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ABSTRACT: In this work, we introduce a novel method for
compound identification in mixtures based on nuclear magnetic
resonance spectra. Contrary to many other methods, our approach
can be used without peak-picking the mixture spectrum and
simultaneously optimizes the fit of all individual compound spectra
in a given library. At the core of the method, a minimum cost flow
problem is solved on a network consisting of nodes that represent
spectral peaks of the library compounds and the mixture. We show
that our approach can outperform other popular algorithms by
applying it to a standard compound identification task for 2D
'H,"*C HSQC spectra of artificial mixtures and a natural sample
using a library of 501 compounds. Moreover, our method retrieves wptH

individual compound concentrations with at least semiquantitative

accuracy for artificial mixtures with up to 34 compounds. A software implementation of the minimum cost flow method is available
on GitHub (https://github.com/GeoMetabolomics-ICBM/mcfNMR).

Bl INTRODUCTION usually considerably longer and, for more complex samples,
peak overlapping also occurs in 2D and 3D spectra.

Another difficulty is that peaks may shift, change their shape
or even disappear, depending on the sample matrix and
tempera.ture.g_ll This requires an appropriate reconstruction
method that is tolerant toward peak disturbance. However,
tolerance increases the probability of false identification. The
aim to lower this probability while capturing as many
contained compounds as possible has driven recent efforts to
automate this process.

All available computational tools for NMR-based compound
identification operate with a library of individual compound
spectra, which are either experimentally measured or
mathematically predicted. After the user provides a target
spectrum (also referred to as “query spectrum”), one or several
candidate spectra from the library are returned based on the
comparison of their peaks with mixture peaks.”””™"* To our
knowledge, all existing methods for compound identification in
2D spectra rely on peak picking as a preprocessing step for the
spectral data. This step converts the matrix of intensity values
on a grid over the spectral domain (we will refer to this as “grid
data”) into a list containing information about discrete peaks,
such as location and integral. Although peak picking is usually

Liquid-state nuclear magnetic resonance (NMR) spectroscopy
is a well-established and powerful technique to elucidate
molecular structures. In recent years, increasing effort has been
directed to the application of NMR spectroscopy for
compound identification and quantification.”” Methods in
this context analyze the most important features of an NMR
spectrum, which are the positions and total intensities of
resonance peaks, referred to as chemical shifts and integrals,
respectively. For more technical information on NMR
spectroscopy we refer to one of the numerous publications™
or classical textbooks™ on this topic.

Although affected by the measurement matrix and
conditions, in first approximation, the NMR spectrum of a
mixture can be considered as the sum of the individual spectra
of its constituents. In principle, the problem of identifying all
contained compounds is therefore solvable by finding the
linear recombination of individual compound spectra that best
approximates the mixture’s spectrum. Nevertheless, several
factors can impede a complete reconstruction. First of all, the
mixture may contain compounds whose spectral peak pattern
is not known. This is a problem of empirical knowledge. A
more fundamental difficulty is posed by overlapping peaks.
Since peaks have a considerable extension, such overlaps occur
frequently in complex mixtures. Although spectral deconvolu-
tion methods can significantly improve the distinction of
overlapping peaks,” their potential is limited.® Many peak
overlaps in one-dimensional (1D) spectra can be resolved by
recording two-dimensional (2D) or even three-dimensional
(3D) NMR spectra. However, their acquisition times are
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assisted by software, the results are frequently reviewed
manually.

In this work, we introduce a novel family of methods for the
NMR-based reconstruction of complex mixtures, which can be
applied to both grid data and peak lists of arbitrary
dimensionality. Our approach is inspired by the Earth Mover’s
Distance (EMD), which is also known as Kantorovich or
Wasserstein distance.” In the context of NMR analysis, Zhang
et al'® have employed it for assessing the similarity of
experimental and predicted spectra for individual compounds.
Promising EMD-based approaches have been developed for
estimating proportions of compounds in a mixture by
minimizing the EMD of the normalized mixture spectrum
and the superposition of the individual compound spec-
tra.'”~"? Being based on an efficient calculation of the EMD in
one dimension, these approaches can only be used for 1D
spectra. In this work, we adapt and extend the underlying
methodology for the task of mixture reconstruction using
spectra of higher dimensionality and demonstrate its feasibility
for the analysis of more complex mixtures. By finding a
minimum cost flow (MCF)* on a network tailored to the
problem, our approach fits all library spectra simultaneously to
the target spectrum. This allows accounting for dependencies
between compounds, which may remain ignored if compounds
are fitted separately. Since the resulting compound assignment
flows are fully quantitative, MCF methods bear the potential to
quantitatively reconstruct a mixture spectrum. Given these
features, network flow techniques offer a promising new
approach to the problem of compound identification and
quantification in NMR data.

