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Genomic diversity and adaptation in Arctic marine bacteria
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ABSTRACT Arctic marine bacteria experience seasonal changes in temperature, salinity, 
light, and sea ice cover. Time-series and metagenomic studies have identified spatiotem­
poral patterns in Arctic microbial communities, but a lack of complete genomes has 
limited efforts to identify the extent of genomic diversity in Arctic populations. We 
cultured and sequenced the complete genomes of 34 Arctic marine bacteria to identify 
patterns of gene gain, loss, and rearrangement that structure genomes and underlie 
adaptations to Arctic conditions. We found that the most abundant lineage in the Arctic 
(SAR11) is comprised of diverse species and subspecies, each encoding 50–150 unique 
genes. Half of the 16 SAR11 genomes harbor a genomic island with the potential to 
enhance survival in the Arctic by utilizing the osmoprotectant and potential methyl 
donor glycine betaine. We also cultured and sequenced four species representing an 
uncultured family of Pseudomonadales, four subspecies of Pseudothioglobus (SUP05), a 
genus of high GC Puniceispirillales (SAR116), and a family of low GC SAR116. Time-series 
16S rRNA amplicon data indicate that this culture collection represents up to 60% of the 
marine bacterial community in Arctic waters. Their genomes provide insights into the 
evolutionary processes that underlie bacterial diversity and adaptation to Arctic waters.

IMPORTANCE Genetic diversity has limited efforts to assemble and compare whole 
genomes from natural populations of marine bacteria. We developed a cultivation-based 
population genomics approach to culture and sequence the complete genomes of 
bacteria from the Arctic Ocean. Cultures and closed genomes obtained in this study 
represent previously uncultured families, genera, and species from the most abundant 
lineages of bacteria in the Arctic. We report patterns of gene gain, loss, rearrangement, 
and adaptation in the dominant lineage (SAR11), as well as the size, composition, 
and structure of genomes from several other groups of marine bacteria. This work 
demonstrates the potential for cultivation-based high-throughput genomics to enhance 
understanding of the processes underlying genomic diversity and adaptation.

KEYWORDS SAR11, SUP05, horizontal gene transfer, pangenomics, nanopore, Arctic, 
cultivation

T he oceans are dominated by relatively few but highly diverse lineages of marine 
bacteria (1, 2). Representatives for some of these lineages have been cultured 

from the Atlantic and Pacific Oceans, including Pelagibacterales (SAR11) (3, 4), Puniceis­
pirillales (SAR116) (5), and Thioglobaceae (SUP05) (6, 7), but there is significant and 
unexplored genetic diversity within populations and across oceans. Metagenome-assem­
bled genomes (MAGs) (8–10) and single-cell amplified genomes (SAGs) (11–13) have 
advanced the understanding of this diversity; however, MAGs and SAGs are typically 
incomplete and do not provide a full picture of the genetic variation within a highly 
diverse population of species and strains (14). Advances in cultivation have resulted 
in the recovery of abundant and novel marine bacteria (15), and modern sequencing 
techniques produce highly accurate closed bacterial genomes (16, 17). Combined, these 
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approaches can provide more complete information about the genetic variation within 
bacterial populations.

The Arctic Ocean is a highly dynamic system characterized by strong spatial and 
temporal variation, including sea ice cover, daylight, stratification, and freshwater input 
(18–20). Microbes have evolved specific adaptations to survive in such extremes, such 
as the ability to use the compatible solute glycine betaine (21), which can enhance 
osmoregulation and survival in sea ice (22, 23) or can serve as a methyl donor and source 
of glycine (24). Some Arctic bacteria have been isolated in culture, including Colwel­
lia and Polaribacter (25–27). However, cultivation-independent methods suggest that 
current Arctic culture collections represent a relatively small fraction of the commun­
ity (28). Understanding the genetic variation within populations of Arctic bacteria is 
particularly important because the Arctic is warming at four times the global rate 
(29), rapidly losing sea ice (30), and encountering Atlantic water intrusion (31). These 
changes have the potential to impact bacterial and eukaryotic microbial diversity (32, 
33), ultimately changing ecosystem functioning and biogeochemical cycles.

We conducted a high-throughput cultivation-based genomics study to gain insights 
into the diversity within Arctic bacterial populations. We focused on highly abundant 
and diverse taxa with few cultured and sequenced representatives, such as SAR11 (3, 
34). SAR11 accounts for approximately 25% of bacteria in the Arctic Ocean (33, 35, 36) 
and is also present in sea ice (37). Like many other marine bacterial lineages, SAR11 
has been classified into subclades based on 16S rRNA and internal transcribed spacer 
sequence analysis (38–40). These classifications are often used to identify patterns of 
diversity, including in the Arctic (41–43). SAR11 genomes are among the smallest for 
free-living bacteria (44) and have a high proportion of core genes (39), with most 
unique genes co-located in a ~50 Kb hypervariable region (HVR) termed HVR2 (45). The 
evolutionary mechanisms that maintain diversity in HVRs are poorly understood, though 
homologous recombination is widespread in SAR11 (46) and has been proposed as a 
driver of diversity in marine bacteria (47). These features have hindered efforts to resolve 
genetic variation and recover unique genes within populations of SAR11 (14).

