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A key unresolved question in microbial ecology is how the extraordinary diversity of
microbiomes emerges from the interactions among their many functionally distinct
populations. This process is driven in part by the cross-feeding networks that
help to structure these systems, in which consumers use resources to fuel their
metabolism, creating by-products which can be used by others in the community.
Understanding the effects of cross-feeding presents a major challenge, as it creates
complex interdependencies between populations which can be hard to untangle. We
address this problem using the tools of network science to develop a structural microbial
community model. Using methods from percolation theory, we identify feasible
community states for cross-feeding network structures in which the needs of consumers
are met by metabolite production across the community. We identify tipping points
at which small changes in structure can cause the catastrophic collapse of cross-feeding
networks and abrupt declines in microbial community diversity. Our results are an
example of a well-defined tipping point in a complex ecological system and provide
insight into the fundamental processes shaping microbiomes and their robustness.
We further demonstrate this by considering how network attacks affect community
diversity and apply our results to show how the apparent difficulty in culturing the
microbial diversity emerges as an inherent property of their cross-feeding networks.

complex networks | microbial ecology | percolation theory | tipping points

Microbiomes are among the most diverse ecological systems on Earth, consisting
of hundreds of functionally distinct populations interacting in complex networks of
resource consumption and exchange (1-3). They are ubiquitous and perform many
vital functions, from the cycling of nutrients in ecosystems (4) to the mediation of gut
health (5). As advances in sequencing technologies allow us to examine microbiomes
in increasing detail, there is a growing interest in answering fundamental questions
about the ecology of the systems and how they maintain their extraordinary functional
and taxonomic diversity (especially relative to macroscopic ecological communities)
(6-9). Of particular importance are their cross-feeding dynamics, in which microbial
consumers secrete the by-products of their metabolism into the environment, allowing
them to be used by other members of the community (10). Cross-feeding has been
shown to be widespread and helps to maintain both the high diversity and varied
functional capacity of microbiomes (11, 12).

Although microbial communities are important, untangling their inherent complexity
is difficult. In response, a recent surge of work has successfully applied methods from
theoretical ecology to address this problem (13-18). This work is based on the insight
that community-level properties are emergent, arising from the pattern of interactions
between populations rather than from any individual component (19). By linking the
structure of interaction networks to system-level properties, this approach has been
successfully applied to study the functioning and stability of complex ecological systems
(20-23). In microbiomes, previous studies have used this rationale to explore different
aspects of cross-feeding, including its effect on robustness to disturbance (24) and its role
in driving different regimes of community organization (16).

Viewing microbiomes through the lens of ecological theory also raises new questions.
The stability of complex communities has been a central focus in ecology for over a
century (25-28). One key aspect is the presence of critical transitions, where changes
to structural parameters result in shifts in system-level properties such as community
diversity (29). These transitions can be continuous, though particular interest has been
paid to those in which long term behaviors change abruptly, referred to here as tipping
points. Although tipping points are well documented in simpler systems, such as the
clear-turbid transition in lakes (30), their role in complex and diverse communities like
microbiomes is less clear (31, 32).
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One phenomenon that tipping points may help explain is the
widespread unculturability of microbial diversity. Attempts to
culture microbes typically capture only a small proportion of
natural diversity, prompting the question: Why do communities
collapse to low-diversity states in the lab? (33) Lab cultures tend
to provide abundant energy sources, reducing the pressure of
resource competition. Thus, competition alone is unlikely to
cause this collapse. Instead, it may result from the absence of
specific metabolites produced by populations not captured in the
sample. This represents a structural constraint, as networks of
metabolic dependencies limit population persistence and overall
community diversity. The breakdown of cross-feeding interac-
tions has been suggested as a key factor in microbial culturability
(33), supported by evidence of widespread auxotrophies in
microbes (the inability to synthesize essential metabolites), as well
as the demonstrated success of coculture techniques in growing
otherwise unculturable strains (12, 34).

If microbial diversity is shaped by structural interdependencies,
then understanding how cross-feeding network breakdown leads
to diversity loss requires an approach that can capture these
cascading effects. This type of problem has long been studied in
the context of network percolation, a framework that describes
how structural dependencies within networks influence system-
wide connectivity and function. Percolation-based approaches
have been widely used in network science (35-38), providing a
suite of tools, such as the generating function formalism (39).
In the case of microbiomes, metabolic interdependencies can be
represented as a network of microbes and metabolites linked by
edges representing the processes of consumption and secretion.
By applying network percolation methods, we can quantify how
the structure of cross-feeding interactions mediates community
diversity and drives shifts between community states.

