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In adaptive dynamical networks, the dynamics of the nodes and the edges influence each other. We show that
we can treat such systems as a closed feedback loop between edge and node dynamics. Using recent advances
on the stability of feedback systems from control theory, we derive local, sufficient conditions for steady states
of such systems to be linearly stable. These conditions are local in the sense that they are written entirely in
terms of the (linearized) behavior of the edges and nodes.
We apply these conditions to the Kuramoto model with inertia written in adaptive form, and the adaptive

Kuramoto model. For the former we recover a classic result, for the latter we show that our sufficient
conditions match necessary conditions where the latter are available, thus completely settling the question of
linear stability in this setting. The method we introduce can be readily applied to a vast class of systems. It
enables straightforward evaluation of stability in highly heterogeneous systems.

I. INTRODUCTION

Many systems can be conceptualized as networks in
which the network topology is evolving while there are
also simultaneously dynamics in the network nodes. If
these types of dynamics interact, a feedback loop between
local and topological dynamics is formed, and the system
can be called an adaptive network1.
Adaptive networks can exhibit rich dynamics and com-

plex self-organization as the network topology can act as
a memory that is shaped by past dynamics and thus ef-
fectively increases the dimensionality of the phase space.
Dynamics of adaptive networks play a role in a wide range
of phenomena including social distancing in epidemics2–4,
opinion formation processes in humans5–7 and animals8,
strategic interactions9,10, neural self-organization11–13,
and ecology14, among many others15.
Due to the dynamical interplay between state and

topology, mathematical analysis of the dynamics of adap-
tive networks is difficult. Hence, much of the earlier
literature in the field focuses on discrete-state adap-
tive networks that can be modeled by systems of ordi-
nary differential equations using moment expansions16.
More recently, the master stability function approach17,18

has been generalized to broad classes of adaptive
networks19,20. However, the use of master stability func-
tions hinges on the symmetry between network nodes.

a)corresponding author: jakob.niehues@pik-potsdam.de

Hence, this approach only allows for stability and bifur-
cation analysis of homogeneous states of adaptive net-
works.

In this work, we introduce a new method to analyze the
stability of heterogeneous adaptive dynamical networks
by leveraging recent advances in linear algebra and con-
trol theory. The key ingredient is to write the system
in the form of a feedback loop between node and edge
variables, represented by transfer matrices with a block
diagonal structure. The central new tool that enables
this analysis is the concept of the phase of a matrix21.
This gives information complementary to the information
in the singular values. It was already observed in Wang
et al. 22 that these phases reveal interesting information
on the Laplacian of a graph.

The central result of Chen et al. 23 is that the phases
of transfer matrices can be used to give sufficient stabil-
ity conditions for interconnected systems. Zhao, Chen,
and Qiu 24 observed that phase and gain information can
be combined to cover a much broader class of systems.
In this paper, we combine the observation that phase
analysis is well-behaved for Laplacian-like systems, with
the results of Chen et al. 23 , Zhao, Chen, and Qiu 24 to
provide novel sufficient stability conditions for adaptive
dynamical systems. Furthermore, we leverage the natu-
ral block structure of adaptive networks to obtain local
instead of global conditions.

We apply these conditions to the paradigmatic adap-
tive Kuramoto model, and find that the sufficient stabil-
ity condition we provide, matches the necessary stability

http://arxiv.org/abs/2411.10387v1
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condition of Do et al. 25 where the latter is applicable.
Together, these results completely characterize the sta-
ble steady state configurations of the adaptive Kuramoto
model. This demonstrates that, despite their general-
ity, the conditions are not very conservative in this im-
portant special case. Furthermore, we recover standard
results for the classical Kuramoto model, and the Ku-
ramoto model with inertia. A companion paper26 devel-
ops the necessary formulations and results to apply these
methods to complex oscillator models of power grids27,28.
Our paper proceeds as follows: In II, we provide an

intuitive introduction to the concepts of controlling feed-
back systems. In III A, we recall important fundamental
notions in control theory. Readers familiar with control
theory can skip these two sections, and start with sec-
tion III B which gives the central definitions we need for
our paper, and III C which gives the recent results on
the feedback stability of systems that we build upon. In
IV, we give our main results by adapting these concepts
to the analysis of adaptive dynamical networks. In V we
apply them to example systems. We recover state-of-the-
art results and extend them to heterogeneous systems.
Throughout the paper we write capital bold letters for

matrices, e.g.,M , and lower case bold letters for vectors,
e.g., x.

II. PHASE STABILITY FOR DYNAMICAL SYSTEMS:

HIGH-LEVEL SKETCH

Here we give an intuitive introduction to the concepts
that we later treat rigorously.
Consider the set of equations:

ẋ = −b · y (1)

y = d · x (2)

These are two systems that are connected by treating the
“output” of the one as the “input”, or driving force, of
the other.
Such interconnected linear systems are studied in

depth in control theory. One system is often considered
a “plant”, that is the system we wish to control using
the inputs, and the second is a feedback controller. The
interconnected system is called the closed loop system.
One of the foundational results of the theory of the

stability of such feedback systems is the small gain
theorem29. If we drive each of the systems with an oscil-
lation of a fixed frequency, the response will be a phase
shifted oscillation with a different amplitude. In the case
of (1):

ẋ = −b · y : (3)

y = exp(iωt) ⇒ x =
−b

iω
exp(iωt) + c (4)

⇒ x = σ exp(iωt+ φ) + c (5)

where σ =
∣

∣

b
ω

∣

∣ > 0 is called the gain and φ = arg
(

−b
iω

)

is
called the phase of the response.