Following a more detailed introduction of the MCF method
given in the next section, we compare its performance on a
standard classification task, mapping a library of 501
compounds onto artificial mixtures of 21—27 compounds,"”
with other popular methods (MetaboMiner,'”> COLMAR-
HSQC,"” and SMART-Miner'*). Further, we test these
methods on a plasma sample, and evaluate the ability of
MCF methods to quantitatively reconstruct compound
concentrations using a library of 34 compounds for a test set
of mixture spectra.

B METHODS

Mixture Reconstruction. Whether represented by grid
data or by a peak list, an NMR spectrum can formally be
written as

X={(v,x)li € L} (1)

where we use indices from an index set Iy to unambiguously
refer to peaks of X, with x; and v; being the position and the
intensity associated to the ith peak or grid point. In the
following, it does not make a difference which representation,
grid, or peak list eq 1 refers to. For simplicity, we will use the
term “peak” to refer to an element of X in either case. We
define the total weight Vy of a spectrum X as the sum of the
individual peak weights v, When comparing two spectra X and
Y of identical total weights, their overall dissimilarity can be
quantified by their EMD."® This distance is defined as the
minimal “cost” required to redistribute the weight of spectrum
X so that it resembles Y. Here, the cost of transporting weight
from point x to y is computed as the distance d(x,y) of the
chemical shift coordinates times the weight that is moved.
When analyzing NMR spectra, the approach of the EMD
must be modified. First, the total signal intensity of an NMR
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spectrum is proportional to the concentration of a sample and
we cannot assume Vy = Vj without losing quantitative
information. Second, the EMD allows a nonlocal redistribution
of weight, which would correspond to a matching of distant
peaks in the NMR context. However, determining whether a
peak of a spectrum X appears in Y requires a locally restricted
comparison of intensities. We addressed this problem by
introducing an assignment radius r. The value of r defines the
neighborhood of compound peaks x;, in which a matching
mixture peak y; is sought, cf. Figure 1. A detailed description of

compound compound
spectrum < W spectrum
Xl XQ
compound =
hubs k

?

Figure 1. Network architecture of the MCF method. Flow is
distributed from the source s across the hub nodes k, corresponding to
individual compounds. Compound hubs distribute flow proportion-
ally to corresponding compound peak nodes that are associated to the
compound spectra X;. These are connected to peak nodes of the
target spectrum Y within an assignment radius r (indicated by ellipses
in the Y-layer). Excess source production is routed to the absorption
node o.

S

the network terminology, the relation between our approach
and the EMD, the distance used for NMR coordinates, and
possible sources of error are provided in the SI (Sections S1—
S7).

For the following, we assume that a library
L ={X_ lk e€l,} is given, which contains individual com-
pound spectra X; = {(v, x;) | i € I,}. We use indices from index
sets I, and I; to unambiguously refer to elements of the
corresponding sets (i.e., a library compound and its peaks). We
seek to identify an optimal reconstruction of the target
spectrum Y as a union of compound spectra scaled by
appropriate concentration factors a;:

X= U X
kel,

)

where o X, = {(aw, x;) | i € I,}. We define the optimality of X
as the minimality of the costs of a corresponding network flow.
The network hosting this flow is constructed as follows (see
Figure 1). First, a source node s is connected at a specific cost
¢, to an absorption sink ¢ of unrestricted capacity. This means
that a flow of volume f_  running from s to o generates a cost

¢,f_ . Furthermore, s is connected to a layer of hub nodes k,
2Js—0

which represent the different library compounds. Each k is
connected to peak nodes i €I, representing the individual
peaks of the compound spectrum X. Finally, each X;-peak
node i is connected to all nodes representing peaks of the
mixture Y within the distance r, where each Y-peak node j is
equipped with a sink capacity equal to the weight w; of the
peak. The specific cost ¢;_,; of a link connecting i € I and j € Iy
equals the spectral distance d(xi,yj) of the peaks. To ensure that
assignment to Y-nodes is preferred to absorption, we assume
that the specific cost of assignment to the absorption sink is
larger than the assignment radius, ie, ¢, > r. The flow

production at s is chosen as V; = ). w; to match the total

j€ly
sink capacity of the target spectrum.
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A network flow is defined by the volumes f,_,,, passing at the
links n — m. We call it “feasible” if it fulfills several constraints:

(i) All production must leave the source:

fs—m + Z fs—>k = VY
k€L, (3)
(ii) Inflow at Y-nodes equals outflow at compound peak
nodes:
fo = Zfi_)}_ fori € I,
JELy 4)
(iii) Inflow does not exceed capacity of Y-nodes:
ZZijswj forj €I,
k€I, i€, (5)

iv) The flow between compound hubs and peak nodes
P P
preserves peak proportionality:

-ﬁ(—»i = H.f;ek (6)
where p; = v,/Vy, for i € I,.
Any given flow corresponds to a combination (eq 2) of
compound spectra, by setting

X =-fs—>k/VXL (7)

Using this, a feasible flow, which minimizes the cost function
(i.e., an MCF),

C(f) = Cﬂfs—»m + Z z Z Ci_’f-’;—»j

absorption keL i€l jEL

(8)

can be associated to an optimal reconstruction (eq 2) of the
mixture spectrum Y by means of the compound library L.

A Python implementation of the MCF algorithm along with
a test suite reproducing the results presented below is available
at https://github.com/GeoMetabolomics-ICBM/mcfNMR.
The optimization of eq 8 is implemented using HIGHS.”'

Datasets. We applied the method described in the previous
section to two different sets of experimental 'H,"*C HSQC
spectra. The first dataset was published by the Wishart research
group, along with their publication of MetaboMiner,"”” a
software suite for semiautomated compound identification. It
contains a database of peak lists derived from HSQC spectra of
single compounds as well as HSQC NMR data of artificial and
biological mixtures, represented either as peak lists or grid
data.”” The deposited database contains the HSQC chemical
shifts of 501 individual compounds and was derived from
HMDB.> Please note that the original database contains 502
compounds, but the chemical shifts for lactic acid were
deposited twice, which is why we end up with one less entry.
We compared the performance of our method with the results
reported by Kim et al,'"* who compared the performance of
their machine learning method (SMART-Miner) among others
with MetaboMiner'> and COLMAR-HSQC."® As Kim et al,**
we use the artificial mixtures “N925”, “N987”, and “N988”,
containing 27, 21, and 24 common metabolites of biofluids in
concentrations ranging between 40 and 60 mM, respectively.'”
We binned the grid data to restrict the resolution resulting in
512 X 512 grid points for “N925” and “N987” and 256 X 512
for “N988”. Furthermore, we tested the MCF method on a
plasma sample recorded under different pH (spectra of

assignment
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mixtures “N907” and “N926”, binned to resolutions of
512 X 512 and 512 X 581 datapoints, respectively), which is
part of the MetaboMiner dataset, and for which 35
constituents were unambiguously identified.'” In addition, we
used an in-house data set’ with HSQC spectra of 34
individual compounds and different mixtures of these
compounds (cf. Section S8 for details) to evaluate the
potential of our approach to retrieve individual compound
concentrations.

B RESULTS

Compound Detection. We compared the performance of
the MCF method in a compound identification task with three
other popular algorithms: MetaboMiner,'> COLMAR-
HSQC,"” and SMART-Miner."* For this benchmark we used
a test set of three artificial mixtures and a compound library
published by the Wishart lab>* containing 501 metabolite
spectra.

We tested four different setups A—D of the algorithm (cf.
Table 1). Setup A serves as a reference insofar it differs at

Table 1. Overview of MCF Method Setups

optimization assignment target
A simultaneous single pass grid data
B independent single pass grid data
C simultaneous incremental grid data
D simultaneous single pass peak list

exactly one aspect from every other setup. The optimization
type defines whether the algorithm optimizes the flow for all
compounds simultaneously. A simultaneous optimization
ensures a consistent reconstruction of the mixture, while for
an independent optimization (setup B), we construct the
optimal flow separately for each compound. Furthermore, we
tested two different variants of flow assignment. The first is the
single pass approach described above, and the second uses an
incremental version of that approach, which gradually increases
the assignment radius (setup C, see Section S7). Finally, in
setup D, we compared the results based on grid data (setup A)
to those based on peak lists. For an MCF, a compound’s
containment is judged based on the comparison of the flow
fiwr assigned to this compound and a detection threshold 9.
The lower 9, the more compounds are classified as being
contained on the basis of f,,; > 9/Vy, where we normalized the
detection threshold by the total weight of the target.