This study used comparative genomics to identify patterns of gene gain, loss, and 
rearrangement in 16 Arctic SAR11. Several other important strains of marine bacteria 
representing previously uncultured species, genera, and families were also cultured 
and sequenced (named herein). Rationale for names assigned to previously uncultured 
families and genera is summarized below and detailed in the protologue. Briefly, 
Candidatus Njordibacter, the genus name derived from “Njord” (the Norse god of 
wind and seas), and the family Njordibacteraceae to encompass this genus. Candida­
tus Levibacter, the genus name derived from the Latin “levis” (lightweight), and the 
family Levibacteraceae to encompass this low GC genus of Puniceispirillales. Candidatus 
Ponderosibacter, the genus name derived from the Latin “ponderosus” (heavy), referring 
to this genus of the high GC Puniceispirillales. Candidatus Marifrigoribacter, the genus 
name derived from the Latin “mare” (of the sea) and “frigus” (cold). All 34 new species 
names correspond to their cultivation ID (e.g., sp. uisw_002).

RESULTS

High-throughput cultivation-based genomics

We cultured and sequenced the complete genomes of 34 Arctic marine bacteria to 
identify differences in genomic diversity and adaptations to Arctic conditions (Fig. 
1). Cultures were selected from 106 bacteria obtained by high-throughput dilution-to-
extinction cultivation and sequenced using the Oxford Nanopore Technologies (ONT) 
platform (Table S1). All genomes are single circular contigs, range in size from 1.29 
to 3.78 Mbp, and have GC contents between 29% and 52% (Table S2). They include 
representatives from globally distributed lineages, such as Pelagibacter (SAR11, n = 
16), Pseudothioglobus (SUP05, n = 4), Puniceispirillales (SAR116, n = 2), Methylophilaceae 
(OM43, n = 2), and Haliaceae (OM60, n = 1), as well as uncultured and understudied 
lineages, including a low GC family of SAR116 (48) and a previously unrecognized 
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family of Pseudomonadales that is common in the Arctic (Njordibacteraceae herein). Other 
cultured strains belonging to genera and species without previous representation were 
also sequenced, including Flavobacteriaceae and Actinomycetes.

All genomes represent newly cultured species (Fig. 1, Table S1). The four SUP05 
genomes have 95% average nucleotide identity (ANI) when compared to each other and 
less than 95% ANI when compared to described species. The SUP05 genomes encode 
key proteins needed to fix inorganic carbon using the Calvin-Benson-Bassham cycle, 
including phosphoribulokinase and the large and small subunits of form Ia Ribulose 
Bisphosphate Carboxylase. Levibacter and Ponderosibacter, belonging to the SAR116 
clade, have GC contents of 31.4% and 49.8%, coding densities of 95.9% and 88.5%, and 
amino acid identity (AAI) of 56% and 69% when compared to their nearest cultured 
relatives, respectively (Table S2). Phylogenetic analysis indicates these cultures represent 
distinct and diverse SAR116 lineages (Fig. S1). Both SAR116 genomes encode genes for 
bacteriorhodopsin, carotenoid biosynthesis, carbon monoxide dehydrogenase, and key 
proteins for sulfur metabolism. The Porticoccus, Patiriisocius, and Halioglobus genomes 
have low AAI values when compared to their nearest cultured relatives (67%, 75%, and 
70%, respectively), indicating substantial diversity in these lineages. The Marifrigoribacter 
genome has a similarly low AAI value when compared to its nearest cultured relative 
(71%) and represents the first genome of an uncultured genus of Flavobacteriaceae. 
Notably, the Porticoccus genome has 67% AAI and is 40% (1.4 Mbp) smaller than its 
nearest cultured relative.

FIG 1 Diversity of Arctic bacteria cultured and sequenced herein. Phylogenomic analysis of Arctic marine bacteria sequenced in this study, with genus affiliation 

(italics), class and family taxonomic grouping (color bars), maximum amino acid identity (AAI) of all branch members to the closest cultured relative (number), 

and culture novelty in circles (family, genus, and species). Wedges are proportional to the number of cultures sequenced for each lineage. Family and genus 

names were assigned using the Genome Taxonomy Database (GTDB)-Tk placement tool, except for those proposed in this study, marked with an asterisk.

