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More realistic plankton simulation models 
will improve projections of ocean ecosystem 
responses to global change
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Plankton models form the core of marine ecosystem simulators, with uses 
from regional resource and ecosystem management to climate change 
projections. In this Perspective, we suggest that stronger alignment of 
models with empirical knowledge about plankton physiology, diversity 
and trophic roles will improve model utility and the reliability of their 
outputs regarding biodiversity, ecophysiology, trophic dynamics a nd b io
geochemistry. We recommend key steps to resolve the disconnect between 
empirical research and simulation models accounting for wellestablished 
plankton processes with an aim to increase the utility of such models 
for applied uses. A central challenge is characterizing the complexity 
of plankton diversity and activity in ways that are amenable to model 
incorporation. We argue that experts in empirical science are best placed 
to advise the development of nextgeneration models to address these 
challenges, and we propose a series of actions to achieve that engagement, 
including involvement of these experts in the design and exploitation of 
plankton digital twins.

Plankton have pivotal roles in biogeochemical cycling, carbon seques
tration, climate regulation and functioning of marine food webs1. These 
roles critically depend on the composition of the plankton commu
nities, including their diversities in form, function, interactivity and 
consequential growth and loss dynamics2–6. Simulation models provide 
important research tools for predicting the future and whatif testing 
of marine ecosystems. This capacity is required for resource and eco
system management, for considering the safety and efficacy of geoen
gineering strategies such as iron fertilization7 and ocean alkalinization, 

and for making climate change projections8 of processes affecting 
and affected by planktonic organisms and the biogeochemical cycles 
they mediate9–12. Confidence in simulation outputs underpinning such 
activities requires confidence in the conceptual base of the models.

The past few years have seen the emergence of a new type of simula
tion model known as digital twins. There is no single definition of ‘digital 
twins’, but they typically provide an interactive platform for exploring 
a virtual representation of reality, with a comprehensive graphic user 
interface enabling their ready exploitation by stakeholders rather than 
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explore whatif behaviours beyond the bounds of any empirical data 
used in model testing (calibration and validation).

Our consideration of the status of the building blocks of extant 
plankton models15 draws us to identify important areas in which current 
plankton models need to be improved to avoid being overly simplis
tic in their description of physiology and/or in trophic connectivity. 
These areas include descriptions of the plankton community (that 
is, the number of plankton functional types used and their trophic 
linkages), their typespecific physiological features and the emergent 
biogeochemical activities. Specific concerns include aspects of funda
mental processes such as primary production, resource acquisition, 
prey selectivity, efficiencies and stoichiometries of trophic transfers, 
and temperature effects15.

It is especially timely to raise these concerns because accumulat
ing evidence shows that plankton diversity, size structure, nutritional 
value for higher trophic levels and biogeochemical functioning are all 
changing from local to global scales through time and space21–25. There 
are a range of plankton descriptions in the most commonly used marine 
system models, from ‘phytoplankton’ and ‘zooplankton’ in simplistic 
terms, that are at times split into additional labelled subgroups26. 
More complex models include several plankton functional groups (for 
example, up to 11 in PlankTOM11 (ref. 27)), but none can truly claim to 
represent real ocean biodiversity, let alone biological variation at geno
typic or phenotypic resolution (for example, populations or ecotypes). 
Core features of plankton models, such as physiological interactions 
and trophic connectivities, can also be problematic15. There is thus an 
urgent need to consider enhancing these models and perhaps even 
developing a new generation of plankton models.

Development of plankton models versus advances 
in empirical science
The foundation of most existing plankton models dates back more than 
50 years28–31, with the classic nutrient–phytoplankton–zooplankton 
model32 that forms the core of major plankton ecosystem models now 
surpassing 30 years of use. Over this period, the science of marine 
ecology and related aspects of research have undergone profound 
transformations, much allied with applications of molecular biology33. 
Conceptual shifts, such as the recognition of the microbial loop34,35, 
the viral shunt36, the microbial carbon pump37, predator and viral 
derived population dynamics38, and mixotrophy and the mixoplankton 
paradigm39,40, alongside more general developments such as ecological 
stoichiometry41 and recognition of the broad scope of resource acqui
sition processes1 and species interactions, have collectively resulted 
in radical advances in our understanding of plankton ecology. Such 
advances have prompted calls for fundamental revisions of plankton 
modelling approaches42,43, but these have only partially materialized.

