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Viruses of microbes play important roles in ocean environments as agents of
mortality and genetic transfer, influencing ecology, evolution and bio-
geochemistry. However, we know little about the diversity, seasonality, and
host interactions of viruses in polar waters. Here, we study dsDNA viruses in
the Arctic Fram Strait across four years via 47 long-read metagenomes of the
cellular size-fraction. Among 5662 vOTUs, 98% and 2% are Caudoviricetes and
Megaviricetes, respectively. Viral coverage is, on average, 5-fold higher than
cellular coverage, and 8-fold higher in summer. Viral community composition
shows annual peaks in similarity and strongly correlates with prokaryotic
community composition. Using network analysis, we identify putative virus-
host interactions and six ecological modules associated with distinct envir-
onmental conditions. The network reveals putative novel cyanophages with
time-lagged correlations to their hosts (in late summer) as well as diverse
viruses correlated with Flavobacteriaceae, Pelagibacteraceae, and Nitrosopu-
milaceae. Via global metagenomes, we find that 42% of Fram Strait vOTUs peak
in abundance in high latitude regions of both hemispheres, and encode pro-
teins with biochemical signatures of cold adaptation. Our study reveals a rich
diversity of polar viruses with pronounced seasonality, providing a foundation
for understanding viral regulation and ecosystem impacts in changing polar
oceans.

M Check for updates

Polar regions are subject to the strongest seasonal cycles on Earth, and
experience intense pressure from climate change'*. The functioning of
polar ecosystems is critical to biogeochemical cycles®>, and is under
marked ecological and evolutionary constraints®. Such ecosystem
processes are strongly driven by microorganisms and their interac-
tions, including viral dynamics. In addition to cell death, viruses also
drive evolution via gene exchange, frequency-dependent selection”?,
and transmission and expression of auxiliary metabolic genes’™.

Therefore, characterizing the diversity and dynamics of viruses is
paramount for understanding the function and stability of polar ocean
ecosystems.

Relative to more accessible temperate, subtropical, and tropical
oceans, few studies have examined virus diversity and ecology in polar
waters'>”, It is known, however, that polar viromes are distinct from
their warm-water counterparts”? and are typically dominated by
bacteriophages with a high level of diversity'. In addition to spatial
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structuring, polar viral communities also shift over time, for example
in the Antarctic, following bloom dynamics and assembling into dis-
tinct communities across seasons”. One year-round study showed
strong seasonal variation among virus communities, with sharp
decreases in virus-to-prokaryote ratios at the onset of the spring
bloom and highest ratios in winter”. Others have reported increases
during spring-summer, and highest abundances of viruses in
winter**”. Some evidence suggests that different lifestyles of viruses
(i.e., lytic vs. lysogenic) may exhibit distinct dynamics across seasons,
with lytic infection more prevalent in the spring bloom*.

However, due to the challenges of continuous sampling in the
polar regions across multiple years, the degree of seasonality among
polar viruses—here, meaning annually repeating patterns of popula-
tions and communities across the same seasons of different years?”—
and the potential ecological implications remain to be discovered.
Such seasonality has been previously observed in marine temperate
environments®°. In the Arctic, time-series have been critical to
advancing an understanding of the biological carbon pump?®, eluci-
dating benthopelagic coupling and biotic interactions®, both in the
water column® and on sinking particles*. Furthermore, continuous
sampling, over the long-term, can discern the impact of ‘Arctic
Atlantification®®*": the northward expansion of subarctic habitats
through the Fram Strait—the major connection between Atlantic and
Arctic Oceans™®. Here, polar water outflowing the central Arctic Ocean
via the East Greenland Current (EGC) meets the West Spitsbergen
Current (WSC), transporting warmer Atlantic water into the Arctic
Ocean®. In the WSC, prokaryotic communities exhibit pronounced
seasonality, underpinned by changes in photosynthetically active
radiation (PAR) and mixed layer depth*’.

Given this, and the tight coupling of viruses and their hosts” ™", we
aim to examine the degree that viral populations are seasonally
structured in the Arctic. The strong seasonal gradients in the Arctic
provide an opportunity to observe host-virus dynamics and how they
relate to prevailing conceptual models such as the Piggyback-the-
winner***, Constant-Diversity*®*’, and Red-Queen®*® hypotheses. We
examine the diversity and seasonality of dsDNA virus communities in
the Arctic Fram Strait over four complete annual cycles at roughly
monthly resolution. This time-series of virus communities in the Arctic
demonstrates considerable seasonality in viral diversity, their asso-
ciation with environmental conditions and potential microbial hosts,
and their distribution across the global ocean.

911

Results
We examined 47 long-read metagenomes from samples collected at
near-monthly resolution over a four-year period (Sep 2016-Jul 2020)
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in the WSC (Fig. 1a, and Supplementary Data 1), from an average depth
of 29 m. As samples originate from the cellular size-fraction (> 0.2 um),
our study characterizes the diversity of actively infecting (i.e., intra-
cellular) viruses, free-living viruses with a size of >0.2um, viruses
attached to particles, and/or integrated viruses.

The total number of reads per sample were 196,489 + 18,358, with
an average length of 5435+ 405 bp. Viral sequences were predicted
based on both mapping to assembled contigs and raw reads (see Virus
Prediction, Methods). The overall number of predicted viral sequences
was concordant between the two approaches (Supplementary Data 1).
On average, each sample harbored 9815 + 965 viral reads based on raw
read counts (5.3 +0.5%), and 8825+1020 reads mapping to vOTUs
(viral Operational Taxonomic Units) (6.8% + 1.8%). Notably, despite not
pre-filtering to remove eukaryotes, the large majority of cellular reads
in the dataset were prokaryotic (90.2% + 1.4%), with eukaryotic reads
making up a smaller proportion (7.2% * 1.0%). Hereafter, we focus on
the contig-based predictions because of their improved genomic
context.

Diversity of Fram Strait viruses over time

We first investigated how the community of Fram Strait viruses is
structured over time. Through contig-based predictions, we identified
5662 vOTUs (95% nucleotide identity clusters, see Methods, Supple-
mentary Data 2) which were derived from 7775 viral contigs that were
greater than 10 Kb in length. These vOTUs predominantly represented
the classes Caudoviricetes and Megaviricetes, with Caudoviricetes being
the largest group, comprising 5531 vOTUs.

