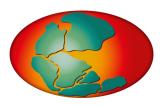

PANGAEA - Data Publisher for Earth & Environmental Science

Amelie Driemel, PANGAEA Team

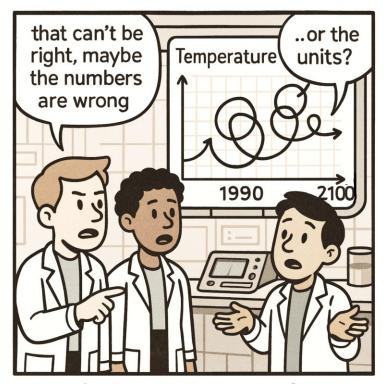
Bremerhaven, Coordination Workshop SPP 1158, 2025-09-30

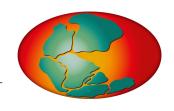


Why should I publish my data?

DFG rules

In the interest of transparency and to enable research to be referred to and reused by others, whenever possible researchers make the research data and principal materials on which a publication is based available in recognised archives and repositories in accordance with the FAIR principles (Findable, Accessible, Interoperable, Reusable). Restrictions may apply to public availability in the case of patent applications. If self-developed



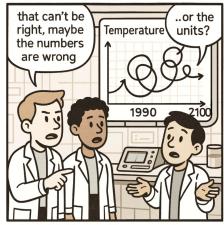

Because shit can happen...

Because of the future...

.... maybe it's not Temperature?

Why should I publish my data?

Page not found


- data not machine readable,

- metadata missing

TABLE Z.—COMPARATVE X-RAY DATA FOR PIGSPHORITES. DATA AND MOST INDICES FOR PRANCLITE ARE FROM MCCONDULL (1938). THIS SAUDE BE A CARBONATE FLUGRAPATITE (COLLOPINANE) FROM GEDDING, POLAND (NOW USSR), CONTAINING 51.0% CAQ, 5.8% CQ, 33.5% P, 0.3% M, 0.5% M, O. AND 2.2% H, O. THE FLUGRIDA SAMPLE IS A LAND FEBBLE FROM TILL EXELLAD REGION OF CENTRAL FLUGRIDA, AND REPRESENTS REWORKED MIDDLE TEXTRATY PHOSPHORITE. THE PUMON FRUE SAMPLE IS FROM THE TEXA GUILT SULPHILM RIME, BEAUGRET COUNTY, NORTH CAROLINA AND CONSISTS OF A MASSIVE WILTISH ACCRECATE. UNIT CELL DIMENSIONS DETERMINED BY DANIEL APPLEMAN. SMITHSONIAN INSTITUTION.

	Francolite (McConnell, 1938)		Blake phosphorite ¹ Sta. 2485		Phosph Manate Gerda T Sta. 2	e rib, errace	Phosph Bone V	/alley	Phosphorite ³ Pungo River Formation, N.C.	
Indices	d(Å)	1	d	1	d	1	d	1	d	1
100	ND		8.08	4	8.15	b	8.08	4	8.07	5
101	ND		5.23	4	_	-	5.23	3	5.25	3
200	ND		4.03	4	_	_	4.05	6	4.03	4
111	ND		3.86	6	_	-	3.86	6	3.86	4
002	3.431	2	3.446	43	3.44	41	3.45	46	3.445	42
102	3.157	0.5	3.173	16	3.17	12	3.173	12	3.163	13
120	3.044	2	3.055	18	_	-	3.060	17	3.050	13
121	2.765	>10	2.791	100	2.78	100b	2.793	100	2.785	100
112	_	_	2.688	54	2.695	43b	2.698	58	2.691	51
202	2.618	4	2.622	28	2.622	20	2.625	29	2.621	26
301	2.508	0.5	_	_			2.514	4	2.502	4
122	2,277	1	2.280	24			2.285	8	2.285	9
130	2.238	3	2.237	21	2.245	18	2.245	24	2.238	20
131	2,127	2	2.127	7	2.125	5	2.137	5	2,123	6
113	2.057	1	2.055	5			2.062	5	2.057	6
203	1.996	1	1.993	4	1.995	В	2.000	4	1.993	4
222	1.928	3	1.930	21	1.931	17	1.934	25	1.929	20
132	1.876	1	1.877	15	1.88	Bb	1.881	13		
123	1.835	3	1.834	25	1.837	21b	1.837	35	1.834	28
231	1.788	2	1.786	10		210	1.793	13	1.785	10
140	1.762	2	1.760	11	1.764	13	1.766	14	1.760	13
402	1.740	2	1.738	10	_		1.744	H	1.740	10
004	1.720	2	1.721	13	1.720	12	1.723	13	1.721	13
232	1.631	0.5	1.630	4	_		1.634	6	1.633	9
133	1.601	0.5	1.605	3	_	_	1.604	3	1.602	2
240	1.525	0.5	1.			-	1.530	4	1.525	3
331	1.515	0.5	1.515	4	_	-	1.519	4	1.525	
124	1.496	0.5	1.500	4	_	_	1.500	4	1.502	4
502	1.462	1	1.462	6	_	-	1.463	9	1.459	- 6
304	1.453	-i	1.452	6	-	_	1.453	8	1.448	7
233	1.441	i	11706	_	1.43	6b	1.455	_	1.438	6
151	1.419	i	1.418	6		- 200	1,422	5	1.416	4
Unit cell a(Å)	9.320		9.314	u	9.3416		9.345	,	9.317	,

