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Ice crystals and snowflakes are out-of-equilibrium growth shapes which are a result of a nonlinear growth
dynamics as a consequence of the extremal property of the associated thermodynamic potential. A special
role during the pattern formation play kink solutions that represent the different state of order at the phase
boundaries. The mechanisms of the kink formation give an insight into the dynamics of phase transitions
in particular the formation and growth of ice nuclei. In this paper is described a relationship between the

classical nucleation theory and Kobayashi’s phase field theory for ice crystal growth. The critical length of the
nuclei is derived from the linear stability analysis for the phase field model and is identified with the result of
the classical nucleation theory. We modify original Kobayashi’s phase field model by including freezing point
depression due to salt in order to describe the phase boundary of the fine network and cavities filled with
brine which are formed during the freezing process in sea ice.

1. Introduction

In atmosphere as well as on supercooled surfaces or in polar regions
of the ocean, structures form spontaneously in supercooled water. An
unmanageable number of water models shows the incompleteness of
our understanding of water [1]. Sodium and chloride ions are another
challenge in freezing salt solutions [2], although seawater also contains
many other halides and ions [3] with CaCO; precipitation in sea ice and
presence of ikaite [4]. In addition, diverse organic substrates can act as
ubiquitous biological ice nucleators both in clouds [5,6]. The kind of
the growth of ice crystals should allow us to draw conclusions from the
environmental conditions in the atmosphere or in water-ice interface if
the mechanisms of the anisotropic growth are known. Nakaya used to
say, the morphology of snow crystals are like hieroglyphs sent to us
from the sky [7].

First, each complex phenomenon should break down into its essen-
tial processes and we use phase field methods on mesoscopic scale.This
approach can describe very different appearances of crystals as fern-
like dendrite pattern [8-11] and can also be found on the freezing soap
bubble (see Fig. 1) or as hexagonal prisms (see Fig. 2). Other authors
has been investigated the morphological instability of the Saffman—
Taylor finger depending on the surface tension and the growth of side
branches [12-14] or discuss the difference between a diffuse interface
(Cahn-Hilliard models) [15-17] and a sharp interface (Stefan and Hele-
Shaw problem [18-21] or the morphological instability according to
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Sekerka [22]. In particular, the anisotropic Hele-Shaw flows is ana-
lyzed experimentally and theoretically in various papers [23-27] using
complex analysis. On the other hand any curve in the plane may be
parametrized by the arc length (natural representation) and measured
by the differential-geometric invariant called the curvature. A corre-
sponding differential-geometric evolution equation for the interface is
studied in different publications [28-32]. A rigorous asymptotic anal-
ysis of Caginalp’s model leads to the Gibbs-Thomson condition which
relates the temperature at the interface to the surface tension and cur-
vature. An alternative model to the Caginalp framework is derived by
Penrose and Fife [33]. They published a thermodynamically consistent
phase field type model for the kinetics of phase transitions. Due to the
integrating factor referred to above, the Penrose-Fife model includes
more mathematical difficulties than the Caginalp-approach. For this
reason the Caginalp model is used mostly [34]. Kobayashi [35,36] sim-
ulated both hexagonal ice crystals and dendritic structures during the
supercooling solidification without discontinuity in the first derivative
of the free energy and Wheeler et al. analyzed the method concerning
the realistic assumptions [37]. In Fig. 1(a) we generated a density plot
of the order parameter 0 < 5(¢{) < 1 using the Kobayashi model. The
order parameter is also called the phase field. Granasy [38] proposed
a Cahn-Hilliard-type model of ice nucleation for a radially symmetric
case. In this case, the three-dimensional problem can be reduced to a
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Fig. 1. Different appearance of crystals: (a) Two dimensional simulation correspond to the Kobayashi-model, (b) snapshot of a frozen soap bubble, December 2021, (c¢) & (d) two
time steps of freezing soap bubble, February 2021 (private recordings).

a) b)

<— critical length——>

Fig. 2. (a) The oxygen atoms of ice forms a tetraeder with distances of 4.52 A. (b) Critical length of a nucleus corresponds to about 5 hexagonal rings.
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Dimensionless quantities

p Mean squared displacement of
sodium and chloride ions

€ Thickness of transition layer

¢ Length

& Inflection point of order

1

parameter n({,) = 3

¢, Critical length

¢ Wave variable

n Order parameter

40 Applied temperature difference

K Wave number

K, Critical wave number

2 Eigenvalue

p Radius of nucleus

Pe Critical radius

Pa Length at AG,,, =0

c Salinity

c Mean of Salinity

OL Landau-Ginzburg free energy
density

12 Landau free energy density

oG Ginzburg free energy density

D Landau-Ginzburg free energy

D, Landau free energy

D; Ginzburg free energy

T Time

7 Time scaling factor

7 Parameter for time dependent
coefficient g

d Parameter for time dependent

coefficient g

Constant freezing velocity

m Temperature dependent driving
force parameter

Number of water molecules
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o)

v 2

one-dimensional problem because it is sufficient to consider the radius.
He adopted a quartic free energy density-order parameter relation-
ship published by Harrowell and Oxtoby [39]. We extend Kobayashi’s
approach by adding a salinity flow. We divide the article into time-
independent and time-dependent processes and try to find a connection
between phase field and classical nucleation theory in Section 4.3. Sim-
ilar to Grandi [40] we use the Landau-Ginzburg theory [41]. With the
assumption that salt is a passive tracer which does not undergo a phase
transition we avoid the 4th derivation according to Cahn-Hilliard [42].
In the following we considers one-dimensional boundaries. In this
paper we designate the transition layers as kinks [43,44] according
to Appendix A.3. This one-dimensional approach is suitable to be
extended to higher dimensions (see Fig. 1) as well as to sea water.
A special focus of the present work will be stability of the appearing
kink distribution in dependence of sea water salinity. The thickness
of the boundary layers corresponds to the double critical radius of
a nucleus and is found to be the length of five hexagons (see Fig.
2). The article is divided into three main sections: "Time-independent
processes” (Section 2), ”Time-dependent processes” (Section 3), and
”Numerical solutions” (Section 4). Section 4 connects time-independent
irreversible thermodynamic processes with the time-dependent phase
field theory and extends the Kobayashi model with a salinity equation.
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2. Time-independent processes
2.1. Phase field approach