To study the robustness of our method, we scanned a range
of combinations of assignment radii r and detection thresholds
9 with a fixed absorption cost ¢, = 10° (see Figure 2). For each
combination, we calculated the F1 score from the correspond-
ing values of recall and precision (see Section S9 for details). In
general, the best performance (maximal F,) is achieved for
intermediate parameter values. Too low detection thresholds
yield many false positives, which decreases the precision. On
the other hand, the recall deteriorates for too large detection
thresholds. Therefore, both extremes yield low F;. Similarly,
small assignment radii lead to low recall and large assignment
radii impair precision. Setup C (Figure 2c) represents an
exception to the latter, since the incremental assignment
strategy stabilizes the fit with regard to larger radii. As this
strategy repeatedly determines MCFs for increasing assign-
ment radii and reserves all flow once assigned, a more precise
matching is preferred over a maximal assigned flow volume. As
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Figure 2. (a—d) Dependence of the average F1 score across mixtures
N925, N987, and N988 on the assignment radius r and the
normalized detection threshold 9 for the different setups A—D of
the MCF method (see Table 1). Markers (“+”) indicate parameter
combinations that maximize the average values of the F1 score.

the other setups prefer maximal assignment volume, they
exhibit displacement errors for larger radii (see Sections S6 and
S7 for details).

The incremental approach (as used in setup C) also achieves
the highest average value of F; = 0.83 at 9 = 0.003 and
r = 0.08. This improves setup A, which only differs in the use
of a single pass assignment. There, we found the second best
F, = 0.81 at 8 = 0.003 and r = 0.06. Slightly worse scores are
attained by setups B and D, with F; = 0.80 at r = 0.05,
89 = 0.003, and F, = 0.78 at r = 0.06, 9 = 0.005, respectively.

Because the maximal value of the performance is not
measurable in applications, where it is unknown if a detection
is a true or false positive, an important characteristic for each
setup is its robustness, with respect to parameter variations.
Clearly, the robustness of setup C with respect to r is unrivaled.
The robustness, with respect to 9, is similar for setups A and D
being highest for r in 0.05—0.1 and decreasing for larger r. In
contrast, the performance of setup C worsens only slightly for
increasing r as is reflected in the vertically banded structure of
the plot shown in Figure 2c). When fitting compounds
independently (setup B), the robustness is significantly worse
as F, decays more quickly when r deviates from its optimum.

When using the combinations of r and & leading to the
optimal average F, across all mixtures, all setups of the flow
method outperformed the average performance of all other
tested methods by a relative margin of 15% (MetaboMiner:
F, = 0.65, COLMAR-HSQC: F, = 0.64, SMART-Miner:
F, = 0.68, as calculated from Kim et al,,'* cf. Table S3), We
compared the attained F1 scores for these parameters and the
different mixtures N925, N987, and N988 in Figure 3. For
mixtures N987 and N988, all setups A—D display scores
F, > 0.8 and are clearly superior to other methods. In contrast,
for N925, the F1 scores of all methods lie closer together,
mostly within the range 0.6—0.7. Only COLMAR-HSQC lies
outside that range yielding F, = 0.75. We refer to Section S9
for a more detailed analysis, especially of the lower score in the
case of mixture N925.

Application to a Biological Sample. We tested the MCF
method on spectra of a human plasma sample recorded under
different pH conditions (spectrum N926 at pH 7.3 and
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Figure 3. Comparison of F1 scores for different setups of the MCF
method (Table 1), and MetaboMiner, COLMAR-HSQC, and
SMART-Miner'* (Table S3).

spectrum N907 at pH 8.8). Since spectra of library compounds
were recorded at physiological pH, a stronger perturbatlon of
peaks can be expected for spectrum N907. Xia et al.'> have
previously identified 35 compounds in the sample by
independent profiling. It is important to note that this list of
compounds is not necessarily exhaustive and most likely other
compounds are contained in the sample as well. Therefore, we
prefer to denote compounds which are detected by a method
but not mentioned in the reference list as “unconfirmed” and
not as “false positives”. The results should be interpreted with
this limitation in mind. For a more detailed discussion, we refer
to Section S10 in the SL

In Figure 4a, we show the number of compounds detected
by the MCF-C method in sample N926, as a function of the
detection threshold & for a fixed maximal assignment radius of