The gain at each frequency is (the absolute value of)
the factor by which the oscillation is amplified/damped.
The small gain theorem29 states, that if the product of
the gains of the two interconnected systems is smaller
than 1 at all frequencies, the interconnected system is
stable.
The gain of the second equation (2) is just |d|, how-

ever, the gain of the first equation is
∣

∣

b
ω

∣

∣ and becomes
arbitrarily large. Consequently, small gain theorems can
not prove stability of such connected systems.
Allowing b and d to be complex, the condition for sta-

bility is of course ℜ(bd) > 0. This result can be recovered
by using the phases of the system under study. Small
phase theorems give conditions of the type:

−π < arg(d) + arg

(

b

iω

)

< π ∀ω 6= 0 (6)

which reduces to the exact result. A strong advantage
of this condition is that it is invariant under scaling the
coefficients b and d by positive values.
The paradigmatic Kuramoto model30 can be written

in the same structure as (1), (2). To linear order, the
driving force from the neighboring nodes is provided by
a weighted Laplacian multiplying the phases x. Again,
we know linear stability conditions for the simplest case:
If the weighted Laplacian L is positive semi-definite, then
ẋ = −Lx is semi-stable. In particular, this is the case if
the weights are positive.
The small gain theorem was stated for higher dimen-

sional systems from the start, with the singular values
of matrices taking the place of σ above29. However, in
Kuramoto-type models, we typically have that the un-
coupled system can move freely along a limit cycle. There
is no local force pushing it towards a particular phase,
and thus the gain of the nodal dynamics will often be
infinite. Small gain theorems do not apply for the same
reason as in (1), (2).
In contrast to gain theorems, phase conditions for the

stability of higher dimensional systems were only de-
rived recently23. They build on a new definition of the
phases of a matrix21. These definitions allow treating
systems like the linearized Kuramoto oscillator that are
not amenable to small gain analysis. Intriguingly, the
phases on which these small phase theorems rely are also
invariant under rescaling in the following sense: They are
matrix functions that satisfy φ(A) = φ(MAM †) for full
rank, square M .
As we will see, these types of relationships allow us

to reduce the phase conditions on the weighted Lapla-
cian L = BDB† to phase conditions on the diagonalD.
For the simple Kuramoto model, the condition that the
weights have to be positive is easily recovered. Thus, the
phase analysis subsumes the fact that positive weights
imply semi-definite Laplacians.
In the context of phase analysis, the network weights

do not need to be constant, though. They can react to
the inputs (as mapped to the edges byB†) and the phase
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response of their dynamics will determine the stability
characteristics of the full interconnected system.

III. CONTROL THEORY

To make this paper more self-contained for a physics
audience, this section reproduces key concepts and re-
sults from control theory. We begin by recalling key
properties of transfer functions in the one-dimensional
case. We then discuss the definition of the magnitude
and phase response of higher dimensional linear systems
(in this context typically called multiple input, multi-
ple output, linear time-invariant: MIMO LTI), and the
underlying concepts of matrix phase and magnitude. Fi-
nally, we present the phase and gain conditions for sta-
bility in interconnected feedback systems that we will use
below.

A. Transfer functions and stability

Transfer functions are a tool for understanding how
linear systems respond to inputs or disturbances, thus
providing insights into their behavior and stability. We
give an introduction to stability analysis with the help of
transfer functions. For more detailed explanations, refer,
for example, to Levine 31 , Bechhoefer 32 .
The transfer function of an LTI system relates the sys-

tem’s input to its output in the Laplace domain. The
Laplace transform converts a function f(t) of a real vari-
able t, typically in the time domain, to a function F (s)
of a complex variable s in the complex-valued frequency
domain, also called s-domain

L{f(t)} = F (s) =

∫ ∞

0

e−stf(t) dt. (7)

The complex frequency variable s is defined as s = ρ+iω,
where the real part ρ is related to growth or decay and the
imaginary part iω corresponds to oscillatory components.
Following conventions, we will often use f for the function
f(t) and its Laplace transform F (s). The context will
make it clear which one is at consideration.
The transfer function is defined as the ratio of the

Laplace transform of the output Y (s) to the Laplace

transform of the input U(s), i.e., H(s) = Y (s)
U(s) . It is

convention to assume without loss of generality that all
initial conditions are zero.
As an example, consider the linear system

ẋ(t) = −ax(t) + u(t) (8)

with initial conditions equal to zero: x(0) = 0. Taking
the Laplace transform, we have

sX(s) = −aX(s) + U(s) , (9)

X(s) =
1

s+ a
U(s) . (10)

G(s)

FIG. 1. Open-loop system. Arrows indicate inputs and out-
puts.

With x(t) as the output, the transfer function G(s) of
the system is therefore

X(s)

U(s)
= G(s) =

1

s+ a
. (11)

Setting the denominator to zero, s + a = 0 shows that
the system has a pole at s = −a. The inverse Laplace
transform of G(s) is

L−1

{

1

s+ a

}

= e−at.

The inverse Laplace transform turns the multiplication
with G(s) into convolution in the time domain:

x(t) =

∫ t

0

e−a(t−t′)u(t′)dt′, (12)

which is the well-known solution of (8) for x(0) = 0.
A real-rational transfer function can be expressed as

G(s) = N(s)
D(s) , where N(s) and D(s) are polynomials in s

with real coefficients. In a proper transfer function, the
degree of the numerator polynomialN(s) does not exceed
the degree of the denominator polynomial D(s), ensur-
ing that the function does not grow unbounded as |s| ap-
proaches infinity. Real-rational proper transfer functions
are exactly those that correspond to dynamical systems
as above.
Values of s that satisfy N(s) = 0 define the zeros of

the system, whereas values of s that satisfy D(s) = 0
correspond to the poles of the system.
For a continuous-time LTI system represented by a

transfer operator to be stable, all poles must have nega-
tive real parts, i.e., they must lie in the left half of the
complex plane. In the example above, this corresponds
to a > 0. This ensures that, for any bounded input, the
system’s output remains bounded, known as Bounded In-
put, Bounded Output (BIBO) stability. A system that is
semi-stable (or marginally stable) can have poles on the
imaginary axis, provided no poles exist in the right half
of the plane. Any pole with a positive real part indicates
instability. The set of real-rational stable proper transfer
functions is denoted RH∞.
Adding feedback to a system changes the pole loca-

tions, which can have stabilizing or destabilizing effects.
Even if the open-loop system (see Fig. 1) is stable, feed-
back can introduce new dynamics that may destabilize
the system. A closed-loop system with negative feedback
(see Fig. 2) subtracts the feedback signal from the input
signal. The transfer function of such a system is given

by T (s) = G(s)
1+G(s) .
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G(s)
−

FIG. 2. Closed-loop system. The minus next to the circle
indicates the subtraction of external input and output to im-
plement negative feedback.

G(s)

H(s)

−

FIG. 3. Closed loop-system with feedback controller.

