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Abstract 
Inferring the metabolic capabilities of an organism from its genome is a challenging pro-

cess, relying on computationally-derived or manually curated metabolic networks. Manual 

curation can correct mistakes in the draft network and add missing reactions based on 

the literature, but requires significant expertise and is often the bottleneck for high-quality 

metabolic reconstructions. Here, we present a synopsis of a community curation workshop 

for the model marine bacterium Alteromonas macleodii ATCC 27126 and its genome data-

base in BioCyc, focusing on pathways for utilizing organic carbon and nitrogen sources. 

Due to the scarcity of biochemical information or gene knock-outs, the curation process 

relied primarily on published growth phenotypes and bioinformatic analyses, including 

comparisons with related Alteromonas strains. We report full pathways for the utilization 

of the algal polysaccharides alginate and pectin in contrast to inconclusive evidence 

for one-carbon metabolism and mixed acid fermentation, in accordance with the lack of 

growth on methanol and formate. Pathways for amino acid degradation are ubiquitous 

across Alteromonas macleodii strains, yet enzymes in the pathways for the degradation of 
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threonine, tryptophan and tyrosine were not identified. Nucleotide degradation pathways 

are also partial in ATCC 27126. We postulate that demonstrated growth on nitrate as sole 

nitrogen source proceeds via a nitrate reductase pathway that is a hybrid of known path-

ways. Our evidence highlights the value of joint and interactive curation efforts, but also 

shows major knowledge gaps regarding Alteromonas metabolism. The manually-curated 

metabolic reconstruction is available as a “Tier-2” database on BioCyc.

Introduction
Metabolism, the complex network of (mostly enzymatic) reactions within and between cells, 
underlies life on Earth. Reconstructing the metabolic network of an organism based on 
genomic information remains a fundamental challenge in biology [1,2] For model organisms 
like Escherichia coli, decades of physiological, biochemical, molecular and bioinformatic work 
have resulted in precise maps of cellular metabolism and its regulation [2]. These maps and 
accompanying biological knowledge form an integrated “encyclopedia of the cell”, such as the 
EcoCyc database, helping to explore cell metabolism and interpret experimental results [3]. 
Metabolic reconstructions (also termed Genome scale Network Reconstructions, or GENREs) 
also serve as basis for quantitative and mechanistic models of cell growth under different 
conditions (Genome scale Models, or GEM), such as those used in Flux Balance Analysis 
[2,4]. Curated metabolic databases are available for several medically and biotechnologically-
relevant model bacteria such as Salmonella enterica [5] and Bacillus subtilis [6], as well as for 
selected eukaryotic organisms such as Saccharomyces cerevisiae (e.g., https://yeast.biocyc.org, 
[7]), Arabidopsis thaliana [8], and humans [9,10]. However, the vast majority of metabolic 
models for thousands of other organisms are derived purely from automatic pipelines for gene 
and pathway identification, without manual curation (e.g., [11–13]).

Although computational reconstructions are useful starting points for understanding cell 
metabolism, they are often incomplete or incorrect. For example, they may lack metabolic 
reactions encoded in the genome that were not identified by the computational pipelines 
that link genes to reactions and products. Furthermore, entire pathways can be incorrectly 
predicted (“false positives”) based on the presence of only some associated genes, especially 
if involved in multiple pathways [1]. Additionally, computational reconstructions lack the 
supervision of a human curator, who can consider supporting experimental evidence.

Manually curating a metabolic reconstruction, such as the “Tier-2” PGDBs (Pathway/
Genome DataBase) available on BioCyc.org [13], comprises several stages. The initial meta-
bolic reconstruction is computed from a published genome. In BioCyc, this is based on prior 
genome annotation using Pathway Tools (PTools) software [14] and MetaCyc [15] as the 
reference database for metabolic reactions. Gaps in the draft metabolic network are then filled 
by suggesting candidate genes (“pathway hole filling”, [16]). For BioCyc this stage includes the 
prediction of transport reactions [17] and operons, and imports protein features from Uni-
ProtKB [18] and Protein Database [19]. Finally, manual curation by one or more experienced 
curators includes correcting errors, updating gene and protein information, and summariz-
ing the presence and function of enzymes, reactions and pathways based on the literature 
and experimental evidence. Supporting information includes gene knock-outs or naturally-
occurring mutants, enzymatic activity assays, transcriptomics, and proteomics. The curation 
process also highlights needs for additional experimental verification of specific pathways. 
Because the manual curation process takes months to years, the BioCyc collection contains, 
as of Feb 2025, only 83 manually-curated (“Tier-1 and Tier-2”) PDGBs, compared to over 
20,000 purely computationally generated ones (“Tier-3”). Thus, manual curation constitutes a 

Science Research Center, Rectors office, and 
International School. AM, PK and LM were 
supported by funding from SRI. EEG was sup-
ported by the Simons Foundation Postdoctoral 
Fellowship in Marine Microbial Ecology (award 
ID: 993200). The funders had no role in study 
design, data collection and analysis, decision to 
publish, or preparation of the manuscript.