To assess the temporal dynamics of vOTUs, we normalized their
abundance based on the estimated number of cells sequenced in each
metagenome—a metric we term coverage-based Virus to Cell Ratio
(cVCR). The cVCR approach not only accounts for differences in
sequencing depth but also captures shifts in virus to host ratios across
samples. Using this metric, we observed clear seasonal structuring in
the cVCR of viral communities and taxa. Community cVCR values
reached annual maxima of 20-35 and were four-fold higher during
July-September (average cVCR 8.6) than during October-June
(Fig. 1b). These patterns were consistent also when we sub-sampled the
total reads to 100,000 reads per sample, as a test of the robustness of
this metric to sequencing depth, as well as when we calculated cov-
erage per Gigabase (Supplementary Fig. 1), thus we focus the remain-
ing analyses on cVCR from the full dataset. This seasonal variation in
cVCR was generally consistent across Caudoviricetes. Notably, the
most abundant vOTU, a member of the Caudoviricetes, was also the
most persistent, occurring in 45 of the 47 sampled time points. Simi-
larly, the most persistent vOTUs overall, present in half of the samples,
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Fig. 1| Overview of study site, environmental conditions and viral distribu-
tions. a The mooring site in the West Spitsbergen Current of Fram Strait. b cVCR of
viral communities across the two major classes detected and (c) lifestyles during

the light and dark cycles from September 2016 to July 2020. d Dynamics of mixed
layer depth and temperature which are major community structuring factors.
Triangles (top) indicate metagenome sampling points.
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Fig. 2 | Intra-and inter-annual viral richness variability. a To assess differences in
sequencing depth, we iteratively subsampled viral read counts from 50 up to
30,000 at 50 count intervals and at each interval determined the mean richness
from 100 iterations. The mean richness across subsampled intervals was visualized
in a rarefaction-style curve. b Boxplots illustrating the slope of the vOTU richness
rarefaction curves up until the chosen subsampling depth (1000 viral reads) where
each box encompasses the 25th, median, and 75th percentile, and the whiskers
capture the minimum and maximum values of richness estimated from samples
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collected within the same sampling month. The slopes represent the trajectory of
vOTU discovery, and thus indicate how richness may appear if a higher sequencing
depth was achieved. The boxplots illustrate the 25%, median and 75% percentile of
richness estimations for samples within each sampling month. ¢ vOTU richness at
subsampled depth across sampling months. Illustrated values represent the mean
(bars) and standard error (error bars) of richness determined from 100 iterations of
subsampling (1000 viral read counts per sample).
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Fig. 3 | Seasonality of viral communities and their association with environ-
mental conditions. a Bray-Curtis similarity of Caudoviricetes and Megaviricetes
over time. Each point represents the time between two individual sampling points
(x-axis) and their similarity (y-axis) for all pairs of samples. The red points indicate

the average similarity for 30.5-day (-monthly) intervals. b CCA analysis of viral
community composition colored by month, with vectors representing environ-
mental conditions.

were predominantly members of the Caudoviricetes. In contrast,
Megaviricetes were found less frequently, but were prevalent in late
summer (July-September) (Fig. 1b, and Supplementary Fig. 1a), when
eukaryotic phytoplankton, their presumed hosts, are most abundant*’.
Overall, lytic lifestyle was predicted to be predominant, with an aver-
age of 94.0+0.4% of viruses, a pattern that was invariable across
seasons (Fig. 1c). The Southern Ocean featured higher rates of lyso-
geny during periods of low production®. As for the latter point, it is
important to point out that some lysogens may not be recognized due
to missing integrases or other factors, and, vOTUs may not represent
the full prophage, which could then be misinterpreted as lytic rather
than integrated. Additionally, lytic viruses may outnumber lysogens in
terms of copies within the cellular metagenome, making them easier to
detect and assemble, which could bias the recovery or obscure
lysogens.

We next investigated how the overall diversity of viruses changes
across seasons. As viral diversity was not saturated at any sequencing
depth (Fig. 2a), we compared the diversity of vOTUs across months

after subsampling to a normalized depth. The diversity of viruses
reached a maximum between late summer-autumn (Aug-Oct) (Fig. 2b,
Supplementary Fig. 2), with lowest richness values typically in May.
These patterns were consistent both by estimates from the slopes of
rarefaction curves to the sub-sampled depth (Fig. 2b) as well as the
extrapolated richness (Supplementary Fig. 2). Notably, prokaryotic
community richness was also lowest in May, though the timing of
highest prokaryotic richness was different than for viruses, with the
highest prokaryotic richness observed in winter (vs. late summer-
autumn for viruses)*? (Supplementary Data 1). Inter-annual variability
in richness was also observed, for example, with May 2019 showing
elevated richness relative to other years (Fig. 2c). The dynamics in
richness calls for further sequencing efforts, with increased depth of
sequencing to further unravel the viral diversity that persists, espe-
cially, through late polar night.

In addition to the variations in overall relative abundance (cVCR)
and diversity, we also observed strong seasonality in the composition
of the major bacteriophage groups (Fig. 3a). The composition of
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Fig. 4 | Viral modules and their association with environmental conditions.

a Sum of cVCR of all vOTUs per module over time; note separate y-axis for M5.

b Two-sided Spearman’s rank correlation coefficients between abundances (cVCR)
of viral modules and environmental parameters, with significance levels of

correlations indicated by asterisks. ¢ Count of prokaryotic and viral members of
each major module. d Chord diagram showing the taxonomy of bacterial ASVs in
each module. The taxa along the arc are colored based on their corresponding
phylum.

vOTUs within both Caudoviricetes and Megaviricetes showed a
sinusoidal-like pattern over time, with peaks in Bray-Curtis similarity at
12, 24, and 36 month intervals (Fig. 3a). Furthermore, in some cases,
similarity between samples from opposing seasons was zero, which is
likely a combination of strong seasonality, low relative abundance (and
hence detection) of vOTUs in winter, as well as variable sequencing
depth. Notably, the seasonality observed in virus community compo-
sition was consistent regardless of minimum coverage value utilized
for detected viral presence, though similarity was less at higher
thresholds (Supplementary Fig. 3).

To further contextualize the dynamics at the vOTU level, we
examined the underlying sequence diversity of vOTUs in two ways.
First, we explicitly compared all non-clustered viral contigs
>10,000 bp across years. Out of 7360 such contigs, we found 21
clusters of contigs, encompassing 55 contigs total that were 100%
matches between at least two years. This suggests that detection of
viruses with no genetic changes across years is rare, though there is a
limitation of sequencing depth. Second, based on analysis of single
nucleotide variations in reads to vOTUs (via InStrain, see Methods), we
find that there tends to be microdiversity underlying the vOTU
populations, though the amount varies between vOTUs ranging from
likely insignificant and potentially related to sequencing error, to high
differentiation (e.g., 97% similarity) (Supplementary Fig. 4). These
analyses highlight that, in general, vOTUs are made up of populations
of highly similar viruses, rather than being clonal. This has also been
observed elsewhere, including the Arctic'.

Virus-host and environmental relationships
To explore the temporal structuring of viruses and their association
with prokaryotic hosts, we employed community- and taxon-level
analyses in the context of eight physicochemical parameters and
prokaryotic community composition data, comprising 3748 prokar-
yotic amplicon sequence variants (ASV).

At the whole community level, Mantel tests demonstrated the
strongest correlation to prokaryotic community composition (Mantel
p=0.632, p=0.001, n=46) followed by oxygen (Mantel p=0.371,

p=0.001, n=46) and mixed layer depth (MLD) (Mantel p=0.259,
p=0.001, n=46) (Supplementary Data 3, Supplementary Fig. 5). To
further elucidate physicochemical drivers, we used canonical corre-
spondence analysis (CCA) to reveal a seasonal clustering of samples,
with temperature (summer), MLD (winter), photosynthetically active
radiation (PAR; late spring-early summer), and polar water fraction
(late summer) accounting for 15.4% of the total variance (Fig. 3b).
These results suggest that viral communities are primarily correlated
with prokaryotic community composition which is in turn driven by
environmental conditions plus biological interactions—leading to a
complex network of interdependencies and physicochemical linkages,
similar to dynamics in temperate environments’*’.

