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ABSTRACT

The  Arctic  is  one  of  Earth’s  regions  highly  susceptible  to  climate  change.  However,  in  situ  long-term observations
used  for  climate  research  are  relatively  sparse  in  the  Arctic  Ocean,  and  current  climate  models  exhibit  notable  biases  in
Arctic  Ocean  simulations.  Here,  we  present  an  Arctic  Ocean  dynamical  downscaling  dataset,  obtained  from  the  global
ocean–sea ice model FESOM2 with a regionally refined horizonal resolution of 4.5 km in the Arctic region, which is driven
by bias-corrected surface forcings derived from a climate model. The dataset includes 115 years (1900–2014) of historical
simulations  and  two  86-year  future  projection  simulations  (2015–2100)  for  the  SSP2-4.5  and  SSP5-8.5  scenarios.  The
historical simulations demonstrate substantially reduced biases in temperature,  salinity and sea-ice thickness compared to
CMIP6  climate  models.  Common  biases  in  the  representation  of  the  Atlantic  Water  layer  found  in  climate  model
simulations  are  also  markedly  reduced  in  the  dataset.  Serving  as  a  crucial  long-term  data  source  for  climate  change
assessments  and  scientific  research  for  the  Arctic  Ocean,  this  dataset  provides  valuable  information  for  the  scientific
community.
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Database title Arctic Ocean dynamical downscaling data for understanding past and future climate change
Time range Historical simulation: 1900–2014

SSP2-4.5 projection: 2015–2100
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Geographical scope Arctic Ocean
Data format NetCDF
Data volume Historical simulation: 427 GB

SSP2-4.5 projection: 314 GB
SSP5-8.5 projection: 312 GB

Data service system Historical simulation: https://doi.org/10.57760/sciencedb.16206
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1.    Background and Summary

Rapid warming in the Arctic has become increasingly evi-
dent. Observations and reanalysis datasets show that the Arc-
tic surface is warming at a rate nearly four times faster than
the global mean—a phenomenon known as Arctic Amplifica-
tion (Serreze and Barry, 2011; Chylek et al., 2022; Rantanen
et al., 2022). Meanwhile, the Arctic sea ice has declined dra-
matically,  as  revealed  by  satellite  observations  (Onarheim
et al.,  2018; Stroeve  and  Notz,  2018).  During  the  period
from 1979 to 2019, the extent of Arctic sea ice in September
decreased by 43% (AMAP, 2021). Moreover, significant cli-
mate changes have been observed in the Arctic Ocean. Lim-
ited  in  situ  observations  show  a  warming  trend  in  the
Atlantic Water layer since 1980 (Polyakov et al., 2004). Addi-
tionally, there has been a notable accumulation of freshwater
in  the  Arctic  Ocean over  the  last  few decades  (Rabe et al.,
2014; Proshutinsky et al.,  2019),  with  a  6400 km3 increase
in liquid freshwater in the Beaufort Gyre between 2003 and
2018 (Proshutinsky et al., 2019).

The warming and freshening of the Arctic Ocean exert
profound impacts on local marine ecosystems and atmosphere
–ocean–sea-ice  interactions  (Coupel  et al.,  2015; Ardyna
and Arrigo, 2020). The accumulation of freshwater in the Arc-
tic  Ocean  also  has  the  potential  to  influence  the  Atlantic
Meridional Overturning Circulation when the excess freshwa-
ter  is  released  into  the  sub-polar  North  Atlantic  Ocean
(Haine et al., 2023). However, long-term observations in the
Arctic  Ocean for  climate research remain relatively sparse.
For example, measurements of ocean volume, heat, and fresh-
water  transports  through  the  four  Arctic  Ocean  gateways
(Bering Strait, Fram Strait, Barents Sea Opening, and Davis
Strait), which are crucial processes in Arctic Ocean Borealiza-
tion,  have  only  been  conducted  with  moored  instruments
since  the  1990s.  The  lateral  and/or  vertical  resolutions  of
these year-round ocean observations are relatively low, and
in some cases, only parts of the straits are covered by moor-
ings (Wang et al., 2023). Long-term observations inside the
Arctic Ocean are also severely limited, often covering even
shorter periods.

Climate models are widely used for understanding and
predicting  Arctic  Ocean  climate  changes  (Shu  et al.,  2018,
2021; Haine,  2020; Khosravi  et al.,  2022).  However,  state-
of-the-art  climate  models  still  face  essential  challenges  in
the form of large biases and considerable intermodel spread
in  the  Arctic  Ocean.  For  example,  the  simulated  Atlantic
Water  layer  in  the  Arctic  Ocean  tends  to  be  too  thick  and

too  deep  in  climate  models  (Shu  et al.,  2019; Khosravi
et al.,  2022).  As  a  result,  the  simulated  warming  trend  and
interannual  variability  of  the  Atlantic  Water  layer  appear
weaker compared to observations (Shu et al., 2019). Further-
more, the poleward ocean heat transport through the Barents
Sea Opening, which is carried by the Barents Sea branch of
the Atlantic Water inflow, is underestimated in CMIP5/6 mod-
els,  both  in  terms  of  its  mean  value  and  its  upward  trend.
This  underestimation  contributes  to  an  overly  slow decline
in sea ice in the Barents Sea (Li et al., 2017; Pan et al., 2023).

