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A B S T R A C T

In response to climate change, the expansion of renewable energies leads to an increasing number of offshore 
wind farms in the North Sea. This comes along with an increase in (artificial) hard substrates in a mainly soft- 
bottom dominated marine area with so far largely unknown consequences for the underlying ecosystem func
tioning. We used a large combined dataset (both hard- and soft-substrate data) to model the secondary pro
duction of fouling communities on turbine foundations and of soft-bottom fauna inside and outside offshore wind 
farms (OWF) in the southern North Sea (Belgium, the Netherlands, Germany). We demonstrate that (1) a large 
amount of energy is channelled through fouling fauna on turbines (i.e., secondary production of fouling com
munities was on average 80 times higher than of soft-substrate communities), (2) 71 % of fouling production on 
turbines is released to the surrounding sediment (annual release: − 221 ± 825 gC m− 2 y− 1 (SD)), and that (3) 
local production of soft-bottom communities is elevated up to a distance of 150–250 m from turbines. Production 
impacted area (PIA) was determined from hard- and soft-substrate data independently: mechanistic modelling of 
hard-substrate production export showed a production increase of 5 % up to 150 m from the turbine and 
generalised additive mixed models (GAMMs) based on soft-bottom fauna data suggested an elevated production 
up to 250 m from turbines. Accordingly, on the scale of an OWF (distance between turbines ~1000 m), the local 
production “halo” effect around turbines affects about 11 % of an OWF area (dependent on OWF configuration). 
The observed changes in benthic energy flow may lead to so far unknown changes at the ecosystem level from 
plankton communities to apex predators.

1. Introduction

Marine ecosystems experience multi-factorial pressures from both 
climate change-driven environmental change (Birchenough et al., 2015) 
and a multitude of local/regional human activities such as shipping, 
commercial fishing, oil drilling, sand extraction, tourism and 

eutrophication (Adger et al., 2005; Birchenough and Degraer, 2020). 
The rapid expansion of the marine renewable energy sector 
(WindEurope, 2021; 4COffshore, 2024) adds a further variable to this 
already complex setting.

Offshore wind farms (OWF) represent the introduction of large 
amounts of artificial hard substrate into a predominantly soft-sediment 
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environment (Macreadie et al., 2011). These hard substrates have very 
specific properties, as the turbine foundations span the entire water 
column, connecting surface layers with the seafloor sediments 
(Lindeboom et al., 2011; Krone, 2012). Thus, they differ substantially 
from offshore seafloor-restricted natural hard substrates and other 
man-made structures such as pipelines and shipwrecks. Wind turbine 
foundations affect local biodiversity and food web patterns with re
percussions on ecosystem functioning at the local scale as well as at 
regional scales by providing (1) habitat for a fouling community, often 
new to offshore regions (Wilhelmsson and Malm, 2008; Krone et al., 
2013a), (2) stepping stones for range-expanding (and potentially 
non-indigenous) species that may otherwise not be able to expand their 
populations into new areas (Coolen et al., 2020b; Kerckhof et al., 2011) 
and (3) habitat/shelter and foraging opportunities for pelagic and 
demersal species, particularly for early life stages sensitive to predators 
(e.g. juvenile fish) (Reubens et al., 2014a; Mavraki et al., 2021; Buyse 
et al., 2023). Consequently, this can lead to alterations in biological (e. 
g., new epifaunal prey items) and biogeochemical processes at the sea
floor - either directly (e.g., scouring, organic matter export from piles: 
De Borger et al., 2021a) or indirectly (e.g., reduced stress from bottom 
fisheries: Coates et al., 2014; Dannheim et al., 2014; Lefaible et al., 
2023).

Enhanced habitat complexity as a result of introduced OWF can in
crease diversity, production and trophic complexity (Rouse et al., 2020; 
Mavraki et al., 2020a; Coolen et al., 2020b, 2020c; Kingma et al., 2024, 
Zupan et al., 2024). Such changes of biological processes at the 
sediment-water interface can trigger a broad range of effects in the 
benthic system at a local scale (Dannheim et al., 2020). After con
struction, a specific hard bottom-assemblage, i.e., fouling community 
and mobile megafauna, consisting of primary and secondary producers 
quickly colonise the new artificial structure (Zupan et al., 2023; De 
Mesel et al., 2015; Krone et al., 2013b). Particularly in the upper part of 
the structure, suspension feeding mussels are dominant in terms of 
biomass, transferring organic matter directly from the pelagic to the 
benthic realm by producing faecal pellets or dislodging of species 
(Joschko et al., 2008; Slavik et al., 2019; Hutchison et al., 2020; Lefaible 
et al., 2023). For example, up to 30.000 individuals per square meter 
and 40 kg m− 2 of the blue mussel Mytilus edulis were recorded at a 
research platform in the North Sea, resulting in 4300 kg biomass of the 
whole platform (1280 m2) on a footprint size of 1024 m2 (Joschko et al., 
2008; Krone et al., 2013a). Compared to the natural surrounding benthic 
communities, macrozoobenthic biomass was 35 times higher at the 
platform foundation’s footprint.

This large amount of fouling biomass significantly adds to the trophic 
network and acts as a new food resource for higher trophic levels e.g., for 
certain fish species (e.g., Reubens et al., 2014b; Mavraki et al., 2021; 
Buyse et al., 2023). At the same time, this changes the organic matter 
flow within the benthic system (Cresson et al., 2014; Degraer et al., 
2020): suspension feeding of fouling community clear large amounts of 
water (Voet et al., 2022) and produced faecal pellets that are deposited 
to the sediment, leading to a redistribution of organic matter deposition 
(Ivanov et al., 2021) and associated benthic mineralisation processes 
(De Borger et al., 2021b; Wilking et al., 2023).

Secondary production, i.e., heterotrophic or animal production, is 
the sum of new biomass growth by all individuals in a given area and 
during a specific period of time (Brey, 2012; Claisse et al., 2014). In 
contrast to community properties such as biomass and density, sec
ondary production is a functional property, integrating multiple char
acteristics of a community (e.g., density, body size, growth and 
mortality) into a single metric (Claisse et al., 2014). It constitutes the 
energy that is available for higher trophic levels and is thus by its 
definition a quantitative base of energy flow, and of trophic interactions 
between species in a given system (Brey, 2012). Thereby, it reflects 
population structure and function, population fitness, population 
properties or processes and hence represents a proxy of functional 
response of populations or communities to stressors (Dolbeth et al., 

2012). As such, calculating secondary production is a powerful tool in 
trophic ecology to detect energy flow (Benke, 2011; Dolbeth et al., 
2012). Secondary production is known to vary significantly with lat
itudinal gradients, depth, water temperature and sea-bottom roughness 
(i.e., hard or soft bottom: Cusson and Bourget, 2005). Benthic in
vertebrates represent an important link in the marine food web, as they 
link the energy flow from primary producers to fish (Brey, 1990; Bolam, 
2012) and their activities largely determine microbial processes of 
sedimentary organic matter recycling (Braeckman et al., 2014; Wrede 
et al., 2017). However, little is known about the energy-biomass flow 
changes in the benthal by the introduction of artificial hard substrates 
and about the spatial extent of the effect of increased benthic production 
(Degraer et al., 2020). Particularly, fouling production is one of the least 
investigated aspects in hard-substrate ecology (Rouse et al., 2020; 
Fowler et al., 2020). At the same time, studies suggest that the amount of 
fouling community production in the North Sea is expected to increase 
with increasing number of artificial structures and to affect the naturally 
present soft-bottom benthos (see Degraer et al., 2020 and references 
therein).