In this paper, we apply methods from network science to
understand how cross-feeding networks mediate the maintenance
of diversity in complex microbiomes. We formulate a simple,
generic model of a microbial community, inspired by recent
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advances in consumer—resource theory (15, 16), that captures
cross-feeding interactions between consumer populations. The
exchange of metabolites leads naturally to a network represen-
tation of the community structure, which we analyze utilizing
tools from network percolation theory. We show how consumer
persistence within the community can be defined in terms of
simple statistical features of their cross-feeding network, letting us
link interaction structure to emergent diversity. Furthermore, we
show that the model has tipping points at which the community
abruptly transitions between states of high and low diversity.
Finally, we show how tipping points provide insight into the
challenge of culturing microbial diversity, illustrating how the
structure of interaction networks governs community robustness
and responses to perturbation.

Results

The Microbial Community Hypergraph model. We consider a
complex community of N microbial consumer populations
interacting through the consumption and exchange of a set of
M metabolites (Fig. 1). Following ref. 15, we assume that each
population requires a fixed set of metabolites to persist in the
system. As a result of their metabolic activity, each population also
produces a set of metabolites, which are released by continuous
secretion or upon the death of the cell. We define each population
entirely in terms of its functional role which is determined by the
metabolites it requires and produces. The model can be imagined
as a directed bipartite network of populations and metabolites
with two sets of links representing metabolite consumption and
production. Alternatively, we can represent the network as a
hypergraph in which nodes are consumer populations linked
by directed hyperedges representing metabolite production and
consumption (Fig. 1B). For clarity, we will use the bipartite
representation throughout the rest of the paper.

For simplicity, we do not model the dynamics of the system
and focus entirely on the structural feasibility of cross-feeding
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Cross-feeding networks and the microbial community model. Diagram showing the overall structure of the microbial community model. (A) A

microbial community with a complex random cross-feeding network. Nodes represent consumers (red) and metabolites (blue) with links indicating consumer
requirements M — C and metabolite production C — M. (B) The network has alternative representations as a bipartite graph or a hypergraph in which consumer
nodes are linked by directed hyperedges representing metabolite uptake and release. Consumers and metabolites are marked present or absent (nodes with
a cross) based on the following rules. (C) Simple rules dictate the presence of populations and metabolites. Consumers are present when all their required
metabolites are present (Left). Metabolites are present when any one of the producers is present (Right).
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networks. Each population and metabolite is described by a
binary presence/absence variable (Fig. 1C). A metabolite is
present if and only if at least one population that produces the
metabolite is present. Conversely, a population is present if, and
only if, all metabolites required by that population are present.
With this approach, we do not aim to capture the full complexity
of processes occurring in real microbial communities but rather
provide an abstraction that allows us to build intuition about
the effects of cross-feeding network structure. By focusing on
cross-feeding interactions (as opposed to competition) we are
able to derive results on how the diversity that communities can
support is affected by the structural constraints present within
cross-feeding networks.

We consider a statistical ensemble of such models in which the
number of metabolites required by populations and the number
of producers of each metabolite are drawn from the probability
distributions ¢; and m; such that, for example, m3 is the
probability that a metabolite is produced by three populations.
By selecting ¢; and 2, appropriately, we can emulate the desired
features of a microbial community such as the relative numbers
of currency metabolites (i.e. those required by many populations)
or common by-products. We study the full ensemble of networks
consistent with these distributions.

Below, we show that the model exhibits structural tipping
points, reminiscent of the appearance of the giant component
in simple graphs (40). We analyze this behavior by building
on an elegant formalism (39), which uses mathematical objects
called generating functions to store and manipulate sequences of
numbers (SI Appendix, Generating Functions). These generating
functions capture the structure of the network by encoding
the distributions of the number of consumer requirements and
metabolite producers. For the present model, the generating
functions are defined as

C(x) = Z o

where C(x) encodes the number of requirements across con-
sumers, M(x) represents the number of producers of each
metabolite and, x is an abstract variable introduced to allow
manipulation of the degree distribution (S] Appendix, Generating
Functions).