The common biases in climate models regarding the Arc-
tic Ocean can often be attributed to the low horizontal resolu-
tions  typically  used  in  their  ocean  component  models.
Recent  ocean–sea-ice  model  simulations  forced  by  atmo-
spheric reanalysis show that employing higher ocean resolu-
tion  significantly  improves  the  simulation  of  the  Atlantic
Water  layer,  surface  mixed-layer  depth,  and cold  halocline
base depth, as well as the Arctic gateway transports (Wang
et al.,  2024).  While  ocean  reanalysis  datasets  exhibit  rela-
tively small biases, they typically only cover periods starting
from the satellite era and lack future projections.

To provide a high quality ocean dataset suitable for Arctic
Ocean  climate  research,  we  established  an  Arctic  Ocean
dynamical  downscaling  dataset  spanning  the  period  from
1900  to  2100.  This  dataset  is  based  on  a  high-resolution
ocean–sea-ice coupled model and the bias-corrected surface
forcings derived from a climate model. It includes 115 years
of  historical  simulations  (1900–2014)  and  two  86-year
future  projections  (2015–2100)  aligned  with  the  SSP2-4.5
and  SSP5-8.5  scenarios.  The  two  scenarios  represent  the
medium and high ends of future forcing pathways (O’Neill
et al., 2016; Riahi et al., 2017), with effective radiative forc-
ings of 4.5 and 8.5 W m−2 in 2100, respectively. High-resolu-
tion  modeling  significantly  reduces  the  common  biases
observed  in  low-resolution  climate  models.  Therefore,  the
newly  established  dataset  differs  from  existing  climate
model  products  and  reanalysis  datasets,  providing  the
research  community  with  a  unique  and  valuable  resource
for Arctic Ocean climate investigations. 

2.    Methods

This  dataset  was  established  utilizing  version  2  of  the
Finite  Volume  Sea  Ice–Ocean  Model  (FESOM2)  (Danilov
et al., 2017; Scholz et al., 2022) and the bias-corrected surface
forcings  derived  from  the  outputs  of  FIO-ESM  v2.1  (the
First  Institute  of  Oceanography–Earth  System  Model,  ver-
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1. Historical simulation dataset contains 1840 files. Each file contains one-year data for one specific variable.
There are 16 ocean/ice variables.
2. SSP2-4.5 projection dataset contains 1376 files. Each file contains one-year data for one specific variable.
There are 16 ocean/ice variables.
3. SSP5-8.5 projection dataset contains 1376 files. Each file contains one-year data for one specific variable.
There are 16 ocean/ice variables.
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sion 2.1) (Bao et al., 2020; Shu et al., 2024a) within the frame-
work of CMIP6 (Fig. 1). During the dataset’s establishment,
we  implemented  bias  corrections  to  the  surface  forcing
fields.  The  climatological  biases  of  the  near-surface  wind
and  near-surface  air  temperature  relative  to  those  from the
JRA55-do  atmospheric  reanalysis  (an  atmospheric  dataset
for driving ocean–sea-ice models based on the Japanese 55-
year atmospheric reanalysis) (Tsujino et al., 2018) were sub-
tracted.

To facilitate data analysis,  we employed the pyfesom2
toolkit, designed for working with FESOM2 ocean model out-
puts  in  Python  (https://pyfesom2.readthedocs.io/en/latest/
index.html) to interpolate FESOM2 outputs from an unstruc-
tured mesh onto a regular longitude/latitude grid. In this sec-
tion,  we  provide  an  overview  of  the  ocean–sea-ice  model,
the  surface  forcing  methodology,  and  the  interpolation
employed in this study. 

2.1.    FESOM2 and configuration

FESOM,  developed  by  the  Alfred  Wegener  Institute,
stands  as  the  first  mature  global  multi-resolution
unstructured-mesh model intended for simulating the global
ocean general circulation for climate research (Wang et al.,
2014). It can simulate local high-resolution ocean dynamics
with  variable  resolution  in  a  global  configuration,  thereby
reducing computational costs efficiently. FESOM2 is version
2 of FESOM. It includes an ocean general circulation model
(Danilov  et al.,  2017)  and  a  dynamic–thermodynamic  sea-
ice model, FESIM (Danilov et al., 2015), both operating on
the same unstructured triangular meshes. Compared to its pre-
decessor  version,  FESOM1.4  (Wang  et al.,  2014, 2018),
FESOM2 exhibits higher computational efficiency.