Specific advances (for example, in simulating multistressor 
impacts44, phytoplankton biodiversity45 and stoichiometric modula
tion of predation46) have, by and large, not been included in mainstream 
ecosystem models. This is presumably because these innovations were 
not thought to make a sufficient improvement to justify the effort and 
computational cost of their implementation and/or because of a scar
city of numeric data for their configuration and validation. Indeed, the 
relative simplicity of extant models is not due solely to aspirations for 
simplicity and reduction (that is, the application of Occam’s razor); a 
key problem invariably highlighted by plankton modellers is the lack 
of robust numeric data needed to aid in the construction and testing 
of alternative model formulations47. Empirical science does, however, 
offer extensive phenomenological understanding of plankton, and 
these forms of data are at variance with the core conceptual underpin
nings of plankton models with respect to both physiological details 
(autecology) and trophic connectivities (ecology).

The vast majority of exploratory developments in plankton 
models have focused on phytoplankton, a group that we now real
ize is confounded by historic inclusion of the photophagotrophic 

just by modellers and data analysts per se. Used as decisionsupport 
tools, digital twins thus enable users without expertise in modelling to 
interactively use simulations to explore different scenarios. However, 
it is vitally important that digital twins are built on solid empirical and 
modelling foundations that are continuously updated and integrated 
to provide a plausible ‘twin’ experience to users of such platforms. 
Applications in marine science are exemplified by the United Nations’ 
Digital Twins of the Ocean initiative (https://dittooceandecade.org), 
with an example being the Bridge Black Sea demonstrator (https://
bridgeblacksea.org).

While plankton may be expected to be common components of 
marine ecosystem digital twins, the building and use of digital twins 
has been proposed13 to also offer a route to bring together disparate 
plankton research strands into a holistic dynamic description of the 
ecology of organisms that dominate the largest continuous ecosys
tem on Earth, the ocean. To this end, a project entitled ‘Simulating 
plankton—getting it right in the era of Digital Twins of the Ocean’14 
commenced in 2023, exploring the needs for constructing a plankton 
digital twin (PDT) platform. This enterprise involved experts in various 
aspects of plankton empirical and modelling science, most of whom 
are authors of this Perspective. Contributors were asked to bring their 
broad understanding of plankton to the project, focusing on holistic 
phenomenological data rather than just numeric data. This engage
ment provides “expert witness validation”13, an analogue of a Turing 
test, to provide confidence that models of individual plankton types 
and of their ecologies behave in convincing ways. As part of the project, 
we considered the need for core ecophysiological and ecological (that 
is, trophic) functionalities expected in PDTs. In doing so, we identified 
disparities between descriptions provided by extant plankton models 
and the stateoftheart knowledge about plankton ecology, physiology 
and biogeochemistry15.

Building from our project15, in this Perspective, we work through 
the challenges that lie ahead in resolving the disparities between extant 
plankton models and advances in empirical plankton science, not only 
for the development of PDTs but also, arguably more importantly, for 
enhancing the structure and functioning of all ecosystem models that 
include representations of plankton.

The need for a new generation of plankton models
In addition to deployments in digital twins, it is essential that the con
ceptual and simulation models that underpin marine research (includ
ing the development of the next generation of artificial intelligence 
and bigdata analyses) are consistent with recent empirical findings. 
Furthermore, the development and implementation of nextgeneration 
environmental monitoring technologies are inevitably influenced by 
the needs for specific types of data at appropriate spatial and tem
poral resolution, details that may be guided by the needs of model
lers. It is therefore necessary to periodically examine whether extant 
planktoncontaining models remain fit for purpose. The inclusion of 
the role of microbiology in Earth systems models has recently been 
subjected to such questioning and found wanting16, while a general 
marinefacing opinion piece on the interface between models and 
observations has also been presented17. Although there is evidenced 
skill across plankton model systems (that is, simulation output aligns 
with empirical data18), the modelling community is also acutely aware 
that there are substantial uncertainties and intermodel variability6,19.