Using these generating functions, we can determine the
proportions of populations ¢* and metabolites 7" that persist
in the community. These quantities can be interpreted as the
chance a randomly selected node is able to persist based on its
requirements or producers. In ecological terms these represent the
relative diversity of the system, the proportion of consumers able
to persist in the cross-feeding network of all possible consumers
in the community. We start by considering the conditions for
persistence: Consumers must have all their requirements met,
while metabolites need only one producer. We can express
these probabilistically using the generating functions in Eq. 1
(Materials and Methods; SI Appendix, Community Diversity),
leading to

M(x) = Z mkxk, [1]

C* = C(m*), [2]
m'=1—M(1 - ).

From Eq. 2, we can solve for ¢* and m*, which define the
stable configurations of communities in which the needs of
consumers are met through the cross-feeding network. Though
it appears simple, this expression captures the complexity of the
interdependencies between populations and how consumers rely
on the populations they interact with, who, in turn depend on
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their own interacting partners and so on. Crucially, it does so
in terms of the statistical properties of the network, allowing us
to link the structure of interactions between populations to the
emergent diversity that the community cross-feeding network
can support.

Structural Tipping Points and Diversity. To explore the patterns
of diversity and community structure, we consider random
cross-feeding networks in which metabolite requirements and
production are distributed across the community. These random
networks are reminiscent of Erdds—Rényi networks (41), and
produce some interesting results due to the structure imposed
by the microbial community model. Currently, there is no
established consensus on the actual distribution of metabolite
requirement and production in microbial communities. In the
absence of this information, random networks provide a suitable
and analytically tractable null model, allowing us to build a
general intuition about the effects of network structure in large
complex systems like microbial communities (42). We also
note that random networks are far from a degenerate case and
the intuition developed should be broadly applicable to other
network structures.

In random networks the numbers of metabolite requirements
and producers follow a Poisson distribution with generating func-
tions C(x) = exp(z:(x — 1)), M(x) = exp(zm(x — 1)), where
z and z,, are the average number of consumer requirements and
metabolite producers respectively. Applying these to Eq. 2 yields
the self-consistency equation

k

¢ = exp(—z; exp(—zpc™)). [3]

Solving Eq. 3 for ¢* reveals how the stable level of consumer
diversity varies depending on the distribution of consumer re-
quirements and metabolite producers characterized by z. and z,,
(Fig. 2 and SI Appendix, Fig. S1). Overall, community diversity
increases as a function of the average number of metabolite
producers z,,, but falls with increasing consumer requirements z,.
This relationship makes sense, since more consumer populations
are able to persist when their requirements are more likely to be
produced or when they have fewer requirements in the first place.

The change in diversity with network structure is initially
continuous, shifting between high and low diversity states as
described above (Fig. 2 A, Inset plot). However, if either consumer
requirements z, or the number of metabolite producers z,, is
varied sufficiently, discontinuous transitions become possible and
tipping points appear. For example, if we fix z,, to 4 and slowly
increase consumer requirements z, from 0, community diversity
gradually falls until a tipping point is encountered (known as fold
bifurcations in dynamic systems theory) and the system enters
a low diversity state (Fig. 24). This behavior is driven by the
collapse of the cross-feeding network. Increased requirements
result in the loss of consumers which causes the loss of the
populations dependent on their metabolites, creating a cascading
effect. Conversely, if we take a community and reduce z, from
above, it will remain stuck in the low diversity regime, even
as it passes the original tipping point, until a second tipping
point is reached, and the community jumps back to the high
diversity state. In this case, reductions in requirements allow
the persistence of populations who produce metabolites others
need, allowing the cross-feeding network to reassemble. Between
these two transition points lies a region of path dependence or
hysteresis, where the system can be either in a state of high or low
diversity, depending on its history.

https://doi.org/10.1073/pnas.2425603122
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Fig. 2. Cross-feeding networks have tipping points in consumer diversity. (A)
Bifurcation plot showing the change in diversity as consumer requirements
zc varies and zm = 4. Lines show the predicted values from Eq. 3, with solid
lines indicating stable states and dashed lines unstable. Each point is from a
randomly generated network with given structural properties with N = M =
10,000. Arrows indicate the path dependence in the system. Increasing z¢
(red arrows) leads us over the tipping point from a high to low diversity state
while decreasing (blue arrows) does the opposite. The /nset plot shows the
same for a value of zy = 2, where there is no tipping point and the change
in diversity is continuous. (B) Phase plot showing the arrangement of tipping
points and diversity in the two-dimensional parameter space. Changes in
diversity are continuous in the white area (1). The points at which transitions
happen form the bifurcation manifolds (black lines). The shaded area (2)
indicates the region of bistability and path dependence where high and low
diversity states are possible depending on the history of the system. The
dotted lines indicate the slices over which (A). is displayed and the arrows the
path dependence.