Research Article mBio

Month XXXX  Volume 0  Issue 0 10.1128/mbio.01555-25 3

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.

as
m

.o
rg

/jo
ur

na
l/m

bi
o 

on
 0

8 
Se

pt
em

be
r 

20
25

 b
y 

2a
02

:8
10

9:
1b

00
:b

a0
0:

85
fc

:a
31

8:
8a

07
:6

42
5.

https://doi.org/10.1128/mbio.01555-25


Spatial and temporal abundance of Arctic bacteria

Spatiotemporal abundance estimates for bacteria cultured in this study were deter­
mined by aligning the 16S rRNA gene sequences from cultures with 16S rRNA ampli­
con sequence variants (ASVs) from two continuous time-series (Fig. 2). These 4-year 
Arctic datasets were obtained from the West Spitsbergen Current (WSC) and the East 
Greenland Current (EGC) (49, 50). The 34 cultures matched 18 ASVs with 100% sequence 
identity (Table S2) and constituted over 60% of the ASV abundance in the WSC and 

FIG 2 Relative abundance of bacterial ASVs from the FRAM Observatory with 100% identity to 16S rRNA gene sequences 

from cultures obtained in this study. (A) Summed relative abundance of all matching ASVs from August 2016 to September 

2020 in the EGC and WSC. (B) Mean relative abundance values calculated for ASVs matching sequenced Pelagibacter (SAR11), 

Pseudothioglobus (SUP05), and Njordibacter cultures in the EGC (left) and WSC (right). Bars in panel B represent monthly 

averages. Individual ASVs for each lineage in panel B are shown on the right.
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50% of the ASV abundance in the EGC (Fig. 2A). The most abundant members in the 
culture collection included SAR11, SUP05, and Njordibacter, accounting for 4%–15% of 
the community in the WSC and 6%–10% of the community in the EGC at peak abun­
dances, respectively (Fig. 2B). ASVs matching SUP05, Njordibacter, and Marifrigoribacter 
cultures were more abundant in the EGC, while those matching SAR11, SAR116, and 
OM43 cultures were more abundant in the WSC (Fig. 2; Fig. S2). Spearman correlation 
analyses indicate that many of the ASVs matching cultured taxa covary with environmen­
tal parameters measured over the same 4 years (Fig. S3). ASVs matching SAR11, SAR116, 
and OM43 cultures correlate positively with water temperature and negatively with polar 
water fraction, while ASVs matching Njordibacter and SUP05 cultures correlate negatively 
with water temperature and positively with polar water fraction.

A relatively small fraction of the total SAR11, SUP05, and Njordibacter ASVs matched 
sequences in cultures (4/116, 1/55, and 4/24, respectively). However, these nine ASVs 
accounted for a substantial percentage of total SAR11, SUP05, and Njordibacter ASV 
abundance detected in the Arctic time-series (70%, 50%, and 90%, respectively) (Fig. 
S4). Differences in genome and ASV diversity are notable between the groups (Fig. S5; 
Tables S2 and S3). Many SAR11 genomes are unique species (<95% ANI) but match the 
same ASV (e.g., uisw_099_02 and uisw_114 matching ASV38), while SAR11 uisw_121 and 
uisw_116 are the same species (>95% ANI) but match different ASVs. Similarly, Njordi­
bacter uisw_002 and uisw_058 have 80% ANI to each other and match the same ASV, 
while different copies of the 16S rRNA gene in Njordibacter uisw_056 match different 
ASVs. In contrast, all SUP05 genomes represent the same species (>95% ANI) and match 
the same ASV.

Gene gain, loss, and rearrangement in Arctic SAR11

We evaluated the diversity of SAR11 genomes, which are abundant in the Arctic and well 
represented in our culture collection, to identify population-wide patterns of genomic 
diversity. All 16 Arctic SAR11 cultures obtained in this study are members of subclade 
Ia.1 (Fig. S6). Twelve have ANI values that are <95% to each other, and two pairs have 
ANI values >95% to each other, indicating that they represent 14 new species and two 
new subspecies of SAR11 (Fig. 3A; Table S3). Population genomic analysis identified 3,596 
total gene clusters, 1,661 singleton gene clusters, and 1,037 core gene clusters (Fig. 3B). 
Each genome encodes between 1,385 and 1,477 genes. The number of shared genes 

FIG 3 Genomic diversity of Arctic SAR11 cultures. (A) Clustered ANI for each pairwise genome comparison. (B) Gene cluster accumulation curves for the Arctic 

SAR11 population, total gene clusters (orange), and core gene clusters (blue). Accumulation curves were calculated using 1,000 iterations.
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between any two genomes ranges from 1,126 to 1,234, and the number of singletons in 
each genome ranges from 50 to 150.