= 0.0S. While a few confirmed compounds are already
detected for values of 9 > 2 X 107* the bulk remained
undetected until 9 < 107% where many unconfirmed
detections are encountered as well. As for artificial mixtures,
recall increases while precision decreases for decreasing values
of 9. Hence, the distribution of F1 scores exhibits a similar
pattern as for the artificial mixtures (cf. Figure 4b and Figure 2)
but with significantly lower maximal F, 0.53 at
9 =05 X 107" and r = 0.03. This greater difficulty to
reconstruct the list of confirmed compounds for the plasma
sample is common to all tested methods (Figure 4c; also see
Table S4 for details). Most methods achieved an F1 score of
slightly above 0.5, except for SMART-Miner whose perform-
ance dropped most drastically, compared to its results on
artificial samples. The altered pH value perturbed the spectral
pattern in the case of sample N907 and makes the mixture
reconstruction more difficult as testified by the further
decreased performances of the different methods. The
only exception to this general trend was MCF-D whose
performance remained relatively stable, despite these perturba-
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Figure 4. (a) The number of confirmed and unconfirmed detections
using the method MCF-C (cf. Table 1) with assignment radius r =
0.05 for a plasma sample spectrum (sample N926, from Xia et al.'*) as
a function of the normalized detection threshold. (b) Distribution of
the F1 score for a range of different assignment radii and detection
thresholds for MCF-C on N926. (c) Optimal F1 scores obtained for
different methods on the spectra for samples N926 (pH 7.3) and
N907 (pH 8.8).

tions. In contrast to the other MCF methods, MCF-D operates
on peak lists from the MetaboMiner dataset. These were
created by automatic peak picking, followed by manual
cleanmg This human intervention seems to be important
since automatic peak picking [using DEEP Picker, cf. Table S4,
MCEF-D (dp)] alone did not lead to significantly better results
for MCF-D, compared to other methods.

For comparability with the results reported by Xia et al,'?
we also applied our MCF method to the biological samples
using the plasma (common) library provided by MetaboMiner.
The MCF methods A—C demonstrated similar performance,
with F1 scores ranging from 81.6 to 83.5 for sample N907 and
81.6 for sample N926 (cf. Table SS). Compared to
MetaboMiner, we observed only a slight performance decrease
for sample N926 (81.6 vs. 82.9), but a significant improvement
for sample N907 (83.5 vs. 76.2). These findings suggest that
the MCF approach could be particularly useful when dealing
with altered sample matrices, such as pH variations, which can
lead to changes in chemical shift positions.

Compound Quantification. Besides the comparison with
existing algorithms, we have tested the potential of the MCF
method to retrieve individual compound concentrations. To
this end, we generated optimal reconstructions for different
experimental mixtures. All mixtures contained subsets of 34
compounds (cf. Section S8) covering different compound
classes, such as amino acids, sugars, and aromatic carboxylic
acids. For each compound k, we use the following notation:

e ¢: compound concentration of the corresponding
library spectrum,

e (ff: compound concentration in the target mixture, and

® (. compound concentration estimated by the MCF
method.

The predicted concentrations in the mixture are calculated
as ¢, = oyc, where the concentration factors @ are computed
as described in eq 7. Exemplary results are shown for a mixture
containing all 34 compounds at a concentration of ¢ff = 3 mM.
Its 'H,"*C HSQC spectrum constitutes the background of

Figure Sa, where peaks of individual compound spectra are
shown as overlays. For the quantification, we used grid data for
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Figure S. Reconstruction of individual compound concentrations. (a)
Overlay of individual compound peaks (ellipses corresponds to

= 0.1) on the mixture spectrum, cf. Section S8. (b) Predicted
concentrations at different r for 14 randomly selected compounds of a
mixture containing each compound at a concentration of 3 mM using
setup A, ¢f. Table 1. (c) Corresponding distribution of the relative
prediction errors. (d) Dependence of the mean relative error
magnitude ¢, and (e) percentage of errors in the range [—0.5, 1.0]
on r for setups A—C.
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the target spectra and peak lists for the individual compound
spectra, which were acquired at concentrations of ¢ = 30 mM
(cf. Section S8).

Figure 5b compares the true and predicted concentrations
for different assignment radii and a subset of compounds
obtained for setup A (Table 1). A larger radius permits a larger
total assigned flow, because the fraction of the target nodes
that are coupled to compound nodes grows with the radius.
Thus, the total predicted concentration increases with radius.
This does not necessarily hold at the level of individual
compounds, though. For instance, the estimated concentration
of L-rhamnose (Rha) decreases from r = 0.15 to r = 0.25. At
increased radii, the flow assignments to different compound
peaks interfere more strongly, which may lead to such
displacements.