The Landau-Ginzburg free energy density ¢; ;1) = @ (1) + ¢g(n)
is composed of the Landau free energy density ¢; and the Ginzburg
term of free energy density ¢ ;. In the three-dimensional case, the index
“L” denotes the volume term or Landau potential and the index “G”
refers to the gradient term introduced by Vitaly Ginzburg. A general
description can be found in Chapter 13 in [45]. For a time-dependent
consideration, the Landau-Ginzburg free energy is often referred to as
the Lyapunov function in the mathematical literature. The Landau free
energy density bases on the assumption, that the Gibbs free energy
density can be expanded in a series about the order parameter 5(¢) [35]

1 4_(1_ﬁ) 3 (l_m) 2

U U K Vi A

m o

mo 1
2 (@)
with the order parameter n(¢) as a function of the position ¢ such as a

driving force parameter m(4(©)) for phase transition

1 AT, — AT
mA®) =3 —ar—
0

@r(n(§), m(40)) =

15 2, m 3
= -7 7’_] + =1 -

= %(1 - 46), 2

which determines the shape of the double well potential density ¢;
depending on the temperature AT = T — T, with the dimensionless
temperature difference

ATt T-Ty

40=2"2 = ,
ATy, T,—T,

3

where T, is the lowest supercooling temperature that can be reached
and T, the equilibrium temperature. A restriction of the Landau
theory relates to the value of the order parameter 5({). This must
be small enough for the development of the thermodynamic potential
to be interrupted after the fourth order in 5. The value of the order
parameter changes with the temperature difference from the critical
temperature. In order for the development to be valid this difference
must be sufficiently small. In addition, the evolution coefficients must
behave smoothly in the vicinity of the critical point, i.e. they must not
become singular, so that the thermodynamic potential remains finite.
We use the approach of Kobayashi, where the temperature dependence
of the evolution coefficients are chosen such that the order parameter
n(¢) remains small enough, i.e. #({) < 1.

2.2. Phase boundary solutions

The double well potential is symmetrical because of m = 0. There-
fore we have two double zeros at #({) = 0 and n({) = 1. There is
neither supercooling or overheating. The Landau free energy density
@1 (1), n:(£)) can be written

@M. ne) = (&), m) + o), 4)

with the gradient term ¢; = %ng(g). We denote Z—” = N, ”—Z =1,
etc. The coefficient ¢ determines the width of the transition regions
between the domains and corresponds to the double critical radius
of a stable nucleus. At the moment we consider only the symmetric
double-well potential density, i.e. 40 =1 or m = 0. The part ¢; of the

Landau-Ginzburg free energy density ¢,

® (f1f1)=é o 2+l,72(,1_1)2 &)
LGYLAET= 5\ o¢ 4
—_—
»G #L

possesses the double roots 7, = 0 and 7, = 1. If the variational action
principle in Appendix A.1 according to dimensionless quantities

O
5 /g 161 nAE =0 ®
1

Physica D: Nonlinear Phenomena 481 (2025) 134855

is applied to the free energy density, we obtain the Euler-Lagrange
equation according to Eq. (A.1)

006 d 096 _

_ 4 )]
on d¢ ong

and subsequently

1 2070 _ 9oL ,9%n

- —DQ2p=1—-e*— = —gf— =0, 8

SN =D@2n—1)—e e o Con 8)

with the solutions = 0, = 1L and n = 1. Addition to the trivial

2
solutions we search the first non trivial steady state solution for the

phase field model. We also find a solution as a function of ¢. For this
purpose Eq. (8) can be integrated with respect to integration by parts
on the right hand side

99, o 2 / 9*n 9n
=L e = 0, 9
/M%gg oz o™ ©
and obtain an expression analogous to the virial theorem
2
1 2 67[
== — . 10
@)= 5¢€ <6C> (10)
———
2

which reflects the conservation of energy. This fact will allow us to
solve the static problem by quadrature

n) d
n -1
g-g,,:g/ O _ 42V/2¢ tanh™' (1 = 2p), an
n&) V2@ (m=0)
and obtain as a result of the quadrature, two solutions are obtained, a
kink and an antikink according to the opposite choice of the sign([46])

n© =3 (17w (V26 -8)) = ————— (2

1+ expe 2 - 5)

1
2
The static solution (12) corresponds to a zero-energy trajectory because
of ¢; —pg =0 as a result of the symmetry of the non linear double-well
potential. The stationary solution #7(¢) in Eq. (12) can be designated
as kink or antikink and is a sigmoid function where two states are
also distinguished. Eq. (12) is not a solution to a classical linear wave
equation (26). The order parameter 7(¢) can be seen as a quantitative
relationship between the probabilities of the two states being occupied,
ni¢) > % (mostly ice) and 5({) < % (mostly water) in Fig. 3. The
inflection point of the order parameter #(¢) is determined by #({ = ¢;,) =
%. An infinitely thin transition layer (¢ — 0)

0 for¢>¢,
lim 1 =41 forc=g, 13)
1+exp<\2/—f(¢—§b)) 1 for¢ <,

only separates the states n = 0 and # = 1. Until now, only boundary
conditions could be defined that do not allow any predictions about the
freezing velocity. Therefore, time-dependent processes will considered
in Section 3. By means of the slope of the kink #,({) determined by ¢

m@ __ 1

F
9 4\/55
we obtain the corresponding stationary Landau-Ginzburg free energy
density ¢;({)

sech? (ﬁ Ve - g,,)) (14)

P16(0) = 06 + 0L =206 =20, = €N() = 31—2 sech* (i\/i(c - e“b)) :
(15)

with the maximum ¢;({ =¢,) = 31—2 If we integrate Eq. (15) we get the
Landau-Ginzburg free energy @,
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Fig. 3. (a) Maximal superheating (red) and supercooling (blue). (b) Interface of the thickness of the twice critical radius ¢, = 2p, with the critical length ¢,. This length ¢, is the
shortest length as result of the stability analysis in Fig. 9 in Section 4.3 This length ¢, results from the intersection point of the eigenvalue r,1 with the wave number axis «,
i.e. 7)4 = 0. Karim and Haymet [47] used a TIP4P water model to calculate the oxygen density profile during a melting process. Granésy [38] adopted this molecular dynamics
simulation for its approach. The transition region between solid and liquid corresponds to the length ¢.. The melting process of ice (TIP3P-water model [48]) from solid state to

liquid state was carried out using a molecular dynamic simulation.