Considering variation in both consumer requirements z,
and metabolite producers z,, simultaneously results in a two-
dimensional phase space in which transitions can occur (Fig. 2B).
In this space the tipping points form two curves marking the
points at which the high- and low-diversity states appear, also
known as bifurcation manifolds. These curves eventually meet at
a single point, z,, = z, = ¢ and annihilate in a cusp bifurcation,
which acts as an organizing center for the tipping point
behavior.

Both the bifurcation manifolds and the cusp point can be
derived analytically and agree with numerical solutions to Eq. 3
(SI Appendix, Tipping Points and Bifurcation Analysis). These
results are robust to additional structural features, such as
correlations in network structure (S/ Appendix, Correlated Degrees
and Figs. S2 and S3). We also validated these predictions with
simulated microbial cross-feeding networks, which showed near
perfect agreement with the theoretical predictions, including
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the expected patterns in diversity and tipping point behavior
(Numerical Simulations).

Microbial Community Robustness and Culture. To illustrate the
tipping point and further explore the robustness of community
diversity to changes in network structure, we next apply our
model to the question: Why are we unable to culture so much of
the microbial diversity we see in nature?

We approach this problem by considering how the culture
of microbial communities acts as a perturbation to their cross-
feeding networks and the diversity they are able to support
(Fig. 34). We represent this process using our model in two steps.
First, we sample a community from the environment, collecting
only a proportion of the populations present. Second, we culture
the community in medium, supplying it with some of the re-
sources necessary for growth (henceforth referred to as externally
supplied resources). This procedure not only acts as a direct
perturbation to communities, removing consumers and supply-
ing resources, but also has indirect effects, as the loss and gain of
consumers and metabolites propagates the cross-feeding network.

While enumerating the effects of these perturbations on
individual populations is challenging, the use of generating
functions simplifies the problem. In our model, we can encode
the sampling and the external supply of resources in their own
functions S(x) = 1 4+ s(x — 1) and R(x) = 1 4+ (1 — x),
where s and 7 are the proportion of consumers captured in
the sample and the proportion of externally supplied resources
respectively. Combined with Eq. 1 these functions allow us to
express the structure of the cross-feeding network (subscript A)
after sampling and culture succinctly in a new set of generating
functions (SI Appendix, Community Robustness, Sampling and
Culture).

Ma(x) = M(S(x)).  [4]

These generating functions capture the probabilities that a
consumer or resource has a given number of requirements or
producers in the final community after culture, accounting for
the change in the average number of consumer requirements
y. = (1 — )z, and metabolite producers y,, = (1 — s)zy,, due to
the loss and gain of consumers and resources. These expressions
can then be used to solve for the proportion of populations and
metabolites present, similar to Eq. 2.

Fig. 3 Band C show how the process of sampling and culturing
leads to the diversity of the final community. In the first stage,
sampling a smaller proportion s of the wild community results
in both reduced diversity and fewer metabolite producers y,,.
If our sampling is incomplete, too many producers may be
lost, causing the community cross-feeding network to break
down, shifting the community into the low diversity state. The
subsequent external supply of resources in culture effectively
reduces the number of metabolite requirements of consumers
¥e> which promotes the persistence of consumers and in turn,
increases the relative diversity in the community. Depending on
the structure of the system, the external supply of resources may
allow communities to persist in the high diversity state. However,
due to the path dependency discussed above, reassembling the
community may be difficult and a greater proportion of resources
must be externally supplied to counter the loss of metabolite
producers via sampling.