Competing interests: The authors have 
declared that no competing interests exist.

https://yeast.biocyc.org


PLOS One | https://doi.org/10.1371/journal.pone.0321141  April 24, 2025 3 / 22

PLOS One Community curation of metabolism in Alteromonas macleodii

significant bottleneck in consolidating knowledge on cellular metabolism, especially in emerg-
ing model organisms with environmental, biotechnological or medical potential, for which 
resources and data are limited.

One way of facilitating high-quality metabolic reconstructions is the joint effort by a com-
munity of researchers, either as a decentralized effort to which curators contribute remotely, 
or as an in-person curation workshop (e.g., “jamborees”, [20–22]). During the early days of 
genome sequencing, such community efforts were relatively common [21]. Today, such efforts 
focus on annotating individual genes in eukaryotes, and are facilitated by web portals such 
as Apollo, Jbrowse, ORCAE, and G-OnRamp [23–26]. Community annotation also serves to 
update the Gene Ontology database [27], and is an exciting way to involve undergraduates in 
bioinformatic research (e.g., [28,29]). Finally, community curation efforts with an emphasis 
on metabolic reconstruction have typically focused on medically or biotechnologically import-
ant model organisms such as yeast, trypanosomes or the bacterium Salmonella typhimurium 
[4,30,31]. Yet, these studies often lack concrete examples of the challenges encountered during 
manual curation, the decisions taken to resolve (as much as possible) these challenges, and the 
biological questions that emerge during this process.

Building upon the community curation approach [22], and extending it from individual 
genes to metabolic pathways, we organized an in-person community curation for the met-
abolic reconstruction of the marine bacterium Alteromonas macleodii ATCC 27126 (herein 
referred to as ATCC 27126). Alteromonas macleodii belongs to the ecologically and physi-
ologically diverse genus Alteromonas, which is ubiquitous in tropical and temperate oceans 
and often abundant on particles [32–35]. Alteromonas are commonly associated with cyano-
bacteria [36–39] and algae [40,41]. Alteromonas strains are easily isolated and cultured, partly 
attributed to their rapid response to the availability of organic matter [42,43]. Indeed, a single 
Alteromonas strain has been shown to be capable of metabolizing almost the entire labile 
pool of marine organic carbon [44]. Phylogenetic, genomic and evolutionary studies have 
highlighted how genetic traits are exchanged between Alteromonas strains through genomic 
islands and plasmids (e.g., [45–50]). Some Alteromonas strains may also have biotechnological 
applications (e.g., [51,52]). Therefore, A. macleodii constitutes a relevant model organism in 
marine microbiology and biological oceanography [33]. The type strain, ATCC 27126, was 
isolated from surface seawater near Hawaii, and its physiology has been characterized in some 
detail [53,54].

Here, we describe conceptual and technical aspects of the community curation effort, 
performed at the University of Haifa (Israel) in February 2023 (Fig 1A). We specifically 
discuss the type of evidence typically available for emerging model organisms (Fig 1B), and 
then describe the curation of phenotypic traits with relevance for the ecological dynamics of 
A. macleodii (Fig 1C). We focused on pathways related to the uptake and utilization of carbon 
and nitrogen sources: 1) polysaccharides and one-carbon (C1) compounds, as well as mixed 
acid fermentation; 2) nitrate, nucleotides and amino acids. The metabolic reconstruction is 
available on BioCyc (PDGB ID: 2OKO). Furthermore, the 2023 version 27.5 is available freely 
on https://github.com/Sher-lab/amac/. This reconstruction serves as the basis for ongoing 
work developing a Genome scale Model (GEM) for Alteromonas.

Metabolic curation − conceptual and technical aspects (Materials and 
Methods)

Automated metabolic reconstruction by PathwayTools.  The starting point for the 
collaborative, manual curation process was a “Tier-3” PGDB, computationally derived by 
PathwayTools [14]. Briefly, PathwayTools builds upon a genome annotated with the NCBI 

https://github.com/Sher-lab/amac/
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RefSeq PGAP pipeline [55] for consistency between PGDBs; but RAST [56], PROKKA [57] or 
DOE’s JGI/IMG [58] have also been used. The PathoLogic component of PathwayTools then 
infers the reactome of the organism, i.e., the set of enzyme-catalyzed reactions, by mapping 
genes to enzymatic reactions in the MetaCyc reference knowledgebase [15]. The linking is 

Fig 1.  Schematic illustration of the  A) workshop structure, B) key curation methodology, and C) main pathways curated.

https://doi.org/10.1371/journal.pone.0321141.g001

https://doi.org/10.1371/journal.pone.0321141.g001
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based on a combination of gene and/or gene product names, Enzyme Commission (EC) 
numbers and Gene Ontology (GO) terms, if included in the annotation [14]. The inferred 
reactome then allows inferring the presence of specific metabolic pathways, based on a 
likelihood score that considers the fraction of enzymes identified per pathway, the presence 
of pathway-specific enzymes, and the expected phylogenetic distribution (e.g., a plant-specific 
pathway suggested to be in a bacterium would be flagged and the score penalized). Only 
pathways above a defined threshold (likelihood score > 0.15) are inferred. As genes with 
unknown functions are common in model organisms (e.g., 35% in E. coli; [59]) and even more 
in non-model organisms (up to 80%; [60]), the pathway thresholding step is intentionally 
permissive. This allows pathways to be integrated into the predicted metabolic network even 
if enzymes are missing. Next, a pathway hole filler (PHFiller) within PathoLogic identified 
reactions with no associated enzyme, and attempts to fill these holes (identify the needed 
enzyme) using a BLAST search with multiple candidate genes from UniProtKB [16]. The 
resulting PDGB includes a report showing the score and completeness for each pathway, 
pathway holes that were “filled”, and pathways with remaining holes. This enables assessing 
the quality of the metabolic reconstruction by the curators, and advises where to perform 
manual curation − representing a robust quality control of the predicted metabolic network, 
where available experimental evidence is added via comments and evidence codes.