A whole genome alignment with all 16 Arctic SAR11 and two closely related reference 
genomes (Pelagibacter ubique and Pelagibacter giovannonii) was constructed to identify 
patterns of gene gain, loss, and rearrangement. The alignment revealed notable patterns 
of rearrangement (Fig. 4). Most notably, there is an ~880 Kb section bound by the 23S 
and 5S rRNA genes in uisw_092 (Fig. 4A). Patterns of gene gain, loss, and rearrangement 
in this region were used to identify a unique genomic region that has 17–20 genes and 
is present in half of the sequenced genomes (Fig. 4B; Table S4). Genes in this region code 
for a glycine betaine ABC transport system (ABC trans.), a choline dehydrogenase (CHDH), 
an aldehyde dehydrogenase (ALDH), a carnitine dehydrogenase (CDH), a gamma-butyr­
obetaine dioxygenase (BBOX), and a beta-keto acid cleavage enzyme (BKACE). Gene 
order for these genes is preserved and always upstream of genomic betaine/choline/pro­
line ABC transport genes. Phylogenetic trees constructed using concatenated protein 
sequences from these genes and single-copy core genes are incongruent (Fig. 4C). Gene 
cluster analysis indicates that of the 17 genes, 15 are unique to the region, with no 
identifiable homologs occurring elsewhere in the genomes. The remaining two form 
phylogenetic clusters that are distinct from clusters produced using other copies found 
in the genomes, such as for aldehyde and choline dehydrogenases (Fig. S7A and B). Most 
genes in this region (13 out of 17) produced phylogenies that were congruent with each 
other and with the concatenated set of all 17 genes, including the aldehyde and choline 
dehydrogenase genes found in this region (Fig. S7C and D).

We searched for this genomic region in public databases to see if it was common but 
previously unrecognized. There was no evidence of this arrangement in 18 previously 
sequenced single-contig SAR11 genomes (Table S5). Homologs for the 17 encoded 
genes were identified in environmental databases. Abundances for 13 have a significant 
positive correlation with latitude (0.31–0.83, P value < 0.01) (Fig. 5), and seven are 
rare or absent in samples from lower latitudes, including a lactoylglutathione lyase, a 
glycerophosphodiester phosphodiesterase, the permease subunit of a proline/glycine 
betaine ABC transporter, a class II aldolase, a thioesterase, a small multidrug resistance 
(SMR) transporter, and a drug/metabolite transporter (DMT).

A new family of Pseudomonadales

A group of Pseudomonadales (named Njordibacter herein) was frequently identified in 
culture (n = 10). Four cultures were selected for whole genome sequencing and used to 
identify a new family in the order Pseudomonadales (Fig. 6). The genomes range from 
2.4 to 2.9 Mbp in length, have a GC content of 43.8%–45.1%, and each contains four 
copies of the 16S rRNA gene (Table S2). Pairwise ANI values range from 79% to 82% 
when compared to each other. One genome, uisw_056, and a previously characterized 
MAG from the Arctic (49) have 99.6% ANI. Phylogenomic analysis using the Genome 
Taxonomy Database (GTDB) (51) placed this group in a deeply branching and uncultiva­
ted genus (ASP10-02a) of Nitrincolaceae, but with low AAI (60%) and 16S rRNA sequence 
similarity (91.7%) to the most closely related isolate. Additionally, the mean relative 
evolutionary divergence (RED) of this group was 0.875, falling within both the genus 
and family ranges (52). We therefore compared the genomes of 114 isolates in the 
order Pseudomonadales (Table S6) to each other and to the four Njordibacter genomes 
using AAI and percent of conserved protein (POCP). This yielded over 10,000 pairwise 
comparisons between 34 genera from seven families, from which family delineations 
could be distinguished (Fig. 6). Values of 60% AAI and 40% POCP with their closest 
Nitrincolaceae relatives are below the family delineation line, indicating that these 
Njordibacter genomes represent a new family in the order Pseudomonadales.
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DISCUSSION

Extensive genomic diversity in Arctic SAR11

Our analysis identified 1,037 core genes in 16 SAR11 subclade Ia.1 genomes obtained 
from Arctic seawater (Fig. 3B). A similar estimate of 1,047 core genes was obtained in a 
SAR11 pangenome analysis of five complete genomes from subclade Ia, isolated from 
diverse locations in the Atlantic and Pacific Oceans (39). Similarity between the core 
genome estimates using 16 genomes from the Arctic and five genomes from different 
oceans highlights the extent of core genome conservation within the SAR11 clade (34, 
39). The SAR11 pangenome analysis also identified 1,962 total unique gene clusters in 
the five complete genomes (39). The mean number of unique gene clusters in five Arctic 
SAR11 genomes was 2,241 ± 117 (95% CI), suggesting that there is greater gene content 
diversity among Arctic populations of SAR11. This could be due to the mixing of different 