In Figure Sc, we show the distribution of the relative
prediction errors ¢, = (¢ — ¢f)/cff for different assignment
radii. The general trend toward larger amounts of assigned
flows improves the fit for radii up to r = 0.15. For instance, at
r = 0.05 many concentrations are underestimated: ~65% are
estimated to less than one-half of the true concentration, cf. left
red dashed line at ¢, = —0.5. The minimum mean relative error
magnitude e = 0.25 is obtained at r = 0.15. That is, on average,
the method exhibits a prediction error of 25%. For larger r, the
prediction becomes worse. For instance, at r = 0.25, several
compounds display a strong overestimation with e, > 1, ie,
predicted concentration doubles the true value (see left red
dashed line at ¢, = 1). The overestimation is related to
compound displacements, which can be avoided to a certain
degree by using an incremental assignment. This is illustrated
by FigureS 5d and Se, where we show the dependence of the
mean relative error magnitude and the percentage of errors
within the interval [—0.5, 1.0] on r for the different setups. We
found that the incremental assignment (setup C) resulted in
the most accurate and robust results for this mixture. It
optimally reconstructs concentrations at assignment radii
around r = 0.25 (¢ = 0.18). Independent compound
optimization (setup B) achieved € = 0.30 at r = 0.1 and is
the least robust among the tested setups. For an assessment of
mixtures with different compositions of compounds (see
Section S11).

B DISCUSSION

Our results indicate a potential for optimal flow methods for
NMR-based compound identification and quantification in
complex mixtures. For a data set of artificial mixtures used by
various authors to validate their algorithms, our method
achieved higher F1 scores than all other methods (by a relative
margin of 15%). When applied to a natural sample of human
blood plasma, most tested methods performed similarly. They
achieved F1 scores of values slightly larger than 0.5, pointing
toward a potential for further refinements. Finally, our method
could predict individual compound concentrations in a mixture
of 34 compounds with a mean relative error of less than 20%.

Unique Features. One major advantage of our method is
its ability to perform a simultaneous fit of all individual
compounds when reconstructing a complex mixture. This
avoids a possible overdetection of compounds associated to
independent fits. In Section S4 we provide an example for such
an error. As a second important feature, flow methods can be
applied directly to grid data. From the flow perspective, grid
points, just like the peaks in a peak list, are nodes. This allows
to circumvent the step of peak picking, which is a necessary
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preprocessing step for many other algorithms. This step can
not only be a potential source of error, but also reduces the
amount of information available to the algorithm. For artificial
mixtures, the highest F1 scores achieved by our method were
indeed attained when using grid data (cf. Figure 2). However,
in the case of complex biological samples, a careful peak
identification may still improve the result, as indicated by
the improved performance of the peak-list-based method
(MCF-D) on the plasma sample, especially for the pH-
disturbed sample N907 (cf. Figure 4c and Table S4).

Single Pass and Incremental Assignment. We explored
two approaches for flow construction: a single pass MCF
optimization and an incremental assignment (cf. Section S7).
Using the MCEF approach leads to a lower total assignment
cost in general. While this may be beneficial when peaks are
shifted in a systematic manner, it is prone to permit
displacement errors for larger assignment radii. Such errors
are avoided by an incremental assignment, which gradually
picks the closest target peaks and reserves their capacity.
Hence, once chosen, an assignment cannot be displaced. This
simplifies the parameter selection as it stabilizes the fit for
larger assignment radii. A possible drawback of the incremental
assignment is its bias toward compounds, which only show a
few peaks, because it is more likely for a few peaks to
coincidentally fall into the neighborhood of target peaks than it
is for many (cf. Section S6).

Although the incremental strategy appears to be superior to
single pass assignment when tested on artificial mixtures, it is
important to note that it may still be prone to overestimation
of compound presence. In particular, if a mixture contains
many compounds, whose spectra are not included in the
library, larger values of r will inevitably imply extant
assignment. Indeed, when applied to a natural plasma sample,
the F1 distribution for the incremental strategy (Figure 4b) is
less stable against variations of the assignment radius than for
the case of artificial mixtures (Figure 2c). Thus, testing single
pass assignment conveys important information about the
optimal assignment radius for all setups.

Compound Library and Reliability. The success of a
method for compound identification depends on a few general
principles. First of all, it is impossible to match a compound’s
peak pattern if it is not in the compound library. One might
conclude that the larger the library, the better the
reconstruction. But the larger the library, the more candidate
combinations exist, making the choice of the correct one more
difficult. Thus, for a small library the crucial limitation is that it
contains all compounds of the mixture, whereas for a large
library the accuracy of prediction may deteriorate with the
inclusion of additional compounds. A careful thinning of a
large compound library can therefore improve the prediction.