If we add a feedback controller with transfer function
H(s), as in Fig. 3, the closed-loop transfer function be-

comes T (s) = G(s)
1+G(s)H(s) . Finding the poles of a closed-

loop transfer function is more challenging than for an
open-loop system, particularly in systems with multiple
inputs and outputs. Instead, the open-loop frequency
response G(s)H(s) can be used to determine whether
the closed-loop system will be stable. The frequency re-
sponse evaluates the steady-state behavior of a system
by analyzing how it reacts to sinusoidal inputs across the
frequency spectrum s = iω. When a sine wave is passed
through a linear system, the long-term response will be
also be a sine wave with the same frequency but possibly
different amplitude and phase. Initially, transient effects
may occur; however, if the open-loop transfer function
is stable (i.e., its poles lie in the stable region), these
transients will decay over time, leaving the steady-state
response.
The gain of a system, σ(G(iω)) := |G(iω)|, describes

how the system changes the amplitude of signals at
a specific frequency, whereas the phase φ(G(iω)) :=
arg(G(iω)) captures the phase shift introduced by the
system to those signals. For real-valued linear time-
invariant systems, analyzing the frequency response over
ω ∈ [0,∞] is sufficient, as the behavior at negative fre-
quencies is symmetric (magnitude even and phase odd).
The Nyquist criterion can be used to give a condition

for the stability of such a closed-loop system: Assume
that G(s) and H(s) have no poles in the right half-plane,
then if 1+G(s)H(s) has no zeros in the right half-plane,
the closed loop transfer function is stable. By integrating
along a contour encircling the right half-plane, and using
the Cauchy argument principle, we find that 1+G(s)H(s)
can have no zeros in the right half-plane, if G(s)H(s)
does not encircle −1. A sufficient condition for no en-
circlement is that either the gain of G(s)H(s) is smaller
than 1 or that its argument does not cross the negative
imaginary axis: −π < arg(G(s)H(s)) < π.

B. Frequency response of MIMO LTI systems

In multiple input multiple output systems, the trans-
fer function is a matrix that describes the relationship
between each input and each output. The central chal-
lenge in generalizing the arguments above to this case,
is that we now must give conditions for the eigenvalues
of G(s)H(s) to not encircle −1. While bounding the
magnitude of the eigenvalues of G(s)H(s) in terms of
the matrix norms of G(s) and H(s) is straightforward,
bounding the phases of the eigenvalues in terms of prop-
erties of G(s) and H(s) is not. This section defines the
required vocabulary to state the theorems which we build
upon.
a. Gain of a matrix: We begin by introducing the

appropriate complex matrix magnitudes and phases, fol-
lowing Chen et al. 23 , Zhao, Chen, and Qiu 24 . A matrix
M ∈ Cn×n has n magnitudes, defined as the n singular
values. The gain is the maximum singular value and thus
equal to the spectral norm.
b. Angular numerical range: The numerical range

of a matrix M ∈ Cn×n is given by

W (M) =
{

z†Mz | z ∈ C
N , z†z = 1

}

. (13)

The numerical range is a compact and convex subset of C,
and contains the spectrum ofM . The angular numerical
range of M is defined as

W ′(M) =
{

z†Mz | z ∈ C
N , z†z > 0

}

, (14)

which is the conic hull of W (M) and is always a convex
cone (or the entire complex plane).
c. Sectorial matrices and their sector: If 0 is not in

W (M), the matrix is sectorial. If 0 is on the boundary
ofW (M) it is semi-sectorial. For a semi-sectorial matrix
that is not identical to zero, arg(W ′(M)) defines a sector
of the circle of length 2∆(M) ≤ π. The phase for the
midpoint of this sector is only defined modulo 2π, we
typically choose the phase of the midpoint γ(M), such
that −π ≤ γ(M) < π. The maximum and minimum
phase of M are then defined as φ = γ(M) +∆(M) and
φ(M) = γ(M) − ∆(M). Note that this means that φ
(φ) can be larger (smaller) than π (−π).
d. Frequency-wise sectorial transfer operators: A

system G ∈ RHm×m
∞ is said to be frequency-wise sec-

torial if G(iω) is sectorial for all ω ∈ [−∞,∞].
e. Semi-stable frequency-wise semi-sectorial transfer

operators: LetG be anm×m real rational proper semi-
stable system with no poles in the open right half-plane,
and iΩ the set of poles on the imaginary axis. G is
frequency-wise semi-sectorial if

1. G(iω) is semi-sectorial for all ω ∈ [−∞,∞]\Ω; and

2. there exists an ǫ∗ > 0 such that for all ǫ+ ≤ ǫ∗,
G(s) has a constant rank and is semi-sectorial along
the indented imaginary axis, where the half-circle
detours to the right with radius ǫ are taken around
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both the poles and finite zeros of G(s) on the fre-
quency axis and a half-circle detour with radius
1/ǫ+ is taken if infinity is a zero of G(s).

f. Frequency-wise gain response of a system: With
these definitions, we can now introduce the magnitude
and phase response of MIMO LTI systems, following
Chen et al. 23 , Zhao, Chen, and Qiu 24 . Let G be
an m × m real rational proper transfer matrix. Then
σ(G(iω)) is the vector of singular values of G(iω), which
is called the magnitude response of G. The gain at fre-
quency ω is the largest singular value σ(G(iω)).
g. Frequency-wise phase response of a system: Con-

sider a frequency-wise sectorial (semi-sectorial) system
G(s). At zero frequency, G(0) (or G(ǫ+)) is real. For a
real matrix M the angular field of values is symmetric
on the real axis. Thus γ(M) is either 0 or π modulo 2π.
We require that the phase center of G(0) (or G(ǫ+)) can
be chosen as 0. In the context of feedback, this means
using the freedom to assign roots of 1 to the two transfer
operators without loss of generality. This enables a prac-
tical representation that avoids the critical point and the
branch cut at π and −π. If we choose phase centers for
G(iω) such that γ(G(iω)) is continuous in the frequency
ω ∈ [−∞,∞] (or on the contour avoiding the poles).
Then [φ(G(iω)), φ(G(iω))] is the sector containing the
phase response of G(s).
Note that the gain response is an even, the phase re-

sponse an odd function of the frequency ω. Small gain
and phase theorems are often given in terms of conditions
for only ω ∈ [0,∞].