Dg =/ @rc&)ds

0

() CR) (R
= 128'

A sharp interface boundary is associated with a small Landau free
energy density and consequently with a small Landau free energy.
The order parameter n({,m = 0) in Eq. (12), the free energy density
@ (¢,m = 0) in Eq. (15) and the free energy @;({,m = 0) in Eq. (16)
are solutions for the stationary case.

(16)

3. Time-dependent processes

For the time-dependent non-equilibrium case, we consider the
Landau-Ginzburg free energy @; . as a function of an time and space
dependent order parameter 5(z,¢). The dynamics of the order parame-
ter is described by the time dependent Landau-Ginzburg theory (TDLG
theory)

on(z, ) 0P _ 3 (3 ) 2 (1 20271(1,()
e A U R L O m)"” o2
_ 1 2n(x,0)
_)1(}’]—1)(—1’]+§—m)+8 5—4'2’ (17)
with the dimensionless time z = IL Here 7, = ;—1 denotes a di-
0 0

mensionless time factor. The right side of the TDLG equation results
from a variation derivative. The time-dependent term 7,2 is not a
result of the variation and was only postulated. To introduce the
parameter “time” for a irreversible process, an additional assumption
is needed [49] sketched in Appendix A.5. At this point it should be
noted that the jump of 5 at the freezing point, which characterizes a
first-order phase transition, is missing because there is no root of 5 that
can become complex for any m. We used a spectral method in order to
solve the time-dependent partial differential equation. For this purpose
we use the so-called exponential time differencing scheme of second
order (ETD2) [50] described in Appendix A.2. The periodic boundary
conditions are ensured by a “Fast Fourier Transformation” (FFT).
3.1. Propagating wave front solutions of the TDLG equation for |m| < %
If a travelling wave front exists it can be written in the form (¢, 7) =
i(¢) with £ = ¢ + ér, where ¢ is the wave speed. Substituting the

travelling wave form into Eq. (17), 7({) satisfies

e2d & 1 _(1 N\
T_o e —cn§+%ﬂ(§—M—ﬂ)(’1—1)
S —
—11(7)
_edad) 1 _
= CE e (1@ n(3-a)ema-ni) =0 a8)
— 1)

Because of the fixed phase relationship ¢ = {+¢z, the partial differential
equation (17) is reduced to an ordinary differential equation. The drift
term ¢7; is associated with a running wave front with a constant
velocity ¢. If the velocity ¢ = 0, Eq. (18) is reduced to the stationary case
(8). The fixed phase relation condition allows a reversible motion in the
reverse direction, if we replace by —z or ¢ by —¢. The function I7(#7)
possesses two zeros as fixed points, zero and one and a movable zero
within the interval [0,1] dependent on m. The part of the polynomial
I1(i7) that includes the coefficient m must be equal to the drift term

ez (§)

-1 19

if we want to get a wave with a constant speed. The differential
equation (19) can be integrated immediately

m - =
'l+(§) <1+tanh<E(C—Cb)>>, (20)
if=¢)= % Comparing solutions (20) and (12) in consideration of
¢ ¢, =& -, the wave velocity ¢ follows from % = }{—3, so that

c= \/Efim: gm 21)
0

because of 7, = £2. From Eq. (19) one obtains a Lagrange function £

o)\’ s
L) = %8(%) - %’"—2 @& (i) -1)* =o. 22)
O

as a result of the fixed phase relation. If one uses the fixed phase

relationship ¢ = ¢ + ¢z, then the following relationships also apply
) _ o) ol _ on) and ) _ 9il) o _ 9i€) _ —dn(c;T) so that

o ot o T ot or of ot of
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Fig. 4. A slight disturbance in the initial conditions of Eq. (32) determines which of the two states is reached. The trajectories run into one of the two minima at different times
of the double well ¢, (1) of Eq. (5). If the initial conditions are chosen as random variable, the behaviour is similar to the stochastic Weidlich model [51] and can therefore serve

as a basis for coupling to a stochastic model.

Using the virial theorem (10) for 7 satisfying the fixed phase relation,
4o (n,7) = 22m3(¢. ) = 1?6, ) (¢, ) = 1) and 2m? = £7¢* as well as

7, = €2 one finally obtains

2 2
_1{onz9) & (on(z,$)
L(ng.n;) = 2< 57 ) 2 T . @4
The Euler-Lagrange equation
oL(ng,n;) oL(ng,n;) oL(ng,n;)
e-te)  d OFUe M) d OB ns) (25)
on d¢  on, dr o,
yields a wave equation
2 2
20 (@8  n'(z.0) _ 0. (26)

L2 or2

that is satisfied

1 1
n(¢, 7)== | 1 Ftanh & +cr) 27)
(e (g 0))

according to the solution (20) if ¢ is replaced by ¢ + ér and &, = 0.
Eq. (27) solves the wave equation (26) because of the fixed phase
relationship { = ¢ + ¢z in contrast to Eq. (12). While in Eq. (17) the
temporal derivative has only been postulated, the temporal derivative
in the wave equation (26) is also obtained from a variational prob-
lem. Due to the fixed phase relationship, Eq. (27) is a topological
reversible solution, which is also reflected in the symmetry of the
wave equation (26). There is no specific direction of time for this
propagating wave. Translocated position of the stationary solution by
¢t due to velocity ¢ satisfies the condition of the zero-energy trajectory
in Eq. (12) or (18) with the boundary conditions lim;z_, 7 +(©)=0and
limg_,_ ., 7,(§) = 1 or lims_,, 7_({) = 1 and limg_,_, 7_({) = 0. Because
the shape of the travelling wave front does not change, the gradient part
of the Landau free energy density ¢, remains invariant and consider
only the Landau part ¢;
on(z) _

0B =g =nn =1 (-n+3). 28)

This can be transformed into a Bernoulli differential equation. Then we
shift # by %, ieen=n+ % and get

Q81O _ 1

= Y+ -1, (29)
az n 2 n
which can be converted into a linear differential equation
ou 1
AL u=2 30
T or + 2u (30)

by substitution u = . with the solution

Sy

u(r) = Cexp <—L> + 4. (31)
27,
Let us substitute again « in 7 and 7 in # and choose the initial condition
n(r = 0) = n,, we get the final solution

n(e) = % + ! . (32)

4+<(%_1_;)2_4>exp(_i)

The closer the initial conditions are to the phase transition point = %,
the later the two states = 0 and # = 1 in Fig. 4 are reached. The time
to reach a steady state is proportional to the square of the width of
the transition layer e. Furthermore, if € is proportional to the size of a
critical nucleus, the nucleation rate 11—0 becomes smaller, because larger

nuclei are required to prevent that these nuclei decay again.