Data on natural plankton populations and activities are fragmen
tary in their coverage of diverse organisms, as well as their temporal and 
spatial variability. As such, these data are insufficient for providing high 
levels of confidence in model output. There are also potential risks of 
extrapolating from models that produce the right answer for the wrong 
reason—for example, misdirecting loss process between grazing and 
nongrazing mortality rates20. Judging realism in simulation outputs 
must thus also consider the broad conceptual framework on which 
models are built. This is especially important for deployments used to 
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mixoplankton40. This means that the ‘phytoplankton’, as well as a fair 
proportion of the ‘protist (or micro) zooplankton’, actually include 
organisms that act simultaneously as primary producers and consum
ers. The dual functionality of plankton that simultaneously produce 
and consume organic matter poses a profound challenge to traditional 
plankton models. Equally fundamental, perhaps, given the longstanding 
interest in the biological carbon pump in plankton models48–51, are the 
wellrecognized issues surrounding the descriptions of zooplankton 
ecophysiology52, which still remain unresolved over a decade later53. 
To these we can add the role of viruses54, the microbial carbon pump37 
and the roles of prokaryotic functional guilds55,56, none of which are 
usually incorporated in these models. At the level of physiology, chal
lenges include such fundamental aspects as the arrangement of the 
consumer model equations57, making unrealistic assumptions over 
predatortoprey size ratios58 and the handling of multiple prey types59,60.

Developments in ecosystemfocused plankton modelling, and 
indeed textbooks on plankton, take a long time to catch up with empiri
cal discoveries in plankton physiology and ecology. We are concerned 
that the evident gap between empirical plankton research and mod
elling is widening still further. This poses the distinct risk that the 
decision support tools required to assist in the management and safe
guarding of regional to planetaryscale ecology and biogeochemistry 
(for example, climate change responses) may not be fit for delivery to 
those tasks.

Integrating modelling with empirical science
Traditionally, empirical scientists have had little if any active input into 
plankton model design or exploitation, although the few publications 
that discuss such collaborations27,61 flag the value of such engagements. 
As a consequence, the discussion as to what to include and exclude in 
planktonfacing models42,47 appears to lack a comprehensive perspec
tive from empirical science. Why is this so?

Challenges arising from the current situation are presented, with 
possible solutions, in Table 1. From this it is clear that many if not most 
of the issues are actually ‘owned’ primarily by empirical science (Table 1; 
Challenges 1 and 3–11). However, we suggest that the underlying prob
lem is a lack of dialogue between research communities42. The lack of 
good data to support plankton modelling (Table 1; Challenges 6–11) 
is thus in large part because the needs for such data have not been 
communicated sufficiently to those conducting empirical studies; the 
benefits to those empiricists have likewise not been made clear enough 
to engage them. The funding mechanisms needed to support required 
developments for both empirical and modelling components may also 
present major obstacles at the national and international levels. That 
is more likely if stakeholders are under the (we would argue, mistaken) 
impression that plankton modelling science is de facto in the applica
tion phase, with most core development complete. Working together 
will help to overcome such challenges.

Explanations for the lack of progress based on the complexity and 
computational costs of better describing plankton can seem difficult to 
accept for those conducting empirical studies, especially considering 
the advancements in other areas of data science over recent decades, 
such as in genomics. Indeed, the vast bulk of that extra computing 
power applied to modelling has been expended on increasing the 
resolution of the physics description from about 1° to about 1/36°, 
with additional resolution in depth (Table 1; Challenges 13–15), leaving 
the biological description in most models substantially unaltered for 
decades. The higherresolution physics description will benefit, and 
arguably warrants, improved descriptions of plankton physiology and 
trophic interactions.

Although the increase in computational cost related to the 
improvements of plankton descriptions in models needs to be prop
erly considered, empiricists and modellers need to work together to 
achieve an acceptable compromise between simplification (which 
is part of any modelling exercise) and the conceptual robustness of 

the process descriptions, consistent with current empirical knowl
edge. That robustness is crucial if we want to apply models beyond 
the bounds of the data used to configure them, especially now that 
climate change is pushing the natural system beyond those historic 
bounds62–66. Relying on simplistic plankton models, irrespective of 
how well they align with empirical data/knowledge from the past few 
decades, appears to be inappropriate for the challenges we face.

To the question of which is better placed to judge the structure 
of plankton models, empirical or modelling science, the answer is 
that obviously both are required. When modelling science flags the 
absence of certain lines of information or data that are deemed to be of 
importance, we need a means to transmit that necessity back to empiri
cal science (and to their funders) to resolve such problems. Likewise, 
if empirical science identifies problems with model descriptions and 
outputs, collectively we must not ignore those concerns.