A high horizontal resolution (such as a grid size of 4.5
km) can effectively reduce common Arctic Ocean simulation
biases found in low-resolution models  (Wang et al.,  2018).
However,  the  state-of-the-art  climate  models  in  CMIP6
largely employ relatively low resolutions due to the substan-
tial computational costs associated with conducting lengthy
climate  simulations.  In  this  context,  FESOM2  offers  a
highly suitable platform for conducting long-term, high-reso-
lution  dynamical  downscaling  simulations  for  the  Arctic

Ocean. On the one hand, unlike high-resolution fully coupled
models or high-resolution global ocean–sea-ice coupled mod-
els, whose computational costs are considerable, FESOM2,
with computational grid nodes mainly concentrated in the Arc-
tic region, is far less costly. On the other hand, in contrast to
regional high-resolution models that require lateral boundary
conditions from other simulations, the global multi-resolution
unstructured meshes used by FESOM2 eliminate issues asso-
ciated  with  lateral  boundary  conditions.  Additionally,
FESOM2 demonstrates superior performance in the represen-
tation of the Arctic Ocean compared to other global high-reso-
lution models (Wang et al., 2024).

The FESOM mesh we used has ~640 000 surface grid
points,  which  has  been  used  in  previous  studies  with
FESOM  (Wang  et al.,  2018, 2019, 2020; Wang  and
Danilov,  2022).  The  resolution  is  1°  in  most  parts  of  the
global ocean, except in the equatorial belt, where the resolu-
tion is 1/3°; north of 50°N, where the resolution is ~25 km;
and the Arctic Ocean, where the resolution has been refined
to ~4.5 km (Fig. 1). The resolution in the coastal regions has
also been increased slightly. The mesh consists of 47 z-lev-
els, featuring a layer thickness of 5 m at the surface, which
progressively increases with depth, reaching 250 m towards
the bottom. A blend of two high-resolution bottom topogra-
phy datasets is used (Wang et al., 2018).

In  our  simulations,  vertical  mixing  is  parameterized
using  the  K  profile  parameterization  (Large  et al.,  1994),
with a background diffusivity of 4 × 10−6 m2 s−1 in the Arctic
region. Redi (1982) diffusion and the GM parameterization
(Gent and McWilliams, 1990) are employed, but deactivated
in regions where the horizontal grid spacing is less than half
the first baroclinic Rossby radius of deformation. The Redi
diffusivity and GM coefficient are scaled with grid spacing
in the horizontal  direction and vary vertically based on the
squared buoyancy frequency. The initial conditions comprise
the annual-mean ocean temperature and salinity from version
3.0 of  the  Polar  Science Center  Hydrographic  Climatology
(PHC3.0; Steele  et al.,  2001).  The  ocean  velocity  initially
starts from a state of rest. A weak sea surface salinity restora-
tion is used to prevent climate drifts, as suggested in the litera-
ture (Griffies et al., 2016). 
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Fig. 1. Framework of the dataset’s establishment.
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2.2.    Surface forcing

The  surface  forcings  used  to  drive  FESOM2  are
sourced from the output of FIO-ESM v2.1, which is the latest
version of FIO-ESM. FIO-ESM is the first climate model to
incorporate the processes of the non-breaking surface wave-
induced  ocean  vertical  mixing  (Qiao  et al.,  2004, 2013).
With  further  improvements  of  air–sea  flux  exchange  pro-
cesses,  FIO-ESM  v2.0  participated  in  CMIP6  (Bao  et al.,
2020). FIO-ESM v2.0 demonstrates good skill in reproducing
the surface air temperature, precipitation, sea surface tempera-
ture,  Atlantic  Meridional  Overturning  Circulation,  El
Niño–Southern  Oscillation,  significant  wave  height,  and
other climatological indices of interest in its CMIP6 simula-
tions (Bao et al., 2020; Song et al., 2020; Yang et al., 2023),
ranking first for ENSO simulation out of 59 CMIP6 models
(Babanin,  2023),  and  second  out  of  37  CMIP6  models
across  14  CORDEX  (Coordinated  Regional  Downscaling
Experiment)  domains,  including  the  Arctic  (Zhang  et al.,
2024).

Building  upon  the  successes  of  its  predecessor,  FIO-
ESM v2.1 has been developed (Shu et al., 2024a) by upgrad-
ing the sea-ice component model from the Los Alamos Sea-
Ice  Model,  version  4.0  (CICE4.0)  (Hunke  and  Lipscomb,
2010), to version 6, CICE6.0 (DuVivier, 2018), and improv-
ing the physical process of ice–ocean heat exchange from a
two-equation  boundary  condition  parameterization  to  a
more realistic three-equation boundary condition parameteri-
zation (Shi et al., 2021; Yu et al., 2022). The Arctic sea-ice
extent  (SIE)  simulated  by  FIO-ESM  v2.1  aligns  well  with
satellite  observations,  and  its  projected  Arctic  SIE  closely
matches  observationally  constrained  projections  based  on
CMIP6 models (Shu et al., 2024a).