C. Feedback Stability in MIMO LTI Systems

We can now state the main theorems we will adapt to
the adaptive network context below.
Denote the identity matrix I. The feedback system

in Fig. 4, denoted G#H , is stable if the Gang of Four
matrix

G#H =

[

(I +HG)−1 (I +HG)−1H

G(I +HG)−1 G(I +HG)−1H

]

(15)

is stable, i.e., G#H ∈ RH∞.
To obtain stability conditions, we need to make sure

that I +H(s)G(s) has no zero eigenvalues in the right-
hand side of the complex plane. This can be achieved by
limiting either the gain29,33 or the phase23 response of G
and H :

Theorem 1 (Small Gain Theorem, Zames 29 , Zhou 33).
Let G and H ∈ RHn×n

∞ . Then the feedback system
G#H is stable if

σ[G(iω)]σ[H(iω)] < 1, (16)

for all ω ∈ [−∞,∞].

G(s)

H(s)

−

FIG. 4. Feedback system

Theorem 2 (Generalized Small Phase Theorem, Chen
et al. 23 ). Let G be semi-stable frequency-wise semi-
sectorial with iΩ being the set of poles on the imaginary
axis and H ∈ RHn×n

∞ be frequency-wise sectorial. Then
G#H is stable if

φ(G(iω)) + φ(H(iω)) < π, (17)

φ(G(iω)) + φ(H(iω)) > −π. (18)

for all ω ∈ [0,∞]\Ω.

Both conditions can be combined. The mixed gain-
phase theorem with cut-off frequency developed by Zhao,
Chen, and Qiu 24 provides stability results for feedback
systems that satisfy a phase condition at low frequencies
and a gain condition at high frequencies.

Theorem 3 (Mixed Gain-Phase Theorem with Cut-off
Frequency, Zhao, Chen, and Qiu 24). Let ωc ∈ (0,∞),
G be semi-stable frequency-wise semi-sectorial over
(−ωc, ωc) with iΩ being the set of poles on the imagi-
nary axis satisfying maxω∈Ω |ω| < ωc, and H ∈ RHn×n

∞

be frequency-wise sectorial. Then G#H is stable if
i) for each ω ∈ [0, ωc)\Ω, it holds

φ(G(iω)) + φ(H(iω)) < π, (19)

φ(G(iω)) + φ(H(iω)) > −π, (20)

ii) and for each ω ∈ [ωc,∞], it holds

σ(G(iω))σ(H(iω)) < 1. (21)

Woolcock and Schmid 34 give a further generalized ver-
sion, and a proof that proceeds by the Nyquist criterion,
but does not treat the semi-stable case, which we need
in the following.

IV. STABILITY OF ADAPTIVE NETWORKS

We now come to the main result of the paper: An
adaptation of the mixed gain and phase condition to the
case of adaptive dynamical networks.

We will first show in detail how such systems can be
written as interconnected dynamical systems. Then we
will give the main theorems.
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A. Adaptive Networks as Feedback Systems

In this section, we show that a broad class of adaptive
dynamical systems can be cast into the form of a feed-
back system. In the neighborhood of a steady state, the
subsystems in the feedback loop are represented by two
transfer operators.
Let the N nodes of the network be indexed n and m,

with 1 ≤ n,m ≤ N . The L edges are indexed by ordered
pairs l = (n,m), n < m. For any nodal quantity xv

n, we
denote xv the overall vector obtained by stacking the xv

n,
similarly for xe

l . Note that, unless otherwise stated, the
dimension of xe

l and xv
n can vary from edge to edge and

node to node. We write [x] for the diagonal matrix with
the entries of x on the diagonal.
Consider a general bipartite dynamical system associ-

ated to a graph with node variables xv, and edge vari-
ables xe. As noted, the nodes and edges can be hetero-
geneous, e.g., the states xv

1 at node 1, can be a vector
of different size and follow different dynamics than xv

2 at
node 2. However, we require that the coupling on the
network occurs with respect to some observables ov and
o′

e

that have the same dimension for all edges and nodes.
The nodes and edges of the system are coupled with their
respective inputs and outputs by a node-edge incidence
matrix B that encodes the graph structure:

ẋv = fv(xv,Bo′
e

), (22)

ov := gv(xv,Bo′
e

), (23)

ẋe = fe(xe,B†ov), (24)

o′
e

:= ge(xe,B†ov), (25)

where f and g act node-wise or edge-wise, that is

ẋv

n = fv

n (x
v

n,Bo
′e|n) etc. (26)

With oe := Bo′
e

, we have

ẋv = fv(xv,oe), (27)

ov := gv(xv,oe), (28)

ẋe = fe(xe,B†ov), (29)

oe := Bge(xe,B†ov). (30)

Here, each component of fv and fe contains the local
dynamics of the xv

n and xe

l , and also the coupling to the
output of the other half of the bipartite system. Similarly,
each component of gv and ge contains the local output
functions of xv

n and xe

l . Without loss of generality, we
assume the fixed point we want to study is at the origin
x∗ = 0. The linearized system has the form

ẋv = Jvvxv + Jveoe, (31)

ov :=Dvvxv +Dveoe, (32)

ẋe = Jeexe + JevB†ov, (33)

oe := BDeexe +BDevB†ov, (34)

where the J•• are Jacobians of the self-coupling of
xv and xe, and the input matrices. The D•• are
feedthrough and output matrices of according dimen-
sions. In the most common notions of adaptive networks,
we have Dve = 0. Otherwise, this system might corre-
spond to a differential algebraic equation, rather than a
differential equation.
As the dynamics of f and g was acting locally at the

nodes, the square matrices J•• and D•• are block diag-
onal:

Jv• =
⊕

n

Jv•

n , Je• =
⊕

l

Je•

l , (35)

and for the D•• accordingly.
⊕

denotes the direct sum
over nodes or edges.
We now go to Laplace space and obtain the transfer

operators of the system:

ov =
(

Dvv(s− Jvv)−1Jve
)

oe (36)

:= T ve(s)oe (37)

oe = B
(

Dee(s− Jee)−1Jev +Dev
)

B†ov (38)

:= −BT ev(s)B†ov. (39)

If B† has a kernel, there are directions in phase space
that are not visible to the network interactions. Note that
in this situation, the stability results are with respect to
outputs that are orthogonal to this zero mode.
The inner transfer operators of these systems are block

diagonal: they can be written as the direct sum of node-
wise or edge-wise transfer operators,

T ve =
⊕

n

T ve

n , T ev =
⊕

l

T ev

l . (40)

One sees immediately that this system class has the
proper form to apply proposition 4. However, this theo-
rem gives us global conditions. In the following, we derive
a version that leverages the block structure to provide lo-
cal conditions.