Here, we focused on the impact of OWF on benthic secondary pro
duction based on a large international dataset spanning 12 datasets from 
six different monitoring programmes covering various years. We (a) 
quantified the secondary production at OWF structures in the southern 
North Sea, (b) evaluated whether additional production from the fouling 
communities significantly contributes to local benthic production, and 
(c) estimated at which scale effects on the benthic system may become 
visible.

2. Material and methods

2.1. Study site

The southern North Sea (Fig. 1) is a shallow part of the North Sea 
(30–50 m depth) with predominantly fine to muddy sands in the German 
Bight to well oxygenised permeable coarse sands towards the Belgian 
part of the North Sea. Median grain size of the sediments in the study 
area was on average 259 ± 149 μm but differed between OWF areas 
covering fine sand to medium sand habitats (this study, see Table 1). The 
southern North Sea is further characterised by two major current sys
tems: the predominant inflow current through the English Channel into 
the North Sea, and the anticlockwise currents and tidal currents from 
Scotland towards the German Bight (Ducrotoy et al., 2000). Nearshore 
waters are affected by freshwater discharges of several estuaries such as 
the Scheldt, Rhine/Meuse, Ems, Weser and Elbe. In its shallower regions, 
the water column is generally well-mixed due to wave action and tidal 
currents, as here in the study area, while deeper parts are stratified 
which results in a high seasonal variability of bottom waters in different 
geographical regions (Glémarec, 1973). Water temperature follows a 
strong seasonal pattern and ranged between 4 ◦C (April 2014) and 20 ◦C 
(August 2014) in the study area (this study, see Table 1). Salinity ranged 
between 31 PSU (German Bight) and 35 PSU (Belgian part of North Sea) 
during the study period (see Table 1). Most of the primary production 
occurs in the nutrient rich, well-mixed waters of the shallow parts (Reid 
et al., 1990; Moll, 1998).

2.2. Faunal data

In this study, we used 12 datasets: six hard-substrate and six soft- 
bottom datasets. The data were derived from several monitoring pro
jects in the Belgian, Dutch and German exclusive economic zones 
(Table 1, Fig. 1). All projects studied the effects of offshore wind farms 
on benthic communities. Most of the data are part of the BISAR data 
compilation (Dannheim et al., 2025a) and can be retrieved from the 
CRITTERBASE web portal (https://critterbase.awi.de/bisar). The anal
ysis was based on complementary datasets, sampled between 2003 and 
2015 consisting of: (a) 3037 infaunal samples (grabs and cores, no scour 
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protection layer data) from 1255 stations in the southern North Sea 
region (N = 63,570 species data, i.e., species-abundance-biomass en
tries) and (b) on 740 scrape samples from 312 sampling points on wind 
turbine foundations (N = 10,212 species data). Details of sampling and 
sample processing are given in BSH (2014), Degraer et al. (2017), 
Coolen et al. (2020a) and Dannheim et al. (2025b). Complementary 
results on biodiversity changes have been published by Coolen et al. 
(2022) with the same dataset.

2.3. Environmental data

Both benthic data (hard substrate, soft bottom) sources provided 
corresponding environmental data, i.e., latitude and longitude, sam
pling depth on the turbine foundation or at the sea floor (depth, m), and 
sediment median grain size (MdGS, μm) for each sample. We used the 
General Bathymetric Charts of the Oceans (GEBCO, www.gebco.net) 
with a spatial resolution of a 1 arc-minute grid (1.85 km × 1.85 km) to 

substitute missing depth data. OWF construction dates were derived 
from reports and relevant literature and age of hard substrate commu
nities as well as sampling month after construction for soft-bottom 
samples was determined, respectively. Sea surface temperature was 
partly measured as part of the project framework, but the major part – 
69 % of the datasets – was derived from the COHERENS larval transport 
model implemented in the North Sea (Lacroix et al., 2018) using the 
geographic position and sampling time of each sample. Distance to coast 
of the samples was calculated using GRASS GIS 7.2.1 (GRASS Devel
opment Team, 2017). Samples were categorised according to the 
respective OWF project (i.e., BeoFINO, alpha ventus, Belwind, C-Power, 
Egmond aan Zee, Prinses Amalia wind farm). Closest distance to a tur
bine for soft sediment samples was calculated using GRASS GIS 7.2.1. To 
account for seasonality, we calculated the Julian day (d), as tempera
tures in spring and autumn can be similar but production is known to 
increase during the year. The latter fact is based on the empirical re
lations of temperature dependence, energy investment into primary 

Fig. 1. Stations in the study area of the southern North Sea in the Belgian, Dutch, and German part for hard-substrate and soft-bottom sampling.

Table 1 
Overview on data and sampling by wind farms (per country) for hard-substrate and soft-substrate sampling with temperature range (◦C), location distance to coast 
(km), location depth range (m), sampling years and age of the community (months), i.e., sampling prior and after construction. Hard-substrate sampling information: 
number of scrape samples, sampled turbines and sampling depth range at turbines. Soft-substrate sampling information: number of grab samples, median grain size 
(μm) and distance to structure (m) of samples.

Country Belgium The Netherlands Germany

Wind farm Belwind C Power Egmond aan Zee Prinses Amaliapark alpha ventus BeoFINO

Temperature (◦C) 7–18 4–20 5–18 4–17 4–17 4–20
Distance to coast (km) 45 ± 4 28 ± 1 18 ± 8 26 ± 5 44 ± 3 44 ± 3
Location depth (m) 22–31 15–29 12–28 17–24 28–34 29–35
Sampling years 2010–2014 2008–2015 2003,2008,2011 2010–2013 2008–2012 2003–2007
Community age (mos) 4–59 5–90 Pre, 20-63 58–79 Pre, 3-39 Pre, 10-52
Hard-substrate sampling
Turbines sampled 2 3 3 4 4 1
Turbine type monopile gravity based (2), jacket (1) monopile monopile 2 tripod, 2 jacket jacket
Turbine material steel concrete (2), steel (1) steel steel steel steel
Year of construction 2009 2008 (2), 2011 (1) 2006 2007 2009 2003
Scrape samples (N) 40 108 48 92 234 218
sampling depth turbine (m) 15–22 4–25 2–17 0–25 1–10 1–30
Soft-substrate sampling
Grab samples (N) 357 231 496 208 1223 522
Median grain size (μm) 419 ± 51 384 ± 59 507 ± 134 287 ± 28 180 ± 21 225 ± 242
Distance to structure (m) 304–3807 100–6776 276-15,922 152-21,575 76–8038 1-10,086
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(gonad) production and growth (e.g., Banse and Mosher, 1980; Benke, 
1993).