Confronting the challenges
We suggest that the root of the challenges in enhancing the descriptions 
of plankton in models would be overcome by integrating simulation 
modelling as a tool into the core of empirical marine plankton science 
on a broad scale (Table 1; Challenges 5, 15 and 16). We can perhaps learn 
from the integration of molecular biology and multiomics approaches 
into plankton research. Both the development of molecular tools and 
the emergence of readily accessible computing occurred during the 
1980s. While the former rapidly found favour among plankton scien
tists and is now a common research tool (for example, the Tara Oceans 
project67–69), simulation modelling did not become a common tool to aid 
empirical science. More often than not, plankton empirical and model
ling sciences operate separately, as witnessed by session configurations 
at conferences and workshops. Is this just because the languages used 
by different groups of scientists are not understood or recognized by 
each other, or are the reasons more profound?

One reason for the difference in the uptake by plankton scientists 
of molecular biology versus simulation modelling may be that the 
language of the former was not novel, even though the techniques 
were. The core topics of omics have been taught to all undergraduate 
biologists (especially biochemists, geneticists and microbiologists) 
for decades; molecular biology is clearly owned by biologists. Simu
lation modelling of planktonic organisms, however, was/is more the 
preserve of process bioengineers (for microorganisms), physicists 
and mathematically inclined oceanographers. Critically, modelling 
has also typically required a sound knowledge of computer coding. 
While molecular techniques have become increasingly streamlined, 
now bypassing the original logistic hurdles of undertaking analyses 
of the 1990s, plankton modelling perhaps remains too daunting, with 
few introductory texts aimed at the absolute novice70 and no quick 
entry point. Even texts aspiring to provide a primer71 may strike at 
too technical a level. It is also possible that while advances from the 
introduction of omics into empirical plankton research may be clear, 
insights to be gained from modelling may appear less compelling or 
too theoretical. Modelling itself may thus appear less appealing as a 
research tool in which to invest time and effort. It is thus interesting to 
note that modelling studies are cited when they support the interests of 
empirical science; that is so despite the lack of involvement of empiri
cists in most model developments and therefore the likely ignorance 
over what exactly has been done to secure a given set of simulations. 
Embedding simulation modelling in the teaching of plankton science 
can represent a key action.

The implicit common enthusiasm of many field and laboratory 
researchers for finding ever more diversity of life forms and nov
elty in ecology diametrically contrasts with the pragmatic reality for 
modelling in having to drastically restrict the number of organisms, 
or ecotypes, that can be represented. However, locating unifying 
themes has historically been central to many avenues in empirical sci
ence. Attempts have been made to determine general rules and apply 
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these in plankton research72; for example, body size is often a primary 
trait to simplify both modelling and empirical approaches73–76. At the 
same time, attempted applications of these trait rules highlight where 
organisms bend the rules (for example, via tissue dilution77 or exploit
ing extreme predator/prey size ratios58,78); concepts underpinning 

some of the traitbased rules that modellers may expect to provide 
a route to simplification are not necessarily robust15,79. Interfacing 
molecular biology (omics) data with simulation modelling provides 
different challenges13,80. Although there have been various calls to 
integrate omics with plankton models81,82, and genetic differences 

Table 1 | Challenges and potential solutions to factors affecting the improvement of plankton models

Challenge Comment/explanation Owner(s) Potential solutions and links to other 
challenges

1 Confusing ambiguous terminologies Ambiguous empirical terminology is 
problematic for modellers; ‘tech-speak’  
is common in all sectors

Empirical; part 
modelling

Agreed usage requires rigorous application; 
historic literature usage will remain 
problematic

2 Simplicity versus complexity Empirical complexity needs merging with 
data availability rationalized for simplicity 
in modelling

Empirical and 
modelling

Allied to Challenges 3 and 4; requires 
acceptance that simple models may be 
especially inappropriate for multi-stressor 
scenarios (Challenge 8)

3 PFT groupings and allied trophic  
framework

Models require useable/robust PFTs, 
supported with numeric data; trophic 
linkages between PFTs and nutrients and 
biogeochemistry need clarity

Empirical; part 
modelling

Undertake studies at various levels of 
complexity consistent with modelling 
needs and computing capabilities