4. Irreversible time-dependent numerical solutions for freezing
processes

4.1. Freezing of fresh water

The time dependent Eq. (17) describes a nucleation and isotropic
growth during the freezing. Between the dimensioned velocity ¢ and
the dimensionless velocity ¢ exists the relationship

Z, Z, Z,
=28 _R._R.pnE (33)
t th T to to 70
for a constant velocity at a constant temperature, i.e. m = const. This
method is used to determine ¢, if z, is known. The width of the liquid-
solid interface can be determined from a remelting process and this
length z, we use as a scaling factor. A arbitrary parameter z, allows us
to choose the dimensionless thickness of interface ¢ = lel in such a
way that the numerical problem is well-conditioned. Therefore, ¢ is the
well-conditioned width of the liquid-solid interface. From the chemical
potential
qT -Ty) Ay of
A” = — = =
Ty 0; 0z
and the specific interfacial potential [52,53]
2 B2
z5+h

f(zp) =
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Fig. 5. Time dependent evolution (a) for a successful nucleation process if A4 > ¢, or 4p > p, and (b) for an unsuccessful nucleation process if A <, or 4p < p, at the phase

transition point. Initial conditions: #(¢{,7 =0) = % + % exp <—§(1.4(§' - 2.5))8) (successful), (¢, =0) = % + % exp (—é(Z.B({ - 245))*3) (unsuccessful) for € = %, m=0.
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Fig. 7. (a) Because of the virial theorem (10) we have @, = & in the stationary case. (b) The Landau-Ginzburg energy disappears.
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Fig. 8. The initial formation of the phase boundaries leads to an increase in the gradient term while the Landau free energy decreases during the freezing process. Initial conditions
8 8 L\ 8 8
and parameter: n(r = 0,{) = 0A4+éexp (—é (% ((,’—5)) >+éexp (—é (g <r§ - %)) >+§ exp (—é (% ({— ?)) >+% exp (—é (% (o 15)) ), d=3,7,=03,f= ﬁ, =€ = ﬁ,

T, =273.15 K, T, =236.6 K, T =270.93 K.

results
(h* + z2)? _ 2h24y
k) 0du

The long-range potentials fall off quadratically with distance similar
to the van der Waals equation, in which the attractive pressure is
proportional to the square of the particle density. With & < z, i.e. A2+

zg ~ zg can be estimated the layer thickness for a remelting process [53]

1
2n2AyT, \3
yTo ) 34

e (- 25
09(Ty —T)

The surface tension 4y =y, + v, — 7, is composed of various in-
terfaces, liquid—vapour, solid-liquid and solid-vapour, ¢, is the density
of the liquid and ~ a constant of the order of a molecular spacing.
The distance A can be interpreted as an expression, which contributes
to a non-negligible residual volume according to the van der Waals
equation. More measurements at the interface were carried out by Bea-
glehole et al. [54,55] and Dosch et al. [56,57] and Furukawa et al. [58].
Besides the known measured values Tj, = 273.15 K, T - T, = 20 mK [59,
60], Ay = 6.64 % [53], 0, = 0.99 m q=23.33-10° % the value for the

molecular distance A still remains undetermined. For this, an interval
between 2.77A and 4.52A could be chosen according to Fig. 2. For
h = 2.89A this gives a layer thickness of z, = 2.84 nm, approximately
one order of magnitude greater than the molecular distance A. With
these values, the layer thickness z, coincides with the double critical
radius 2r,. The second scaling factor 7, = Zo% can be determined from
the freezing velocity c. The forming wurtzite structure of hexagonal ice

prefers the growth perpendicular to the c axis in the c-plane (Fig. 2).
The different growth rates are based on the observation that only two-
molecular groups are needed to build up the c-plane in contrast to the
a-plane, where four-molecular groups are needed and the probability
of the occurrence of the four-molecular group is much smaller than for
the two-molecular group [60,61]. For this reason, different empirical
relationships are given for the growth rates according to the growth
direction [60]. With a supercooling of 20 mK there is a freezing velocity
of c = %@ perpendicular to the c-axis [7], (Fig. 9.10 in [60]) and
therefore a scaling factor 7, = zof = ZO%\/EM%. A supercooling of
20 mK corresponds to m = 0.00027359 and we get f, = 0.02197 ms
with €2 = 7, = —. First, we consider only the nucleation process
without growth, i.e. without a propagation of the wave front, ¢ = 0
in Fig. 5, Fig. 6 and Fig. 7. Initially, the nucleus radius p(r = 0) is
larger than the critical radius p, = %g’c. A stable nucleus develops
without a subsequent growth process. For 7 — o a state of a dynamic
equilibrium between a melting and a freezing process is reached and
the nucleation is completed. The gradient term of the Landau free
energy @;(7) does not decrease over the entire time. This stabilizes the
structure in this open system. Because the Landau-Ginzburg free energy
®@; (1) no longer changes, the second phase, the growth is missing. In
contrast to Fig. 5a, the radius p(z = 0) of the nucleus in Fig. 5b is less
than the critical radius p.. The nucleus does develop to a maximum size,
but then it decays because the critical radius p, is not reached and is
not exceeded although 460 = 1 has been set. We remark, that the free
energy AG,, of the classical nucleation theory in Section 4.2 describes
only the free energy of the nucleus without an additional environment.
This is different, however, in the case of the phase field model where we
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integrate the Landau free energy over the entire system. The gradient
component of the Landau free energy @(r) is always smaller than or
equal to the potential component @, (r) because only the nucleation,
i.e. m = 0, is considered. In the next step we could assume arbitrary
initial conditions in the vicinity of # = 0. A certain freezing time is
necessary until the critical phase transition point # = 0.5 is reached. We
start the simulation in the vicinity of the phase transition point n = 0.5
in Fig. 8 because the first time period is not interesting for the structure
formation. During the freezing process, more and more boundary layers
disappear. Each loss of a boundary layer means a jump in the Landau—
Ginzburg free energy in Fig. 8. During the freezing fronts spread, the
Ginzburg term of the free energy @, does not change, the Landau term
@, decreases.