The  surface  forcings  derived  from  FIO-ESM  v2.1
include the eastward and northward components of near-sur-
face wind, near-surface air temperature, near-surface specific
humidity,  surface  downward  shortwave  radiation,  surface
downward  longwave  radiation,  rainfall  flux,  snowfall  flux,
total (liquid and solid) runoff, and sea surface salinity. The
spatial resolution for most forcing variables is 1.25° longitude

×  0.9°  latitude.  However,  the  spatial  resolution  of  total
runoff and sea surface salinity is 0.5° longitude × 0.5° latitude
and  1.1°  longitude  ×  (0.27°–0.54°)  latitude,  respectively.
Most forcing variables have a 3-h temporal interval, except
for specific humidity (6-h), total runoff (monthly), and sea sur-
face salinity (monthly).

To  reduce  FESOM2  simulation  errors  stemming  from
biases  in  the  surface  forcing  derived  from  FIO-ESM  v2.1,
we  implemented  bias  corrections  to  near-surface  wind  and
near-surface air  temperature,  which are important variables
for surface momentum flux and heat flux, respectively, and
critical  to Arctic ocean and sea-ice simulations.  Firstly,  we
computed the climatological biases of the near-surface wind
and  near-surface  air  temperature  relative  to  those  from the
JRA55-do atmospheric reanalysis (Tsujino et al., 2018) dur-
ing 1960–2009, at 3-h intervals. JRA55-do was based on the
atmospheric reanalysis product JRA-55 by adjusting the origi-
nal JRA-55 fields using satellite and other atmospheric reanal-
ysis products. JRA55-do is the recommended forcing for driv-
ing  ocean–sea-ice  models  in  the  framework  of  the  Ocean
Model  Intercomparison  Project  (OMIP)  (Griffies  et al.,
2016). The climatological biases of near-surface wind speed
and near-surface air  temperature of  FIO-ESM v2.1 relative
to those from JRA55-do are shown in Fig. 2. Subsequently,
these  biases  were  subtracted  from  the  respective  fields  for
the entire simulation period (1900–2100). Sea surface salinity
derived  from  FIO-ESM  v2.1,  after  bias  correction  relative
to the PHC3.0 monthly climatology, was used for restoring
the  salinity  in  FESOM2.  The  bias  correction  is  applied
under  the  assumption  that  the  biases  do  not  change  in  the
future projection. This may introduce potential uncertainties
into future projections.
 

2.3.    Experimental setup

Three  dynamical  downscaling  numerical  experiments
have  been  conducted,  including  historical,  SSP2-4.5  and
SSP5-8.5  simulations  (Table  1).  The  surface  forcings  for
these downscaling simulations are derived from the histori-
cal, SSP2-4.5, and SSP5-8.5 experiments of FIO-ESM v2.1,
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Fig. 2. The climatological biases of the near-surface wind speed and near-surface air temperature of FIO-ESM v2.1
relative to those from the JRA55-do atmospheric reanalysis.
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respectively. The historical simulation is initialized from the
seawater  temperature  and  salinity  of  the  PHC3.0  climatol-
ogy, covering the period from 1900 to 2014. The SSP2-4.5
and  SSP5-8.5  simulations  are  future  scenario  experiments
for  projecting  the  future  climate  under  the  latest  proposed
Shared Socioeconomic Pathways. These pathways represent
the medium and high ends of future forcing scenarios, corre-
sponding  to  a  2  K  and  4  K  warming  world,  respectively
(Tebaldi  et al.,  2021).  Their  simulation  periods  span  from
2015  to  2100,  and  they  are  initialized  on  1  January  2015,
using the output from the historical downscaling simulation
as the initial conditions.
 

2.4.    FESOM2 output interpolation

The output of FESOM is on the model’s native unstruc-
tured mesh. For the convenience of data usage, the dynami-
cally  downscaled  results,  including  both  scalar  and  vector
variables,  are  interpolated onto a  regular  0.25° longitude ×
0.25°  latitude  grid  using  pyfesom2,  which  is  a  toolkit  for
working with FESOM2 ocean model outputs in Python. The
interpolation method used is the inverse-distance interpola-
tion. We keep the same vertical layers as the native grid of
FESOM2.
 

3.    Data records

This  dataset  consists  of  16  ocean  and  ice  variables
(Table  2)  from  the  FESOM2  downscaling  experiments,
including  115-year  historical  simulations  and  two  86-year
future  scenario  (SSP2-4.5  and  SSP5-8.5)  projections.  The
dataset covers the area (80°S–90°N, 180°W–180°E) with spa-
tial intervals of 0.25°, so the 2D mesh has 1440 × 680 = 979
200  points  in  total.  The  temporal  intervals  for  the  dataset
vary,  with  data  provided  at  either  monthly  mean  or  daily
mean resolutions (Table 2).

The filenames are in the following format, which follows
the CMIP6 data filename convention:
<variable_id>_<table_id>_<source_id>_<experiment_id>_
<member_id>_<grid_label>_<time_range>.nc,
where  <variable_id>  is  the  variable  identifier  (Table  2),
such as  thetao,  which denotes  sea water  potential  tempera-
ture; <table_id> is the table identifier, such as Omon (Oday)
and  SImon  (SIday),  which  represent  the  ocean  and  sea-ice
model  output  with  monthly  (daily)  average  values;
<source_id>  is  the  model  identifier,  which  is  FESOM2
here; <experiment_id> is the experiment identifier,  such as
historical,  ssp245, and ssp585; <member_id> is the variant

 

Table 1. Dynamical downscaling experiments in this work.