2.4. Production calculation

Species average body mass (g) was calculated from abundance (m− 2) 
and biomass (wet mass, g m− 2) from grab and scrape samples. In case of 
missing biomass data, species average body mass (g) for adult and ju
venile species, respectively, were derived from the remaining species- 
specific faunal data of the current dataset and from other previously 
published datasets on benthic abundance and biomass (i.e., Reiss et al., 
2010; Van Hoey et al., 2014) spanning 195,112 records on 1483 taxon 
entries (adult and juvenile). Values for species with missing total wet 
biomass (B, g m− 2) were derived by multiplying the abundance with 
taxon-specific body mass (M, g). This was the case for 41 % of the data (i. 
e., 29,886 species data of 73,782 data in total).

Biomass (B, g m− 2) and body mass (M, g) were converted to joule (J) 
by species-specific conversion factors (Brey et al., 2010) using the 
R-package ‘benthos’ (Holstein, 2016). When species-specific conversion 
factors were not available, we used values from taxonomically close 
species. Mean annual productivity (P/B y− 1) was modelled from species 
mean body mass (M, J), depth (m) and temperature (◦C) using the 
multi-parameter artificial neural network model (ANN) of Brey (2012)
(Version 01–2012). Production (J m− 2 y− 1) was calculated by multi
plying the productivity (y− 1) with the converted biomass (J m− 2) and 
subsequently converted to carbon content (gC m− 2 y− 1) by conversion 
factors (Brey et al., 2010).

2.5. Hard substrate and soft bottom production analysis

We assessed the relation of secondary production (gC m− 2 y− 1) to the 
environmental variables mentioned above by generalised additive 
mixed models (GAMMs) that allow for the automated modelling of 
nonlinear relationships (Zuur et al., 2007). We decided for GAMMs to 
include all variables (without selection) that are ecologically relevant or 
known to shape benthic communities without prior model selection (full 
model). An overview on data frequencies of variables is given in the 
supplement for the two datasets (see Fig. S1 for hard substrate, Fig. S2
for soft bottom). Temperature was not included in the GAMMs to avoid 
the creation of artificial relationships, as temperature is a main deter
minant of production in the ANN model. For both hard-substrate and 
soft-bottom GAMMs, we followed the same procedure:

Data were explored following the protocol of Zuur et al. (2010), 
using boxplots, Cleveland dotplots, pairplots, variance inflation factors 
(aim: VIF values < 2), Pearson correlation coefficients and multipanel 
scatterplots. Latitude, longitude and distance to coast showed high 
collinearity (R > 0.50) with other predictors and were excluded from the 
GAMMs. Further, we assessed the presence of spatial and temporal re
sidual autocorrelation of data using the variogram function from the 
‘gstat’ package (Pebesma, 2004) and found no patterns related to 
autocorrelation.

As the main focus was on testing the local effects of structures on 
production, we used only data from after turbine construction and from 
soft-sediment data within a distance of up to 1000 m for the GAMMs. 
This distance was based on the results of Coates et al. (2014) who found 
effects up to 100–200 m distance, i.e., we applied a 5-fold distance, but 
levelling off to the background further away. A BACI (Befor
e-After-Control-Impact) design might had been favourable for the 
soft-sediment data, but this would not been able to reveal the 
near-surrounding, local production changes after turbine construction 
as the GAMMs based on a CI design. Large heterogeneity of data (see 
Fig. S2) and benthic community variability over such large distances, 
blurring the local effects of OWF construction on benthos, prevented us 
from applying a BACI design. For the hard substrate dataset, we used the 
GAMM to test whether secondary production (response variable) was 
significantly affected by the explanatory variables depth at the structure 

(m), age of community (month, mos) which is based on the succession 
start of fouling on turbines after construction and Julian day of sampling 
(d). For the soft sediment dataset, we used the GAMM to test whether 
secondary production was affected by the explanatory variables water 
depth (m) of station, age of community (mos) which in this case refers to 
sampling months after construction of turbines (i.e., unequal to the age 
of fouling communities on the turbines) and Julian day of sampling (d), 
but additionally included the variables median grain size of the sedi
ment (μm) and distance to nearest structure (m).

As we tested for the effect of the turbines on soft-bottom commu
nities, we eliminated all data that were sampled before the construction 
was in place (i.e., pre-construction monitoring, N = 2341) and with a 
distance larger than 1000 m (see Coates et al., 2014 for justification, N 
= 1425) for GAMMs. Furthermore, to account for effects of unknown 
origin, e.g., project-related differences in methods, both GAMMs 
included the respective OWF projects as a random effect. Models were 
created with the gam function from the R package ‘mgcv’ (Wood, 2011) 
applying a Gamma distribution (our data: continuous not discrete data 
without zeros) with log link to prevent negative values. An overview of 
the distribution of the response variable and explanatory variables for 
the following models is given in the supplement (Table S1).

The final model for hard-substrate effects on production including all 
variables took the following form: 

ln
(
Pij
)
= α+ f

(
samplingdepthij

)
+ f

(
age of communityij

)

+ f
(

julian dayij

)
+ f projecti + ϵi 

where ϵi ∼ N
(
0,σ2) (1) 

where Pij is the production for sample j within project i. Term f() marks a 
smoothing function and f projecti marks the random effect. The residuals 
ϵi were assumed to be normally distributed with an average of 0 and 
variance σ2.

For soft substrates, the final model took the following form: 

ln
(
Pij
)
= α+ f

(
age of communityij

)
+ f

(
samplingdepthij

)

+ f
(

julian dayij

)
+ f

(
distance to structureij

)

+ f
(

median grain sizeij

)
+ f projecti + ϵi 

where ϵi ∼ N
(
0,σ2) (2) 

In this model on soft-substrate production, we considered only 
samples taken up to a distance of 1000 m.

Visual inspection of residual plots (see Supplement Fig. S3 for hard 
substrate, Fig. S4 for soft substrate) of the final parameters and against 
variables not in the models did not reveal obvious deviations from the 
assumed homogeneity or normality.

To compare the effect magnitude of model parameters and present 
the relations, the ‘predict.gam’ function of the R package ‘mgcv’ (Wood, 
2011) was applied on simulated predictor values data. To do so, we 
simulated values for a single predictor within the range of the original 
data, while keeping values of the other predictors constant at a standard 
value (Table 2). Production values in the results chapter describing the 
models are given as fitted value and its standard error (SE).