Given the coupling between viral and prokaryotic communities,
we next explored potential virus-host associations over time at the
individual vOTU and 16S rRNA gene ASV level. We constructed a
Convergent Cross Mapping (CCM) network based on co-occurrences,
similar to the approach described in Oldenburg et al. *°, which includes
information about the direction of associations (i.e., predicting causal
relations) between vOTUs and ASVs. The CCM network comprised
5136 vOTUs and 850 prokaryotic ASVs (Supplementary Fig. 6a), with
directional associations (correlations >0.7) where vOTUs dynamics
are ‘following’, or are ‘caused’ by, prokaryotic ASV dynamics (akin to
Lotka-Volterra dynamics™) totaling 15,930. Louvain clustering resulted
in six distinct modules, comprising vOTU-ASV associations occurring
during the same temporal period. We named the six modules based on
their seasonal abundance patterns (Fig. 4a); for example, M1 peaks in
late spring, followed by M2. The temporal distinction between mod-
ules was confirmed by their correlations with specific physicochemical
conditions (Fig. 4b). M1 showed the strongest positive correlation with
PAR, while M2 had the strongest positive correlation with temperature
(Fig. 4b). Interestingly, these two modules also have the most diverse
virus communities, with M1 containing 1448 and M2 containing 1334
vOTUs, respectively (Fig. 4c). M3 and M4 peaked in late summer, with
M3 having the strongest positive correlation with polar water fraction,
and M4 having the strongest negative correlation with PAR. M5 and M6
both negatively correlated with temperature, cVCR, and positively with
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MLD. However, among these two, only M5 negatively correlated with
PAR, being particularly abundant during winter (December-April),
while M6 was persistent throughout the year. Generally, the number of
vOTUs in a given module outnumbered the number of prokaryotic
ASVs, except M5 where ASVs outnumbered vOTUs. Notably, M5 also
contained the fewest vOTUs, 132 (Fig. 4c). The overall trend of more
vOTUs than ASVs in modules corresponds to the overall larger number
of vOTUs vs. prokaryotic ASVs examined.

The modules were consistently dominated by Caudoviricetes
(Supplementary Fig. 6b), and the proportion of lytic to lysogenic
viruses was rather invariable (Supplementary Fig. 6c). Megaviricetes
were primarily present in the spring and early summer modules M1 and
M2 (Supplementary Fig. 6b) where they constituted 6.3% and 1.4% of
the vOTUs, respectively. Together, the major differences between
modules, especially relating to bacteriophages, are hence at the
vOTU level.

In terms of prokaryotic membership, the modules varied con-
siderably. M1 was dominated by taxa typically associated with copio-
trophic  conditions or phytoplankton blooms, including
Flavobacteriaceae, Rhodobacteraceae, and Porticoccaceae (Fig. 4d). In
contrast, M5, which contained the largest number of ASVs, comprised
diverse prokaryotic taxa, including Pelagibacteraceae, Nitrosopumila-
ceae, GCA-002718135 (aka HIMBS59), Nitrospinaceae, SAR86, Pir-
ellulaceae, and Planctomycetaceae (Fig. 4d). The smaller modules M2,
M3, M4, and M6 comprised a variety of taxa, with the most prevalent
taxon within each being UBA1611 (Marinimicrobia), and Pelagibacter-
aceae, respectively (Fig. 4d).

In order to evaluate host association patterns, we utilized both the
CCM network correlations and host predictions via iPHoP*. In total,
42.5% of vOTUs received a host prediction by iPHoP. Among bacterial
families with a high number of predicted vOTUs, Flavobacteriaceae
and Pelagibacteraceae were the most frequently predicted. In Mi,
Flavobacteriaceae and Akkermansiaceae (Verrucomicrobia) domi-
nated, while Pelagibacteraceae was less common. Conversely, in M5,
Pelagibacteraceae was the most predominant, with fewer Flavo-
bacteriaceae and Akkermansiaceae. Meanwhile, vOTUs with Cyano-
biaceae as their predicted host were more common in M2-M4
(Supplementary Fig. 6d). Among the vOTUs correlated with an ASV in
the network, the majority of host-virus pairwise correlations were to
diverse prokaryotes present in M5, with Pelagibacteraceae (20.3%) and
Nitrosopumilaceae (6.0%) being the most common (Supplementary
Fig. 6e). M1 had the second most bacteria-to-virus connections with
37.5% of these being to Flavobacteriaceae. Among the families with
most pairwise correlations (i.e., over 250), the overall pattern of host
prediction of the viruses and module membership was similar, with
vOTUs with predicted hosts of Flavobacteriaceae and Pelagibacter-
aceae being the dominant host predictions for M1 and M5, respectively
(Supplementary Fig. 6f). However for individual vOTUs and ASVs, only
3.7% of the predictions overlapped at the family level between CCM
network correlations and iPHoP (i.e., 122 out of 3,280 correlations with
associated host predictions). Among these, again, Flavobacteriaceae
and Pelagibacteraceae made up 46.7% and 6.6%. For Flavobacteriaceae,
these vOTUs were diverse, coming from 14 different novel orders (via
VConTACT3%, see Methods), while for Pelagibacteraceae they all came
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Fig. 6 | Dynamics of Nitrosopumilaceae and associated viruses. The shown
Nitrosopumilaceae are the most abundant ASVs, which are all members of M5.
Different ASVs and vOTUs are shown by different shades of orange and blue, cor-
responding to M5 and M6 colors, respectively. The shown vOTUs are those that are
correlated with Nitrosopumilaceae (p < 0.05) in the Convergent Cross Mapping
network (see Methods, Supplementary Fig. 5a, 6).

from a single novel order (Supplementary Data 4). However, overall,
the low number of matching CCM correlations and host predictions at
the vOTU-ASV level demonstrates the challenge to discern host-virus
relationships in diverse and complex ecosystems where a variety of
technical and biological challenges may complicate such analyses (see
Discussion). Nonetheless, the results provide valuable indications for
particular lineages at an overall module level.