Experiment
name

Simulation
period Experiment description Initial condition

Historical 1900–2014 Historical simulation. PHC3.0
climatology

SSP2-4.5 2015–2100 Shared Socioeconomic Pathway 245 (SSP2-4.5).
The medium part of the range of future forcing pathways, in which the radiative forcing

reaches 4.5 W m−2 by 2100. It represents a 2 K warming world.

Branched from
the historical

simulation on 1
January 2015SSP585 2015–2100 Shared Socioeconomic Pathway 585 (SSP5-8.5).

The high end of the range of future forcing pathways, in which the radiative forcing
reaches 8.5 W m−2 by 2100. It represents a 4 K warming world.

 

Table 2. List of all variables in the dataset.

No. <variable_id> Description Units Dimensions Frequency

1 thetao seawater potential temperature °C [lon, lat, dep, time]* monthly mean
2 so seawater salinity psu [lon, lat, dep, time] monthly mean
3 uo seawater eastward velocity m s−1 [lon, lat, dep, time] monthly mean
4 vo seawater northward velocity m s−1 [lon, lat, dep, time] monthly mean
5 wfo water flux into seawater kg m−2 s−1 [lon, lat, time] monthly mean
6 tauuo seawater surface downward eastward stress N m−2 [lon, lat, time] monthly mean
7 tauvo seawater surface downward northward stress N m−2 [lon, lat, time] monthly mean
8 hfds downward heat flux at seawater surface W m−2 [lon, lat, time] monthly mean
9 tos sea surface temperature °C [lon, lat, time] daily mean
10 sos sea surface salinity psu [lon, lat, time] daily mean
11 zos sea surface height m [lon, lat, time] daily mean
12 mlotst ocean mixed-layer thickness m [lon, lat, time] daily mean
13 siconc sea-ice concentration % [lon, lat, time] daily mean
14 sithick sea-ice thickness m [lon, lat, time] daily mean
15 siu sea-ice eastward velocity m s−1 [lon, lat, time] monthly mean
16 siv sea-ice northward velocity m s−1 [lon, lat, time] monthly mean

* lon, lat, and dep represent longitude, latitude and depth, respectively.
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label, which is r1i1p1f1 here; <grid_label> is the grid identi-
fier, which is gr here, meaning the output is not reported on
the  native  grid  but  is  regridded  to  a  primary  grid;  and
<time_range>  specifies  the  temporal  range  covered  by  the
data  contained  within  the  file,  such  as  199501–199512,
which  means  the  temporal  range  is  from  January  1995  to
December 1995.

In this dataset, each file contains one-year data for one
specific variable, so there are 16 × 115 = 1840 files for the his-
torical experiment, and 16 × 86 = 1376 files for each future
scenario projection experiment.

All  data  files  are  archived  in  ScienceDB  (Shu  et al.,
2024b, 2024c, 2024d) and are provided in NetCDF format.
NetCDF files are platform-independent and self-describing,
which  contain  metadata,  data  structure,  dimensions,  vari-
ables,  and  attributes.  In  this  dataset,  the  attribute  of “Fill
Value” denotes land points.
 

4.    Technical validation

To validate the climatological state of the downscaling
simulations, we compared the dynamically downscaled clima-

tological  temperature  and  salinity  profiles,  Atlantic  Water
core depth (AWCD), cold halocline base depth, liquid fresh-
water content, sea surface height, and sea-ice thickness with
the results based on the PHC3.0 climatology, satellite observa-
tions,  and CMIP6 climate models.  Including CMIP6 in the
comparison  is  merely  intended  to  demonstrate  the  benefits
of using our dataset for understanding climate change in the
Arctic Ocean. We would like to emphasize that our dataset
is  obtained  from  downscaling  a  forced  ocean–ice  model,
while  CMIP6  models  are  coupled  climate  models.  Since
long-term observations in the Arctic Ocean are quite sparse,
to validate the long-term trend simulated in the downscaling
simulations, we only compared the simulated seawater temper-
ature anomalies with a long-term in situ observation in the
Barents  Sea,  and  compared  the  simulated  Arctic  SIE  with
satellite-derived SIE.
 