4 Exploitation of omics data Increasing amounts of omics data but no 
clear route for exploitation in models

Empirical Needs transformation of omics data into 
biomass (Challenge 6) and rate (Challenge 7)  
data; allied to Challenge 2

5 Integration of empirical and  
modelling approaches

Empiricists need to routinely engage with 
simulation modelling

Empirical; part 
modelling

Establish simulation modelling as a core 
tool in marine biology teaching, akin to 
statistics

6 Biomass determinations Chlorophyll or organism counts are 
empirical defaults; models need biomass

Empirical Developers of autonomous methods 
need to be alert to this challenge; allied to 
Challenges 9 and 10

7 Process rate determinations Rates rarely measured, often with 
complex interpretation; often poor units 
and controls for modelling

Empirical Embed modelling in empirical science at 
planning and execution phases; allied to 
Challenge 9

8 Multi-stressor interactions Multi-stressor (including temperature, 
pH, O2 and salinity) studies are rare and 
applied to few organisms

Empirical and 
modelling

Multi-stressor interactions require more 
holistic empirical and modelling studies; 
allied to Challenges 2 and 11

9 Data resolution Data over time/space with poor detail 
across PFTs and nutrients (especially 
dissolved organic matter)

Empirical More inclusive discussions on the design 
and operation of autonomous and allied 
monitoring systems; allied to Challenges 
6 and 7

10 Unit transformation Empirical science rarely provides data  
in units required for models

Empirical Agreed best practice for transform routines; 
caveats (errors/uncertainties) need to be 
identified

11 Generalizations from empirical  
science

Studied organisms and ontogenic 
stages are not exemplars of reality; 
trophic studies are too narrow for holistic 
overview; hype in literature obscures 
generalities

Empirical; part 
modelling

Clear identification of caveats and 
non-generalization of empirical studies; 
expert witness validation has a role here

12 Generalizations from simulation  
output

Hype and ambiguity in literature obscure 
real-world generalities

Modelling; part 
empirical

Clear identification of caveats and 
non-generalizing of simulations; engage 
empiricists in peer review of modelling 
papers

13 Allocation of computing effort to  
describing ecology

Enhanced computational power 
allocated to enhancing physics 
resolution

Modelling Re-match efforts on biological descriptions 
in models; alert funders and users of the 
need to enhance those components

14 Development of modelled core  
functionality

Questionable core functionalities date 
from the 1960s to 1980s

Empirical and 
modelling

Revisit biological descriptions to enhance 
performance with little to moderate 
increases in computational cost, exploiting 
expert witness validation

15 Stifling of development Apparent lack of enthusiasm by 
modellers to exploit new/alternative 
empirical concepts

Modelling; part 
empirical

Associated with Challenges 13 and 14 and 
a failure/inability of empiricists to become 
involved (Challenge 12); complicated by 
Challenge 11 and probably countered by 
Challenge 5

16 Plankton models fit for purpose Plankton models are exploited in 
simulations beyond development 
scenarios; especially problematic for 
digital twin and far-future simulations

Empirical and 
modelling

Involve/embed empiricists in model design 
and testing; enabled by Challenge 5

The resolution to each challenge is indicated as belonging to empirical or modelling science; in some instances ownership involves partial (secondary) involvement by the other science rather 
than being shared more equally. PFT, plankton functional type.
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appear with the adaptation of plankton to new conditions83,84, the pos
session of genes for traits can be inappropriately exploited in models 
with an assumption that the trait is expressed all the time. We have 
not found that approach to be acceptable15. Indeed, modulations of 
both biogeochemical and behavioural aspects of physiology are key 
facets of trait expression that are lacking in most models85–87. Similarly, 
the phenotypic heterogeneity (that is, intraspecific variability) that 
emerges in virtually all empirical studies and has adaptive function 
that sustains plankton diversity88 is invariably lacking. If such charac
teristics and modulations are absent from models, then the explana
tions and consequential caveats need to be made clear. Indeed, this 
should apply for all simplifications, even for the use of rectangular 
hyperbolic descriptions of nutrient uptake, which are almost invari
ably deployed in plankton models and claimed as mechanistically 
realistic even though there can be variable interpretations of empirical 
data on nutrient uptake77.