.... maybe it's not Temperature?

Quartz			
Quartz	nlam	peak	3.345
Country	energy.		2 226

Quartz main peak 3.335.

Given values are uncorrected for shifts in this internal standard line

SORT	SPP	DATE	STAGE	TL	SEX	SVL	ZSVL	TAL	MAL	ECC	ECP	RBC	RBP
1	TAGR	7/15/13	М	33	U	18.38	0.106	14.32999992	0	0	0	1	1
2	TAGR	7/15/13	М	31	U	15.25	-0.452	16.10000038	0	0	0	3	1
3	TAGR	7/15/13	М	23	U	14.29	-0.623	9.079999924	0	0	0	2	1
4	TAGR	7/15/13	М	25	U	13.76	-0.717	11.57	0	0	0	0	0
5	TAGR	7/15/13	М	20	U	12.61	-0.922	7.77	0	0	0	18	1
6	LICA	8/5/13	M	63	M	62.9	1.806		0	14	1	0	0
7	LICA	8/8/13	M	61	F	60.98	1.591		0	472	1	1	1
8	LICA	8/8/13	M	60	F	60.14	1.497		0	0	0	0	0
9	LICA	8/5/13	M	59	M	59.39	1.413		0	76	1	0	0
10	LICA	8/8/13	M	58	F	58.27	1.288		0	146	1	99	1
11	LICA	7/1/13	М	58	M	57.71	1.226		0	0	0	0	0

18/	2025-07-16115:00:00
187	2025-07-16T15:50:00
187	2025-07-17T14:10:00
187	2025-07-15T09:05:00
187	2027-07-15T09:30:00
187	2027-07-15T10:30:00
187	2027-07-15T15:00:00
187	2027-07-15T15:10:00
187	2027-07-15T15:00:00
187	2027-07-15T15:20:00
187	2025-07-16T10:35:00

PANGAEA

Data Publisher for Earth & Environmental Science

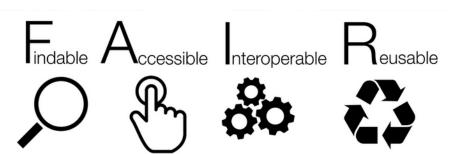
Welcome to PANGAEA® Data Publisher

Our services are open for archiving, publishing, and distributing georeferenced data from earth system research. The World Data Center PANGAEA is a member of the World Data System.

(51578)

Search for measurement type, author name, project, taxa,...

key aspects of PANGAEA (Perplexity.ai)



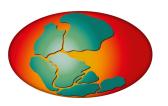
- Open Access and Long-term Data Archiving
- FAIR Principles: The platform ensures data integrity and usability for scientific work.
- Persistent Citation with DOI: Every published dataset is assigned a permanent DOI.
- Metadata Quality and Interoperability: Datasets come with comprehensive metadata descriptions and employ standardized exchange formats (e.g., INSPIRE, ISO 19115, Dublin Core, Darwin Core...)
- Global Recognition/Certification: PANGAEA is accredited by major organizations e.g. CoreTrustSeal etc.
- Curation and Community: The editorial services are conducted by expert curators, benefiting individual researchers and scientific projects.
- Integration with Scientific Publishing: PANGAEA is a recommended repository for numerous scientific journals, ensuring cross-referencing of datasets and articles.