In contrary to the test cases for compound detection, where
we used a relatively large metabolite library of 501 compounds,
we used a library which contained the same 34 compounds as
the mixture when testing our method for compound
quantification. This is an optimal library coverage and cannot
be expected for most applications. The presence of more
compounds in the library could perturb the estimates and we
would expect that the reconstruction suffered. The exact
impact is difficult to predict, and the method worked similarly
well (in terms of relative errors) for mixtures with different
concentrations and subsets of the 34 included compounds,
which is promising for more complex applications (cf. Section
S11).
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Compound identification frequently fails due to shifted
peaks in the target spectrum or an unreliable library, in which,
e.g., peaks may not be picked properly. This implies the
importance of highly comparable data that can only be
acquired by standardized measurements and stable matrix
parameters such as pH, solvent, and ionic strength. For
compounds naturally existing as multiple diastereomers, we
further suggest to deposit the spectra of the individual
diastereomers in the database (cf. Section S11). This approach
has already been demonstrated to be beneficial for compound
identification based on peak matching,'” and we expect further
improvements for our approach upon implementation.

Computational Requirements. At the heart of our
method lies a linear optimization that computes an optimal
assignment of flow from source to sink nodes. The numerical
solution can be challenging, because its computation time
increases with the number of links in the network. In theory,
this increase can be polynomial or even exponential, depending
on the algorithm.20 However, in practice, we rather observed a
roughly quadratic increase in computation time with the
number of links in the flow network (cf. Section S12). Since
the theory of MCFs and linear programming in general has a
long tradition, efficient solvers are available for most problems,
which facilitates an implementation of the method. Especially
when using grid data, which leads to much larger networks
than peak lists, the computation can nevertheless be time- and
memory-consuming. For working with grid data, it is important
to choose an optimization software that supports parallelizable
sparse matrix implementations (for our implementation, we
used the SciPy™ interface to HIGHS™").

Choice of Parameters. In applications, our method is
supposed to reveal the unknown composition of a sample.
Before it can do so, the user must select parameter values for
the assignment radius r, for the absorption cost ¢, and, if a
binary classification (contained versus not contained) is
desired, for the detection threshold §. Hence, they are
confronted with the question for which parameter values the
method will give the most accurate answer. Also, it may be
more desirable to avoid a specific type of error rather than
another and either increase the precision or recall instead of
maximizing a synoptic measure such as the F1 score. To date,
we have no definite answer or protocol to choose these values.
Some ideas to guide the choice are described below.

The assignment radius r defines the tolerance to peak
position shifts and should therefore usually encompass the
expected magnitude of such shifts. If the target spectrum is
represented as grid data, r should additionally be large enough
to capture the entire extension of a peak. Hence, in most cases,
a good choice of r would be the maximal accepted shift
distance plus, for a grid target, the half-width of a peak. The
optimal assignment radius may differ for quantitative and
qualitative purposes. For quantitative reconstruction, it is
important to capture the full peak extension. This can require a
larger r than for detecting the presence of a compound, where
a partial coverage of the peak extension may already suffice. In
agreement to this, we found that the optimal r (for non-
incremental setups) lies around r = 0.05 for compound
detection (cf. Figure 2) and around r = 0.15 for compound
quantification (cf. Figures Sd and Se). This is in accordance
with the observed peak widths between 0.03 and 0.09 ppm
along the 'H dimension in the experimental spectra.

When using incremental flow assignment, the user is relieved
from the choice for r to some degree as the results becomes
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more stable (cf. Figure 2c). However, it cannot stabilize the
effect of the detection threshold J. A lower threshold yields a
larger number of detections and, hence, a higher recall (cf.
Figures S6 and S8). However, if the threshold approaches the
noise level, the number of false positive detections will usually
rise considerably for any method, implying a drop of precision.
On the other hand, choosing a high threshold effectively
discards fractions of the mixture, which fall below a certain
concentration, decreasing the recall. Values from 9 = 0.005 X
Vy to § = 0.01 X Vy worked well for the artificial mixtures
tested. As these mixtures contain compounds at relatively high
concentrations (40—60 mM), more complex samples may
require a higher sensitivity to identify more dilute components,
as confirmed by our tests using a plasma sample. When fitting a
grid target, decreasing & increases the risk of accidentally
matching the noisy background and detecting many false
negatives. A first guess for an appropriate choice of detection
radius may thus be obtained by observing the dependency of
the number of detections in a blank spectrum with the same
noise characteristics on the threshold value. Then, a reasonable
choice for & may be the smallest value for which no
compounds are detected in the blank spectrum.