Together these results illustrate one mechanism explaining
why it is so difficult to culture much of the microbial diversity we
see in nature: The inherent structure of cross-feeding networks
can create tipping points that make them fragile to perturbation.

pnas.org
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Fig. 3. Cultured community diversity collapses due to tipping points in cross-feeding networks. (A) Diagram showing how sampling a wild community and
culturing on a given medium affects cross-feeding network structure in the model. From a wild community (1), sampling removes some proportion of consumer
populations and any metabolite they produce (2). Supplying resources in culture allows the partial recovery of the cross-feeding network (3), resulting in the
final community. (B) Plot showing how community diversity ¢* increases as a function of the intensity of sampling s. Lines show analytical solutions from Eq. 3,
solid lines are stable and dashed unstable. Points show solutions obtained from randomly generated networks with N = M = 1,000 and 100 replicates at each
value of s (or r below). Dashed lines indicate the values of s in the plots below. (C) Plots showing the final community diversity c* against resource supply
r across three levels of s. Again lines and points show solutions from analytical and numerical simulations respectively.

If we sample insufficiently or if resource requirements are
inadequately supplied, the community cross-feeding network
is unlikely to remain active, leading to the loss of diversity.
However, it is important to note that cross-feeding structure
is not the only determinant of culturability. In reality, microbial
persistence is influenced by multiple factors, including physi-
cal (i.e., non-metabolite-based) environmental conditions and
microbial dormancy dynamics (34).

Conclusion. In this paper, we develop a model of microbial
community structure, addressing the question of how the di-
versity of complex microbiomes emerges from the interactions of
individual populations. By utilizing tools from network science,
our results link the exchange and consumption of metabolites in
cross-feeding networks to the emergent diversity and robustness
of microbial communities. Importantly, our work reveals the
existence of tipping points at which communities can jump
between states of high and low diversity as cross-feeding networks
collapse and reassemble.

The tipping points we observe represent an exciting advance
in our understanding of microbial cross-feeding, identifying
a potentially important mechanism that drives patterns of
microbial community diversity. The existence of these behaviors
in such a simple model suggests they may be generally applicable
in systems structured in this way, where they likely interact
with other factors such as competition or assembly dynamics
(see below) to determine community diversity. The presence
of tipping points and path-dependent dynamics also suggest an
inherent fragility in the structure of microbiomes. We find that
perturbations can cause the collapse of cross-feeding networks

PNAS 2025 Vol. 122 No. 19 e2425603122

and their associated diversity and that recovery may be difficult
due to the interdependencies they create between populations.
These results provide a testable prediction: Perturbations, such
as the removal of populations, should result in abrupt changes to
diversity, as illustrated in our example of sampling and culture of
communities. In principle, such experiments should be relatively
easy to carry out and combined with our results, have the
potential to improve our understanding of microbiomes and
their robustness.

One of our major results is the identification of regions in
network structure parameter space (z. and z,) where tipping
points occur. While our model ultimately represents an abstrac-
tion of microbial cross-feeding structure, we argue these tipping
points are relevant for our understanding of real communities
for two reasons. First, the regions of parameter space in which
these behaviors occur are at a relatively low magnitude (z,
zm = 2.71...), showing that consumers only need to use and
produce a few resources to exhibit tipping point behavior. Given
the ubiquitous nature of auxotrophies and obligate cross-feeding
(10, 12), it is reasonable to assume that microbial communities
operate somewhere within this area of parameter space. Second,
our results on the culturability of microbial communities suggest
that sampling effects can be understood as structural perturba-
tions to cross-feeding networks, acting by scaling the effective
numbers of producers and requirements. This implies that any
community residing within the fold bifurcation region discussed
above will always have a perturbation capable of shifting it across
the tipping point, thereby altering community diversity.

Our work focuses on the structure of cross-feeding interactions
and how they constrain consumer diversity, reflecting a conscious

https://doi.org/10.1073/pnas.2425603122
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choice in our modeling approach. Although we do not account
for competition explicitly, we argue that our model provides
valuable insights by illustrating a mechanism likely at play in
real communities, interacting with competitive effects to shape
microbial diversity. We also note that the relative importance
of these competitive and cooperative effects within microbial
communities is likely not equal across different contexts (43)
and that there are some scenarios where the structural constraints
of cross-feeding networks (and associated tipping points) will
be more relevant. For example, one observation from empirical
studies is the tendency of communities to become less competitive
over time as auxotrophies develop and communities become
more dependent on obligate cross-feeding interactions (44—46).
In this case, we might expect our results to be more relevant
in communities in more stable environments where these cross-
feeding networks have time to develop and act as more of a
constraint on community structure.