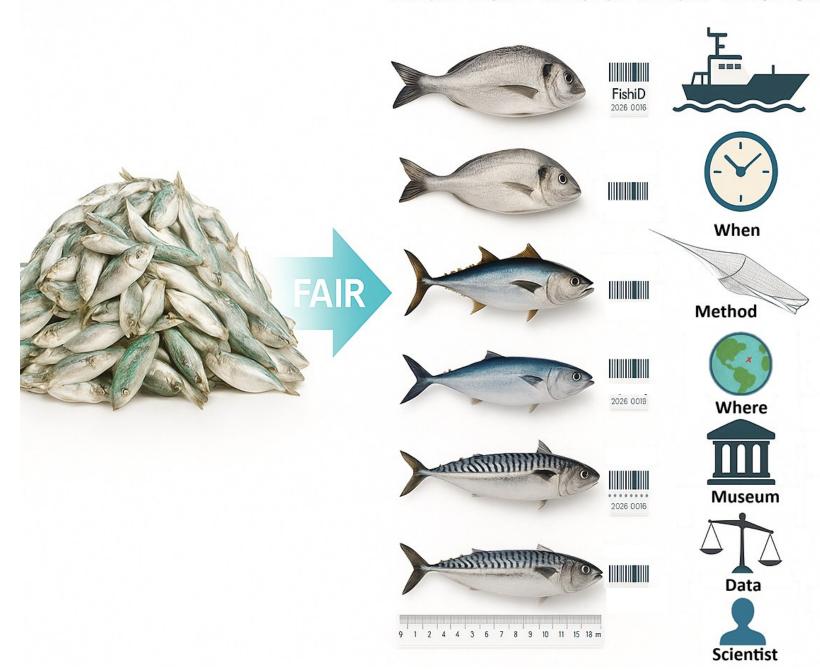

PANGAEA in my words

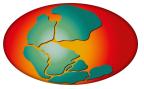
- PANGAEA is a relational database and an open access Data Publisher
- It is the designated database for SPP1158 (data + metadata!)
- Your data are stored georeferenced in space and time
- Your datasets are curated by real people (data curators)
- Your datasets receive a citable and permanent DOI
- Your datasets can be found via the internet and can be downloaded from the PANGAEA web page (but: moratorium possible!)
 - => Your data are safe with PANGAEA!
 - => Your data are reusable for others!

What? How? Where? When? Who? Stored? Data?

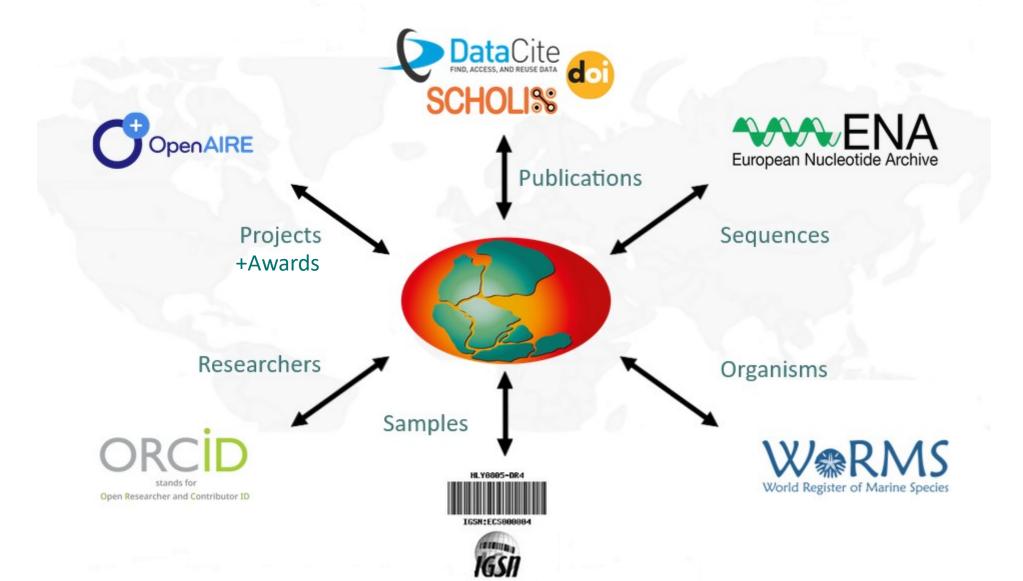
Method


Location



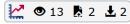


What? How? Where? When? Who? Stored? Data?