B. Phases and gains for networked systems

The proofs we give below rely on the Lemmas pre-
sented in a companion paper26. Here we just collect the
crucial properties of the phases and the gain that make
them particularly useful for studying systems with a net-
work structure encoded in an incidence-like matrix B.
a. Connectivity does not enlarge the phase response:

The angular field of values of the transformed matrix
BMB† is contained within the union of the angular field
of values of the matrix M with 0

W ′(BMB†) ⊆ (W ′(M) ∪ 0) , (41)

and thus the phase sector of BMB† is contained in that
of M :

φ(BMB†) ≤ φ(M), φ(BMB†) ≥ φ(M). (42)
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b. Composition does not enlarge the phase response:
For a block diagonal system T =

⊕

n Tn, the numerical
range is the convex hull of the numerical ranges of the
blocks

W (T ) = Conv (W (T1), ...,W (TN )) . (43)

Therefore,

φ(T ) = max
n

φ(Tn) , φ(T ) = min
n
φ(Tn). (44)

c. The gain increase from connectivity is bounded:
The spectral norm is submultiplicative35, so we can give
an upper bound for the spectral norm of the transformed
matrix BMB†:

σ(BMB†) ≤ σ(B†)σ(B)σ(M) = σ(B)2σ(M). (45)

Defining the unweighted Laplacian matrix L of the in-
terconnection matrix B by L = BB† and noting that
σ(B)2 = σ(L), we get

σ(BMB†) ≤ σ(L)σ(M). (46)

The largest singular value of the Laplacian σ(L) is equal
to the largest eigenvalue and bounded by twice the max-
imal degree.
d. Composition does not increase the gain: The

spectral norm of a block diagonal system T =
⊕

i Ti,
is the maximum of the spectral norms of its diagonal
blocks:

σ(T ) = max
i
σ(Ti). (47)

C. Small Phase and Small Gain for Stability in Adaptive

Networks

We are now ready to give the main results of this paper,
a theorem that guarantees the stability of adaptive dy-
namical systems using gain and phase information. This
generalizes the Small Phase Theorem with Block Struc-
ture given in the companion paper26.

Theorem 4 (Generalized Small Phase Theorem with
Block Structure26). Consider the system G#H with the

block structure =
⊕N

n=1 Tn(s) and G = B
⊕L

l=1 Tl(s)B
†

for some B of appropriate dimensions. For each n, let
Tn(s) ∈ RH∞ be frequency-wise sectorial. For each l, let
Tl(s) be semi-stable frequency-wise semi-sectorial, with
iΩ being the union of the set of poles on the imaginary
axis. Require that H(s) has constant rank on the in-
dented imaginary axis. Then, the interconnected system
G#H is stable if

max
n

φ (Tn(iω))−min
n
φ (Tn(iω)) < π , (48)

max
l
φ (Tl(iω))−min

l
φ (Tl(iω)) ≤ π , (49)

for all ω /∈ Ω, and

sup
n,l,ω/∈Ω

[

φ (Tn(iω)) + φ (Tl(iω))
]

< π , (50)

inf
n,l,ω/∈Ω

[

φ (Tn(iω)) + φ (Tl(iω))
]

> −π . (51)

We now proceed to our main result. In analogy to
the Mixed Gain-Phase Theorem with Cut-off Frequency
as a combination of the Small Gain and Small Phase
Theorems, we can prove a mixed theorem for systems
with block structure.

Proposition 5 (Mixed Gain-Phase Theorem with
Cut-off Frequency and Block Structure). Consider the

system G#H with the block structure H =
⊕N

n=1 Tn(s)

and G = B
⊕L

l=1 Tl(s)B
† for some B of appro-

priate dimensions. Let ωc ∈ (0,∞). For each n, let
Tn(s) ∈ RH∞ be frequency-wise sectorial. For each l, let
Tl(s) be semi-stable frequency-wise semi-sectorial over
(−ωc, ωc), with iΩ being the union of the set of poles on
the imaginary axis satisfying maxω∈Ω |ω| < ωc. Further
require that Tl(s) have full rank along the indented
imaginary axis. Then, the interconnected system G#H
is stable if

max
n

φ (Tn(iω))−min
n
φ (Tn(iω)) < π , (52)

for all ω /∈ Ω, and

max
l
φ (Tl(iω))−min

l
φ (Tl(iω)) < π , (53)

for ω ∈ (−ωc, ωc)\Ω, and
i) for each ω ∈ [0, ωc)\Ω, it holds

sup
n,l

[

φ (Tn(iω)) + φ (Tl(iω))
]

< π , (54)

inf
n,l

[

φ (Tn(iω)) + φ (Tl(iω))
]

> −π . (55)

ii) and for each ω ∈ [ωc,∞], it holds

sup
n,l

[

σ(B)2σ(Tn(iω))σ(Tl(iω))
]

< 1. (56)

Remark: H is stable, and its sectoriality is ensured
by (52). G is semi-stable, and its semi-sectoriality over
(−ωc, ωc) is ensured by (53). Note that the full rank con-
dition, together with semi-sectoriality, implies that Tl(s)
are actually sectorial. Due to the kernel of B†, G will
still only be semi-sectorial. Equations (54)-(55) imply
the phase conditions of Theorem 3, and (56) implies the
gain condition (21).

Proof. We prove this proposition by showing that all as-
sumptions and conditions allow us to apply Theorem 3.
In the appendix, we prove (Lemma A) that the condi-
tion that Tl(s) has full rank, together with (53) implies
that the kernel of G(s) is the kernel of B†, and thus the
rank of G(s) is constant. Leveraging lemmas from the
companion paper26, we have
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• H is stable by Lemma 8,

• H is frequency-wise sectorial if (52) holds by
Lemma 9,

• G is semi-stable by Lemma 10, and

• G is frequency-wise semi-sectorial over (−ωc, ωc)
if (53) holds by Lemma 11. As the proof of this
Lemma goes frequency-wise over ω ∈ R \Ω, it also
applies to any interval; this includes (−ωc, ωc).