Problems with integrating simulation modelling with empirical 
science (Table 1) cannot be attributed solely to any specific science 
grouping. While modellers are typically aware of the limitations of 
their models (as aware as those undertaking empirical studies are of 
the limitations of their observations), they are probably less aware of 
the problems inherent in empirical data. It is easy for the nonexpert 
to misinterpret the nuances of empirical data and concepts extracted 
from the literature, a situation that perhaps may be worsened by the 
development of artificialintelligenceassisted datamining tools89. 
Applying numeric data from different methodologies, as in the meas
urement of primary production, for which there are many techniques 
that measure different component processes90, is a prime example. 
Explaining differences between strands of information (complicated 
by changes in methodologies, interpretations and terminologies over 
the years) can challenge the most expert individual, let alone someone 
whose primary skill sets are very different. Misinterpretations of clas
sic temperature–growth work91,92 and of applications of the metabolic 
theory of ecology93 in models15 might have been avoided if those mod
els had been built in collaboration with people who had appropriate 
understanding of the subjects.

Kreft et al.94 examined three approaches to modelling microbial 
systems, comparing metabolic flux, genecentric and individualbased 
models to capture singlecell activities to populationlevel processes. 
Of these, only the individualbased models were found to work 

effectively with celltocell heterogeneity, although these were also 
the most limited by the availability of rate formulations and parameters 
for resource acquisitions and processes leading to growth. Given that 
numeric abundance is probably the most common metric in plankton 
science, having model outputs given directly with units of organisms 
rather than just biomass is most probably highly desirable for many 
researchers. The flip side, of course, is that it would greatly help if 
empirical studies reported elemental biomass (Table 1; Challenges 6 
and 10) with sufficient data to determine the mass balance of major 
nutrients in experimental systems.

A route for bringing modellers and biologists/ecologists together 
in datarich studies scaling from organisms to ecosystems is via systems 
biology, exploring the dynamics of intracellular and extracellular 
biochemical networks—for example, targeting from signalling path
ways and biological interactions to biogeochemical consequences 
and feedbacks95. Although such computerintensive approaches may 
remain inappropriate for current largescale ecosystem models due 
to their complexity, we can probably learn much from using and then 
attempting to exploit the knowledge to produce improved simple 
plankton models. Models explicitly exploring plankton processes are 
likely to be more insightful than statistical models, as they provide 
scope for mechanistic understanding and causality96; we need to find 
a middle way to incorporate sufficient complexity. That middle way 
may even require considering starting from a clean sheet, a route that 
may be necessary to prevent problems encountered when attempting 
incremental changes20,47.

Several steps could be considered to enhance the engagement 
of experts in empirical science with plankton models, such as basing 
model descriptions in publications around infographics, rather than 
relying solely on mathematical equations that can be difficult and time 
consuming to follow. A similar argument can be made for the use of 
infographics and terminologies in the reporting of empirical science. 
For example, the indiscriminate use of the terms ‘phytoplankton’ and 
‘zooplankton’ does little to enforce the need to recognize the ecological 
importance of biodiversity and functional types. It is difficult to believe 
that an analogous usage of ‘plant’ and ‘animal’ in reporting terrestrial 
ecology would be considered acceptable; it is notable in this context 
that terrestrialfocused contributions to even IPCC (Intergovernmental 
Panel on Climate Change)level models describe multiple vegetation 
types97.

PDT
Empirical science

Empirical experts 
guide the generation 
of synthetic data and 
their collation with 
other data

Enhanced marine 
ecosystem simulators

Expert witness

Validation of plankton models

?!

?!

Empirical experts 
help to select 
appropriate data 
and aid in model 
design

?! ?!

Fig. 1 | Proposed route to enhancing the representation of plankton in 
marine ecosystem simulators. Empirical science from roles such as molecular 
biologists, laboratory workers and oceanographers helps to inform the 
selection of data and conceptual bases for configuring nextgeneration plankton 
descriptions. This includes the exploitation of PDTs to enable expert witness 

validation of plankton model behaviour. Synthetic data generated from such 
PDTs, plus expertvalidated simplified plankton models (as/if required), would 
support the development and validation of enhanced ecosystem simulators. 
Both the PDT and ecosystem simulator outputs would inform subsequent 
empirical science.
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Although the lack of involvement of empiricalscience experts 
sufficiently well versed in modelling in reviewing plankton model man
uscripts is an important issue of concern, so too is the lack of involve
ment of modellers in the review of all those empiricalfacing grant 
applications and papers that claim justification through the newly 
generated data being useful for modelling. The fact is that the bulk of 
empirical studies of plankton, even those conducted in laboratories, 
do not provide the types of numeric data useful for the construction 
and testing of simulation models13,42,47. That extends most basically to 
not expressing results in the currencies often used by modellers, such 
as carbon or nitrogen, but includes also measurements of the fate of 
nonlimiting nutrients (for example, of phosphorus in nitrogenlimited 
systems).