https://doi.org/10.1594/PANGAEA.968459

Citation:


Neudert, Mara; Arndt, Stefanie (2024): Thickness and properties of sea ice and snow of land-fast sea ice in Atka Bay in November and December 2022 [dataset]. PANGAEA, ohttps://doi.org/10.1594/ PANGAEA.968459

Always quote citation above when using data! You can download the citation in several formats below.

Published: 2024-07-29 • **DOI registered:** 2024-08-27

RIS Citation BIBTEX Citation & Copy Citation

Show Map Google Earth

Abstract:

Manual measurements of sea ice thickness, sub-ice platelet layer thickness, freeboard, and snow thickness are distributed evenly along four transect across Atka Bay in austral summer 2022. At each measurement location, 2 to 5 holes were drilled through the ice in order to

Leaflet | Base layer © Esri, Maxar, Earthstar, GIS User

When you submit data,

be sure to state it is a

SPP1158 dataset

Community

determine the aforementioned parameters, one in the center and one in a distance of five meters scale spatial variabilities. The measurements have been mainly conducted by the 42nd overwinteri

and Mara Neudert.

Keyword(s):

AFIN Q; Atka Bay Q; DFG-SPP1158 Q; Sea ice Q; Sub-ice platelet layer Q

Project(s):

Antarctic Fast Ice Network (AFIN) Q

Priority Programme 1158 Antarctic Research with Comparable Investigations in Arctic Sea Ice Areas (SPP1158) Q

Sea Ice Physics @ AWI (AWI_Sealce) Q

Funding:

German Research Foundation (DFG) Q, grant/award no. **5472008** Q: Priority Programme 1158 Antarctic Research with Comparable Investigations in Arctic Sea Ice Areas

ATKA00SNe-2022a Q * Latitude: -70.683331 * Longitude: -7.824991 * Date/Time Start: 2022-11-07T10:45:00 * Date/Time End: 2022-11-07T11:30:00 * Location: Antarctica **Q** * Campaign: ANT-Land 2022 AFIN (AFIN2022, AFIN2022plus) **Q** * Basis: NEUMAYER III **Q** * Method/Device: Multiple investigations (MULT) **Q** (MULT)

ATKA00SNe-2022b \(\text{* Latitude: -70.683331 * Longiter 2022-11-29T21:40:00 * Location: Antarctica \(\text{* (a) Method/Device: Multiple investigations (MULT) \)

Event list: Link
Chief Scientist(s): Arndt, Stefanie

Campaign: ANT-Land_2022_AFIN Q

Optional name: AFIN2022, AFIN2022plus

Cruise Report: 6 https://doi.org/10.57738/BzPM_0784_2024

2022plus) **Q** * *Basis:* NEUMAYER III **Q** *

2:00:00 * *Date/Time End:*

0:45:00 * Date/Time End:

2022plus) 🔍 * *Basis:* NEUMAYER III 🔍 *

Method/Device: Multiple investigations (MULT)

Show more...

Parameter(s):

#	Name	Short Name	Unit	Principal Investigator	Method/Device	Comment
1	Event label Q	Event		Neudert, Mara Q		
2	Identification Q	ID		Neudert, Mara Q		
3	DATE/TIME Q	Date/Time		Neudert, Mara Q		Geocode – Start, UTC
4	DATE/TIME Q	Date/Time		Neudert, Mara Q		Geocode – End, UTC
5	LATITUDE Q	Latitude		Neudert, Mara Q		Geocode
6	LONGITUDE Q	Longitude		Neudert, Mara Q		Geocode
7	Air temperature at 2 m height Q	T2	°C			
8	Temperature, air Q	TTT	°C	Neudert, Mara 🔾	Digital thermometer $ extstyle{Q}$	Surface
9	Temperature, ice/snow Q	t	°C	✓ mneudert@awi.de	Digital thermometer $ extstyle{Q}$	Snow surface
10	Temperature_ice/snow Q	t	°C	Neugert Wara	Digital thermometer 🔾	Snow-ice interface
11	Temperature, ice/snow [°C] Q				Digital thermometer Q	
12	Short name: t [°C]			Ruler stick (RULER)	Center	
13	S Terms used:			Ruler stick (RULER)	Center	
	Temperature (O, http://qudt.org/1 lice (http://purl.obolibrary.org/ob		lynamicTemperature)Q	B 1		