Community curation.  Manual curation of the ATCC 27126 metabolic network was 
mostly performed during a four-day workshop by diverse researchers, including graduate 
students, postdocs and PIs under the guidance of a BioCyc curator (Lisa R. Moore) (Fig 1A). 
All workshop participants are co-authors on this paper. Prior to the curation workshop, a 
five-day course introduced the fundamentals of metabolic reconstruction and downstream 
uses, e.g., interpreting ‘omics data in light of metabolism. The workshop participants decided 
on the priorities for curation, taking into account the research interest in Alteromonas as 
versatile utilizers of dissolved and particulate organic matter, and their interactions with 
phytoplankton. Subteams of 3–5 curators focused on the curation of one or more pathways 
using the curation interface of the BioCyc web tool (unpublished). Often, multiple pathways 
were combined for visual interpretation using the “Pathway Collage” tool in BioCyc [61].

Evidence types.  Most organisms whose PDGBs undergo manual curation are widely studied; 
often being genetically tractable and/or medically important taxa. Such organisms usually have 
accompanying gene-specific information, such as knock-out phenotypes or biochemical assays 
with purified proteins. In contrast, emerging model organisms often lack such information, 
and may not be genetically tractable (e.g., Prochlorococcus strains MED4 and SS120 with Tier-2 
PDGBs available in BioCyc). ATCC 27126 was initially described in 1972 [53], yet knock-out 
phenotypes have been only described for genes encoding a nitrate reductase and siderophore 
synthesis proteins [62,63]. As a result, we considered additional types of evidence for metabolic 
reconstruction. Firstly, we compiled a list of media on which ATCC 27126 can grow, based on 
published studies as well as experiments performed for the curation workshop (S1 File). Since 
ATCC 27126 can grow on minimal media with C, N, P and Fe sources but without amino acids, 
vitamins or cofactors; complete pathways for producing these compounds must be present. Such 
information was added as metadata to the specific pathway descriptions in the PGDB. Secondly, 
we considered evidence from related Alteromonas strains. For example, polysaccharide 
utilization pathways were curated through comparison with A. macleodii 83–1, a model 
polysaccharide degrader with 98% average nucleotide identity to ATCC 27126 [64]. Finally, we 
identified candidate genes filling a specific pathway hole using Reciprocal Best BLAST (RBBH, 
[65], Fig 1B), using candidate “hole filling” genes identified in MetaCyc or EcoCyc using the EC 
number for each missing reaction. The protein sequence (from E. coli or, if using MetaCyc, from 
the closest relative of Alteromonas) was then queried against the PGDB using BLASTP within 
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BioCyc. The best hit in ATCC 27126 was queried against the UniProtKB/Swiss-Prot database 
[18]. A gene product in ATCC 27126 was considered as RBBH (i.e., fill a pathway hole) if the 
best hit in UniProtKB/Swiss-Prot was annotated as the same function or EC number as the 
initial MetaCyc/EcoCyc query. In some cases, additional information was considered, such as 
the specificity of the annotation (e.g., methanol dehydrogenase vs. dehydrogenase), or BLAST 
sequence similarity and query cover. For Fig 3C, multiple sequence alignments were performed 
using MAFFT [66]. Maximum likelihood trees of Alteromonas alcohol dehydrogenases and 16S 
rRNA genes, aligned with MUSCLE in AliView, were inferred using IQ-TREE v1.5.4 [67–69].

Results and discussion
The metabolic curation of ATCC 27126 was performed using a Tier-3 PDGB generated from 
NCBI genome assembly GCF_000172635.2. The reactions and pathways were then curated as 
described above, resulting in a Tier-2 PDGB (Table 1). The supplementary Excel File provides 
a detailed log of all steps within the collaborative curation, as well as a comparison between 
the initial reconstructions performed through BioCyc, Carveme and Kbase [12,70].

The manual curation corrected several errors produced by the automatic annotation, 
and raised some interesting biological questions (Fig 1C): 1) The automatic reconstruction 
predicted that ATCC 27126 could perform mixed acid fermentation, but our results cast 
doubt on this inference; 2) ATCC 27126 was predicted to utilize all amino acids as sole carbon 
sources, yet we identified several pathway holes; 3) ATCC 27126 was predicted by the auto-
matic curation not to utilize nucleotides, yet we show that much of the pathway for nucleotide 
degradation is present, and predict the release of specific metabolites; 4) ATCC27126 was 
predicted to perform denitrification, yet we show that this is likely incorrect, and that this 
strain likely performs assimilatory nitrate reduction. Below we discuss the main pathways and 
processes curated in more detail.

