst chart
3193 fig = px.sunburst(df_result,
3194 path=['Region', 'Terrain Position', 'Morphology'],
3195 values='Count',
3196 color="Region", # Coloring by Region
3197 color_discrete_map={
3198 "Southern Taymyr": "lightblue",
3199 "Northern Olenek": "blue",
3200 "Chokurdakh": "orange",
3201 "Iultinsky (Chukotka)": "#734F96",
3202 "Southern Verkhoyansk Range": "darkred"})
3203
3204 fig.update_layout(
3205 showlegend=True
3206)
3207 fig.show()
3208 #fig.write_html("/content/drive/My Drive/Colab

Notebooks/Data/sunburst_Morphology-TP.html")