FIG 4 Structure of Arctic SAR11 genomes. (A) Phylogenomic analysis and whole-genome alignment of Arctic SAR11. (B) Alignment and gene content of a 

genomic island identified in eight SAR11 genomes. (C) Comparison of phylogenetic trees constructed from concatenated protein sequences of single-copy core 

genes (left) and genomic island genes (right). Phylogenetic trees were constructed with translated and concatenated sequences. Whole genome alignments 

start with DnaA. In all genomes, the relative position of the 23S and 5S rRNA genes is as depicted for uisw_101, unless otherwise indicated. Previously 

sequenced isolates are in bold. Enzyme names in panel B are abbreviated as follows: ABC Trans, ABC transporter; CHDH, choline dehydrogenase; CDH, carnitine 

dehydrogenase; BKACE, beta-keto acid cleavage enzyme; BBOX, gamma-butyrobetaine dioxygenase; ALDH, aldehyde dehydrogenase. Bootstrap values in panel 

C are displayed at each node. Black, red, and blue color blocks highlight node rearrangements.
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populations from Arctic and Atlantic waters (19, 20) or due to enhanced genetic diversity 
within Arctic populations, as a previous study found that microbial diversity increased 
with latitude and decreased with temperature (53). Regardless, our analyses suggest that 
substantial sequencing effort is needed to estimate the gene content and total number 
of SAR11 species and subspecies in a SAR11 population.

A translocation of the 5S rRNA gene in SAR11 uisw_092 was used to define a large 
(~880 kbp) genomic region with a higher frequency of inversions and gene indels 
relative to regions flanking the origin of replication, suggesting that there is more 
selective pressure to conserve gene order near the origin of replication (Fig. 4A). We 
also identified a genomic region that encodes genes for the uptake and production of 
glycine betaine (Fig. 4; Table S4). Evidence that phylogenies for genes in this region 
are congruent with each other and incongruent with the phylogeny of single-copy 
core genes suggests that this region is a genomic island acquired by horizontal gene 
transfer (HGT) (Fig. 4C; Fig. S7). Although the insertion site appears to be conserved, 
there are no obvious genes that facilitate HGT in the region. However, homologous 
recombination is widespread in SAR11 (46) and has been proposed as a mechanism 
for the transfer of genomic islands (47). It has also been proposed as a mechanism for 
genomic diversification in other marine bacteria, including HIMB59 (a sister clade to 
SAR11) and OM43 (54, 55). In the case of HIMB59, more phosphorus-related genes were 
identified on a genomic island under phosphorus-limiting conditions (54). Similarly, the 
genomic island encoding genes for the uptake of glycine betaine in Arctic SAR11 could 
enhance the survival and metabolic activities of cells experiencing low temperatures and 

FIG 5 Latitudinal distribution of genes identified in an Arctic SAR11 genomic island. Representative nucleotide sequences from uisw_090 were used to identify 

homologs in the Ocean Gene Atlas OMRGC v2 metaG data set for all 17 island genes (Table S4). The Spearman’s correlation (lat. corr.) and P value (p-val.) between 

abundance and latitude are displayed to the right for each gene. Enzyme names are abbreviated as follows: HADH, 3-hydroxyisobutyrate dehydrogenase; ALDH, 

aldehyde dehydrogenase; LGL, lactoylglutathione lyase; GPDP, glycerophosphoryl diester phosphodiesterase; BBOX(1), gamma-butyrobetaine dioxygenase; 

ABC trans. Sub, ABC transporter substrate binding; ABC trans. Perm., ABC transporter permease; ABC trans. ATP, ABC transporter ATP binding; ADH, alcohol 

dehydrogenase; CDH, carnitine dehydrogenase; BKACE, beta-keto acid cleavage enzyme; CIIA, Class II aldolase; ACOT, acyl-CoA thioesterase; SMR, small 

multidrug resistance transporter; BBOX(2), gamma-butyrobetaine dioxygenase; CHDH, choline dehydrogenase; DMT trans., drug/metabolite transporter.
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high salinities during freezing, as reported for other bacteria (21–23). The island may 
also serve as an important methyl donor and source of glycine (24). Our evidence that 
genes in the Arctic SAR11 genomic island are more abundant at polar latitudes and 
less abundant or absent in temperate regions suggests that it is an adaptation to Arctic 
conditions, maintained in a large fraction of the population (50%) by HGT (Fig. 5). A 
similar polar distribution pattern has been observed in metagenomic read recruitment 
for SAR11 clade Ia.1 (56), suggesting that this could give SAR11 clade Ia.1 populations an 
advantage during the annual formation and melting of sea ice.