4.1.    Temperature profile

The potential temperature profile in the Arctic Basin in
the FESOM2 downscaling simulations fits the PHC3.0 clima-
tology well, and its error is much smaller than in the CMIP6
climate  models  (Fig.  3 and Fig.  4).  Previous  studies  show

 

0

500

1000

1500

2000

2500

3000

D
e

p
th

 (
m

)

Potential temperature (°C)

(a) Eurasian Basin

PHC3.0

CMIP6 MMM

FESOM2

0

500

1000

1500

2000

2500

3000

D
e

p
th

 (
m

)

Potential temperature (°C)

(b) Amerasian Basin

PHC3.0

CMIP6 MMM

FESOM2

0

100

200

300

400

500

600

700

D
e

p
th

 (
m

)

30 32 34 36

Salinity (psu)

(c) Eurasian Basin

PHC3.0

CMIP6 MMM

FESOM2

0

100

200

300

400

500

600

700

D
e

p
th

 (
m

)

30 32 34 36

Salinity (psu)

(d) Amerasian Basin

PHC3.0

CMIP6 MMM

FESOM2

−2 0 2 4−2 0 2 4

 

Fig. 3. (a, b) Potential temperature and (c, d) salinity profiles averaged from 1961 to 2000 in
the (a, c) Eurasian Basin and (b, d) Amerasian Basin. The thin gray lines are the results from
40 CMIP6 models.  The black, blue,  and orange thick lines are the results from the PHC3.0
climatology, CMIP6 MMM, and FESOM2 downscaling simulations, respectively.
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that climate models have large errors and intermodel spread
in  the  simulated  temperature  and  salinity  in  the  Arctic
Ocean (Shu et al., 2019; Khosravi et al., 2022; Heuzé et al.,
2023). Figures  3a and b demonstrate  that  the  most  recent
CMIP6  climate  models  exhibit  large  temperature  errors  in
both the Eurasian Basin and the Amerasian Basin. The down-
scaling simulations exhibit relatively small errors. The root-
mean-square error (RMSE) of temperature profiles for most
CMIP6  climate  models  exceeds  0.5°C in  the  Arctic  Basin,
with  the  CMIP6  multimodel  mean  (MMM)  RMSE  at
0.64°C (Fig. 4a). In comparison, the RMSE for the downscal-
ing  simulations  is  0.26°C,  which  is  less  than  half  of  the
CMIP6  MMM.  Additionally,  it  is  lower  than  the  RMSE
(0.40°C) of the MMM results from the ocean–sea-ice models
in OMIP2 (Griffies et al., 2016). 

4.2.    Salinity profile

Similar to the potential temperature profiles, the salinity
profiles  in  the  Arctic  Basin  are  also much better  simulated
in  the  downscaling  simulations  than  in  the  CMIP6  climate
models  (Fig.  3 and Fig.  4).  The  CMIP6  climate  models
exhibit  large  salinity  errors  and  intermodel  spread  in  the
upper  400  m  for  both  the  Eurasian  and  Amerasian  basins
(Figs.  3c and  d).  Most  climate  models  are  too  fresh  in  the
halocline  (Figs.  3c and d),  causing  the  halocline  to  be  too
deep—a bias that could lead to an underestimation of the pos-
sibility of future abrupt Arctic climate change (Jansen et al.,
2020).  The  downscaling  simulations  show  relatively  small
errors (Fig. 3 and Fig. 4). The RMSE of the salinity profiles
in  the  Arctic  Basin  in  the  downscaling  simulations  is  0.14
psu, which is about half the RMSE of the CMIP6 (0.29 psu)
and OMIP2 (Griffies et al., 2016) (0.28 psu) MMM salinity. 

4.3.    Atlantic Water layer

The Atlantic-origin warm water plays an important role
in Arctic Ocean climate change. The observed phenomenon
of Arctic Atlantification is mainly caused by the increase of
the  poleward  ocean  heat  transport  in  the  Atlantic  Water
(Årthun  et al.,  2012; Polyakov  et al.,  2020; Shu  et al.,
2021).  Climate  models  show  that  future  rapid  warming  of
the Atlantic Water layer in the Arctic Ocean may cause the
Arctic Ocean to warm faster than the global ocean on aver-
age—a phenomenon called Arctic Ocean amplification (Shu
et al.,  2022).  However,  the  Atlantic  Water  layer  simulated
in  climate  models  has  large  biases  (Fig.  3 and Fig.  5).
Figures 3a and b indicate that the CMIP6 MMM underesti-
mates the Atlantic Water core temperature (AWCT), which
is  the  maximum  temperature  of  the  Atlantic  Water  layer,
and  overestimates  the  AWCD,  which  is  the  depth  of  the
AWCT.  The  potential  temperature  along  the  section  of
70°E–145°W in Fig.  5 shows there  are  large  discrepancies
between the CMIP6 climate models and the PHC3.0 climatol-
ogy.  Some  climate  models  do  not  have  a  warm  (warmer
than 0°C) Atlantic Water layer, and many climate models sim-
ulate  an  overly  deep  and  thick  Atlantic  Water  layer.  The
Atlantic Water layer is much better reproduced in the down-
scaling simulations than in the CMIP6 climate models (Fig.
3, Fig. 5, and Fig. 6). The AWCT in the downscaling simula-
tions fits the PHC3.0 climatology well in both the Eurasian
and Amerasian basins (Figs. 3a and b). The average AWCD
is  310  and  460  m  in  the  Eurasian  and  Amerasian  basins,
respectively, based on the PHC3.0 climatology. In the down-
scaling  simulation,  the  AWCD  is  302  and  445  m  in  the
Eurasian and Amerasian basins, respectively—very close to
the  observations  (Fig.  6).  On  the  contrary,  the  CMIP6
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Fig.  4. RMSE of  (a)  potential  temperature  and  (b)  salinity  profiles  in  the  Arctic  Basin.  The  light  blue,  blue,  and  orange  bars
represent the results of CMIP6 individual models, the CMIP6 MMM, and FESOM2 downscaling simulations, respectively.
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MMM AWCD is 771 and 876 m in the Eurasian and Ame-
rasian basins, respectively—nearly double the observations.
 