Using one more time the convex hull property (43), in
particular (44), and the subset property (41), the as-
sumptions (54)-(55) imply

sup
ω∈[0,ωc)\Ω

[

φ

(

⊕

n

Tn

)

+ φ

(

B
⊕

l

TlB
†

)]

< π, (57)

inf
ω∈[0,ωc)\Ω

[

φ

(

⊕

n

Tn

)

+ φ

(

B
⊕

l

TlB
†

)]

> −π,

(58)

where Tn and Tl are functions of iω. These are the phase
conditions (19), (20) of Theorem 3.
By (45) and (47), we have that (56) implies (21). All in

all, the system (
⊕

n Tn)#
(

B
⊕

l TlB
†
)

then satisfies all
assumptions and conditions of Theorem 3 and is therefore
stable, which concludes the proof.

V. STABILITY OF KURAMOTO-TYPE ADAPTIVE

SYSTEMS

We now use Theorem 5, to derive sufficient criteria
for the stability of several Kuramoto-type systems. We
demonstrate that this theorem can give novel insights,
even for well studied paradigmatic models.
The first example is the classical Kuramoto model. We

recover standard results and show that our theorem in-
cludes heterogeneous parameters and complex topologies,
as well as complexified states and parameters. The sec-
ond example is the reformulation of the Kuramoto model
with inertia as an adaptive system. Here, we recover es-
tablished sufficient stability conditions in a novel way.
The third system is a proper adaptive Kuramoto model.
Here we obtain new sufficient stability conditions that
match the necessary conditions of Do et al. 25 , but also
generalize to heterogeneous parameters.
Recall that we denote [x] = diag(xi).

A. The classical Kuramoto model and its generalizations

Our results also apply to the subclass of non-adaptive
systems. Picking up the motivating example of II, con-
sider the classical Kuramoto model30 of N oscillators
with phases xn and natural frequencies fn, but allow a

complex network topology and heterogeneous symmetric
coupling weights Knm:

ẋn = fn −
∑

m

Knm sin(xn − xm). (59)

Without loss of generality, we assume
∑

n fn = 0. Omit-
ting technical details, the linearized system can be repre-
sented by the transfer operators 1

sL#I, with the Lapla-

cian L := BK [cos∆x◦]B†, where B is the node-edge
incidence matrix, K = diag (Kl) and ∆xl = xn − xm,
both for lexicographical edges l = (n,m), n < m. The
steady state fulfills fn =

∑

mKnm sin(x◦n − x◦m). Apply-
ing our method, we find it is stable if Kl cos∆x

◦
l > 0,

implying phase differences |∆x◦l | < π/2 for all edges
l = (n,m), a classical result that we get straightforward.
Furthermore, our method almost immediately

applies36 to the complexified Kuramoto model in-
troduced by Thümler et al. 37 , Lee et al. 38 : The
complexified system is stable if ℜ (Kl cos∆x

◦
l ) > 0.

B. The Kuramoto model with inertia

As a first detailed example, we study the Kuramoto
model with inertia39,40 in the most general case of het-
erogeneous parameters,

mnẍn + γnẋn = Pn −
∑

m

anmKnm sin(xn − xm), (60)

where xn represents the phase of the n-th oscillator with
inertia mn > 0, torque Pn, and damping γn. Knm is the
coupling strength of the edge connecting n and m. The
connectivity structure is given by the N × N adjacency
matrix A with elements anm ∈ {0, 1}.
By introducing the dynamic coupling variable κnm,

(60) can be rewritten as a system ofN adaptively coupled
phase oscillators

mnẋn + γnxn =
∑

m

anmκnm (61)

κ̇nm = Pnm −Knm sin(xn − xm), (62)

where Pnm = −Pmn, and
∑

m Pnm = Pn. In the sta-
tionary, phase-locked state, all oscillators oscillate with a
common frequency ẋ◦n = Ωsync =

∑

n Pn/
∑

n γn and sat-
isfy the steady state equations Pnm = Knm sin(x◦n−x

◦
m).

Again, we can assume
∑

n Pn = 0 without loss of gen-
erality. The κ◦nm correspond to the excess energy that
flowed over the line in order to reach the steady state
from an initial condition.
The system can be expressed as a system of

coupled node variables x = (x1, x2, . . . , xN )⊤

and lexicographically ordered edge variables
κ = (κnm | anm = 1, n < m). In this model, the
antisymmetry κnm = −κmn holds for the steady state
and is conserved by the dynamics. The N node and L
edge variables are linked via an N × L signed incidence
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matrix B, with all edges oriented from node n to node
m. The entries of the matrix indicate how the edges
connect to the nodes: a value of +1 indicates that the
edge is directed towards a node, −1 indicates the edge
is directed away from a node, and 0 means the node is
not connected to that edge. Denote l = (l1, l2), then

Bnl = δnl1 − δnl2 . (63)

In (61), we can use B to sum over the edge variables,
and in (62) we can use B⊤ = B† to represent phase
differences. Introducing M = diag(mn), Γ = diag(γn),
K = (diag(Knm) | anm = 1, n < m) and P = (Pnm |
anm = 1, n < m), the system is written as

Mẋ+ Γx = Bκ (64)

κ̇ = P −K sin(B⊤x)). (65)

To linearize the system around the phase-locked state,
we introduce error coordinates ∆x = x − x◦ and ∆κ =
κ− κ◦. The linearized system reads

M∆ẋ+ Γ∆x = B∆κ (66)

∆κ̇ =K[cos(B⊤x◦)]B⊤∆x, (67)

where [cos(B⊤x◦)] is a diagonal matrix.
In Laplace space, the transfer operators of the system

are

∆x = T ve(s)B∆κ (68)

T ve(s) =
1

Ms+ Γ
(69)

∆κ = −T ev(s)B⊤∆x (70)

T ev(s) =
1

s
K[cosB⊤x◦]. (71)

With χ = Bκ, we have

∆x =
1

Ms+ Γ
∆χ (72)