Diversity and dynamics of cyanophages and Nitrosopumilaceae-
associated viruses
From the predicted interactions between vOTUs and ASVs, we further
explored the diversity and dynamics of putative cyanophages—as
cyanobacteria are of particular interest with respect to changing con-
ditions in Arctic ecosystems™**, We identified putative cyanophage
vOTUs based on phylogenetic analysis of psbA genes, classification
based on VPF-Class*® and host prediction via iPHoP*%. The phylogenetic
reconstruction of psbA revealed that putative cyanophages are distinct
from cultivated relatives from more temperate locations (Fig. 5a). The
putative cyanophage vOTUs represented some of the largest viral
contigs recovered, with half of the assembled cyanophages being
medium- to high-quality, and a quarter >80% complete (Fig. 5b, and
Supplementary Data 2). The cyanophage vOTU abundance peaked
during August-September 2017 (Fig. 5b), complementing previous
observations of Synechococcus in the WSC*>**. Although the seasonal
dynamics were consistent across the cyanophage vOTUs, their max-
imal cVCR varied from 0.003 to 0.06 (Fig. 5b). In addition, all of the
cyanophage vOTUs exhibited lower abundances in 2018-2020 com-
pared to 2017, indicating interannual variation of these viruses and
their presumed hosts (Fig. 5b). Overall, the abundances of the cya-
nophage vOTUs with Synechococcus ASVs were correlated when con-
sidering no time-lag (Spearman’s p = 0.48, p=0.0008, df =44), but a
stronger correlation (Spearman’s p =0.51, p=0.0008, df=44) occur-
red with a vOTU time-lag of one time-point (average interval of
32 days). Thus, putative cyanophages increased in abundance
~1 month after Synechococcus peaks. For individual ASVs and vOTUs,
the strongest correlations were without time delay (n =53), followed
by one (n =44) and two (n = 32) time-points, indicating some temporal
variability between individual cyanophage vOTUs and their putative
hosts compared to the groups at-large (Supplementary Data 5). Our
results reveal that both cyanobacteria and their viruses are present in
the Arctic, highlighting a need to further understand their interactions
for the future Arctic Ocean, as they are expected to increase due to
Atlantification.

Nevertheless, given the scarcity of data on viruses during the polar
night, we also examined the microbial dynamics of viruses related to

prokaryotes dominant in winter. To do so, we focused on viruses
associated with Nitrosopumilaceae due to their importance for win-
tertime nitrogen and carbon cycling®’*®, their prevalence in the dataset
with the top five Nitrosopumilaceae ASVs peaking from October-May
(average 4.2%) vs. lower abundances from June-September (average
0.5%), and being among the taxa with the most correlations to viruses
(Supplementary Fig. 7). We identified associations between 58 vOTUs
and five Nitrosopumilaceae ASVs (Fig. 6), which were primarily asso-
ciated with the winter module M5. In total, 53 of the 58 vOTUs were
classified as Caudoviricetes (the other five were unclassified), and came
from 14 different novel orders, based on vConTACT3 (Supplementary
Data 6). Notably, among vOTUs with correlations to hosts in the cor-
relation network, only one had a predicted host (based on iPHoP) of
Nitrosopumilaceae. This vOTU was correlated with an unclassified
Gammaproteobacterium (no family-level prediction) within the cor-
relation network, highlighting again the difficulty comparing directly
these two complex and independent approaches. The persistence of
these vOTUs despite low virus cVCR demonstrates the ability to track
pronounced seasonality even amongst low abundance viruses. How-
ever, more focused investigations on the temporal linkages of these
vOTUs and their potential hosts are needed to better understand the
environmental impacts of such associations.

Bipolarity of Fram Strait viruses

Considering the long-standing discussion on latitudinal microbial
diversity gradients®** and the endemicity of Arctic and Antarctic
microbiomes®***, we assessed the distribution of Fram Strait viruses
across the global oceans through metagenomic datasets from various
large-scale sampling campaigns, such as Malaspina, Tara Oceans and
Bio-GO-SHIP™**%° (Supplementary Data 7).

Overall, the abundance of Fram Strait viruses peaked in the epi-
pelagic (<200m) around 60-70°N, with decreasing abundances
towards 50°N, and typically no detection in subtropical and tropical
epipelagic waters (Fig. 7a). A similar pattern occurred in southern
hemisphere epipelagic waters, with peaks in abundance around
45-55°S (Fig. 7a). At individual vOTU level, 42% of vOTUs displayed bi-
modal peaks in abundance with separate maxima in each hemisphere
(i.e., the two highest peaks in abundance occurred in separate hemi-
spheres). The average peak latitude of vOTUs was 61°N and 51°S,
respectively (Fig. 7b). Fram Strait viruses were also commonly detec-
ted in the deep ocean (here, operationally defined as sampling depth
of >200 m). In particular, they were detected in 87% (338 of 390) of
deep global samples. Like the epipelagic waters, deep-water viruses
were more prevalent in northern and southern higher latitudes
(Fig. 7b), though in deep samples the viruses were more commonly
detected. Overall, however, when detected, their relative abundances
were lower in deep samples than in shallow samples. Notably, there
was significant variation in community structure of the detected Fram
Strait viruses between epipelagic and deep samples (PERMANOVA: F(1,
767)=99.16, p=0.001; R?=0.1145, 95 % CI [0.102 - 0.131])

which aligns with established differences in microbial commu-
nities in the deep vs. epipelagic ocean, and past results of virus
biogeography. Future work could consider the differences in the total
virus communities between epipelagic and deep, as the current ana-
lysis utilizes only mapping to the Fram Strait viruses.

Expanding on these observations, we investigated the distribu-
tional patterns of the six Fram Strait modules on the global scale. All
modules were more prevalent in the northern than in the southern
hemisphere, but their relative distributions varied, with M1 and M2
being the most abundant in northern epipelagic waters, while M6
being more prominent in higher southern latitudes (Supplementary
Fig. 8a), indicating a relatively restricted distribution of M1 and M2. In
deeper waters, all modules were less prevalent than in epipelagic
waters, with higher prevalence in the northern hemisphere. In deep
waters, M6 was the most prevalent (Supplementary Fig. 8b).
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Fig. 7| Global distribution of Fram Strait vOTUs by comparison with short-read
(0.2-3 pm size-fraction) metagenomes (Supplementary Data 7). a Upper and
lower map correspond to samples collected within the upper 200 m and deeper
than 200 m, respectively. Abundance is calculated as coverage per gigabase pair of
sequence (Coverage/Gbp). In the deep map, latitude and longitude were jittered to

allow visualization of multiple depths at the same location. b Viral Coverage/
Gbp plotted by latitude across all samples along with a Generalized Additive Model
prediction, illustrating the trend of total viral Coverage/Gbp by latitude. For more
information on samples, see Supplementary Data 1.

Distinctive amino acid signatures of polar viruses

To expand on the global perspective, we assessed potential adapta-
tions of viruses to polar waters by examining properties that have been
attributed to cold adaptation in prokaryotes, in particular amino acid
signatures that increase protein flexibility in cold environments. To do
this, we examined the amino acid features of proteins from the Fram
Strait viruses and from the GOV2.0 dataset, which spans both polar
and non-polar sampling locations. To ensure fair comparisons
between the datasets, we focused only on GOV samples originating
from <35 m water depth (i.e., the average depth of Fram Strait sam-
pling) and first analysed the environmental context, which shows
strong clustering of GOV2.0 polar samples to the Fram Strait, based on
their similarity in distance to equator, oxygen, and temperature
(Fig. 8a). Linking those environmental data to the examined protein
features for all viruses, revealed that the aliphatic index and the
nitrogen usage score were positively correlated with temperature
(Fig. 8b), whereas other traits of potential cold adaptation, in particular
polar charged and uncharged amino acids, showed significant corre-
lation with one or more of the other environmental parameters, but
not directly with temperature. This was also the case for Caudovir-
icetes, while Megaviricetes amino acid traits were more generally
positively correlated with oxygen, temperature, and chlorophyll, and
other vOTUs (non-Caudoviricetes, non-Megaviricetes) were generally
positively correlated with salinity and oxygen (Supplementary Fig. 9).
In the latter cases, these groups are more poorly sampled due to their
low abundance resulting in weaker correlations overall, necessitating

further study. Examining the average values for these protein para-
meters according to sample and temperature, across all viruses,
reflected the patterns observed via other statistical analyses (Supple-
mentary Fig. 10), reinforcing our observations.