2.6. Effect size analysis on soft-bottom changes

Effect Size (ES) of production changes was calculated for the soft- 
bottom benthic communities around constructions. Effect size is a 
standardised, scale-free measure of the relative size of the magnitude of 
an anthropogenic impact (e.g., Nakagawa and Cuthill, 2007) and thus 
allows for quantifying impacts measured on different habitats and for 
comparing the relative magnitude of an effect between different studies. 
For effect size analysis, control and impact area were defined by the 
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distance of the sample to the structure. Usually, the distance between 
two wind turbines is about 1000 m. Thus, samples were allocated to 
impact area if they were within a radius of 1000 m from the structure. 
Samples were allocated to control area if they had been collected more 
than 1000 m away, i.e., >1000–10,000 m, from the turbines. Distance to 
structure was used as a binary cut off (in contrast to GAMM where it was 
used as a smooth predictor), as effect size analysis requires a clear 
distinction between the impact and control area for the calculation (see 
formula 3). Thus, the focus of the effect size analysis was the identifi
cation of production changes due to the construction at the larger spatial 
scale of a wind farm. In contrast to the GAMMs, we included the data 
>1000 m as the distance of some of the control sites was larger, i.e., up 
to 10,000 m. Further, as this approach was based on the BACI design 
(Before-After-Control-Impact) at the OWF scale, we included data from 
before construction for this specific approach.

Effect sizes were calculated before and after construction of turbines 
using Cohen’s d with Hedges correction for unbalanced designs (also 
referred to as Hedges’ g; Gurevitch and Hedges, 1999; Hedges et al., 
1999) as difference between the means of control and impact groups 
(impact <1000 m, control: >1000–10000 m): 

d=
xI − xC

S
(3) 

where xI is the mean production in the impact area, xC is the mean 
production in the control area and S is the pooled standard deviation. ES 
calculation was carried out by the R package “effsize” Torchiano (2017). 
The package offers a quantification of the effect size magnitude using the 
thresholds defined in Cohen (1992), i.e., |d|<0.2 ″negligible", |d|<0.5 
″small", |d|<0.8 ″medium", otherwise "large".

2.7. Potential biomass export from turbines

In order to calculate the potential biomass export from turbines to 
the surrounding environment, biomass loss and gain (BLG) from the 
turbines was calculated for those turbines that were repetitively sampled 
by scrape sampling. Calculation was based on the assumption that 

BLG
[
gC m− 2]=Bt2 − (Bt1 +Pt1→t2) (4) 

where Bt1 is the biomass (gC m− 2) at sampling time t1, Bt2 equals the 
biomass (gC m− 2) at sampling time t2 and Pt1→t2 is production (gC m− 2) 
in the period between t1 and t2. Thus Pt1→t2 was calculated by species 
mean body mass (M in J, reconverted to gC after modelling) values from 
sampling time t1 and t2, depth (m) and temperature (◦C) using again the 
model of Brey (2012). Modelled production is given in gC m− 2 y− 1. Thus 
Pt1→t2 was calculated by daily production rate multiplied by the number 
of days between sampling events (Pt1→t2, gC m− 2). Finally, we calculated 
BLG for the time between sampling events (BLG, gC m− 2) and as stand
ardised annual values (aBLG, gC m− 2 y− 1). Standardisation to annualised 
values and rates were made to ensure comparability with other values 
(e.g., secondary production) and publications. Negative values of aBLG 
indicate biomass loss from the turbine to the surrounding while positive 
values indicate a biomass gain of the hard-substrate community on the 
turbine. Effects of depth at the structure (m), age of community (mos) 
and Julian day (d) were tested with a generalised additive mixed model 
(GAMM). Data overview of variables for the GAMM is given in the 
supplement (Fig. S5). Data exploration and inspection of the model was 
carried out as described above (compare Fig. S6 for inspection), with use 
of a Gaussian distribution (without log link since aBLG values can also be 
negative, in contrast to production). The model took the following form: 

aBLG ij = α+ f
(

samplingdepthij

)
+ f

(
age of communityij

)

+ f
(

julian dayij

)
+ f projecti + ϵi 

where ϵi ∼ N
(
0,σ2) (5) 

aBLG values in results part describing the models are given as fitted value 
and its standard error (SE).

In order to estimate the potential spatial impact of biomass loss (aBL) 
(i.e., only negative values of aBLG) on the soft bottom surrounding, we 
calculated the production impact (PI): 

PI=
(aBL * − 1) * TE

Psoft
(6) 

where aBL is the biomass loss per year (gC m− 2 y− 1) from the pile over 
the sampling range at the corresponding turbine, TE is the trophic effi
ciency (TE = 0.1) which indicates a loss in energy of about 10 % by 
energy consumption from one trophic level to the next (Lindeman, 
1942), i.e., only 90 % of aBL becomes available for further consumption. 
Psoft is the production (gC m− 2 y− 1) of the soft-bottom community in the 
corresponding surrounding of the wind farm area not impacted by OWF 
(i.e., control sites) as reference. Production impact is thus the 
hard-substrate biomass addition as compared to the production in the 
soft-bottom community of the control area, expressed as a ratio.

To standardise the biomass loss across the dataset, replicates of 
biomass were upscaled to the entire surface of each turbine. Instead of 
simply upscaling mean biomass from square meter to total turbine sur
face, we calculated biomass accumulation curves for each turbine over 
increasing surface of the turbines (see supplementary data, Fig. S7). The 
relationship between biomass loss and increasing turbine surface was 
modelled with an evaluation parametrised for each turbine in the form 
of 

aBL = a + (b*log (A)c
) (7) 

where a, b and c are the parameters fitted for each turbine and A was the 
area. Once the model was fitted, biomass loss aBL of each turbine was 
standardised to surface area of piles (m− 2) with an estimate of 8 m 
diameter of turbines according to the size of modern turbines (Sánchez 
et al., 2019). Finally, production impact (PI) was calculated with 
biomass loss of entire turbine according to formula [6] and was set in 
relation to distance to turbine (m) by increasing surrounding area (see 
supplementary data, Fig. S8) to estimate the production impacted area 
(PIA) using the following function 

Table 2 
Variable values of explanatory variable and derived standard values used for 
model prediction in generalised additive mixed models (GAMMs) with response 
variable production of hard-substrate and soft-bottom fauna (P, gC m− 2 y− 1) and 
biomass loss/gain (aBLG, gC m− 2 y− 1) from fouling communities of turbines.

Variable Standard values P (gC m− 2 

y− 1) hard 
substrate

P (gC m− 2 

y− 1) soft 
bottom

aBLG (gC m− 2 

y− 1) biomass 
loss/gain of 
hard 
substrate

Depth (m) Most sampled depth 10 24 10
Age (mos) Most common age 

in data
39 39 39

Julian day 
(d)

Week with most 
samples, therein 
highest sample 
number

204 204 204

Median 
grain size 
(μm)

Median of the range n.a. 191.86 n.a.

Distance 
from 
nearest 
structure 
(m)

Median of the range n.a. 434.9 n.a.