We did not elaborate on the choice for the absorption cost ¢,
in this work but used a value (c, 10°) exceeding the
assignment radius r by several orders of magnitude. This
choice implies that an optimal flow maximizes the volume of
assigned flow, because all unassigned flow creates absorption
costs. As illustrated by a simple example in Section S6, this may
lead to a bias toward assigning flow to compounds with a
higher number of peaks. Only if ¢, is of the same order as r,
compounds may be preferred if they offer the more precise fit,
even if this implies additional flow to be absorbed.

In summary, the suitability of parameters depends on the
data — especially on the complexity, the peak shifts, and noise
level of the target spectrum — and on the purpose of the
analysis, which puts the focus on precision or recall.

Measuring Confidence. Developing methods for testing
the reliability of a reconstruction is beyond the scope of this
work, but we see two major directions to pursue here. One is a
perturbative approach, which computes several results based
on slightly perturbed (library and/or target) spectra and
assesses the variability of predicted containment or concen-
trations under different perturbations. If the prediction for an
individual compound is stable under perturbations, the
confidence for the results would be higher than for a
compound whose prediction strongly depends on small
perturbations (cf. Section SS for a situation giving an unstable
fit).

An alternative approach could test the variability of
prediction with the underlying library. Similarly as for the
perturbative approach, if a compound prediction is persistent
under the usage of different subsets of the full library, its
confidence would be higher. This approach resembles a
classical bootstrapping approach and could also reveal
dependencies between different compounds within the library.
Since such dependencies arise due to competing assignments
to target sinks, a similarity analysis of the library might reveal
them. In particular, a cluster analysis can help to identify
groups of compounds, which are most likely to influence each
other’s predictions.

Other authors developed heuristics pointing in this
direction. For instance, Xia et al.'” counted the number of
neighboring peaks for each peak within the compound spectra
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library and Bingol et al."> counted the number of uniquely
assigned compound peaks for each peak of the target spectrum.
Both approaches give measures of compound interference at a
given peak and may therefore serve as indicators for the
stability of the peak assignment under library subsampling.

Final Remarks. While the MCF method shows promising
potential for analyzing two-dimensional (2D) NMR spectra, its
current implementation faces several challenges and limi-
tations: (i) reliance on choice of parameters and method
variant, (ii) sensitivity toward peak shifts, (iii) diminishing
performance for mixtures of increasing complexity, (iv) limited
quantification accuracy, and (v) peak picking may outperform
direct application to grid data in specific scenarios. Many of
these points are common to other methods. To conclude on
the robustness, we further suggest to conduct an in-depth
statistical assessment of key variables influencing performance,
such as mixture complexity, library size, noise, dynamic range,
and matrix effects.

B CONCLUSION

Novel flow-based methods can boost the performance for
certain classification tasks and offer the potential to estimate
individual compound concentrations. They are agnostic with
respect to peaks, but believe in nodes. A node is not required
to be a local maximum of a distribution, but only a point in
spectral coordinates carrying a specific weight. This could open
up a way to analyze very complex mixtures, whose spectra
rather consist of broad intensity distributions than of defined
peaks. In such cases, methods that rely on peak picking are
facing a fundamental obstacle, while flow methods still provide
an optimal reconstruction using a library of individual
compounds. When moving from metabolomic applications to
the analysis of highly complex environmental samples such as
dissolved organic matter,*® this represents a decisive advantage.
In such samples individual peaks often cannot be resolved,
even when using high-field NMR instruments.””*® Never-
theless, an MCF reconstruction may still allow to derive details
of the distribution of compound classes, which is already a
valuable information for many environmental problems.

For spectra with pronounced peaks, a better integration of
peak shapes when fitting grid targets may be a valuable
extension of the algorithm. If implemented successfully, such
approaches could integrate a more precise reconstruction of
overlapping peaks currently addressed separately, e.g., by
deconvolution approaches such as DEEP picker’ or by manual
inspection. Additional post-processing of the target spectrum
(e.g., noise and streak removal) can be expected to further
improve the performance. Another promising extension of the
basic MCF method is the introduction of tolerance toward
missing peaks. This can be achieved by introducing penalties
for unmatched peaks rather than excluding the whole
compound.

Regarding compound quantification, we await the relevance
of the offered capabilities to increase as technological facilities
for high-quality NMR measurements are becoming more
accessible. Technological advances will yield a larger body of
data and more opportunities for the application of concen-
tration recovery, which needs a precise standardization to
ensure interoperability of the efforts of different laboratories.
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