Variable patterns of diversity in abundant Arctic populations

Time-series ASV data from the Fram Strait suggest that the most frequently cultured 
bacteria in our culture collection (SAR11, SUP05, and Njordibacter) are among the most 
abundant Arctic taxa (Fig. 2B). There are, however, notable differences in the diversity 
of ASVs between these lineages and their matches to genomes in our culture collec­
tion (Fig. S5). Many unique species of SAR11 and Njordibacter match the same ASV, 
and in some cases, unique ASVs match the same species or different copies of the 
16S rRNA gene in the same genome. These observations underline that ASVs cannot 
delineate patterns of bacterial speciation (57). However, closed genomes can be used 
to significantly improve estimates of diversity that are based on ASV analyses. Evidence 
that the Arctic SUP05 population is comprised of subspecies with similar genomes 
with relatively high ANI values also raises questions about how genomic diversity 
is maintained, particularly when compared to SAR11. Higher frequencies of genomic 
rearrangement have been reported as a mechanism for diversification in marine nitrogen 
fixers (58). A similar mechanism may help maintain diversity in SUP05, although more 
closed genomes are needed to quantify differences in the frequencies of gene gain, loss, 
rearrangement, and recombination in both SUP05 and SAR11.

FIG 6 Whole-genome-based family and genus delineations in the order Pseudomonadales. (A) All pairwise average AAI comparisons. (B) All pairwise POCP 

comparisons. Representatives from the six most closely related families to Njordibacter were analyzed (Table S6). The shaded box indicates the family-level 

delineation in the order Pseudomonadales. Circles represent values outside the 1.5 interquartile range from the first and third quartiles.
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Sulfur metabolism in high and low GC SAR116

The SAR116 clade consists of high GC (50% ± 7%) and low GC (31% ± 1%) lineages 
(48). Both clades are globally distributed, but metagenomic and single-cell analyses have 
suggested distinct differences in their ability to metabolize dimethylsulfoniopropionate 
(DMSP) (48). Specifically, high GC lineages encode DMSP lyases (dddL and dddP), which
produce a volatile compound resulting in a loss of sulfur to the atmosphere as dimethyl 
sulfide (DMS). In contrast, low GC lineages encode DMSP demethylases (dmdA), which
retains sulfur as 3-(methylsulfanyl)propanoate. Interestingly, the high GC SAR116 we 
cultured from the Arctic, Ponderosibacter, encodes dmdA, indicating that some high GC 
members also demethylate DMSP. This highlights the importance of closed genome 
sequences to verify the presence, and more importantly, the absence of key metabolic 
functions.

Conclusion

Early efforts to assemble genomes of marine bacteria directly from seawater pro­
duced only partial sequences for the most abundant lineages (59). While advances 
in sequencing have improved our ability to identify genetic variation in nature, the 
extent of genomic diversity within bacterial populations remains elusive, particularly 
for abundant lineages such as SAR11 (10, 14). Our high-throughput cultivation-based 
genomics approach produced 34 closed bacterial genomes, including several for the 
most abundant lineages in the Arctic (Fig. 2). These cultures and genomes provide 
insights into the diversity and adaptation of Arctic populations, as well as high-qual­
ity reference sequences that will enable population genomic analyses when similar 
high-quality sequences become available for populations in other oceans.

MATERIALS AND METHODS

Sample collection

Seawater samples were collected in the Arctic Ocean aboard the RV Kronprins Haakon 
from 18 to 21 May 2023, through an auger hole bored through ~2 m thick sea ice. 
Samples for cultivation (50 mL) were collected at 81.04° N, 10.62° E, from 25 m below 
the ice/water interface with a temperature of −1.8°C, salinity of 34.2 PSU, and 0.28 
relative flourescence units, using a 2 L Hydro-Bios water sampler (Hydro-Bios, Altenholz, 
Germany). A 1 mL seawater sample was amended to 10% (vol/vol) glycerol, flash frozen 
in liquid nitrogen, and stored at −80°C until high-throughput dilution-to-extinction 
cultivation. Seawater for culture media (10 L) was collected at 80.96° N, 9.66° E from 1 m 
below the ice/water interface into acid-washed and Milli-Q rinsed cubitainers. Seawater 
was then filter-sterilized using a tangential-flow-filtration (TFF) system equipped with a 
30 kDa Pellicon XL Polyethersulfone Biomax filter (MilliporeSigma, Burlington, MA). The 
resulting media was collected in 1 L acid-washed and autoclaved polycarbonate bottles, 
incubated for 2 months at 4°C, and checked for bacterial growth with a flow cytometer to 
ensure sterility prior to use.