Project Wind farm 
geographically in 
the centre of study 
area

OWF 
Egmond 
aan Zee

OWF 
Egmond 
aan Zee

OWF Egmond 
aan Zee
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PIA=
a * PIinitial

db (8) 

where a and b are the parameters to fit the model and d was the distance 
(m) from the turbine. Thus, PIA is an inverse function of distance as 
mechanistic model which is an estimate of the spatial scale at which the 
biomass loss is potentially affecting the surrounding soft-bottom com
munities. The focus of the applied mechanistic model was the extrapo
lation of the relationship of biomass loss to turbine distance. Thus, this 
mechanistic model provides a tool to estimate production impacted area 
(PIA) as an inverse function of the production impact (PI) with distance. 
The model was adjusted by corresponding parameters to overlay with 
the average of data with a fit of 99 %.

All statistical analyses on secondary production (P), biomass loss/ 
gain (aBLG) and biomass loss (aBL) were done using R version 4.3.2 (R 
Core Team, 2023) in RStudio version 2023.12.1 + 402.

3. Results

3.1. Hard substrate production

Hard substrate production in OWF areas (N = 740 samples, Table 1) 
ranged from 0.06 to 5467 gC m− 2 y− 1, on average 311 ± 538 gC m− 2 y− 1 

(SD).
Production on the foundations was significantly affected by all 

environmental variables in the model (p < 0.001 for all variables, see 
Table 3 for model results and Fig. S3 in supplement for model valida
tion). Production increased strongly with increasing age of the con
struction (Fig. 2a), from 228 ± 55 gC m− 2 y− 1 (SE) in month 3–413 ±
138 gC m− 2 y− 1 in month 90. Depth-wise, production was highest at the 
first meter below sea level (676 ± 165 gC m− 2 y− 1), and decreased 
strongly towards the seabed (36 ± 11 gC m− 2 y− 1, Fig. 2b). The highest 
production was observed in early August, with production averaging 
125 ± 27 gC m− 2 y− 1 versus 17 ± 3 gC m− 2 y− 1 in the beginning of 
January (Fig. 2c).

Highest production in the upper part of the structure was caused by 
molluscs (Fig. 3; 0–5 m depth: 376 ± 622 gC m− 2 y− 1 (SD)) and crus
taceans (0–5 m depth: 245 ± 400 gC m− 2 y− 1), predominantly by the 
blue mussel Mytilus edulis and the amphipod Jassa herdmani. The latter 
one was also the dominant group at depth of 6–10 m (184 ± 296 gC m− 2 

y− 1) and 11–15 m (82 ± 131 gC m− 2 y− 1). At the lower part of the 
structures, production was more evenly distributed across taxonomic 
groups. At 16–20 m depth, cnidarians (43 ± 80 gC m− 2 y− 1) and mol
luscs (60 ± 168 gC m− 2 y− 1) dominated. The most common and pro
ductive species of these two groups were Metridium senile and M. edulis. 
At >20 m depth, cnidarians, crustaceans and echinoderms shared the 
same amount in production (Cnidaria: 25 ± 31 gC m− 2 y− 1, Crustacea: 
26 ± 54 gC m− 2 y− 1, Echinodermata: 23 ± 66 gC m− 2 y− 1). The most 
productive species were again the amphipod J. herdmani, the echino
derm Asterias rubens and the cnidarian M. senile.

3.2. Soft substrate production

Soft substrate production at OWF areas (N = 3037 samples, Table 1) 
ranged between 0.03 and 215 gC m− 2 y− 1, on average 3.81 ± 7.69 gC 
m− 2 y− 1 (SD).

Production in the seabed was significantly affected by most of the 
environmental variables in the model (depth, Julian day, project: p <
0.001), except for median grain size (p = 0.08) and distance to structure 
(p = 0.31), see Table 3 for model results and Fig. S4 in supplement for 
model validation). Significance of the random factor project pinpoints 
towards differences in the data structure of projects, which is particu
larly the case for the explanatory variables grain size and distance to 
structure (see Table 1). Production varied with age (i.e., month after 
construction), although the pattern differed from hard substrate (here: 
production decrease), and the range in effect size was much smaller. The 
maximum production rates were observed soon after placement of the 
turbines (40.30 ± 14.08 gC m− 2 y− 1 (SE)) in month 1 (Fig. 4a) and the 
minimum at 78 months after placement (27.61 ± 9.09 gC m− 2 y− 1). 
Production increased with depth and was lowest at 12 m depth (8.85 ±
2.31 gC m− 2 y− 1), increasing towards the maximum depth in the data of 
35 m (108 ± 55 gC m− 2 y− 1; Fig. 4b). The highest production was 
observed at the end of July (Fig. 4c; 34.21 ± 11.31 gC m− 2 y− 1) and 
lowest in early January (7.28 ± 2.29 gC m− 2 y− 1). The highest pro
duction was observed in sediments with median grain sizes between 
1000 and 1500 μm (Fig. 4d). Highest production was observed at posi
tions closest until approximately 250 m to the structure (Fig. 4e) with a 
maximum at 178 m of 35.14 ± 11.84 gC m− 2 y− 1. After this plateau, 
production constantly decreased (26.41 ± 10.32 gC m− 2 y− 1) until 
1000 m apart from the structure.

Closest to the turbines (1–125 m), crustaceans displayed the highest 
production (Fig. 5, 2.25 ± 10.99 gC m− 2 y− 1 (SD)), including small in
dividuals of the species Pagurus bernhardus, Liocarcinus holsatus, Cancer 
pagurus and Processa modica. Polychaetes were the second most domi
nant group with 1.67 ± 2.65 gC m− 2 y− 1. Eunereis longissima and Owenia 
fusiformis were the most productive polychaetes. At all other distances, 
polychaetes dominated the production (Fig. 5, >125–250 m: 1.51 ±
2.40 gC m− 2 y− 1, >250–500 m: 1.62 ± 2.73 gC m− 2 y− 1, >500–1000 m: 
1.13 ± 2.37 gC m− 2 y− 1). Polychaetes contributing most to the pro
duction were Lanice conchilega, O. fusiformis, Notomastus latericeus and 
Nephtys cirrosa. Cnidaria (anthozoan) production decreased with dis
tance to the turbines from 0.75 ± 1.94 gC m− 2 y− 1 (1–125 m) to 0.10 ±
0.19 gC m− 2 y− 1(>500–1000 m). In contrast, mollusc production 
increased with distance to the turbines from 0.27 ± 0.31 gC m− 2 y− 1 

(1–125 m) to 0.63 ± 1.75 gC m− 2 y− 1 (>500–1000 m) with major 
production contributions from Ensis leei, Fabulina fabula and different 
species of the genus Spisula.