4.2. Classical nucleation theory
The classical nucleation theory considers the Gibbs free energy AG

which is composed of a bulk and a surface term. For the homogeneous
nucleation one obtains an equation for the Gibbs free energy barrier

AG,,,(r) = AG(r) + 4zr*y = NAu + 47’y and therefore
AG,, = — iﬂ'r3AgU + 471'r27 = —fzrr3 EA# + 47rr2y, (35)
3 N / 3 14

surface term
volume term

with the Gibbs free energy density 4g, = %, the volume V = 2713, the
number of molecules N, the radius r, the chemical potential Ay = p;—
as difference between the liquid and solid state and the interfacial
tension y between two phases. The necessary condition AG'(r) = 0

determines the critical radius r = r, = Zr = 2V ot the maximum of

Ag, Au N
for the smallest stable nucleus.

the Gibbs free energy 4G, = o A )2

Similar to the approach of MOI‘I et al. [62] we assume that the relation
Ny = AG = AH —TAS ~ AH - T4 = AH(l—TZO is also valid
approximately at the first-order phase transition, where T' = T, denotes
the deepest supercooling temperature, T, the freezing temperature, AS
the entropy and AH the Helmholtz free energy (enthalpy). Using the
density of ice ¢, with ¢;.,V = nMy,o for n = 1 mol and the specific
enthalpy (latent heat or heat of fusion) ¢ = %, the critical radius
. in the framework of the Gibbs-Thomson equgltion for an isotropic
sphere can be written in the form

2yTy

r

- _ (36)
oiceq(TO - Ts)
for T =T, < T,) with the Gibbs free energy
2
16 3 TO
46, =205 0 (37
¢ 3 oicezqz(TO - TS)Z

The number of molecules N in the critical nucleus is the ratio of the
total volume divided by the volume of one molecule

4 3 3
v 3% 3, 15 Ny,

NG =4 =22 =2Zay A,
ok M T)30ic.°¢% Vi

il (38)

Na Ny
with the Avogadro constant N, and the molar volume of water V,,.
For a first-order phase transition, a critical radius r, = 1.42 nm at the
maximum of the Gibbs free energy . AG =245.10712 erg is calculated
with the measured values y = 29 2, 0 = 0jce = 0917 —3, qg =333
10° erg ,To=273.15K and T, = 236.6 K. This critical nucleus contams

= 401 molecules with the molar volume of water V,, = 18 = The
contrlbutlons from the surface and volume term are equal if AG(r)
At this point the nucleus has the radius
3y 3yV 3yT,

A AN W (39)
Agu NA” Oiceq(TO - Tﬂ)

orr, = %rc. We use the relationships r = ryp and r, = ryp, in order to
introduce the dimensionless radius p and p, and obtain from Eq. (35)

AG,, (p) = 4xyrip? (1 - f) , (40)

a
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with 2r, = z,.
4.3. Bridge between phase field and classical nucleation theory

The relation between the critical length and the critical radius
¢, = 2p. connects the phase field theory with the classical nucleations
theory. Then the double critical radius 2p, from classic nucleation
theory should be equal to the critical length ¢, = i—” Here x, designed
the largest possible wave number in the TDLG equation if m = 0,
i.e. A(®) = 1. The critical value «, is determined by a linear stability
analysis by introducing small perturbations 7 = # — n, in Eq. (17) for
m = 0 and obtain the linearized TDGL equation

2 0%i(z,§) _

WD (L34 22 n

—=+3n,-3
0 or 2+’10 o

Using the Fourier ansatz 7 = exp(2r+/1§ )= exp(;l\r+i1c¢’ ), where A = ix
with the wave number x = 2?”, we find

N
A= =5 +3m( — 1) — 2. (42)

Only if the eigenvalues A in a certain range of wave numbers x are
larger than zero, structures can arise. This condition is fulfilled by the
fixed point n, = %

1'0;1\: i — 22 43)

The other two fixed points 7, = 0 and #n, = 1 are therefore excluded.

The critical wave number «, is obtained for 1 = 0 With ¢ = % we
_ 1 _ 2 _ 2 _
have x =k, = - = =5 = 5 and thus p, = 2pC = 10” An ice

structure can only arise if k <k, or p, < p. With respect to Eq. (16) we

set y =y @ = 3’0 2

= yo%e and obtain from Eq. (40)

AG, 2
tatz(p):47r££p2<l—£>. (a4
Yorg 24 Pa
The scaling parameters y, = \2[—;7/ and r, = %rc = %oq(ZTrToT) can
€ 0~ 4s

be obtained with respect to Egs. (16) and (36). The critical length of
the phase field theory can be identified with the critical radius of the
classical nucleation theory in Fig. 9. This is the unique point where
we can find a connection between phase field theory and equilibrium
thermodynamics in the time independent thermodynamics equilibrium.
In the following Section, the critical radii and the interfacial tensions
are compared with the simulations at the molecular level.

4.4. Comparison of the total Gibbs free energy AG,, with free energy
calculations of TIP4P model of H,O

In contrast to the phenomenological classical nucleation and growth
theory, molecular dynamics and Monte Carlo methods use partition
functions of a Einstein reference crystal for the calculation of the
free energy [63-65]. Because an interfacial tension is not explicitly
considered in this concept, only the total Gibbs free energy can be
compared with each other. Vlot et al. [65] performed a Monte Carlo
Simulation of a 4-site transferable intermolecular potential (TIP4P)
model with N =576 molecules and calculated for this grand canonical
ensemble a molar Gibbs free energy 54.9 nlj—il, i.e. AG,,, =9.11-10"Berg
for an ice nucleus. The Gibbs free energy for an ice nucleus of 578
molecules is 2.32-10~'? erg for an interfacial tension of 29 =% shown in
Fig. 10 on the left side. We consider only the right 1ntersectlon point
for the successful nucleation because the second intersection point
does not form an ice nucleus. We overestimate the Gibbs free energy
more than double compared to the Monte Carlo simulation. In order
to achieve the same Gibbs free energy, the interfacial tension must be
reduced to y = 24.65 % according to the right side of Fig. 10. The
experimentally determined values for the interfacial tension for liquid
water-ice y vary from 15 :% to 32 c%z [60]. This interfacial tensions
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Phase field theory

U
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Linear stability analysis
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Classical nucleation theory
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Fig. 9. Comparison between phase field theory and classical nucleation theory for estimation of critical nucleus: ¢, = %” =2p, with e = % and p, = % The double critical radius

p. is equal to the critical length ¢,, because the classical nucleation theory determines critical radii in contrast to the stébility analysis of phase field theory, which determines the
total length. The critical length ¢, is the length for the eigenvalue 7,4 =0 and the critical radius is determined from the maximum of Gibbs free energy.
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Fig. 10. Influence of the interfacial tension on the Gibbs free energy with y, =

determine the critical radii from r,(N =55) = 0.73nm to r.(N =538) =
1.57nm with the corresponding number of molecules N from 55 to
538. Unfortunately, the TIP4P water model underestimates the melting
temperature between 230K and 250K and overestimates the density
of ice between 0.942 % and 0.963 % [65]. As long as the range of
interfacial energy cannot be narrowed down more, the question of the
most plausible interfacial energy has to remain unanswered.