4.4.    Cold halocline base depth

The cold halocline layer in the Arctic Ocean is an impor-
tant insulator between the underlying warm Atlantic Water
layer  and  the  cold  surface  mixed  layer  and  sea  ice  above.
The cold halocline base depth is defined as the depth where
the ratio of the density gradient due to temperature to the den-
sity gradient due to salinity equals 0.05 (Bourgain and Gas-
card, 2011), so it characterizes the transition from halocline
to thermocline. It is shallow in the Eurasian Basin and deep
in the Amerasian Basin according to the PHC3.0 climatology
(Fig. 7a). There is a large discrepancy between the observa-
tions and CMIP6 simulations (Figs. 7a and c). Climate models
overestimate  the  cold  halocline  base  depth  significantly  in
both  the  Eurasian  Basin  and  Amerasian  Basin.  In  the
Amerasian Basin, the observed cold halocline base depth is
between 120 and 210 m. However,  the cold halocline base
depth is deeper than 300 m based on the CMIP6 MMM. Figure
7b indicates that the model result in the downscaling simula-
tions  fits  the  PHC3.0  climatology  well,  with  much smaller
biases than climate models.
 

4.5.    Liquid freshwater content

The  liquid  freshwater  content  (FWC)  in  the  Arctic

Ocean has strong implications for the local physical and bio-
geochemical environment as well as the large-scale ocean cir-
culation in the North Atlantic (Coupel et al.,  2015; Ardyna
and  Arrigo,  2020; Haine  et al.,  2023).  We  used  the  liquid
freshwater column (units: m) to validate the downscaling sim-
ulations. It is calculated as follows: 

FWC =

0∫

−Href

(1−S (z)/S ref)dz ,

S (z) z S ref = 34.8psu

Href

where  is the salinity at depth ,  is the ref-
erence salinity, and  is the depth where the seawater salin-
ity is equal to the reference salinity. The liquid freshwater col-
umn  is  widely  used  to  evaluate  model  simulations
(Zanowski et al., 2021; Wang et al., 2022). The PHC3.0 cli-
matology shows that the liquid freshwater column in the Arc-
tic Ocean is highest in the Beaufort Gyre, and relatively low
in  the  Eurasian  Basin  (Fig.  7d).  Downscaling  simulations
can  reproduce  the  spatial  pattern  well  and  outperform  the
CMIP6 MMM results (Figs. 7d–f). The total liquid FWC in
the Arctic Ocean is 52.4 × 103 km3 in the downscaling simula-
tions, which is close to the value of 55.8 × 103 km3 based on
the  PHC3.0  climatology.  However,  it  is  80.5  ×  103 km3

based on the CMIP6 MMM results.
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Fig. 6. The AWCD (units: m) in the (a) Eurasian Basin and (b) Amerasian Basin. The light blue, blue, and orange bars represent
the results of CMIP6 individual models, the CMIP6 MMM, and FESOM2 downscaling simulations, respectively. The black lines
depict the AWCD from the PHC3.0 climatology.
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4.6.    Sea surface height

To  evaluate  the  upper-ocean  circulation  in  the  Arctic
Ocean, we compared the downscaling simulation’s sea sur-
face height with the CMIP6 MMM and the observational esti-
mates from altimetry measurements for the period 2003–14
(Armitage et al., 2016). Figure 7g shows that there is a high
in the Beaufort Sea associated with the anticyclonic Beaufort

Gyre,  a  low  in  the  Greenland  Sea  associated  with  the
cyclonic Greenland Sea gyre, and a large-scale gradient asso-
ciated  with  the  Transpolar  Drift  stream  (Armitage  et al.,
2016). Figure  7h indicates  that,  despite  a  relatively  weak
Beaufort Gyre, the downscaling simulations can largely repro-
duce the  spatial  pattern  observed by satellite.  Downscaling
simulations are better than the CMIP6 MMM (Fig. 7i). The
sea  surface  height  in  the  Kara  Sea,  Laptev  Sea,  and  East

 

 

Fig.  7. The (a–c)  halocline  base  depth,  (d–f)  liquid  freshwater  column,  and  (g–i)  sea  surface  height  in  the
Arctic Ocean from observations,  FESOM2 downscaling simulations,  and the CMIP6 MMM. The halocline
base depth and liquid freshwater column are the averaged results during 1961 to 2000. The sea surface height
is the averaged result during 2003 to 2014. The mean sea surface height over the latitudinal range between
65°N and 80°N has been removed.
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Siberian  Sea  is  underestimated  by  the  CMIP6  MMM,  and
the  center  of  the  Beaufort  Gyre  in  the  CMIP6  MMM  is
biased poleward.
 