Effect size (Cohen’s d) comparisons showed that the magnitude of 
change in production was small to negligible in the soft-bottom com
munities (Fig. 6, no. of projects: 6 OWF). The magnitude of change in 
production was only large in the wind farm alpha ventus (1.85, 1.22, 
1.78, 0.84 in month 8, 26, 32 and 39 after construction, respectively) 
and BeoFINO (0.86 in month 4 after construction). However, effect size 
values varied from small to medium already before construction (Beo
Fino:0.69; Egmond aan Zee: 0.40, alpha ventus: 0.70, see Fig. 6). Effect 
size is based on the comparison of impact (or prospective impact area 

Table 3 
Results of the generalised additive mixed models (GAMMs) with response var
iable production of hard-substrate and soft-bottom fauna (P, gC m− 2 y− 1) and 
biomass loss/gain (aBLG, gC m− 2 y− 1) from fouling communities of turbines with 
estimated degrees of freedom (edf), reference degrees of freedom (ref.df) and F- 
value and p-value for significance of explanatory variables. f () marks a 
smoothing function in the model.

Explanatory variables edf ref.df F-value p-value

Hard-substrate production (gC m¡2 y¡1): N ¼ 740, deviance explained ¼ 46.0 %, 
adjusted R2 = 0.05

f (age of community) 1.91 1.99 10.52 <0.001
f (depth) 4.54 5.36 48.56 <0.001
f (Julian day) 1.95 2.00 46.87 <0.001
Project (random effect) 4.32 5.00 6.25 <0.001
Soft-sediment production (gC m¡2 y¡1): N ¼ 1424, deviance explained ¼ 55.5 

%, adjusted R2 = 0.40
f (age of community) 1.24 1.42 4.57 0.03
f (depth) 1.31 1.52 12.92 <0.001
f (Julian day) 1.99 2 66.39 <0.001
f (median grain size) 1.74 1.931 2.18 0.08
f (distance to structure) 1.64 1.871 0.956 0.31
Project (random effect) 4.95 5.00 85.20 <0.001
Biomass loss/gain (gC m¡2 y¡1): N ¼ 529, deviance explained ¼ 36.2 %, 

adjusted R2 = 0.35
f (age of community) 1.00 1.00 2.17 0.14
f (depth) 1.80 1.96 19.42 <0.001
f (Julian day) 1.79 1.95 3.50 <0.05
Project (random effect) 4.94 5.00 18.15 <0.001
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before construction) and control sites (see equation (3)). High values 
before construction (see Fig. 6, -2 months: prospective impact site), i.e., 
effect size between the control and prospective impact site, indicate that 
the effect size in production changes was small to medium before tur
bines were built. Thus, the range of most of the effect-size changes by 
any OWF structure (except for large effect size) was within the natural 
variability of secondary production in the benthic system, according to 
the applied method of Cohen (1992).

3.3. Biomass export from turbines

Biomass loss and gain (aBLG) was negative on average − 221 ± 825 
gC m− 2 y− 1 (SD) with a highly variable export of biomass from the 
turbines to the surroundings indicated by high standard variation. aBLG 
was significantly affected by depth (p < 0.001; Fig. 7b) and the age of 
the structure (p < 0.01, Fig. 7a), but not by Julian day (Fig. 7c) (see 

Table 3 for model results and Fig. S5 in supplement for model valida
tion). Overall, there was a net export of biomass from the turbines that 
increased with the age of the structure (8 months: − 30 ± 70 gC m− 2 y− 1, 
90 months: − 442 ± 109 gC m− 2 y− 1). Further, aBLG shifted from export 
in shallow water (1 m: − 548 ± 71 gC m− 2 y− 1) to import (27 m: 28 ± 97 
gC m− 2 y− 1, i.e., biomass gain at turbine) in deeper waters. Over the 
year, the aBLG decreased only slightly (Fig. 7c), i.e., the lowest biomass 
loss of the structures was in the beginning of the year, while highest 
export of biomass was found mainly in the end of the year.

3.4. Production impacted area (PIA)

Biomass loss (aBL) was on average − 432 ± 763 gC m− 2 y− 1 (SD). 
This biomass loss was set in relation to the corresponding soft-bottom 
production around the turbines, in order to calculate the production 
impact (PI) for each turbine and for all turbines combined. PI values 
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different sampling depth at structure (m) and (c) different days of the year (Julian day, d) modelled by GAMMs. Samples hard-substrate fauna N = 740. Grey ribbon: 
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were highest close to the turbine (about 0.002) and decreased expo
nentially with distance to the turbines (Fig. 8). For example, a produc
tion impact (PI) of 5 %, i.e., the loss of biomass from turbines affecting 
the soft bottom surrounding, extended to a distance of 150 m. However, 
the strongest exponential decline was observed within a distance of 250 
m from the structure.

4. Discussion

Our findings provide evidence that (a) a huge amount of energy is 
captured into the hard-substrate fauna of turbines, (b) high amounts of 
this production are released to the surrounding sediment and (c) models 
suggest elevated local production of soft-bottom communities up to a 
distance of 250 m away from the turbines. In the following, the out
comes are discussed in detail.

4.1. Fouling production on turbine foundations

Production of the fouling fauna on the turbines was on average 80 

times higher than in soft substrates (hard: 311 ± 538 gC m− 2 y− 1 (SD), 
soft: 3.81 ± 7.69 gC m− 2 y− 1). The presence of turbine structures 
resulted in a strong addition of local secondary production through the 
fouling fauna. This is not surprising, as it is well known that turbines in 
open water are characterised by high animal densities and biomass on 
the hard substrates through increased habitat availability compared to 
sandy bottoms (De Mesel et al., 2015; Coolen et al., 2020a; Rouse et al., 
2020). These dense fouling communities are subject to seasonal changes 
as validated by our model predictions with highest production in sum
mer. Further, production increased with increasing age of the fouling 
community which can be linked to succession of the communities 
(Whomersley and Picken, 2003; Zupan et al., 2023). The availability of 
settlement space and food are strong determinants of fouling produc
tion. Further the different habitats on the turbines, also those habitats 
created by the fouling fauna itself, facilitate the exploitation of different 
food sources by various community trophic niches and resource parti
tioning (Mavraki et al., 2020b). Particularly in the upper 5 m, turbines 
provide suitable habitat for suspension feeders such as M. edulis and 
Jassa spp. (Krone et al., 2013a; De Mesel et al., 2015; Coolen et al., 
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2020a, 2020c). In turn, studies demonstrated that suspension feeders 
can significantly decrease the stock of primary producers (Maar et al., 
2009; Slavik et al., 2019; Mavraki et al., 2020c). Higher secondary 
production by the predominant suspension feeders (e.g., M. edulis and 
productive opportunists with short live cycles and high turnover rates, 
like Jassa spp.). at upper structural parts may thus be related to 
non-limiting phytoplankton availability in the upper light penetration 
zone. Artificial reef and wreck studies also demonstrated that high 
amounts of benthic and pelagic organic matter are trapped in the thick 
layers of fouling organisms on artificial substrates (e.g., Leitão, 2013; 
Cresson et al., 2014) leading to an increase of biomass in hard-substrate 
communities (Zintzen et al., 2008) and increased nutrient fluxes (Coolen 
et al., 2024). Thus, high secondary production is linked to the habitat 
‘quality’ (quantity and quality of food, Cusson and Bourget, 2005), 
suitable refuges (Coolen et al., 2020a; Zupan et al., 2023) and resource 
partitioning of the available food and trophic plasticity of the species 
(Mavraki et al., 2020b).