Our structural approach does not account for other dynamic
processes known to influence microbial community diversity,
such as assembly dynamics (i.e. immigration) and metabolic
plasticity, both of which alter network structure over time.
In principle, these processes could be incorporated into our
model by using the generating function formalism, an approach
previously applied to study network dynamics in other contexts,
such as epidemic spreading (47). In a microbial context, this
would allow us to explore how consumers dynamically adapt
their metabolism to changing environments or competition via
immigration-extinction dynamics, offering promising directions
for future research.

Opverall, our results provide an example of a tipping point
in a highly diverse and complex ecological system. Most prior
examples of ecological tipping points focus on simple systems
with relatively few interacting components, not on diverse and
complex systems like those considered here. There is ongoing
debate about whether such systems undergo tipping points
and how useful the concept is in understanding biodiversity
decline (31, 32). Our results contribute to this discussion by
demonstrating a well-defined tipping point and showing how it
can be triggered through community disturbances. Identifying
how the structural mechanisms we describe relate to ecological
robustness more broadly is an exciting direction for future
research, with the potential to enhance our understanding of
biodiversity loss.

Materials and Methods

Community Diversity. In order to determine the proportion of populations ¢*
and metabolites m* able to persist in the community, we first determine the
probability that a randomly selected consumer population is present. This is the
same as asking what is the chance we select a consumer with k requirements
and that those k metabolites are also present leading to

= ch(m*)k. (5]

We can also apply the same approach to the metabolites, asking what is the
chance we select a metabolite with k producers and that at least one of these is
present

m* =Y "m(1—(1- )k
=1 " m(1 -k, (6]

where we have used the fact that the probabilities sumto 1, >~ m; = Tin the
last step.
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Eqgs. 5 + 6 both have forms identical to the generating functions defined in
Eq. 1. This lets us write the system in terms of the generating functions leading to

= C(m*),
m* =1—-M(1-c").

which is equivalent to Eq. 2 in the main text. From this set of equations it is easy
to exclude m* and obtain a self-consistency equation

& =C(1 =M1 —=c")), (8]

which can be solved for ¢* given a specific set of network degree distributions
encoded in the generating functions C(x) and M(x). The solutions to Eq. 8
give the proportion of total consumer populations that can persist and thus the
relative diversity in the community. With the value for ¢* we can also substitute
back into Eq. 7 and obtain the corresponding values of m*.

(7]

Numerical Simulations. In order to verify the analytical predictions of Eq. 3,
we generated random microbial cross-feeding networks and determined the
proportion of persisting consumer diversity based on the rules discussed in the
main text (48).

To generate random network structures with defined distributions of
consumer requirements and metabolite producers, we use a configuration
model type approach (49). In these networks, we consider directed links
to match the flow of resources, i.e. consumption is represented by links
from metabolites to consumers and metabolite secretion from consumers to
metabolites.

We start by initializing the system with N' consumer populations and M
metabolites. We then draw their respective numbers of requirements and
producers from Poisson distributions with the average values zc and zm, thus
defining the end points of each link in the network. In order to construct the
whole network we next need to place the start point of each link. As the total
number of startand end points must be equal, this places a additional constraint
on the average in- and outdegree such that ZIl = az%"*and ZI" = az3"t, where
a = M/N (S Appendix: eq. 34). To sample the number of links starting at each
node, we therefore need to sample from a Poisson distribution with the correct
mean, conditioned on the total number of links in the network. This follows a
multinomial distribution with S trials and n events, where S is the number of
links and n is the number of nodes we want to partition them over. Once we
have the number of start and end points for each node, we randomly wire the
network by aligning the start and end points of each link and then shuffling
them to distribute the links across the network.

Once we have a network structure, we determine the proportion of consumers
persisting with a simple iterative approach. We initialize the system by marking
a random proportion of consumers and metabolites present. We then move
through all nodes in the network in random order, updating their presence
based on the rules discussed in the main text. After every loop, we check to
see whether the state of any node in the network has changed. Over multiple
iterations the system converges to a steady state, in which the only consumers
present are those whose needs are met by the metabolites available and vice
versa. We stop the process once the node states converge and no longer change.
The proportion of persisting consumers and metabolites can be calculated as the
ratio of the number present in the final state relative to the total number in the
network.

Data, Materials, and Software Availability. Code to generate results and
figures is available in the Zenodo repository (48).
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