4.5. Freezing in seawater

For the description of seawater we extend the Landau-Ginzburg
functional for fresh water @, ; by interaction between salt and ice. The

10

0.010/8Gw=150-10"erg
0.008 ;.- - 15
Q 0.006 AGror=9/11- 19/ Berg
5§ 0.004
0.002
Pq Pa
0.000 o(N = 576)
—0.002
0.0 0.2 0.4 0.6 0.8
p=1
Yo = 4183.24 =% 1o = 1.920 nm
%l/, ro=2r.= igq(z.,yf_”,.\) and £ = .

Ginzburg-Landau function used in this manuscript subsumes a possible
mixing entropy for salt in the coupling terms on? and ox°. This is a
simplifying assumption compared to the description in [40] and follows
for seawater by considering the entropy of mixing

clno+ (1 —-ocln(l —o)

in the regime ¢ < 1. In this regime, the second term is unimportant. At
o =0, the term ¢ In ¢ is an indeterminate form 0xco. For the description
of the regime ¢ <« 1 (seawater), we therefore apply the L’Hospital rule:

(oY Lo
_zll—rf(l)(l/_a)’: m = (—¢?) = lim o,

lim(-olno) = -
-0 =00 c—0
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and replace olno by 0. The linear shift m by %o‘ describes a freezing
point depression due to the colligative property of salt in Eq. (45)
correspond to Appendix A.4

o (e 4o b
PL
+ %8(3-2)2. (45)
— ——
PG

The dimensionless salinity scaled to the maximal supercooling because
of Eq. (2) is o = %s with the cryoscopic constant K = —1.853 Km(l;g
of NaCl in water, the van’t Hoff-factor i = 2 for NaCl and the universal
gas constant R. The expression AT}, = T, —T, designates the temperature
difference between the freezing point T;, and the maximal supercooling
temperature 7, of pure water. The mean salinity of the oceans is
approximately s = 0.598 % or 35 ki and leads to a freezing point
RTUnMHZO

RT? RTanH20 . .
is = -is = s =

depression of K - is = VT
—22 K as result of the Cfausms—Clapeyron relation valld only for

NH;on20
low concentrations. According to the mole fraction x = 35 THion20

T000 “mnacy

0.0107 contain approximately 100 H,0 molecules 1 NaCl molecule, also
1Nat ion and 1 CI~. The value of § determines the width of the
salinity distribution similar to diffusion constant. The parameter § can
be determined from the condition that ¢ = 0 for = 1 in the equilibrium
case. This condition can be satisfied only as long as everything does not
thaw or freeze, because salinity ¢ is a conserved quantity. Analogous
to the potentials in thermodynamics the Landau-Ginzburg potential
density ¢;; guarantee the equality ')a(”oLaG = a;f;: for the existence
of a total differential. The functional derivatives yield the evolution
equations

0@l 9% _ aﬂ+6202n(T,C)
“or T~ ey on a2
e B3 (3_ (oL o _(1_( 1
= '7+(2 (m 2(’))" (2 (m 26))”
+520271(T,C)
a2
PR S P WY i (1 9)
=51 n)(n 2+m 20’)+€ oz (46)
90(.0) _ 0 6P _ 2 (115 1.,
Tor T T2 e 60g2< 3" ﬁ")' “7

The operator —52’3—22 leads to a continuity equation with the salinity
as a conserved quantity. Eq. (47) has a character of a Cahn-Hilliard
equation without the 4th derivative of the order parameter or salin-
ity. We would obtain such a type of equation for the salinity if we
replace /530.2 with a Ginzburg energy density %ﬂ (3—‘; ’ for the salinity
in Eq. (45). However, it was not absolutely necessary to consider the
fourth derivative for a brine channel forrnation The salinity flow is
balanced by the opposite fluxes —és < n® and —s ﬁﬂz This flux is
determined by the parameter g in Eq. (47) In the stationary case, this
equation

do(z.0) _
7, 208050

202

"oz agz(l g_zlx”z_ﬁ")ﬂ) “8)
can be integrated
0= 6‘2 (g =37 —p0)+Cu. 49
with C; =0 if g—g = z = 0. As a result of the second integration
0= l113—1112—[3z7+C2 (50)
6 4
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the constant C, is determined from the condition 6(,,,,) = 6, and
11
obtain C, = fio,;, + 12, - gﬂmax> and therefore
1 1 1
0=n2(gn— Z)—nf,,ax(gnmax— ) B = Gpin) (51)
For 6 =0, and  =1,,, we get
2 1 1 2 1 1
Min \ 6Mmin = 3 ) = Mnax \ §"max ~
= . (52)

Omax ~ Omin

Because the values #,,, = 0 and 7#,,, = 1 in the stationary case
% = 0 be achieved

? = Nmin> .
Ho = §—m+ EG, (53)
1= Nimax

the parameter g is simplified to

1
12(o,

max ~

p= (54)

O—min) ’
Should salt completely suppressed from the ice, i.e. ¢,,;, = 0 then we
obtain

1
120,

max

p= (55)

According to Eq. (46) or (53) the unstable fixed point #, = % is reached

if %a = m and obtain ¢ ('1 = %) =2m. If we set ,,,, = 1 and ¢,,;, = 0 in
Eq. (51) then fo = n* (ln - 1) ﬁ Because of fo,,,, = fo(n=0)= =
and fo(n = 1) = L we find 6,,,, = o(n = 0) = 26 (;1 - %) = 4m and
finally

1 1
b=t = % 56)

max

Three cases can be distinguished:

D B< 7 Opax = Opin > 26
(II) ﬂ = ﬁ: Omax ~ Omin = 26
(M > 2= Oy = Opin < 26

In case (I), the salinity becomes negative during the desalination
of ice and remains negative. In case (II), the salinity becomes negative
during the desalination of ice but becomes exactly 0 in the stationary
state or if the nucleation process is complete and only a wave front is
still propagating. Assuming condition (II), negative salinities can only
occur initially during the nucleation phase. Case (III) is a necessary
condition, that the salinity does remain non-negative during the entire
process. In addition, a minimum threshold of g must also be exceeded.
The consequence of this is that a residual salinity always remains in the
ice. Alternatively, a time-dependent coefficient f,(z) of the kind

d+1 R

lim
) 48m

T—00

lim f(z) =
e d + exp (
could also be introduced with two suitable constants d and r; in Fig.
11 that prevent the initial overshoot of the salinity into the negative
range. After a certain cooling phase, spatial distribution of ordered
phase could occur at the critical phase transition point = % as shown
in Fig. 12.