∆χ = −B
1

s
K[cosB⊤x◦]B⊤∆x, (73)

and we can write the interconnected feedback loop as
B⊤T veB#T ev.
To apply Proposition 5, we must ensure that T ve and

T ev satisfy the conditions for (semi-)stability and (semi-
)sectoriality. Moreover, the DC phase center of both
transfer operators is assumed be 0 by convention. The di-
agonal matrices T ve =

⊕

n T
ve
n and T ev =

⊕

l T
ev
l have

the entries

T ve
n (s) =

1

mns+ γn
(74)

T ev
l (s) =

1

s
Knm cos(x◦n − x◦m). (75)

For T ve(s) to be stable, the poles at s = − γn

mn

must
lie in the left half of the complex plane, which requires
γn

mn

> 0. Since the inertia mn > 0, it follows that the
damping must be positive: γn > 0. It follows that the
DC phase center is 0. Since T ve(iω) is a diagonal matrix,
its numerical range is the complex hull of the diagonal
entries, thus T ve(s) is frequency-wise sectorial.
T ev(s) is marginally stable (or semi-stable) because all

poles lie on the imaginary axis at s = 0. Since s = 0 is a
pole, the DC phase center is evaluated at s = ǫ+. For T ev

to be frequency-wise semi-sectorial and have constant
rank along indented imaginary axis with a DC phase cen-
ter of 0, T ev(ǫ+) must be positive definite, which leads
to the condition

T ev
l (ǫ+) =

1

ǫ+
Knm cos(x◦n − x◦m) > 0 , (76)

|x◦n − x◦m| <
π

2
if Knm > 0 , (77)

|x◦n − x◦m| >
π

2
if Kmn < 0 , (78)

for all connected (n,m).
Next, we evaluate the phase and gain conditions of

Proposition 5. The phases of T ve range from 0 to
−π

2 , with φ(T ve
n (iω)) ∈ [0,−π

2 ] for ω ∈ [0,∞]. The
phases of T ev are constant over all finite frequencies, with
φ(T ev

l (iω)) = −π
2 for ω ∈ [0,∞] \ Ω. With ωc ∈ (0,∞),

the phase condition

φ(T ve(iω)) + φ(T ev(iω)) < π (79)

φ(T ve(iω)) + φ(T ev(iω)) > −π (80)

is fulfilled for each ω ∈ [0, ωc)\Ω.
T ve and T ev have the singular values

σ(T ve
n (iω)) =

1
√

(mnω)2 + γ2n
(81)

σ(T ev
l (iω)) =

1

ω
Knm cos(x◦n − x◦m), (82)

where the gains σ(T ve(iω)) and σ(T ev(iω)) correspond
to the largest singular values. With D being the max-
imum degree in the network, σ(B)2 is bounded from
above by 2D (see (45)-(46)). We can always find a cut-off
frequency ωc so that the gain condition

σ(B)2σ(T ve)σ(T ev) ≤ 2D
Knm cos(x◦n − x◦m)

ω
√

(mnω)2 + γ2n
< 1 (83)

is fulfilled for each ω ∈ [ωc,∞).
These results show that we can apply Proposition 5 to

prove stability for oscillators with mn > 0, γn > 0, posi-
tive coupling Knm > 0, and |x◦n−x◦m| < π

2 for connected
(n,m). For oscillators with negative coupling Knm < 0,
stability is ensured when the phase differences satisfy
|x◦n − x◦m| > π

2 for connected (n,m). This is basically
the typical Laplacian formulation, but we are allowed to
leave out B and B⊤ and only analyze the line weights.
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C. An adaptive Kuramoto model

We study the adaptive Kuramoto model presented in
Do et al. 25 , with the modification that cnm can vary for
each link. The system consists of N adaptively coupled
phase oscillators

ẋn = ψn −

N
∑

m 6=n

Anm sin(xn − xm) (84)

Ȧnm = cos(xn − xm)− cnmAnm, (85)

where xn denotes the phase and ψn the intrinsic fre-
quency of node n. The coupling matrix A ∈ RN×N de-
fines an undirected, weighted network, where two oscilla-
tors n,m are connected if Anm = Amn 6= 0. The coupling
is adaptive and co-evolves with the dynamics of the oscil-
lators. In the stationary phase-locked state all oscillators
oscillate with a common frequency Ψ = 1

N

∑

n ψn, which
we can assume to be zero without loss of generality, and
A◦

nm = cos(x◦m − x◦n)/cnm.
The system can be expressed as a system of coupled

node variables x = (x1, x2, . . . , xN )⊤ and edge variables
a = (Anm | n < m), corresponding to the elements from
the upper triangular part of the coupling matrix A. The
N node and L edge variables are linked via the N × L
incidence matrix B, where we assume that each edge is
oriented from node n to nodem, with n < m for all edges.
Introducing C = (diag(cnm) | n < m) and the outputs o
and u of the node and edge dynamics, respectively, the
system is written as an input-output system matching
the form of (22)-(25).

ẋ = ψ + u (86)

o = x (87)

ȧ = cos(B⊤o)−Ca (88)

u = −B(a ◦ sin(B⊤o)), (89)

where ◦ denotes element-wise multiplication.
To linearize the system around the phase-locked state,

we introduce error coordinates ∆x = x−x◦, ∆o = o−o◦,
∆a = a − a◦ and ∆u = u − u◦, where ẋ◦ = Ψ and
a◦ = C−1 cos(B⊤x◦). The linearized system reads

∆ẋ = ∆u (90)

∆o = ∆x (91)

∆ȧ = −C∆a− [sin(B⊤x◦)]B⊤∆o (92)

∆u = −B
(

[sin(B⊤x◦)]∆a+C−1[cos2(B⊤x◦)]B⊤∆o
)

.