Beyond the amino acid level, we found that 17.0% of viral protein
annotations were significantly enriched in high latitudes (253 of 1490),
while another 7.1% were enriched in lower latitudes (106 of 1490)
(Supplementary Data 8). Notably, among a variety of annotations
enriched at high latitudes, most significant were chaperone proteins
and stress response such as Cold (CSD) and Heat Shock Proteins
(HSP70), DnaJ (Supplementary Fig. 11), as well as genes common in
cyanophages in the lower latitudes including a photosystem gene
(Photo RC) and Transaldolase/Fructose-6-phosphate  aldolase
(TAL_FC)’°. Together, our evidence suggests that biochemical and
biological traits distinguish polar viruses from their tropical and sub-
tropical counterparts, linked to amino acid sequences.

Discussion

Harnessing long-read metagenomic data in high temporal resolution,
we demonstrate a pronounced, annually repeating seasonality of
viruses across multiple years in the Arctic Ocean. The seasonal viral
dynamics correlated strongly with both the predominant prokaryotic
host communities, as well as environmental parameters. We found that
Fram Strait viruses and seasonal modules occur across cold waters of
both hemispheres, while being mostly absent from subtropical and
tropical waters.
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Fig. 8 | Viral amino acid traits across environmental gradients. a Nonmetric
multidimensional scaling (NMDS) plot showing the environmental diversity of the
sampled Fram Strait and GOV2.0 ecosystems. The Bray-Curtis distance similarity
matrix was calculated based on the available environmental parameters of 38 Fram
Strait and 69 GOV2.0 samples and used to generate NMDS coordinates of each
sample. Point shapes represent dataset origin, and colors distinguish different
temperature ranges. Vectors show correlations with environmental variables. This
ordination provides context for the correlations to environmental parameters of
amino acid traits shown in part b. b Heatmap plot illustrating the Spearman cor-
relation coefficients of environmental parameters to amino acid traits, with P values
represented by asterisks as indicated. The Spearman coefficients were calculated
using a two-sided Mantel test using pairwise distances of each environmental
parameter (Euclidean distance) vs. each amino acid trait (Bray-Curtis distance).

In terms of total virus prevalence, we found strong increases in the
ratio of viruses to prokaryotes in the late summer months, mirroring
findings from the Antarctic where viruses peaked in mid to late
summer?, This increase was consistent regardless of the normalization
used, namely either coverage-based virus to cell ratio (our main
metric), or coverage per gigabase pair (which would also account for
eukaryotic DNA). Our observation of strong virus seasonality in the
cellular size-fraction contrasts with some of those of free viruses via
fluorescence microscopy. This seeming contradiction may indicate a
difference in the dynamics of infection and host-association, or loss
factors of free-living viruses™ %, for example photo-degradation of free
viral particles’”*. Our results suggest that the number of viruses in the
cellular size-fraction is in the same range (order of magnitude) as that
of free viruses in seawater, and complement similar metagenomic
marker-gene derived virus-to-prokaryote ratios which have focused so
far on size-fractions that include free viruses”. This observation is
consistent with estimated infection rates'®’®, especially considering
that each infected cell can harbor a large number of viral genomes”’ .
A further consideration is that our study focused on dsDNA viruses,
thus not investigating the RNA virome® . Investigating RNA viruses,
their seasonality and impacts on the prokaryotic community is an
important future direction.

At the virus community level, the long-read and cellular size-
fraction metagenomic approach likely aided assembly of the dominant
viruses®®~®8, which often suffer from assembly problems when short-

reads are utilized. However, we observed low similarity in opposing
seasons compared to studies from more temperate areas’®~°. The low
similarity, reflective of low viral persistence in the ecosystem, may be
due to the focus on host-associated viruses, thus excluding free-
viruses with no prevalent host that could increase persistence (viral
seed-bank hypothesis)®**°. Furthermore, the low persistence may also
be in part related to the low frequency of predicted lysogenic viruses
that we detected, which would otherwise be a potential persistence
mechanism for viruses with rare hosts”. The very low similarity could
also correspond to the relatively low coverage overall due to the long-
read technology as well as dilution of reads from prokaryotes. Never-
theless, the strong seasonality reflects the strongly seasonal host
communities®*%,

The use of CCM in studying virus-host interactions presents
challenges due to their rapid temporal dynamics. Viral latent periods
range from hours to days, complicating interpretations based on
monthly sampling intervals. The low overlap (3.7%) between CCM
associations and iPHoP predictions may reflect limitations of our
sampling resolution. Integrating multiple methodologies is critical for
understanding the complexities of microbial interactions. Combining
CCM findings with naive network analysis and iPHoP results provides a
more comprehensive view of microbial community dynamics, with
visual comparisons highlighting the biological significance of identi-
fied interactions. It should be considered that factors such as diversity
and abundance can impact the total number of viruses detected in
modules, and co-occurrence patterns overall. M5, for example, which
has the lowest vOTU to prokaryotic ASV ratio, corresponds to the
period during which vOTUs were the least relatively abundant. Addi-
tionally, during this period, vOTU richness was relatively high. The
combination of these two factors challenges vOTU detection, and
could result in vOTUs being excluded during pre-processing or missed
altogether.

We observe a pronounced bi-modality in the latitudinal distribu-
tion of Fram Strait viruses, with peaks at high latitudes in both the
southern and northern hemispheres. In particular, the peaks occur
around the northern and southern polar fronts (70°N / 60°S)?>%,
suggesting that these boundaries of oceanic realms represent a hot-
spot of polar-adapted viruses, possibly due to the pronounced biolo-
gical and physicochemical gradients that are present, together with
overall greater productivity. It might be, however, somewhat biased by
a larger number of samples collected along these fronts. The high-
latitude preference is also reflected within viral amino acid sequences,
with signatures of cold adaptation that may contribute to their success
in colder waters, thus expanding previous observations from the
Southern Ocean'® and polar eukaryotic viruses”’. Further investigations
to unravel the diversity and dynamics of viruses in Arctic and Antarctic
are crucial, given that climate shifts are causing major biological and
physicochemical perturbations in these regions. Additionally, in gen-
eral, the detection of Fram Strait viruses in the deep ocean is notable,
and potentially related to export from the surface and deep ocean
currents, some of which originate at the Arctic. Further inspection of
the specific vVOTUs and other datasets at the global level could help
further evaluate these ideas. Part of the explanation may be that vOTUs
primarily observed in deep waters are from M6, the persistently pre-
sent Fram Strait module; thus, they may be associated also with gen-
erally persistent/ubiquitous host lineages and/or have broad host
ranges. Furthermore, the relative lack of seasonality in the deep sea
may help with their consistent detection.