Carbon sources

Carbohydrate-active enzymes and polysaccharide degradation
ATCC 27126 encodes several pathways to degrade algal polysaccharides, important bacterial 
nutrient sources in the oceans. Degradation relies on polysaccharide lyases (PL), glycoside 
hydrolases (GH) and carbohydrate esterases (CE). These genes are often encoded in polysac-
charide utilization loci (PULs), operon-like gene clusters with concerted regulation. Here, using 
complementary evidence, we curated the pathways for pectin and alginate degradation (Fig 
2). We annotated genes encoding carbohydrate-active enzymes (CAZymes, [71,72]) in ATCC 
27126 in light of transcriptomic and proteomic data from a closely related strain, A. macleodii 
83–1. Both strains harbor homologous alginolytic and pectinolytic PULs [64,73], which are 
significantly upregulated in 83–1 when growing with an alginate and pectin mix [64]).

For pectin degradation, we imported relevant degradation subpathways from MetaCyc 
and constructed a new pectin superpathway, PWY2OKO-5, encompassing depolymerization 
(via PL1, GH28 and GH105) and demethylation (via CE8 and CE12) (Fig 2). The resulting 
galacturonates are then processed via 4-deoxy-L-threo-hex-4-enopyranuronate (PWY-6507) 
and D-galacturonate (GALACTUROCAT-PWY) pathways respectively, which we added to 
the ATCC 27126 PDGB. The released methanol is possibly metabolized by alcohol dehydroge-
nases (see below).

Curating the alginate degradation pathway benefited from RT-qPCR evidence in ATCC 
27126, showing significantly higher expression of PL6 and PL7 lyases with alginate as sole 
nutrient source [73]. Biochemical assays in 83–1 with cloned, homologous enzymes confirmed 
alginate lyase activity, and characterized salinity and temperature optima [74]. However, 
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structural elucidation failed, since not enough soluble enzyme was obtained [74]. Our cura-
tion process involved adding reactions for 4-deoxy-l-erythro-5-hexoseulose uronate (DEH) 
reductase (alginate degradation) as well as kdgF (both pathways), since uronate conversion 
does not occur spontaneously [75] as originally annotated in BioCyc (Fig 2).

Both pectin and alginate are composed of uronate sugars, eventually yielding pyruvate 
from 2-keto-3-deoxygluconate (KDG) and 2-dehydro-3-deoxy-D-gluconate 6-phosphate 
(KDPG, Fig 2). Notably, KDG and KDPG are generated via pectin- or alginate-specific kdgK 
and eda genes encoded in the respective PULs for each polysaccharide. ATCC 27126 encodes 
another eda copy (MASE_RS11155) not induced by pectin or alginate in 83–1, which might be 
a “generic” variant to convert KDPG from other sources.

C1 metabolism
One-carbon (C1) and methylated compounds are important bacterial substrates in the marine envi-
ronment [76,77]. Here we examined the potential of ATCC 27126 to metabolize methanol, formal-
dehyde (the central C1 intermediate), formate, and related cofactors and enzymes (Fig 3A).

Fig 2.  Curated pectin and alginate degradation pathways. The pectin superpathway (left; PWY2OKO-5) encom-
passes initial depolymerization and demethylation followed by 4-deoxy-L-threo-hex-4-enopyranuronate degradation 
(PWY-6507; abbreviated DTHE) or D-galacturonate degradation I (GALACTUROCAT-PWY; abbreviated D-Galact) 
for unsaturated and saturated galacturonates respectively. Both pectin and alginate degradation (right; PWY-6986-
1) eventually result in KDG, KDGP and pyruvate, but these metabolites are generated via dedicated enzymes. DKI: 
5-keto-4-deoxyuronate; DKII: 2,5-diketo-3-deoxygluconate; DEH: 4-deoxy-l-erythro-5-hexoseulose uronate; KDG: 
2-keto-3-deoxygluconate; KDPG: 2-dehydro-3-deoxy-D-gluconate 6-phosphate. Blue boxes indicate genes for which 
the reference information was updated in the PDGB. Pink boxes indicate genes for which new reactions were added. 
Gene names and locus tags are shown for each reaction.

https://doi.org/10.1371/journal.pone.0321141.g002

https://doi.org/10.1371/journal.pone.0321141.g002
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Methanol/Ethanol Dehydrogenases.  Methanol is commonly produced by phytoplankton 
and cyanobacteria [78], but only some A. macleodii strains can grow on methanol. Several 
A. macleodii strains were isolated from Trichodesmium using media with methanol as the 
sole carbon source, attributed to pyrroloquinoline quionone (PQQ)-dependent alcohol 
dehydrogenases (ADHs) encoded in their genomes [79]. In contrast, neither ATCC 27126 
nor 83–1 grow on methanol ([54,64]), and our growth results), although both encode 
the same PQQ-dependent ADH genes (Fig 3B). ATCC 27126 and 83–1 also harbor an 
operon (pqqABCDE) encoding the PQQ cofactor; this metabolite was identified using mass 
spectrometry in 83–1 [64]. Our phylogenetic analysis of predicted PQQ-dependent ADH 
genes did not support their potential role in methanol oxidation (Fig 3C): MASE_RS15405 
is within a clade of general ADHs that could potentially mediate methanol oxidation, 
while MASE_RS05355 is more related to ethanol dehydrogenases. Additionally, both genes 
show only moderate amino acid identity (30%) with the known PQQ-dependent methanol 
dehydrogenases XoxF and MxaF [80]. These ADHs might alternatively convert ethanol to 
acetaldehyde; indeed, ATCC 27176 was shown to grow on ethanol [54].