Bacteria cultivation

Cultures were obtained by high-throughput dilution-to-extinction cultivation using 
cryopreserved Arctic seawater as previously described (60). Briefly, 0.059 mL of 
cryopreserved seawater with a cell density of 2.4 × 105 cells per mL was diluted to ~33 
cells per mL in 30 kDa filter-sterilized seawater media. A 1.5 mL aliquot was then added 
to each well of three acid-washed and sterile 96-well Teflon plates, incubated at 4°C, and 
monitored for growth once a week for 13 weeks using a Guava easyCyte flow cytometer 
(Cytek, Fremont, CA). Wells that were positive for growth (>2 × 104 cells per mL) were 
subjected to 16S rRNA sequence analysis when cell densities reached >105 cells per mL
and preserved in 10% (vol/vol) glycerol that was frozen and stored at −80°C.
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Culture identification

DNA for PCR was extracted from 100 µL of cell culture and sequenced using a physical 
lysis procedure as previously described (61). Briefly, potassium hydroxide–dithiothreitol 
was added, and samples were subjected to one freeze-thaw cycle. The pH was then 
adjusted to 8.0 using Tris-HCl. DNA was purified using 2× (vol/vol) DNA mag beads 
(Sergi Lab Supplies, Seattle, WA) with two 80% ethanol washes and eluted in 20 µL 
10 mM Tris-HCl. 16S rRNA gene fragments were then amplified using PCR with primers 
27F_B (5′ AGRGTTYGATYMTGGCTCAG 3′) and 926R_B (5′ CCGYCAATTCMTTTRAGTTT 3′), 
and in some cases using a second semi-nested PCR reaction with primers 519F (5′ 
CAGCMGCCGCGGTAATWC 3′) and 926R_B. The following PCR conditions were used 
throughout: 94°C 120 s, 38 cycles of amplificaiton (94°C 20 s, 55°C 45 s, 72°C 120 s). PCR 
products were sequenced by Genewiz (Genewiz, Seattle, WA). Cultures were putatively 
identified by aligning sequences in the Silva database v138.1 (62, 63).

Genome sequencing

Cultures selected for whole-genome sequencing were revived from freezer stocks in 
1 L acid-washed and autoclaved polycarbonate bottles containing TFF sterilized Puget 
Sound seawater media. Cells were collected on 47 mm 0.2 µm pore size Isopore 
membrane filters (MilliporeSigma, Burlington, MA) when cultures reached maximum cell 
densities (between 105 and 106 cells per mL). High molecular weight DNA was extrac­
ted using the AutoGen QuickGene DNA Tissue Kit (Autogen, Holliston, MA) following 
the extraction protocol for animal tissue with minor modifications as noted below. 
Filters were cut into small pieces using sterile forceps and scissors and placed in 
sterile 2 mL DNA LoBind tubes (Eppendorf, Hamburg, Germany) containing 200 µL of 
TE buffer. Filters were then frozen at −80°C for 20 minutes and heated until thawed 
at 95°C. All recommended extraction volumes were doubled, and DNA was eluted in 
200 µL of molecular-grade water. DNA was cleaned using 1× (vol/vol) DNA magnetic 
beads (Sergi Lab Supplies, Seattle, WA) with two 80% ethanol washes, then eluted 
in 20 µL of molecular-grade water. DNA was quantified using a Qubit dsDNA HS kit 
(Invitrogen, Waltham, MA) and sequenced using the ONT R10.4.1 Flongle flow cells with 
the SQK-RAD114 rapid library prep kit (Oxford Nanopore Technologies, Oxford, United 
Kingdom). Bases were called with Dorado v4.2.0 (github.com/nanoporetech/dorado), 
using the dna_r10.4.1_e8.2_400bps_hac@v4.2.0 model.

Genome assembly and annotation

Bacterial genomes were assembled with Flye v2.9.1 (64) and polished with Medaka v1.7.2 
(github.com/nanoporetech/medaka) using the UseGalaxy web platform (65). Genome 
annotation was performed by NCBI using the Prokaryotic Genome Annotation Pipeline 
v6.8 (66, 67). The quality of ONT genomes was evaluated by comparing ONT-only 
genomes constructed with varying levels of coverage (9–500×) to ONT-Illumina hybrid 
genome assemblies obtained for two previously sequenced strains, the SAR11 strain 
NP1 (68) and the SUP05 strain EF3 (69). Coverage for ONT-only genomes was varied 
by subsampling ONT reads (accessions: SRX26378910 and SRX22361185) with Rasusa 
v2.0.0 (70). Hybrid genomes were created by polishing ONT genomes with Illumina 
reads (accessions: SRX26378911 and SRX23025519) using BWA-mem2 v2.2.1 (71) and 
Pilon v1.2.0 (72). The quality of ONT-only genomes was determined by identifying the 
number of mismatches, indels, and excess CDSs relative to hybrid assemblies using Quast 
v5.2.0 (73) (Fig. S7). Only closed genomes with greater than 10× coverage, corresponding 
to >99.9% accuracy, were used for further analyses.