(93)

In Laplace space, the transfer operators of the system are

∆o = T ve(s)∆u (94)

T ve(s) =
1

s
(95)

∆u = −BT ev(s)B⊤∆o (96)

T ev(s) = C−1[cos2(B⊤x◦)]− (s[1] +C)−1[sin2(B⊤x◦)].
(97)

To simplify the analysis, we introduce ∆v = 1
s∆u,

∆o = T ve(s)∆v (98)

T ve(s) = I (99)

∆v = −BT ev(s)B⊤∆o (100)

T ev(s) = (sC)−1[cos2(B⊤x◦)]

− (s(s[1] +C))−1[sin2(B⊤x◦)]. (101)

To apply Proposition 5, we must ensure that the trans-
fer operators satisfy the conditions for (semi-)stability,
(semi-)sectoriality and DC phase center. T ve = I is sta-
ble and frequency-wise semi-sectorial with a DC phase
center of T ve(0) = 0. The diagonal matrix T ev =
⊕

l T
ev

l has the entries

T ev
l (s) =

1

scnm
cos2(x◦n − x◦m)−

1

s(s+ cnm)
sin2(x◦n − x◦m)

(102)

T ev(s) has poles at s = 0 and at s = −cnm, which re-
quires cnm ≥ 0 for semi-stability and cnm 6= 0 for bound-
edness. For T ev to be frequency-wise semi-sectorial and
have full rank along the indented imaginary axis with a
DC phase center of 0, T ev(ǫ+) must be positive definite,
which leads to the condition

1

cnm
cos2(x◦n − x◦m)−

1

ǫ+ + cnm
sin2(x◦n − x◦m) > 0.

(103)

This must hold for arbitrarily small ǫ+, thus

1

cnm
cos2(x◦n − x◦m)−

1

cnm
sin2(x◦n − x◦m) > 0 (104)

cos(2(x◦n − x◦m)) > 0 (105)

|x◦n − x◦m| >
π

4
. (106)

Next, we analyze the interconnected system
T ve#BT evB⊤ and evaluate the phase and gain
conditions of Proposition 5.
T ve has phase φ(T ve(iω)) = 0 for all s. The phases

of T ev lie in [0, φc] −
π
2 for ω ∈ [0,∞] \ Ω, with φc ∈

[

arctan 1
2 ,

π
4

]

depending on the phase differences:

φc := max
l=(n,m)

arctan
{

[

2 cos2(x◦n − x◦m)
]−1
}

. (107)

Hence, the phase condition

φ(T ve(iω)) + φ(T ev(iω)) < π (108)

φ(T ve(iω)) + φ(T ev(iω)) > −π (109)

is fulfilled for each ω ∈ [0,∞]\Ω. We therefore do not
need the gain condition.
We can apply Proposition 5 and prove stability for

cnm > 0 and oscillators satisfying |x◦n − x◦m| < π
4 for

all edges. This agrees with the necessary stability condi-
tions presented in Do et al. 25 for the case of homogeneous
parameters, showing that the condition is exact in this
setting. Thus, the combined results completely settle the
linear stability of this adaptive Kuramoto model.
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VI. DISCUSSION

This paper introduced a new method for studying the
linear stability of steady states in adaptive networks. By
leveraging new results from linear algebra and control
theory, we could give novel stability conditions. Ap-
plying these to the classical Kuramoto model and the
Kuramoto model with inertia (written as adaptive first-
order oscillators) demonstrated that they are not overly
conservative, and allow straightforward generalization to
heterogeneous parameters in a local fashion. In the case
of truly adaptive oscillators, the sufficient conditions we
obtain even match necessary conditions derived previ-
ously. However, our conditions apply much more broadly,
including in the case of heterogeneous parameters as well.
This gives a complete characterization of the stability of
steady states of this adaptive Kuramoto model in situa-
tions in which the necessary result applies.
One notable aspect of the theory developed here, is

that nodes and edges are allowed to be highly het-
erogeneous in their states and dynamics. Contrary to
work in the master stability tradition, we do not re-
quire any factorization of the systems Jacobian of the
type J = F ⊗ I + G ⊗ L. This could be particularly
important for the study of multilayer networks with dif-
ferent topologies in the different layers, where no such
factorization is available.
The natural way in which phase conditions and net-

work structure interact, also allows many further gen-
eralizations of the above framework. Due to the fact
that edge states have their own full dynamics, there is
considerable freedom in choosing exactly how the sys-
tem is partitioned into edges and nodes. The structured
perturbation approach of Woolcock and Schmid 34 is an
example of this.
There also are further variations of phase-based stabil-

ity conditions that could be interesting to study, partic-
ularly for directed networks. Notions like r-sectoriality
can combine gain and phase information in ways that
encode directedness in a natural way22.
Finally, the examples explored above used a signed in-

cidence matrix, and thus Laplacian-type diffusive cou-
pling. However, the theorem leaves the nature of B com-
pletely open. We leave exploring the use of this theorem
for systems where the coupling is not Laplacian in nature,
e.g., additive, to future work.
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Appendix A: Constant rank Lemma

Lemma 6. Let M1(s), ...,MN (s) be a set of matrix val-
ued functions. Assume that for any s, all the Mi(s) are
semi-sectorial, have full rank, and their maximum and
minimum phases satisfy

max
i
φ (Ml(s))−min

i
φ (Ml(s)) < π , (A1)

Then

ker

(

B
⊕

i

Mi(s)B
†

)

= ker
(

B†
)

. (A2)

In particular, the matrix B
⊕

iMi(s)B
† has constant

rank as a function of s.

Proof. For semi-sectorial matrices satisfying the
minimum-maximum angle condition above, 0 can
only be on a corner of the numerical range, and thus
has to be an eigenvalue. Thus, for such matrices, being
full rank implies sectoriality and 0 can not be in their
numerical range. Further, all the numerical ranges of
the Mi(s) at fixed s lie in the same open half plane.
Let us define M(s) :=

⊕

iMi(s). First, it is clear that

ker
(

BM(s)B†
)

⊂ ker
(

B†
)

. Indeed, if B†z = 0, then

BM(s)B†z = 0.
Second, let z /∈ ker

(

B†
)

, i.e., B†z 6= 0. Following
assumption that all Mi(s) have their numerical ranges
in the same open half-plane, M(s) has full rank and
then M(s)B†z 6= 0. Furthermore, by the convex hull
property, the numerical range of M(s) lies in an open
half-plane, and therefore

z†BM(s)B†z 6= 0 , (A3)

meaning that BM(s)B†z cannot be zero. Hence, z does
not belong to the kernel of BM(s)B†, which concludes
the proof of Eq. (A2).
Finally, as neither B nor its kernel depend on s, the

kernel is constant with respect to s
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