License:

(cc) BY Creative Commons Attribution 4.0 International (CC-BY-4.0)

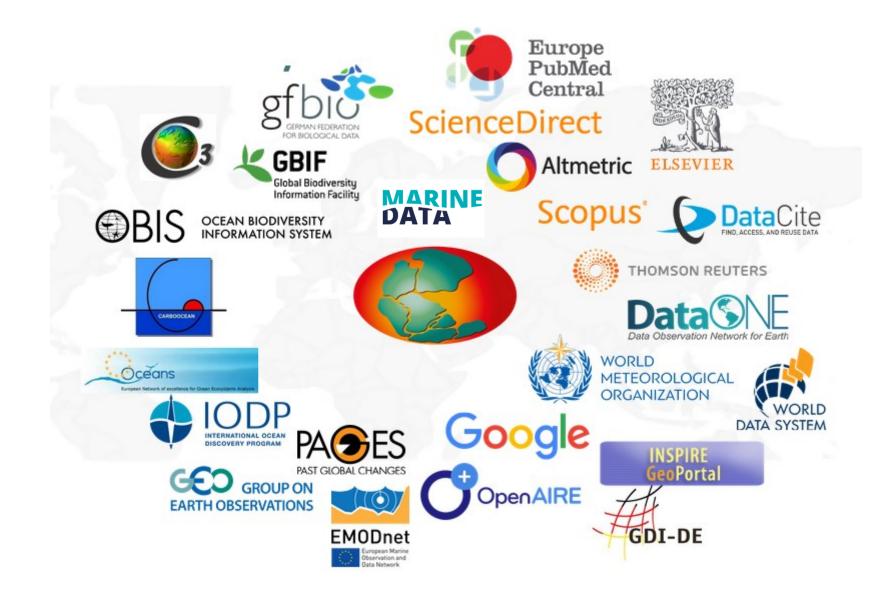
Status:

Curation Level: Enhanced curation (CurationLevelC) Q

Size:

586 data points

Data


L Download dataset as tab-delimited text — use the following character encoding: UTF-8: Unicode (PANGAEA default) ∨

1 6 Event	3 ① Date/Time (Start, UTC)	5 1 Latitude	6 ⊕ Longitude	7 ⊕ 		9 🗈 🝱 t [°C] (Snow surface,	10 🔁 🔼 t [°C] (Snow-ice	11 1 Temp [°C] (Digital thermometer)	ESES [m] (Center,		14 3 A Snow thick [m] (Center, Ruler stick)	15 1 Freeboard [m] (Center, Ruler stick)	16 1 Restance [m] (North, Ruler
					thermometer)	Digital thermom)	interface, Digital t)		stick)	stick)			stick)
ATKA00SNw-2022	2022-11-05T10:50	-70.67499	-7.96172	-12.3	-11.5	-10.0	-7.1	-2.0	196.5	500.0	75	-2.0	189.5
ATKA02SNw-2022a	2022-11-05T12:15	-70.65662	-7.96169	-11.3	-11.5	-5.6		-2.6	179.5	447.5	314	-197.0	205.5
ATKA04SNw-2022	2022-11-05T15:02	-70.63831	-7.96167	-10.2	-10.9	-10.6	-10.1	-2.5	199.5	378.0	15	17.0	191.5
ATKA06SNw-2022	2022-11-05T16:00	-70.62083	-7.96166	-11.5	-11.6	-10.3	-9.5	-2.5	203.5	437.5	21	22.0	190.5
ATKA08SNw-2022	2022-11-05T16:55	-70.60335	-7.96160	-12.2	-13.2	-10.2	-10.0	-2.7	210.5	430.0	10	20.0	208.5

Data/metadata discovery

How do I submit?

https://www.pangaea.de/submit/

Ask me: Amelie Driemel <u>amelie.driemel@awi.de</u>

Look at https://wiki.pangaea.de

R and Python scripts to access data: https://www.pangaea.de/tools/

"The coolest thing to do with your data might be thought of by someone else" [Rufus Pollock]