Spatial and temporal abundance

16S rRNA sequences of cultures were matched against 5,511 ASVs derived from 
the HAUSGARTEN/FRAM Observatory in Fram Strait. ASVs originated from year-round 
autonomous sampling in the polar-influenced East Greenland Current (49) and the 
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Atlantic-influenced West Spitsbergen Current (50) between 2016 and 2020, with 
approximately biweekly resolution. Using Geneious Prime v2023.2.1 and R v4.2.2, we 
investigated their abundances and environmental correlations in Fram Strait over time 
to establish a broader spatiotemporal and ecological context. The latitudinal distribu­
tions of genes within the Arctic SAR11 genomic island were determined by identifying 
homologs for each gene in the Ocean Gene Atlas OMRGC v2 metaG data set. Repre­
sentative nucleotide sequences from uisw_090 were used in a BLAST search of the 
database with an expect threshold of E-10 or less. The abundance of each homolog was 
normalized to the percent of mapped reads, as previously described (74, 75). Homolog 
abundance for each gene at each station were summed. Spearman’s correlations were 
calculated for latitudinal distance from the equator using the “spearmanr” function in 
scipy v1.14.0 (76), and corrected for multiple hypothesis tests using the Benjamini/Hoch­
berg method from statsmodels v0.14.2 (77).

Phylogenomics and population genomics

Taxonomic classifications were assigned to sequenced genomes using the GTDB-Tk 
v2.3.2, with the de novo workflow and reference database v214 (78). New species and 
strains were given the prefix “uisw” followed by the cultivation number. Most genomes 
came from pure cultures (n = 27). The suffix “_01” or “_02” was added to the culti­
vation number if two complete genomes were recovered from a mixed culture. The 
genomes of these cultures were analyzed using average AAI with ezaai v1.2.3 (79), POCP 
with POCP v2.3.2 (80), ANI with pyANI v0.2.12 (81), and RED with PhyloRank v0.1.12 
(github.com/dparks1134/PhyloRank), using the GTDB v214 database. Genome structure 
was evaluated through the visualization of linear co-similarity blocks using progressive­
Mauve v2015-02-25 (82). All phylogenetic trees were constructed with MUSCLE v3.8.31 
(83) and RAxML v8.2.11 with model GTRGAMMA (84) using the ETE3 v3.1.3 phyloge­
netic analysis pipeline (85). Whole-genome phylogenies were constructed using the 
bacterial_71 single-copy core gene collection in anvi’o v8 (86). SAR11 gene cluster data 
were created using the anvi’o pangenomic workflow with the flags –use-ncbi-blast, –
minbit 0.5, and –mcl-inflation 10, as previously described (87).

Protologue

Candidatus Njordibacter gen. nov.

Njor.di.bac’ter. N.L. masc. n. bacter, rod; N.L. masc. n. Njordibacter, a rod named after 
Njord, the Norse god of wind and seas.

Candidatus Njordibacteraceae fam. nov.

Njor.di.bac.te.ra.ce’ae. N.L. masc. n. Njordibacter, type genus of the family; suff. -aceae, 
ending to denote a family; N.L. fem. pl. n. Njordibacteraceae, the family of the genus 
Njordibacter. The description of the family Njordibacteraceae is the same as for the genus 
Njordibacter.

Candidatus Levibacter gen. nov.

Le.vi.bac’ter. L.  masc. adj.  levis,  light in weight; N.L. masc. n bacter,  rod; N.L. masc. n. 
Levibacter,  a light rod alluding to the low GC clade of the order Puniceispirillales.

Candidatus Levibacteraceae fam. nov.

Le.vi.bac.ter.a.ce’ae. N.L. masc. n. Levibacter, type genus of the family; suff. -aceae, ending 
to denote a family; N.L. fem. pl. n. Levibacteraceae, the family of the genus Levibacter. The 
description of the family Levibacteraceae is the same as for the genus Levibacter.
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Candidatus Ponderosibacter gen. nov.

Pon.de.ro.si.bac’ter L. masc. adj. ponderosus, heavy, weighty; N.L. masc. n. bacter, rod; 
N.L. masc. n. Ponderosibacter, a heavy rod alluding to the high GC lineage of the order 
Puniceispirillales.

Candidatus Marifrigoribacter gen. nov.

ma.ri.fri.go.ri.bac’ter L. neut. n. mare, the sea; L. neut. N. frigor, cold; N.L. masc. n. bacter, 
rod; N.L. masc. n. Marifrigoribacter, a rod from the cold of the sea.
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