4.7.    Time series of ocean temperature in the Barents Sea

To evaluate the simulated long-term trend, we compared
the simulated ocean temperature anomalies with observations
and CMIP6 climate model simulations along the Kola Section
in the Barents Sea. Figure 8 shows that the observed ocean
warming  trend  along  this  section  is  simulated  well  by
FESOM2. The linear trend of the upper 200-m seawater tem-
perature during 1951–2021 along the Kola Section is (0.16
± 0.05)°C (10 yr)−1 and (0.13 ± 0.04)°C (10 yr)−1 based on
observations  and  downscaling  simulations,  respectively,
while  it  is  (0.26±0.03)°C  (10  yr)−1 based  on  the  CMIP6
MMM. Since the surface forcings of the downscaling simula-
tions are derived from a climate model, the phase of the simu-
lated interannual variability is different from in the observa-
tions, as expected. However, the amplitudes of the simulated
interannual  variability  are  in  agreement  with  the  observa-
tions.

 

4.8.    Time series of Arctic SIE

Satellite observations show that the Arctic exhibits maxi-
mum  and  minimum  SIE  in  March  and  September,  respec-
tively. We compared the time series of the March and Septem-
ber Arctic SIE in the downscaling simulations with the satel-
lite observations and the CMIP6 results (Fig. 9). Figure 9 indi-
cates that the CMIP6 individual models have remarkable in-
termodel spread, and the downscaling simulations can ably
reproduce  the  satellite-observed  mean  and  the  long-term
trend of SIE in both March and September, while the down-
scaling simulations overestimate the September SIE during

2007–13. In March, the SIE climatology during 1979–2020
based on satellite observations is 15.3 × 106 km2, while it is
15.6  ×  106 km2 based  on  the  downscaling  simulations  and
15.8 × 106 km2 based on the CMIP6 MMM. In September,
the SIE mean and long-term trend during 1979–2020 based
on satellite observations are 6.0×106 km2 and (−0.83 ± 0.13)
×  106 km2 (10  yr)−1,  respectively,  while  they  are  6.3×106

km2 and (−0.82 ± 0.16) × 106 km2 (10 yr)−1 based on down-
scaling simulations, and 6.2 × 106 km2 and (−0.58 ± 0.04) ×
106 km2 (10 yr)−1 based on the CMIP6 MMM, respectively.
 

4.9.    Arctic sea-ice thickness

To evaluate the simulations of Arctic sea-ice thickness,
Fig.  10 shows  the  cold  season  (October–April)  Arctic  sea-
ice  thickness  based  on  satellite  observations  (combination
of  CryoSat-2  and  SMOS  datasets; Ricker  et al.,  2017),
FESOM2 downscaling  simulations,  and  the  CMIP6 MMM
during  the  period  2011–22.  Satellite-based  observations
reveal  that  thick  sea  ice  is  concentrated  along the  northern
coast  of  the  Canadian  Arctic  Archipelago  and  Greenland,
and  the  sea-ice  thickness  in  the  Barents  Sea,  Kara  Sea,
Laptev  Sea,  and  Baffin  Bay  is  relatively  thin.  Both  the
FESOM2  downscaling  simulations  and  the  CMIP6  MMM
can reproduce the spatial pattern of satellite-based observa-
tions. However, the FESOM2 downscaling simulations tend
to  overestimate  the  sea-ice  thickness,  while  the  CMIP6
MMM  underestimates  it  in  thick-ice  regions  and  overesti-
mates it in thin-ice regions. This suggests that both models
have relatively large biases in simulating sea-ice thickness.

Usage notes This dataset is not a reanalysis dataset since there
is  no ocean data assimilation used.  Data covering only the Arctic
Ocean and data on the model’s native unstructured mesh are also
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Fig.  8. Upper  200-m  seawater  temperature  anomalies  (units:  °C)  along  the  Kola  Section
(centered  at  71.5°N,  33.5°E)  in  the  Barents  Sea.  The  thin  gray  lines  are  the  results  from
CMIP6 models. The black, blue, and orange thick lines are the results from observations, the
CMIP6 MMM, and FESOM2 downscaling simulations, respectively.
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available from the corresponding author upon request. The surface
forcings  to  drive  FESOM2  are  also  provided  in  NetCDF  format
and archived in ScienceDB (Shu, 2024a, 2024b, 2024c). Their file-
name format also follows the CMIP6 data filename convention.
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Fig. 9. Arctic SIE in (a) March and (b) September. The gray thin lines represent the results from individual CMIP6
models.  The black,  blue,  and orange thick lines  are  the results  from the satellite  observations,  CMIP6 MMM, and
FESOM2 downscaling simulations, respectively.

 

 

Fig.  10. Cold  season  (October–April)  Arctic  sea-ice  thickness  from  satellite  observations,  FESOM2  downscaling
simulations, and the CMIP6 MMM during the period 2011–22.
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