The result from numerical integration of Egs. (46) and (47) is shown
in Fig. 12. On the left two growing nuclei merge, in the centre the
critical radius is not reached and the nucleus decays again and on the
right a wave front moves until the salinity slows down the freezing
front. The fusion of phase boundaries and the disappearance of an
unstable nucleus leads to jumps in free energy ®;;, ®;, ®; and
porosity P = 1 — % in Fig. 13. In contrast to fresh water in
Fig. 8, the Landau free energy can also increase if the porosity increases
due to the loss of an unstable nucleus at = = 13.5.
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Fig. 11. The salinity flow is controlled by the time dependent coefficient p with
T, =236.6 K, T, =273.15 K, T =270.93 K.

5. Summary and conclusion

For Kobayashi’s time-dependent approach, a link to classical time-
independent classical nucleation theory is proposed. In a further step,
salinity is introduced as a second field and Kobayashi’s approach is
extended. Without an alternating temperature field or an changing
salinity field, the maximum of the eigenvalue 1-0;1\ in Fig. 9 is assigned
to wave number x = 0, that means, the wave length 1 — oo. The

frozen areas are not completely desalinated because flux in ice —éezng ,

152r1§§ including in Eq. (47). The

is opposed by a flux out from ice i
parameter f is determined by the condition that the salinity is positive.
In the steady state this can be done by integrating of Eq. (48) for
suitable boundary conditions for the salinity. For the approach to the
steady state we introduce the time dependent f(r) that always fulfils
the condition 0 < ¢ < o6,,, at each ¢. In our extended Kobayashi
approach the structure size is limited by a salinity profile that develops
during the ice growth. This approach described the growth of the ice
domain at small supercooling in connection with the salinity equation
in difference to [42]. Furthermore, we used our enhanced model in
order to simulate the fusion of the ice domains. The fusion of ice
domains reduce the number of phase boundaries. This results in jumps
of the Landau-Ginzburg energy at the time of domain fusions. The
salinity-dependent isotropic approach can be extended with respect to
different growth rates in different directions, resulting in anisotropic
growth [66,67].
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Appendix
A.1. First variation - one dimension

The variation of the functional F;;[y,s] = [, TZ frg(z.n,ny)dz yields

22
/ ofrg(s,n,n;)dz

21

Z2
o0Fglnl = 6/ fra(s,n.n)dz =
Z]

_ /z2 <3fL05”+ ofLg
z) on

on
and the integration by parts
Z a zy a
/ ﬁ&nzdz = 5/ fLandz
P P
on,
Zy a
= —/ 4 J16 ondz.
21

-5 [‘ULGn]ZZ_/ZZi()fLGndZ
on, 2 5 dz ong
———
dz on,

6}1Z> dz,

z

0 2 rmogg
fLGan 5 d fLGndz
dz on
z; z3 z
=0

Hence becomes

) 2 (9
§F glnl =6 / fron)dz = / < gff
z) zy

or the first variation

b p ] = 91 d 9fig
on Lo on dz on,

The first variation of the Landau-Ginzburg free energy density f;;

7]
—i—fLG ondz,
dz on,

(A1)

1 1 m 1 m Z% an 2
4 3 2
A (L L Ly ) A2
Srg@nz) = gn (2 3)”+<4 2)"+2<az)’ A-2)
—_——
fL fe
with m(AT) = %ATZ;AT yields corresponding to Egs. (A.1)
0
on(t.z) _ 8Fg _ _9fie  d 9fic
o on o dz on,
= 3 3_ 2 (1 20%9(t, 2)
= "+(2 m)"’ (2 m)'”zl 922
_ 1 232’1([’2)
== (n=3+m)+ 3 =TEE %)

Here n represents the order parameter, AT = T — T, the temperature
difference between the current temperature T and the supercooling
temperature T, with the equilibrium temperature T}, the space variable
z and the time 7. The corresponding greek letters denote the dimension-
less quantities, linked by scaling factors z, and 7, that means z = z,¢
and t = tyr. We have to do

on _ on ot
or ot ot
o _ onoz
o~ 0z al’
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Fig. 12. In contrast to Fig. 8, the salinity here prevents the entire area from being frozen. Initial conditions and parameter: n(z = 0,{) = 04 + %exp (—% (g « —5)) ) +
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Fig. 13. The porosity increases immediately when a unstable nucleus disappears. This
correlates with the increase of Landau free energy @, .
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T, =273.15K, T, =236.6 K,

a2 9z2 \o¢ 0z ¢’

——
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inwith 2 = L1 o _ Lon % _ 1% i
and obtain with 2} = o 0z T a0 o T DB the equation
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and choose for example
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2
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0
In Eq. (A.4), z; and 1, are scaling parameters. Therefore, we can set
£ _ | without loss of generality. The factors 7, and z,, are determined
from experimental values in Section 4.1. and do not depend on ¢,
and z;. Because 1, and z, are free parameters, we can set €2 = 7,
which also avoids numerical instabilities of an ill-conditioned problem.
Accordingly is

3

on(z, 1 o*n(r,
WD (3= (Lo 12950
62
=n(l-n) (;1— % +m> +£2%, (A.5)

and the corresponding dimensionless Landau-Ginzburg free energy
1L, (0n

density ¢; g
2
2° <a¢> '

——

PG

(/’LG(”a”Ig)=3‘"74—(%_§)’73+(i_§)ﬂ2+ (A.6)

73
A.2. Exponential time differencing

Cox and Matthews [50] discussed several numerical iteration meth-
ods. We use the higher-order approximation for exponential time dif-
ferencing method (ETD2) described by Egs. (5) and (6) therein. The
procedure is illustrated using Eq. (A.5). The real one-dimensional space
is discretized and a reciprocal space is assigned to this space