ATCC 27126 also encodes a zinc-dependent ADH (MASE_RS02430) and three iron-
containing ADHs (MASE_RS06555, MASE_RS01350, MASE_RS11390). Iron- and 
zinc-containing ADHs can catalyze the oxidation of methanol, ethanol, and other alcohols 
(e.g., [81–83]), although some of these enzymes may preferentially catalyze the reverse 
reaction (i.e., reduction; see mixed acid fermentation below). Alternatively, both ethanol 
and methanol can be converted to acetaldehyde and formaldehyde, respectively, during 
hydrogen peroxide detoxification by catalase and related enzymes (e.g., [84]). ATCC 27126 
encodes five catalase genes that potentially mediate interactions with phytoplankton [85], 
yet it is unclear whether this pathway (primarily for detoxification) produces significant 
energy to support growth.

In summary, despite finding several candidate genes for methanol oxidation, it remains 
unclear why ATCC 27126 does not grow on methanol while other strains are able to do so. 
Potentially, ATCC 27126 can metabolize methanol, but not grow on it as a sole C source. 
The same has been shown for Pelagibacter, which encodes multiple genes involved in C1 
metabolism (including ADHs), oxidizes methanol and other C1 compounds to CO2, yet does 
not incorporate C1 compounds into biomass [86]. Therefore, varying abilities between  
A. macleodii strains in their ability to utilize methanol may be due to different downstream 
oxidation steps.

Table 1.  Summary statistics of the curated Tier-2 PGDB of Alteromonas macleodii ATCC 27126, version 27.5.

Genes: 3,962
Pathways: 244
Enzymatic Reactions: 1,492
Transport Reactions: 19
Polypeptides: 3,829
Protein Complexes: 49
Enzymes: 915
Transporters: 304
Compounds: 1,029
Transcription Units: 2,659
tRNAs: 52
Protein Features: 6,181
GO Terms: 4

https://doi.org/10.1371/journal.pone.0321141.t001

https://doi.org/10.1371/journal.pone.0321141.t001
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Formaldehyde Metabolism.  Formaldehyde is a common byproduct of methanol oxidation 
and a critical intermediate in C1 metabolism. It is also often cytotoxic and must be metabolized 
quickly. ATCC 27126 is predicted to encode two parallel routes for formaldehyde oxidation: 
the tetrahydrofolate-based (THF) and the glutathione-based (GSH) pathway (Fig 3A).

The THF pathway comprises four steps leading to formate; the first step is spon-
taneous [87,88] and the remaining three catalyzed [89]. The product of the first step, 

Fig 3.  C1 metabolism, the serine cycle and mixed acid fermentation in A. macleodii ATCC 27126. A) Potential routes for one-carbon and methylated com-
pounds. Bold arrows represent reactions identified in the ATCC 27126 genome, dotted arrows are missing reactions. THF: tetrahydrofolate; Lac: lactate; Pyr: 
pyruvate; PEP: phosphoenolpyruvate; GSH- reduced glutathione. B) Putative methanol/ethanol dehydrogenase genes in Alteromonas strains that grow and do 
not grow on methanol. C) Maximum likelihood tree (IQ-TREE) inferred under the Q.pfam+F+I+G4 model from alcohol dehydrogenase proteins from ATCC 
27126 and other strains. Support values represent 100 bootstrap pseudoreplicates.

https://doi.org/10.1371/journal.pone.0321141.g003

https://doi.org/10.1371/journal.pone.0321141.g003
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5,10-methylenetetrahydrofolate, can either enter the serine cycle (as in the methylotroph 
Methylorubrum extorquens, [90]) or be converted into formyltetrahydrofolate (as in the fac-
ultative methylotroph Bacillus methanolicus, which lacks the serine cycle [89]). As discussed 
below, ATCC 27126 likely does not encode the serine cycle, suggesting the presence of dissim-
ilatory formaldehyde conversion via the THF pathway, yielding formate.

The GSH pathway involves NAD, glutathione-dependent formaldehyde dehydrogenase 
(GSH-FDH, also called S-(hydroxymethyl)glutathione dehydrogenase), and S-formylglutathione 
hydrolase (FGH). S-(hydroxymethyl)glutathione, formed spontaneously by formaldehyde and 
glutathione, is the preferred in vitro and presumed in vivo substrate for GSH-FDH [91,92]. Both 
GSH-FDH and FGH are encoded in the ATCC 27126 genome (MASE_RS14505 and MASE_
RS15860, respectively). ATCC 27126 may need both THF and GSH pathways for C1 metabolism 
and/or detoxification of formaldehyde, as in Methylorubrum extorquens [90].