The peaks of Arctic viruses during summer and their specializa-
tion to high-latitude regions call for further process and targeted
studies to elucidate the host communities that they interact with and
influence. Previously, viruses of phytoplankton (cyanobacteria and
eukaryotic phytoplankton) have been experimentally observed to
exert less top-down pressure than eukaryotic grazers at high
latitudes®®®, but how this relates to the total microbial community
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remains unknown. In any case, our study demonstrates that the
impacts of Arctic viruses are likely very different depending on season
and ecosystem state. Our results indicated a low percentage of pre-
dicted prophages without a seasonal enrichment, even in the cellular
size-fraction studied. This suggests that the Piggyback-the-winner
scenario is neither very prevalent, nor seasonally variable, though
again this may be currently limited by computational predictions, and
other biases like lytic viruses occurring within cells in more than one
copy, and thus we may underestimate prophage prevalence. We found
that most viruses are part of seasonally variable modules, and that
often there is no similarity between opposing seasons (e.g., six months
apart), at least at the depth sequenced at in the investigated cellular
size-fraction. Hence rather than having a Constant-Diversity*®*’, Arctic
virus communities are undergoing substantial seasonal change. Like-
wise, the prokaryotic community is also highly seasonal, thus the
viruses are generally following and strongly correlated with host
abundances. Thus, unlike how viral ecological models are sometimes
idealized in a chemostat-like setting'°, viral communities’ strong sea-
sonality impacts how such models can be of use in the Arctic Ocean
(such as in the Red-Queen hypothesis®*®). Arctic virus communities,
with their strong seasonality where many taxa are not present year-
round (or at least often not detected), may be impacted by how these
dynamics play out elsewhere; likely, such dynamics occur primarily
within seasons. Our analysis of microdiversity of Arctic virus commu-
nities demonstrated both instances of identical viruses across years, as
well as a general tendency for vOTU to be underlaid by sequences with
very high similarity but not exact matches to the vOTUs, akin to that
seen elsewhere in the ocean??*%, including the Arctic Ocean', though
also some exact matches were observed across years. Thus, based on
these results we cannot rule out either the Red-Queen hypothesis nor
Constant-diversity. In each case, these dynamics could be further
evaluated via more spatially-resolved temporal sampling.

In conclusion, our study advances the basis for understanding
how viruses regulate and impact the dynamic and changing polar
ecosystem, setting the stage for more detailed population dynamics
studies, as well as process- and host-specific studies. Extended time-
series observations will allow for improved understanding of the Arctic
ecosystem impacts, in this ecosystem undergoing rapid change.

Methods

Seawater collection and eDNA sequencing

Research and sampling complied with relevant ethical and interna-
tional regulations. Moored Remote Access Samplers (RAS; McLane)
autonomously collected and fixed seawater from an average depth of
29 m in the eastern and western Fram Strait (Fig. 1) at weekly to fort-
nightly intervals between 2016-2020***%, Sampling occurred in the
framework of the FRAM / HAUSGARTEN Observatory. The resulting
eDNA was used to sequence 16S rRNA gene fragments using primers
515F-926R'", processed into ASVs using DADA2 as described under
(https://github.com/matthiaswietz/FRAM_eDNA). Subsequently, we
only considered ASVs with >3 reads in >3 samples, corresponding to a
total of 3748 prokaryotic ASVs. To complement iPHoP host assignment
predictions (below), we assigned taxonomy of prokaryotic ASVs via
Greengenes2'” using the classify-consensus-vsearch method'® in the
q2-feature-classifier’®* of QIIME 2'*,

DNA extracts from selected timepoints were additionally used to
generate PacBio HiFi metagenomes at the Max Planck Genome Center,
Cologne, Germany. Further details about the molecular analyses are
described in previous reports*>*®, In total, we herein analyze 94
amplicon samples and 47 metagenomes from the WSC, and 9 meta-
genomes from the EGC (Supplementary Data 1).

Environmental parameters
Attached to the RAS were Seabird SBE37-ODO CTD sensors that
measured temperature, depth, salinity, and oxygen concentration.

Sensor measurements were averaged over 4 h around each seawater
sampling event. Physical sensors were manufacturer-calibrated and
processed in accordance with https://epic.awi.de/id/eprint/43137.
Employing multiple CTD sensors along the mooring depths enabled
the determination of the minimum MLD at each sampling time point.
Chlorophyll concentrations were measured via Wetlab Ecotriplet sen-
sors. Surface water PAR data, with a 4 km grid resolution, was obtained
from AQUA-MODIS (Level-3 mapped; SeaWiFS, NASA) and extracted in
QGIS v3.14.16 (http://www.qgis.org). Polar water fraction, which is the
proportion of polar water in the mixing of Atlantic and polar water
masses, was calculated based on salinity and temperature®. Figure 1a
map was created in QGIS v3.14.16 (http://www.qgis.org) using publicly
available bathymetry data obtained from GEBCO. RAS illustration in
Fig. 1a was generated via Inkscape (https://inkscape.org).

Virus assembly, prediction, classification, and host prediction
Long-reads from each sample were assembled individually using
hifiasm-meta v. 0.13-r308'%° with default settings. Viral sequences were
predicted from both assembled contigs and the long-reads themselves
using a combination of tools, based on a VirSorter2-based Standard
Operating Procedure (SOP, https://www.protocols.io/view/viral-
sequence-identification-sop-with-virsorter2-5qpvoyqebg4o/v3). First,
in VirSorter2 v.2.2.3'” we included all possible viral groups: dsDNA-
phages, RNA viruses, ssDNA viruses, nucleocytoplasmic large DNA
viruses (NCLDV), and Lavidaviridae. CheckV v.1.0.1'% was then used to
quality check the long-reads and contigs identified as viruses by
VirSorter2'” as well as to trim potential host regions from identified
proviruses. Contigs identified as viruses by VirSorter2'”’ (--min-score
0.5) with at least one viral gene (predicted by CheckV'*) were further
screened using DeepMicroClass v.1.0.3'’ (not included in the original
SOP, but intended to further reduce false positives). Contigs that were
classified as either eukaryotic or prokaryotic by DeepMicroClass'®’
were discarded. Contigs that were identified as RNA viruses by
VirSorter2'”” were not analyzed. We clustered the remaining viral
contigs into vOTUs, as defined previously'’, using CD-HIT v.4.8.1"12
with the following parameters: cd-hit-est -M 100000 -c 0.95 -d 100 -g
1-aS 0.85.

For classification, we used the genomad annotate function (default
settings) of geNomad v.1.8.1"® which uses taxon-specific marker pro-
teins to assign taxonomy. To further resolve taxonomy to the subfamily
level (Supplementary Data 2), we used vConTACT3 v.3.0.0b65 (https://
bitbucket.org/MAVERICLab/vcontact3/src/master/). To predict hosts,
we employed iPHoP v.1.3.3*>™ with default settings, along with a
custom database by adding previously assembled bacterial and
archaeal MAGs from the Fram Strait (PRJEB67368) and removed MAGs
from one oceanic study that was not manually curated, due to their
high degree of potential virus contamination (PRJINA385857), which
could result in false positives. When multiple host predictions were
available, we selected the prediction with the highest confidence score.

