

Seasonal dynamics of greenhouse gases in a large river

Ingeborg Bussmann (AWI)
Claudia Schütze (UFZ)
Uta Ködel (UFZ)
Norbert Kamjunke (UFZ)
Matthias Koschorreck (UFZ)

Fig. 1: Catchment of
River Elbe with
sampling sites
Magdeburg and
Wittenberge, Germany

Material & Methods

- Monthly sampling from bridges, 2020 -2024
- CO₂, CH₄, N₂O with gas chromatography
- Meteorological data from DWD
- Water chemical with standard methods
- Ensemble model Gradient Boosting (GB)

Fig 3: Gradient Boosting ensemble model to predict the CH_4 saturation. (a) Comparison of 2020 test data with predicted data (R^2 =0.83). (b) Feature Importance analysis with most important variables for CH_4 prediction: daylight hours, DOC, SRP, NO_3 , POC and daily radiation sum. (c) Comparison of measured and predicted data in 2020 with R^2 > 0.83.

Fig. 2: Time series of GHG concentrations at Magdeburg (orange) and Wittenberge (green). Dotted lines indicate atmospheric equilibrium concentrations.

Fig 4: Summary of main correlations

Conclusions

- CO₂ follows a seasonal cycle with a summer minimum controlled by primary production
- CH₄ follows also a seasonal cycle but with a summer maximum controlled by temperature
- N₂O is mainly solubility and temperature driven
- The GB model predicted GHG with high precision
 - => fill data gaps,
 - => reconstruct historical or future emissions
 - => scalable, data-driven approaches for GHG monitoring