Formate metabolism.  Formate from formaldehyde oxidation is usually oxidized to 
CO2 [93], catalyzed by a formate hydrogen lyase complex (FHL) comprised of formate 
dehydrogenase fdhF and six subunits of hydrogenase 3. A BLAST search of E. coli fdhF 
(UniProt:P07658) showed several homologs in marine bacteria (mainly Shewanella), but no 
clear homolog in Alteromonas. An alternative route is the formate dehydrogenase operon 
(FDH), but we found only one of the four FDH genes (fdhD) in the ATCC 27126 genome. 
Although fdhD is encoded adjacent to another gene (MASE_RS07820) distantly related to a 
formate dehydrogenase (~31% identical to fdhH from E. coli), MASE_RS07820 is a pseudogene 
due to a frame shift. Therefore, ATCC 27126 presumably cannot oxidize formate to CO2.

Formate also participates in the glutamylation of tetrahydrofolate. Glutamylated folate 
cofactors are required in various C1 reactions, acting as carriers of one-carbon units [94]. 
However, the first enzyme in this reaction, formate-tetrahydrofolate ligase, is not encoded 
in the ATCC 27126 genome. The lack of key metabolic pathways supports the observation 
that A. macleodii cannot grow with formate as a sole carbon source ([53], and our growth 
results). Future work could determine whether ATCC 27126 excretes formate, similar to some 
methylotrophs [95] and cyanobacteria [96–98], potentially providing a carbon source for 
co-occurring organisms.

Serine cycle.  Formaldehyde can also be assimilated via the serine cycle (formaldehyde 
assimilation I pathway in BioCyc), yielding several intermediates for central carbon 
metabolism ([99], Fig 3A). In the first step, hydroxymethyltransferase (GlyA) catalyzes 
the reaction of 5,10-methylenetetrahydrofolate with glycine to form serine. ATCC 27126 
encodes two GlyA proteins along with a putative serine-glyoxylate transaminase, an enzyme 
that mediates the following conversion of serine to 3-hydroxypyruvate. Hydroxypyruvate 
reductase, reducing 3-hydroxypyruvate to D-glycerate, was not identified in ATCC 27126. 
Instead, we found 2-hydroxyacid dehydrogenase, which also converts 3-hydroxypyruvate to 
D-glycerate. Genes encoding the remaining essential enzymes were not detected, including 
EC 6.2.1.9 and EC 4.1.3.24 that define the presence of the serine cycle in methylotrophs. This 
genomic evidence, along with the lack of growth on methanol as a sole carbon source ([64] 
and our results) supports the absence of the serine cycle in ATCC 27126.

Mixed acid fermentation
Mixed acid fermentation involves the catabolism of pyruvate to lactate, formate, acetate, eth-
anol and succinate when no exogenous electron acceptors are available. Marine particles, to 
which Alteromonas is often attached (e.g., [32,100], potentially have microaerobic or anaer-
obic niches [101], yet. ATCC 27126 has been described as strictly aerobic [53]. Mixed acid 
fermentation was inferred in ATCC 27126 during the computational reconstruction of PDGB, 
albeit with pathway holes. Hence, we decided to investigate this pathway further.
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ATCC 27126 encodes 7 out of 11 enzymes for mixed acid fermentation, including those 
catalyzing the conversions of acetyl-CoA to acetyl phosphate and acetate, pyruvate to lactate, 
as well as the formation of fumarate from phosphoenolpyruvate (Fig 3A). The presence of 
these reactions is supported by detecting acetate, lactate and succinate in extracellular poly-
saccharides (EPS), where they act as non-carbohydrate substituents [52,102]. However, ATCC 
27126 does not encode a fumarate reductase enzyme. Thus, although traces of succinyl have 
been reported in Alteromonas EPS [52] and fumarate reduction can principally occur via 
succinate dehydrogenase [103], presence of mixed-acid fermentation in ATCC 27126 remains 
unclear. Moreover, ATCC 27126 lacks the genes catalyzing the initial anaerobic conversion 
of pyruvate and CoA to acetyl-CoA and formate (pflB and tdcE in E. coli K-12). As discussed 
above, it also lacks the formate dehydrogenase complex that catalyzes the sequential conver-
sion of formate to CO2. Finally, ATCC 27126 lacks the canonical genes catalyzing the reduc-
tion of acetyl-CoA to acetaldehyde and ethanol. While, in principle, acetaldehyde could be 
reduced to ethanol by one of the PQQ- or zinc-dependent alcohol dehydrogenases (described 
above) working in reverse, the lack of an acetaldehyde dehydrogenase gene suggests that this 
part of mixed acid fermentation may be dysfunctional. Therefore, the bioinformatic evidence 
for the full mixed acid fermentation process is inconclusive. Nonetheless, many of these 
reactions also work in reverse (e.g., lactate dehydrogenase), and may enable ATCC 27126 to 
catabolize organic acids excreted by co-occurring algae even under oxic conditions [98,104]. 
Indeed, ATCC 27126 can grow on lactate or pyruvate as sole carbon sources ([54], S1 File).