4.2. Energy export from turbines to the surrounding

We estimated biomass loss and gain (aBLG) from wind turbines over 
the study period to assess the potential fouling biomass that becomes 
available for the surrounding scour protection layer, if installed, and soft 
substrate. Thereby, biomass gain is related to growth of fouling com
munity, immigration of individuals, as well as reproduction and settle
ment of individuals on the turbine (Joschko et al., 2008; Krone et al., 
2013a). Biomass loss is caused by species mortality, predation by higher 
trophic levels directly at the turbine and abrasion and dislodging by 
wind/waves or under its own weight such as reported for M. edulis 
(Wolfson et al., 1979; Leewis et al., 2000; Krone et al., 2013a; Lefaible 
et al., 2023) and as found in our study, i.e., highest loss was registered at 
the upper part of the turbines. Annual biomass loss and gain (aBLG) was 
on average negative (− 221 ± 825 gC m− 2 y− 1 (SD)). Thus, 71 % of the 
production (annual fouling production: 311 gC m− 2 y− 1) on the turbines 
is being transferred from the turbines to the surroundings. Annual blue 

mussel population loss from oil and gas rigs was found to be in the same 
range (63–109 %), which leads to a turnover rate of 11–18 months to 
keep the attached mussel population in a steady state (Wolfson et al., 
1979), indicating high productivity and turnover rates for the attached 
fouling community. There are several potential pathways for biomass 
loss from fouling communities. The biomass can be directly consumed 
by predators at the turbines, i.e., such as starfish, crabs or fish (Mavraki 
et al., 2020a, 2021), but the proportion of consumed fouling production 
remains yet unknown. Biomass loss however is also coupled to the 
deposition of organic matter, like organic waste and detritus (Ivanov 
et al., 2021) or dislodged dead or live animals falling off the structure 
(Maar et al., 2009; Mavraki et al., 2020a; Lefaible et al., 2023). We found 
highest biomass export in winter (see Fig. 7) which may be related to 
species abrasion by winter storms and consecutive strong waves. 
Depending on current speeds and directions, particle sizes and sinking 
speed, the organic matter input affects different areas of the 
surroundings.

4.3. Production effects in the surrounding soft-bottom area

Our analysis of the two independent data sets (hard substrate and 
soft bottom) both suggest a production increase around wind turbines up 
to 250 m: (a) we modelled an increase of production impacted area up to 
250 m distance (see Figs. 8 and 5 % production within a 150 m radius 
from the turbines) by hard substrate data only and (b) suggested 
elevated production in soft sediments up to 150–250 m away from the 
turbines in our models (see Fig. 4e). The higher production effect, 
however, was not significant which might be due to scarce data in a 
closer distance to the structure and high variability of the data (see 95 % 
confidence interval Fig. 4e). Our results are in line with other studies 
that provided evidence on benthic community changes in soft sediments 
surrounding turbines or platforms up to ~100–300 m from installations. 
These local changes encompass fish species abundance (Løkkeborg et al., 
2002), functional community differences (Mavraki et al., 2020a) as well 
as higher abundance and species richness of invertebrate benthos 
(Coates et al., 2014; Lefaible et al., 2023).

In general, grazers, mobile predators and demersal fish profit from 
this biomass loss as additional food source, leading locally to increased 
secondary production of e.g., crab (this study, see Fig. 5) and fish pop
ulations (Claisse et al., 2014) on and close to the turbines. Further, 
dislodged live organisms might be able to survive for a certain time in 
the surrounding soft-substrate, contributing to a higher trophic diversity 
in the scour protection layer and nearer soft substrates (Mavraki et al., 
2020a; Lefaible et al., 2023) and thus temporarily contribute to a higher 
benthic production (see Fig. 5, high production of Cnidaria, mainly 
Anthozoa, close to the turbines). This footprint area or “ecological halo” 
in the close vicinity has been demonstrated for other artificial structures 
such as offshore oil platforms and artificial reefs (Wolfson et al., 1979; 
Posey and Ambrose, 1994; Reeds et al., 2018).

So far, it is not known how and to which extent the organic material 
exported from the fouling communities is transformed into benthic 
production on the sea floor (Leitão, 2013). Ivanov et al. (2021) provided 
some evidence for an organic enrichment of surrounding sediments that 
may facilitate infaunal deposit feeders (Maar et al., 2009; Wilhelmsson 
et al., 2010; Coates et al., 2014; Lefaible et al., 2019). However, organic 
enrichment can have adverse effects as well, particularly local oxygen 
deficiency or depletion (Wilding, 2014; Brzana et al., 2020). Alterna
tively, organic material might be mineralised quickly as demonstrated 
for the North Sea (De Borger et al., 2021b), i.e., returned to the water 
column, or buried, and thus might not enter the benthic food web.

At further distance (>250 m–1000 m), we found no effects on pro
duction (Fig. 4). The effect size analysis (impact versus control site) on 
production in soft substrates showed that the magnitude of the pro
duction effect was mainly within the natural range (Fig. 6). Thus, the 
impact of the turbines is limited to their immediate vicinity and disap
pears when integrated over the larger windfarm scale. However, Ivanov 

Fig. 8. Production impact (PI, black dots) of biomass loss (aBL, gC m− 2 y− 1) 
with distance (m) to artificial structures. red = fit of model to estimate pro
duction impacted area (PIA). Modelled relationship between PI and distance (d) 
uses a (a = 500) and b (b = 1.59) as parameters to find best data fit. Vertical 
line indicates 5 % increase in PI.
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et al. (2021) modelled an increased deposition of organic material also 
at further distances from the turbines. As we could not trace this organic 
input by increased soft-bottom production in this study, the additional 
energy might go through other energy pathways such as mineralisation 
and/or burial as suggested by De Borger et al. (2021a) or the effect size 
might have been too small to be detected given the high natural 
variability.

At the largest spatial scale, we detected differences of secondary 
production among the different wind farms. Lefaible et al. (2023) also 
observed differences based on turbine types and associated scour pro
tection layer. Macrobenthic communities were richer close to a jacket 
structure with protection layer than to a monopile and they argue that 
the protection layer may act as a filter for organic matter deposition 
enriching sediments surrounding jackets with organic matter. Our 
model suggested significant production differences for median grain 
sizes (Fig. 4) which is a rough proxy for different communities 
(Salzwedel et al., 1985; Duineveld et al., 1990; Van Hoey et al., 2004). 
Production was lower in the coarser soft sediments of the Belgian wind 
farms than in the Dutch and German fine sand ones. Bolam et al. (2014)
demonstrated a stronger relationship between total production and 
sediment granulometry of the seabed than with larger-scale features 
such as depth similar to our results. Future studies on production im
pacts by OWF may focus on specific groups in the soft-substrate com
munities, for example the production of deposit feeders subjected to 
organic enrichment (Norling and Kautsky, 2007; Raoux et al., 2017), as 
organic export signals might be stronger in these functional groups on 
larger scales.