¢ = %(0,1,...,N—1), real space
2 N N .
K = T (0,1,...,7—1,0,—7+1,...,—1>, reciprocal space

where N is the number of grid points and L is the total length.
Eq. (17) must be transformed into reciprocal space by means of Fourier
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transformation in order to be able to apply the iteration method

F ey m(E)(K) = Fry(1(8)) exp(AAT) + (f1 f3)e(ny + (2S5 e(n=1>

linear nonlinear
with
2
A= L (l—m>+£—(ix)2,
75 \2 70
7 = (1+ AAr)exp(AAr) — 1 —2AAT
e A2Ar ’
= (—exp(Ad47) + 1 + AAr
- A2z ’
1 3
f3= —P(—n3+(——m>n2)(1f)- (A7)
70 2

In order to avoid indefinite expressions, the two limit values
. 3

lim f; = = Ar,

A0 N 2

. 1
1 =—=A
AIE})f2 2 ’

should be implied separately in the numerics. Finally. the inverse
Fourier transform

1) = F~ (Fruny ) )E)

yields the order parameter # in real space.
A.3. Instanton - kink - wavefront

The most general term is a “wavefront”. We can adopt Rajara-
man’s intention that instantons are localized solutions of Euclidic field
equations with finite Euclidian action [46]. In order to show that the
solution of the time-independent Eq. (A.5)

2
n(l—n)(n—%+m)+engZ=O (A.8)
possesses the properties of an instanton, at least one corresponding
time-dependent equation must exist. Eq. (A.8) should result from a
suitable substitution of time of the time-dependent equation. The time-
independent Eq. (A.8) for a static state can be obtained from a corre-
sponding non linear time-dependent wave equation

1 ,Pn(,0) 1 ,0% _ 5 (3 N, (1
2° T o 2592 =" +(2 m)" (2 m)"’ (A9
if we replace = = —i¢ we obtain Eq. (A.8).

A.4. Dimensionless equations with salinity - one dimension

The first variation of the Landau free energy density f;

o= = (5o )+ (o)

L
22 [ an\2
1 n
+ ==, A.10
2 < 0z ) ( )
——
fo
with ¢ = % Tf_‘”;() s and m(AT) = %ATZ;OAT yields corresponding to Egs.
otz - 8Fg _ 9fic +iafLG
o on on | dz on,

|
|
=
W
+
—
(S)
|
—
3
|
|
Q
S—
SN—
=
o

2
(3= (n=30)) e g5
(

1 1 *nt, z)
=n-n)(n-%+m-= ) , A1l
nd=m\n=-z+m=30)+z o (A.11)
902 SFig _ 9fic  d 9fic
o 50 dc  dz do,
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1 1
= g’l—zﬂ—ﬂff

Here n represents the order parameter, AT = T — T, the temperature
difference between the current temperature T and the supercooling
temperature T, with the equilibrium temperature Tj,, s the molality of
the salinity, K the cryoscopic constant, i the van’t Hoff factor, z the
space variable and ¢ the time. The corresponding greek letters denote
the dimensionless quantities, linked by scaling factors z, and ¢,, that
means z = zo{ and ¢ = ;7. We have to do

(A.12)

on _ onor
or ot ot
do _ 9o 0t
ot ot ot
o _ onoz
& oz ac’
02_,7_02_,,<a_z>2 o o
0c2  0z2 \ ¢ oz 92’
——
=0
_62”2—2 @2 a_zz+ &0_}1_'_ gzﬂ
ac2 0z) \oc) ™" o2 9z 7"\or) oz
——

Il
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|Q;
RN RN]
~—
N
/N
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Q)le
N =
N————
N

=
QJlQJ
5

() S
v

0% on\* 2 2z a 2 92
o = 3n|2n o % +7 B o +n % on
il 0z ¢ 02 oz o¢ 0z2

0%c %o <0z>2 oo 9%z

o2~ a2 \a¢ z o
——
=0

inwith 4 = Lo % _ Loo on _ lon n _ 12
and obtain with o T dgoc’ o T fgor’ oz zgor’ 92z oc?’
PR _ AR PP _ 1P Po_ 120 ~
022 20027 022 - 2 027 oz - 22 og? the equations

2

1y on(z,0) 5 3, s 1, 1 1 Zi *n(r,8)
=2 = -+ I —mn° + Zon° — sn+mn— son+ — —————,
N n 2'10’1 mn 20'11 211 mn 20';1 zg o2
5] (30'(T,C) _ 1 3 1 2
n or el gl TP
and choose again
no_
P
2
J_p
%
Accordingly is
on(z,§) 3 (3 ( 1 )) 2

= +(=- -
070 CERC IR VA

~ %n(z,
(57 (m=37)) e 52

_ 1 1 20%1(z,0)

_r](l—ﬁ)<n—§+m—za)+£ 6—4‘2’ (A.13)
do(r, 1 1
TOM =’ = =n* - fo. (A14)

ot 6 4
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The conserved equation for salinity is given by

do(t, z) ) 0% <1 3 1, )
2002 20" (L 1o Al
B Fo2 6" Ty o) A19)
noo(wd) AP (15 1, A
hoelee) 210" (15 Lo , A.16
PR 2 e — 4" ﬁzga (A.16)
000 _ 20> (13 1,
e T o (6 Y _ﬂa)’ A17)

and the corresponding dimensionless Landau-Ginzburg free energy

density ¢;; of Eq. (A.2)
o= - (4o de)) o+ (-4 o de)) e e

PL
2
1 2 ()i’]
2 = Al
+ 7€ <a¢> (A.18)
——
[Ze]

A.5. TIrreversibility

A large number of Euler-Lagrange functions can be found which
are invariant with respect to time reversal, that means, either there
is only reversible processes or equations which do not contain ”time”
as an explicit parameter. It requires to introduce a non-equilibrium
entropy, a Boltzmann H-theorem, a projection operator or similar
assumptions [49,68-72] to achieve symmetry breaking in time. The
time-dependent term 7, g—z in

I, &)

o =f1(n—1)<—n+l—m)+

&2 0*n(z.$)
Jt 2

05?2

is based on this additional assumption and not a result of the variation
and was only postulated. This expression can be interpreted as a
deterministic equivalent to a random assumption. Only for the special
case of a running wave it is possible to specify a Lagrange function for
the equation of motion, that includes the time 7.

(A.19)

Data availability

No data was used for the research described in the article.
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