Nitrogen sources

Amino acid degradation
Amino acids, constituting a significant fraction of organic nitrogen in the oceans [105], can 
serve as both nitrogen and carbon sources. ATCC 27126 grows well with peptides or a mix-
ture of amino acids as sole carbon sources [106]. Although comparative genomics suggested 
that most Alteromonas spp. can degrade almost every amino acid (Fig 4A), ATCC 27126 
growth was only reported on alanine and glycine [54]. We asked whether this inconsistency 
is due to missing genes in the predicted amino acid degradation pathways as they enter the 
TCA cycle (Fig 4B). For seven pathways with putative holes, we identified candidate genes 
for three pathways that could “close” these holes using RBBH (S1 File). The putative “hole-
filling” genes MASE_RS07620 and MASE_RS07610 are encoded within a predicted operon 
for L-leucine degradation, somewhat similar to the liu operon from Pseudomonas aeruginosa 
(Fig 4C, [107]). The predicted “hole-filling” gene MASE_RS01650 is part of an operon for 
arginine degradation. However, we could not reconstruct the pathways for the degradation of 
threonine, tryptophan and tyrosine. Notably, there are holes in the pathways for tryptophan 
and tyrosine degradation in E. coli SIJ488, yet this strain can utilize these amino acids as sole 
nitrogen sources [108]. Therefore, these pathways might still be functional in ATCC 27126, 
although further experimental work is needed to test this hypothesis.

Nucleotide degradation
Purine nucleotides can serve as nitrogen sources for bacteria [109]. The purine nucleotide 
degradation II superpathway in MetaCyc is composed of three sequential pathways: 1) 
purine nucleotide degradation II (starting with AMP, GMP and IMP each yielding urate); 
2) urate conversion to allantoin; and 3) allantoin degradation (Fig 5A). The first pathway is 
completely encoded by ATCC 27126 (Fig 5A), whereas the second was not predicted despite 
finding genes encoding 2 out of 3 reactions. However, RBBH using the puuD gene from 
Agrobacterium fabrum identified MASE_RS07125 as the putative hole-filling gene in the 
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Fig 4.  Amino acid degradation pathways and their holes. A) Number of predicted amino acid degradation pathways per 
genome across Alteromonas spp., determined using BioCyc’s Comparative Genomics tool. The taxa are ordered based on 
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urate conversion to allantoin pathway, encoding a protein containing a urate oxidase domain 
(PF016181) (Fig 5B). We therefore curated the puuD gene, and added the missing urate con-
version pathway.

Further metabolism of allantoin to glyoxylate can occur via S-ureidoglycine or 
S-ureidoglycolate (Fig 5A). However, these pathways are incomplete in ATCC 27126, and we 
were unable to identify hole-filling genes. Accordingly, ATCC 27126 cannot grow on allantoin 

Fig 5.  Nucleotide and nitrate utilization pathways. A) The purine nucleotide degradation II (aerobic) superpathway in ATCC 27126. Dotted 
arrows show missing reactions; stages where NH4 is released are highlighted. B) Genomic region surrounding the putative urate to allantoin degrada-
tion operon (puuD homologue). C) Putative assimilatory nitrate reductase operon. D) Suggested hybrid nitrate reductase pathway in ATCC 27126, 
utilizing different cofactors for nitrate and nitrite reduction.

https://doi.org/10.1371/journal.pone.0321141.g005

a maximum likelihood tree (IQ-TREE) inferred under the TIM3+F+I model from full-length 16S rDNA. B) Amino acid 
utilization pathways in ATCC 27126, drawn based on an overview from the BioCyc “Pathway Collage” tool. Missing reac-
tions (“pathway holes”) are highlighted by an X. The reaction marked with a double line (RS15535, Valine degradation) has 
unknown directionality according to BioCyc. Methionine degradation is not shown as it enters the TCA cycle via multiple 
other pathways. C) Predicted operon for branched chain amino acid degradation. RS07605 and RS07615 encode two sub-
units of the methylcrotonyl -CoA carboxylase, with a predicted “hole-filling” hydratase between them, preceded by RS07620 
(isovaleryl-CoA dehydrogenase) and followed by RS07600 (Hydroxymethylglutaryl-CoA lyase). The operon organization is 
similar to the liu operon in Pseudomonas aeruginosa [107].

https://doi.org/10.1371/journal.pone.0321141.g004

https://doi.org/10.1371/journal.pone.0321141.g005
https://doi.org/10.1371/journal.pone.0321141.g004
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as sole C source [54]). Taken together, the missing allantoin degradation pathway might 
explain why ATCC 27126 cannot grow on nucleotides as sole carbon source [54]. Neverthe-
less, this strain might use purines as N sources, since ammonium is released at multiple steps 
of the degradation pathway. If so, we predict ATCC 27126 to excrete allantoin, allantoate  
and/or S-ureidoglycolate during nucleotide degradation.

Nitrate assimilation
ATCC 27126 can grow on nitrate as a sole N source, likely incorporated to biomass via assim-
ilatory reduction [62]. The draft PDBG did not include assimilatory, but rather dissimilatory, 
nitrate reduction (i.e., denitrification), via a cluster of one nitrate reductase (nasA; MASE_
RS02775) and two nitrite reductase genes (nirBD, MASE_RS02765 and MASE_RS02770; Fig 
5C). A nasA mutant of ATCC 27126 cannot grow on nitrate, highlighting that this operon 
encodes assimilatory nitrate reduction [62]. Additionally, there is no evidence for denitrifi-
cation [54], although distantly related Alteromonads may respire nitrate [110]. Therefore, 
dissimilatory nitrate reduction was removed from the PDGB.