Mapping and normalization of viral abundance

Metagenomic long-reads from all samples were mapped to vOTUs
(>10 Kb, from assembly- and read-based approaches) using minimap2
v.2.28-r1209 (parameter: -x asm5)"%, and only the primary alignments
were considered in subsequent analyses.

To quantify the abundances of vOTUs across metagenome sam-
ples, we employed a two-step normalization process to account for
differences in read lengths and sequencing depth. First, we deter-
mined the mean coverage across the viral sequence length from
mapped read counts (with a threshold that > 25% of the viral sequence
must be covered). Second, we divided the mean coverage by the
estimated number of cellular genomes in each metagenome, as pre-
dicted based on the mean coverage across 16 universal single-copy
ribosomal proteins®'?°, We call this metric coverage-based virus to
cell ratio (cVCR). This approach is similar to that used to derive virus to
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microbial ratios on virus to prokaryotic marker genes elsewhere”, but
considers the full viral coverage. In addition to this, we also calculated
the coverage of each virus per gigabase pair (cVGB) of metagenome for
a given sample and demonstrated that the two metrics yield compar-
able values (Supplementary Fig. 1). To gain an insight into the com-
position of the metagenome samples in terms of prokaryotic and
eukaryotic reads, we employed Tiara v.1.0.3, a machine-learning tool,
to assign domain-level classifications to the raw reads'”. This revealed
that the large majority of reads across the metagenomes, about 90%,
were of prokaryotic origin.

Estimation of viral diversity

Given that the vOTUs were derived from metagenomes with different
sequencing depths, we employed an iterative subsampling approach
to quantify and compare the alpha diversity of viruses across samples.
For this, we applied 100 iterations of subsampling the vOTU count
table at a range of different depths, spanning from 50 up to 30,000
counts at 50 count intervals. For this step, all vOTUs that exceeded the
25% breadth of coverage cutoff when using all the data for a given
sample were utilized. During each iteration, richness, evenness and
Shannon diversity were calculated, with mean values being deter-
mined for each 50-count interval. The functions rrarefy, specnumber
and diversity from the vegan package'” were used to perform sub-
sampling and alpha diversity calculations. The mean values were used
to generate a rarefaction curve of alpha diversity using the ggplot2
package'”. To assess shifts in diversity over time, we compared the
mean richness values obtained from subsampling at the 1000 count
interval. In addition, we computed and compared the slopes of the
sample rarefaction curves up until the subsampled depths, which
represents the rate of vOTU discovery with increasing viral read
counts. Comparing the slopes across samples enabled an assessment
of whether the sample richness patterns observed at the subsampled
depth would change if the viral read count was increased. To further
explore this, we also employed the iNEXT v.3.0.1 package*'* to esti-
mate the vOTU richness based on extrapolations to 30,000 viral read
counts.

Co-occurrence network

To identify temporal co-occurrence patterns, cVCR values per vOTU
and relative abundance of prokaryotic ASVs were converted into
temporal profiles by Fourier transformation. Temporal profiles were
constructed based on 16 Fourier coefficients, which capture the
majority of observed vOTU and ASV peaks within the four-year period.
Pairwise correlations between individual temporal profiles were then
computed between all vOTUs and ASVs. Higher Pearson correlation
values indicated similar temporal profiles. For network construction,
we first calculated Pearson correlations for all pairs resulting in an
undirected graph, from which we only considered correlations > 0.7
after multiple testing corrections using the Benjamini-Hochberg pro-
cedure. This threshold was determined based on previous findings on
similar data*>*® as well as preliminary analyses conducted on our
dataset, which indicated that interactions exhibiting a correlation
below this value often lacked biological relevance. To delineate
strongly connected components representing co-occurring taxa, the
Louvain community detection algorithm was applied to the entire
graph'®. Next, the putative associations were further evaluated based
on Convergent Cross Mapping (CCM) in order to discern causal rela-
tionships between taxa in time-series data, as outlined by ref. 127. CCM
enables the prediction of a species’ time-series based on the knowl-
edge of another species’ time-series. Given the nature of lytic virus-
host systems, where interactions can be short-lived, we acknowledge
that this method must be carefully interpreted within the context of
our sampling strategy (i.e., biweekly to monthly on average). Initially,
we constructed a CCM network encompassing all pairwise combina-
tions. Subsequently, we extracted the in- and outgoing edges between

nodes that were also connected in the co-occurrence network, utilizing
resources from (https:/gitlab.com/qtb-hhu/marine/publications/
framphages2024). To quantify the strength of relationships, we
employed Normalized Mutual Information (NMI) to account for non-
linear relations*’. A permutation approach was employed to compute
significance values for edge weights, with the objective of determining
whether the NMI values exceeded those expected for random edges.
Further details on the construction and validation of the CCM network
can be found in ref. 49. The CCM network was visualized in Cytoscape
v.3.10.1'®, Additionally, to identify potential time-lagged correlations,
we employed extended local similarity analysis'’ with a maximum
delay of two sampling points on the original non-Fourier
transformed data.

Statistical analyses
Bray-Curtis similarity, Mantel tests, CCA, and Spearman correlation
were performed in R v. 4.3.1°° using the vegan'* and Hmisc'' packages.

We included only vOTUs with a breadth of coverage > 0.25.

Cyanophage phylogenetics and comparative genomics

Putative cyanophages were predicted via VPF-class v.0.1.2°° and
iPHoP** host predictions. Subsequently, we focused on the most con-
fident predictions by selecting cyanophages harboring the psbA core
photosystem, identified by hmmscan®? of viral predicted proteins
(prodigal™) PFAM for Photo RC (PFO0124). Viral and prokaryotic
reference psbA were extracted from the vConTACT2 viral reference
database (ViralRefSeq-prokaryotes-v211°>) and GTDB prokaryotic
reference database (version 214"**) by hmmscan with PFAM Pho-
to_RC. Eukaryotic reference psbA genes were extracted via Uniprot
(gene_exact:psbA) AND (taxonomy id:2759, reviewed Swiss-Prot,
n=157)"*. A preliminary tree was constructed from these sequences to
differentiate between D1 (psbA) and D2 (psbD) photosystem II (PSII)
reaction center proteins, by alignment using MAFFT" followed by
trimming with trimAl (-gt 0.2)'”, and FastTree™® for phylogenetic
reconstruction. psbD were identified manually and excluded. The
remaining sequences were considered, and phylogenetic reconstruc-
tion performed a second time with the same alignment and trimming
steps (but with -gt 0.8); at this stage, tree building was performed with
1Q-TREE (settings: -B 1000, -alrt 1000, -m MFP)™’.