Engagement of the research community to identify the above 
mentioned challenges and constructively interact represents an urgent 
and foundational challenge to plankton science. The need for scientists 
to ‘sell’ (hype) the generality of their results to funders, often failing to 
clearly identify limitations in their studies, is also a concern (Table 1; 
Challenges 11 and 12). Too many results from modelling papers are cited 
as fact in support of empirical science, and too many speciesspecific 
empirical results are cited as generalized fact in support of both empiri
cal and modelling science. Some of the blame probably rests on the 
academic peerreview system, where scale (using generalization and 
ambitious projections) often leads to prestige (enhanced through 
publishing in highimpact journals).

We do not expect failures in models to be uncommon, but we do 
expect to be able to usefully learn from such failures; and we do not 
anticipate failures to arise solely from gross simplifications15. We also 
view simplicity in models favourably, recognizing the need to com
bine organisms into groups, as is often also undertaken in empirical 
research. The caveat is that descriptions of such simplifications and 
groupings have to make biological sense, with a balance struck over 
the inclusion or merging of different producers, consumers, decom
posers and so on as true functional types as per the biological meaning 
of that term98.

One approach to making progress through all of this is for the 
structure and performance of simulation models containing plankton 
to be critically assessed by scientists who are undoubtedly well placed 
to undertake that role61,86,87, through the aforementioned process of 
“expert witness validation”13. This approach also provides a route to 
overcome the absence of robust comprehensive numeric data series 
required to support computational model tuning and validation meth
ods. Expert witness validation, however, requires that experts in empiri
cal plankton science have tools that enable them to readily configure 
and test the simulation model. Platforms are required with userfriendly 
interfaces, which empirical science can exploit without the need to 
learn programming languages. Access to such platforms would enable 
experts to configure descriptions for individual plankton types to digital 
twin standards, and then, by operating those models collectively in eco
system scenarios, they could generate synthetic data to be exploited in 
the development of simple models with levels of confidence exceeding 
that with which model comparisons are normally undertaken99.

We see the development and deployment of digital twin platforms 
as a core mechanism for drawing modelling into the toolkit of empirical 
science. We propose that they must also be integral to the development 
of nextgeneration plankton ecosystem models as a means to bring 
empirical and modelling science together (Fig. 1). Drawing on interests 
and phenomenological data of empirical science (including omics 
data), this could guide the development of computationally simpler 
models and enable the development of research platforms to engage 
all plankton researchers. The development of PDTs, initially in the 
form of digital laboratory flasks, microcosms and mesocosms, would 
also provide tools enabling the conducting of in silico experiments 
to test the responses of individual plankton type (ecotype) descrip
tions through to exploring biotic interactions as part of ecosystem 

dynamics under multistressor conditions, and resolving how best to 
describe biodiversity for a given application. Largescale simulation 
models containing expertwitnessvalidated components could then 
provide more confidence than is currently the case with extant models. 
Importantly for future marine science, by normalizing a role of simula
tion modelling as a tool in support of empirical plankton science, those 
researchers will also be more likely to collect data types of direct use in 
modelling as well as being able to provide the arguably more important 
conceptual understanding13.

We have better understanding and ways of working together to 
improve plankton models than we did decades ago when much of the 
basis for extant plankton ecosystem models was developed. Holistic 
developments such as building PDTs13 would provide a stimulus to help 
to enhance the vital role of modelling in marine science in support 
of twentyfirstcentury challenges. Even if, after all these efforts, the 
end results for climate change and fisheries projections are similar to 
those we obtain using extant simple models, we will have increased 
confidence in their messages. An additional benefit will be that, in the 
meantime, empirical plankton science will also be better engaged with 
collecting data types required in support of the robust modelling that 
we all need for the ocean we want100.
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