The putative assimilatory nitrate reduction pathway in ATCC 27126 shows an unusual 
combination of genes and required cofactors (Fig 5D). In most bacteria and fungi, nitrate and 
nitrite reductases use NAD(P)H as electron donor [111], whereas cyanobacteria use ferre-
doxin [112]. The ATCC 27126 nasA is most similar to homologs of the nitrate reduction V 
pathway common to many bacteria and fungi (BLAST bit score 678). However no homolog 
was found for the nasC protein, often associated with nasA to form the nitrate reduction com-
plex [111]. The second best hit for nasA was to a cyanobacterial nitrate reductase narB (EC 
1.7.7.2, BLAST bit score 607 with narB from Synechococcus elogantus), which does not require 
additional subunits, has a similar length, and shares ferredoxin-binding and molybdopterin-
containing Pfam domains with ATCC 27126 nasA. We therefore propose that ATCC 27126 
encodes a “chimeric” nitrate assimilation pathway, with a ferredoxin-utilizing homolog of the 
cyanobacterial nitrate reductase narB followed by NAD(P)H-utilizing bacterial homologs of 
the nitrite reductase nirBD complex. This hypothesis requires experimental verification.

Conclusions and future prospects
Alteromonas are highly versatile degraders of organic carbon in the oceans [44], yet the factors 
that determine their “metabolic niche” and the drivers of their spatial and temporal dynamics 
remain unclear [32,35]. Our interactive community curation explored specific traits related to 
Alteromonas metabolism and ecology, providing recommendations for future experimental 
work, and consolidating the biological understanding of A. macleodii − hopefully resulting in 
a dynamic and growing “metabolic encyclopedia”. Specifically, we show that ATCC 27126 and 
other A. macleodii strains can utilize complex polysaccharides, but cannot grow on methanol 
or formate. Polysaccharide degradation might support the association of Alteromonas strains 
with algae and polymer microgels [113]. Similarly, growth on peptides [106], together with 
their ability to utilize various forms of dissolved organic phosphorus [114], may support 
their growth on other forms of organic matter such as dead jellyfish biomass [43] or deep-
sea particles [115]. In contrast, ATCC 27126 cannot grow on chitin [54], the most abundant 
polysaccharide in zooplankton; indeed, Alteromonas are not part of the core copepod microbi-
ome [116]. Future curation efforts and accompanying experiments focusing on carbohydrate, 
protein and organophosphorus degradation are needed to test these hypotheses.

The finding of Alteromonas on marine particles [32–34] might be connected to hypoxic 
or anoxic niches [101], yet the evidence for fermentation in ATCC 27126 is inconclusive. 
We propose that a better characterization of the “oxygen niche” of Alteromonas will help 
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to understand their involvement in particle colonization and degradation [115]. Similarly, 
understanding how Alteromonas utilizes amino acids, nucleotides or nitrate will contribute to 
clarifying their role in nitrogen cycling, given that proteins can comprise 50–60% of phyto- 
and zooplankton biomass [105,117–120]. Importantly, comparing cultured strains with 
environmental datasets will need to consider the diversity among Alteromonas strains (e.g., 
[48–50,121].

Our community curation clarified important aspects of the physiology and ecology of 
ATCC 27126, and suggested relevant experimental directions. However, we also highlight 
key challenges in studying ecologically important but less described organisms. Only a few A. 
macleodii genes have been functionally verified, resulting in often indirect evidence for the 
presence or absence of specific reactions. Deciding whether or not to include pathways in the 
PDGB was therefore sometimes subjective, especially if requiring “hole filling”. Furthermore, 
manual curation requires in-depth knowledge of multiple aspects of metabolism, which is 
typically beyond the expertise of any single curator or a diverse group like in our study. We 
suggest that any curation process clearly records the evidence used to decide whether a path-
way is present, enabling future users to revisit the metabolic reconstruction before generating 
genome-scale models. Secondly, there are no clear guidelines for the incorporation of genomic 
information for metabolic reconstructions. While the conservation of (partial) pathways in 
closely related organisms may suggest they are functional, our results for amino acid utili-
zation highlight that such hypotheses are not always fully supported. Furthermore, system-
atically addressing the correlation between pathway phylogeny and function may facilitate 
metabolic curation by harvesting experimental results from yet-uncultured organisms, e.g., 
using metagenome-assembled or single-cell genomes [43]. Finally, a metabolic reconstruction 
widely accessible to the scientific community needs to be compatible with downstream analy-
ses. There are currently several frameworks for representing cell metabolism, e.g., KEGG [122] 
and modelSEED [123], yet translating metabolic reconstructions from between frameworks 
can be difficult since terms and structure (e.g., where do they draw boundaries between path-
ways) are not compatible. Moreover, due to the cost of maintaining the BioCyc infrastructure, 
accessing most PDGBs requires payment. We hope that the insights from our community 
curation will provide incentives for research groups and funding agencies to include metabolic 
knowledge for environmentally important organisms in financially supported databases.

Supporting information
S1 File.  Supplementary excel file - information on metabolic reconstruction. 
(XLSX)
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