Mapping to global metagenomes

Metagenomes from ten oceanic datasets , including Tara
Oceans, Malaspina, and Bio-GO-SHIP (Supplementary Data 7), were
downloaded from NCBI, and quality-filtered with Trimmomatic
(parameters: LEADING:3  TRAILING:3  SLIDINGWINDOW:50:30
MINLEN:50)™®. All data utilized is previously published. Only DNA
samples from discrete depths (e.g., not composites of the mixed layers
or similar) and the prokaryotic size-fraction (0.2-3 um) were used to
allow comparison with our dataset. Multiple other size fractions are
available, but the 0.2-3 ym was utilized because of our focus on pro-
karyotic dsDNA viruses, its comparability to the present Fram Strait
virus dataset, and because it is among the most common range
sampled (i.e., many samples available). Reads were mapped to the
clustered contigs using bbmap.sh from the BBTools package (version
39.01, parameters: minid=95 idfilt=95) (https://sourceforge.net/
projects/bbmap/). Trimmed mean coverage was calculated via
CoverM™’ on contigs with minimum covered fraction of > 25% for each
sample. Trimmed mean coverage values were then divided by total
Gbp per quality filtered paired reads. Maps were generated via pub-
lically available NOAA bathymetry data via getNOAA.bathy and the
maps package in R. For determining abundance trends in the total
dataset and at the module level, we computed a Generalized Additive
Module (GAM) between cVCR and latitude using the gam function
from the mgcv package'®, with ten degrees of freedom (k=10). For
plotting the predicted GAM, negative values were converted to 0. For
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calculating the maximum latitude that viruses occurred in each
hemisphere, we used the GAM model, computing where peaks occur
and then determining which two peaks had the highest abundance. For
evaluating statistical differences in community similarity between
epipelagic (< 200 m) and deep (>200 m) samples, we first removed
samples that had less than 0.0001 cVGB (n =769 samples remaining,
including 435 and 334, shallow and deep samples, respectively) and
vOTUs that had less than 0.0001 summed cVGB across all samples
(n=4,693 vOTUs remaining). Then, we ran adonis2*'*° with 999
permutations based on the epipelagic and deep grouping, with 95%
confidence intervals for the R? statistic estimated using 1000 boot-
strap replicates.

Microdiversity of viral contigs

To examine microdiversity among vOTUs, we used two separate
approaches. First, to examine the extent that exact, long virus
sequences re-occur across years, we used CD-HIT v.4.8.1"" to cluster
viral contigs >10 Kb at a 100% sequence identity threshold (cd-hit-
est -M 100000 -c¢ 0.95 -d 100 -g 1 -aS 0.85). We then identified
clusters that appeared across more than one year throughout the
four-year sampling period. Second, we used inStrain v.1.9.0"°,
which compares reads mapped to vOTUs to characterize virus
populations based on nucleotide diversity, total counts of single
nucleotide substitution (SNS) and single nucleotide variation (SNV),
and other related metrics. We applied a 98% minimum ANI, the most
stringent threshold recommended by the developers, and used a
minimum coverage of five to call a variant. To confirm a SNV, we
required a minimum SNV frequency of 0.05 and a false discovery
rate of 1e-06. Additionally, we filtered for contigs where more than
25% of their bases were covered by at least one read, i.e., breadth
>0.25. Only vOTUs that exceeded the coverage minima more than
three times throughout the sampling period were included in the
analysis.

Calculation of amino acid traits

Proteins were predicted from GOV2.0 and Fram Strait viruses via
Prodigal v.2.6.3 (parameter: -p meta)". Then, amino acid composition
and various biochemical properties of the predicted protein sequen-
ces were assessed using custom R scripts available at https://github.
com/alyzzabc/fram_strait_viruses_2016-2020. Briefly, protein sequen-
ces containing the ambiguous amino acid “X” were removed, followed
by counting the occurrences of each proteinogenic amino acid. The
frequencies of single amino acids (G, S, P, C) and of amino acid groups
(acidic, polar uncharged, polar charged, aromatic) were calculated
relative to the protein length. For the amino acids arginine (R) and
lysine (K), the ratio R/K was calculated instead of occurrence. The
molecular weight was calculated according to™' and for calculation of
the aliphatic index we followed™*. The pl function from the Peptides
package' was used to calculate the pl of the predicted proteins using
the EMBOSS scale. The nitrogen usage score (NUS) was calculated
using the following formula:

_4F(R)+3F(H) +2F(KNQW) + F(DESTGPCAVILMFY)

NUS -
n(protein)

@

where F(X) corresponds to the absolute count of each amino acid and
n(protein) to length of the protein.

To analyze the variation of the viral protein features in relation to
the environmental conditions, we omitted samples collected from a
water depth >35 m followed by calculation of the Bray-Curtis distance
similarity matrix and generation of NMDS coordinates using the
metaMDS function from the vegan package'*.

To calculate pairwise correlations, the vegan package'” was used:
the distances for each protein feature (Bray-Curtis) and environmental
condition (Euclidean) were calculated using the vegdist and dist
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function, respectively. Pairwise Mantel tests of each environmental
parameter vs. each amino acid trait were done using the Spearman
method with 9999 permutations via the mantel function. The NMDS
plot and the correlation heatmap were prepared using the ggplot2
package'”.

Calculation of protein family enrichments by latitude

For determination of proteins enriched in polar regions, we used the
prodigal-predicted proteins for GOV2.0 and the Fram Strait virus
dataset. These predicted proteins were annotated with pfam™* via
hmmer™? using the protein-specific cutoffs for significant (cut_ga).
Then, individual protein families were summed within a given sample.
Proteins that had prevalences of less than 10% were removed (n =1,490
remaining). Then, ANCOM-BC™® was used to determine which anno-
tations were enriched at latitudes greater than 60°N or S, or less than
60°N or S.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Raw metagenomic reads are available under ENA BioProjects
PRJEB67368 (WSC) and PRJEB52171 (EGC). 16S rRNA amplicon reads are
available under PRJEB43890 (2016-2017), PRJEB43889 (2017-2018),
PRJEB67813 (2018-2019), and PRJEB66202 (2019-2020). Physicochem-
ical parameters are available at PANGAEA under (https://doi.org/10.
1594/PANGAEA.904565) (2016-2017), (https://doi.org/10.1594/
PANGAEA.904534) (2017-2018), (https://doi.org/10.1594/PANGAEA.
941126) (2018-2019), and https://doi.org/10.1594/PANGAEA.946508
(2019-2020). vOTU contigs and network files are available via figshare
DOIs (https://doi.org/10.6084/m9.figshare.28045856) and (https://doi.
org/10.6084/m9.figshare.28045826,) respectively. The psbA alignment,
trimmed alignment, treefile, and labels for cyanophage references are
available via figshare (https://doi.org/10.6084/m9.figshare.28398173).

Code availability

Code and inputs for reproducing workflows and figures are available
via GitHub https://github.com/alyzzabc/fram_strait_viruses 2016-2020/
and https://doi.org/10.5281/zenodo.15490229. All scripts to reproduce
the CON and CCM networks are available via gitlab https://gitlab.com/
qtb-hhu/marine/publications/framphages2024. CON and CCM calcu-
lations can also be performed using the tool OTTER, available as a GUI
(https://doi.org/10.5281/zenodo.13840702).
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