5. Ecological implications and recommendations

In this study, we were able to prove that artificial structures locally 
change the energy flow pathways, i.e., channelled and concentrated in 
specific trophic interactions. Increased production at the turbine leads to 
export to the surrounding soft sediments with consequences for bentho- 
pelagic coupling. Biomass export from the turbine to the sediment re
mains in the close vicinity by vertical transport (150–250 m, mainly 
dislodged animals and larger items) with direct consequences on the 
benthic food web. Only smaller amounts of smaller particles are trans
ported further away horizontally which might then be subject to min
eralisation. Other experimental and modelling studies also provided 
evidence that changes in energy flows around OWF turbines occur 
(Slavik et al., 2019; Mavraki et al., 2020a, 2020c; Ivanov et al., 2021) 
and that concentrated fluxes of organic matter (additional prey items) 
favour higher trophic level species such as predators directly (Wolfson 
et al., 1979; Reubens et al., 2011; Krone et al., 2017; Buyse et al., 2023) 
up to apex predators (Scheidat et al., 2011; Russell et al., 2014; Raoux 
et al., 2017). Thus, production concentration is the main mechanism 
supporting the attraction-production hypothesis (Lindberg, 1997; 
Leitão, 2013; Cresson et al., 2014; Claisse et al., 2014). This hypothesis, 
i.e., additional food items increase the biomass of higher trophic level 
species (e.g., local fish and crab species), has been demonstrated as well 
for artificial reefs (e.g., Bohnsack and Sutherland, 1985; Svane and 
Petersen, 2001; Cresson et al., 2014) and wrecks (Zintzen et al., 2008; 
Coolen et al., 2024).

However, knowledge is very limited regarding secondary production 
and energy flow in benthic systems, particularly for fouling commu
nities. In order to understand cause-effect relations of offshore wind 
farm effects on energy flow changes, further studies covering the entire 
ecosystem, from plankton to apex predators, are needed. Similarly, more 
local scale studies with better resolution in distance to structure are 
needed to assess energy flow pathways from structures to the sur
rounding. Thus, future research studies should combine local studies on 
energy flow around turbines and relate this to large-scales studies to 
connect effects on the entire ecosystem (plankton to apex predators) also 
with respect to connecting local food webs. Further, even though our 
study suggests that the production-impacted area around turbines is 

relatively small and turbines provide only a small spatial proportion of 
high productive systems in the North Sea, OWF spread the geographic 
extent of hard-substrate species by connectivity through ‘stepping 
stones’ for native and non-native species (Degraer et al., 2020; Tidbury 
et al., 2020; Krone, 2012), potentially connecting local food webs and 
changing overall energy flow pathways. Alongside with the increasing 
blue growth of energy planned (WindEurope, 2021), the restructuring of 
energy pathways might not only affect natural benthic functioning, but 
also the sustainability of ecosystem services by affecting food web in
teractions and energy flow of ecologically, economically or culturally 
important species.

In order to evaluate ecological impacts on a wider scale, we upscaled 
our results on production of fouling community, the biomass export 
from the turbines, and the production impacted area from square meter 
and turbines scale to the scales of a wind farm array and the German, 
Dutch and Belgian exclusive economic zones (EEZs) (Fig. 9). At the 
turbine scale, from a production of 2.19 t of biomass (wet mass, WM) per 
year, 1.56 t of biomass are exported from a turbine. This export affects 
the production of the surrounding within 150 m (we used the more 
conservative value for upscaling from PIA modelling than the 250 from 
soft substrate GAMMs). At the scale of an average wind farm array (58 
turbines), this leads to 127 t WM on turbines and an export of 90 t WM 
per year, with 11 ± 5 % of the wind farm area affected by a production 
increase, i.e., depending on the configuration of the OWF such as size of 
area and turbine numbers. In all three EEZs, this sums up to the amount 
of 4314 t WM at all operational turbines (OSPAR, 2022) and an export of 
3071 t WM per year. However, currently only 0.04 % (NL), 0.31 % (GER) 
and 0.87 % (BE) of the EEZ is a production impacted area. According to 
OSPAR (2022), current devices deliver 9.5 GW of energy, another 8.5 
GW are applied for/designated/authorized, which would nearly double 
turbine numbers (if turbine design stays the same) and the amount of 
production impacted area. By 2030, almost 111 GW of installed capacity 
is anticipated in Europe by government OWF commitments 
(WindEurope, 2021) which will cover large parts of maritime zones of 
North Sea bordering countries and lead to an increase of production 
impacted area and a potential connection of local food webs over larger 
scales.

This is the first study on production changes in the benthos caused by 
offshore wind farms. The study is based on an international dataset to 
cover large spatial scales. If monitoring data from different countries 
with different sampling strategies are applied, results of these must be 
interpreted with caution. For example, biomass data of fouling com
munity was sampled at different depths between datasets (see Table 1) 
with consequences on biomass by the different communities on the 
turbines (e.g., Belwind samples: only 15–22 m depth), and only a few 
OWF provided data close to the turbines (<100 m, see Table 1) influ
encing results of local distance to turbines. Thus, biomass estimates, 
biomass accumulation curves, production and biomass loss and gain 
were always (only) the best estimate based on data available. We believe 
that our approach using good estimates and models with comprehen
sible data structure, provides a sound assessment on production impacts 
by offshore wind farms. In the future, we strongly plea for internation
ally harmonised monitoring efforts and specific target studies to inves
tigate local effects around wind turbines in detail. Further, legislation 
should consider if including functional diversity, biological traits and 
ecological functions such as production, will be more beneficial in 
environmental impact assessments complementing classical taxonomic 
diversity monitoring. Functional ecology aspects are highly relevant for 
the potential ecological changes, mitigation and adaptation in the 
context of an ecological value and effects of offshore structures (Cadotte 
et al., 2011; Fowler et al., 2020). The productive potential of artificial 
habitats with their spill over effects to the surrounding should be 
considered in potential cleaning and decommissioning scenarios (Claisse 
et al., 2014), e.g., removal of toppings which would reduce production 
effects on the benthic system (Fowler et al., 2018, 2020).
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Fig. 9. Production of hard substrate communities (P), biomass export (aBL) and production impacted area (PIA) at the scales of one m2, turbine scale, scale of wind 
farm array and the regional scale. Turbine dimension: see chapter material and methods. Average number of turbines, average area of wind farms and sum of 
operational turbines were taken from OSPAR (2022). P and BL are given also in wet mass weights (converted with Brey et al. (2010) factors). Spatial and temporal 
units for P and BL are given behind scale definition. WM = wet biomass.
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