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 A B S T R A C T

Ice crystals and snowflakes are out-of-equilibrium growth shapes which are a result of a nonlinear growth 
dynamics as a consequence of the extremal property of the associated thermodynamic potential. A special 
role during the pattern formation play kink solutions that represent the different state of order at the phase 
boundaries. The mechanisms of the kink formation give an insight into the dynamics of phase transitions 
in particular the formation and growth of ice nuclei. In this paper is described a relationship between the 
classical nucleation theory and Kobayashi’s phase field theory for ice crystal growth. The critical length of the 
nuclei is derived from the linear stability analysis for the phase field model and is identified with the result of 
the classical nucleation theory. We modify original Kobayashi’s phase field model by including freezing point 
depression due to salt in order to describe the phase boundary of the fine network and cavities filled with 
brine which are formed during the freezing process in sea ice.
1. Introduction

In atmosphere as well as on supercooled surfaces or in polar regions 
of the ocean, structures form spontaneously in supercooled water. An 
unmanageable number of water models shows the incompleteness of 
our understanding of water [1]. Sodium and chloride ions are another 
challenge in freezing salt solutions [2], although seawater also contains 
many other halides and ions [3] with CaCO3 precipitation in sea ice and 
presence of ikaite [4]. In addition, diverse organic substrates can act as 
ubiquitous biological ice nucleators both in clouds [5,6]. The kind of 
the growth of ice crystals should allow us to draw conclusions from the 
environmental conditions in the atmosphere or in water-ice interface if 
the mechanisms of the anisotropic growth are known. Nakaya used to 
say, the morphology of snow crystals are like hieroglyphs sent to us 
from the sky [7].

First, each complex phenomenon should break down into its essen-
tial processes and we use phase field methods on mesoscopic scale.This 
approach can describe very different appearances of crystals as fern-
like dendrite pattern [8–11] and can also be found on the freezing soap 
bubble (see Fig.  1) or as hexagonal prisms (see Fig.  2). Other authors 
has been investigated the morphological instability of the Saffman–
Taylor finger depending on the surface tension and the growth of side 
branches [12–14] or discuss the difference between a diffuse interface 
(Cahn–Hilliard models) [15–17] and a sharp interface (Stefan and Hele-
Shaw problem [18–21] or the morphological instability according to 
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Sekerka [22]. In particular, the anisotropic Hele-Shaw flows is ana-
lyzed experimentally and theoretically in various papers [23–27] using 
complex analysis. On the other hand any curve in the plane may be 
parametrized by the arc length (natural representation) and measured 
by the differential–geometric invariant called the curvature. A corre-
sponding differential–geometric evolution equation for the interface is 
studied in different publications [28–32]. A rigorous asymptotic anal-
ysis of Caginalp’s model leads to the Gibbs–Thomson condition which 
relates the temperature at the interface to the surface tension and cur-
vature. An alternative model to the Caginalp framework is derived by 
Penrose and Fife [33]. They published a thermodynamically consistent 
phase field type model for the kinetics of phase transitions. Due to the 
integrating factor referred to above, the Penrose–Fife model includes 
more mathematical difficulties than the Caginalp-approach. For this 
reason the Caginalp model is used mostly [34]. Kobayashi [35,36] sim-
ulated both hexagonal ice crystals and dendritic structures during the 
supercooling solidification without discontinuity in the first derivative 
of the free energy and Wheeler et al. analyzed the method concerning 
the realistic assumptions [37]. In Fig.  1(a) we generated a density plot 
of the order parameter 0 ≤ 𝜂(𝜁 ) ≤ 1 using the Kobayashi model. The 
order parameter is also called the phase field. Gránásy [38] proposed 
a Cahn–Hilliard-type model of ice nucleation for a radially symmetric 
case. In this case, the three-dimensional problem can be reduced to a
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Fig. 1. Different appearance of crystals: (a) Two dimensional simulation correspond to the Kobayashi-model,  (b) snapshot of a frozen soap bubble, December 2021, (c) & (d) two 
time steps of freezing soap bubble, February 2021 (private recordings).

Fig. 2. (a) The oxygen atoms of ice forms a tetraeder with distances of 4.52 Å. (b) Critical length of a nucleus corresponds to about 5 hexagonal rings.
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 Table of symbols
 Dimensional quantities
 Symbol Name Unit  
 𝑐 Experimental freezing velocity 1 m

s  
 𝑓𝐿𝐺 Landau–Ginzburg free energy 

density
1 J

m3 = 10 erg
cm3  

 𝐹𝐿𝐺 Landau–Ginzburg free energy 1 J = 107 erg  
 𝛥𝐺 Gibbs free energy difference 1 J = 107 erg  
 𝛥𝐺𝑡𝑜𝑡 Gibbs free energy barrier 1 J = 107 erg  
 𝛥𝐺𝑐 Gibbs free energy barrier at 

critical radius (maximum)
1 J = 107 erg  

 𝛥𝑔𝑣 Gibbs free energy density 
difference

1 J
m3 = 10 erg

cm3  

 𝛥𝐻 Helmholtz free energy difference 1 J = 107 erg  
 𝑘𝐵 Boltzmann constant 1.38 ⋅ 10−23 J

K  
 𝐾𝐹 Cryoscopic constant 1K kg

mol  
 ℎ Molecular spacing 1m = 1010 Å  
 𝑀 Molar mass 1 kg

mol = 103 g
mol  

 𝑛 Amount of substance 1 mol  
 𝑁𝐴 Avogadro constant 6.02 ⋅ 1023 1

mol  
 𝑞 Latent heat water (fusion) 3.33 ⋅ 109 erg

g  
 𝑟 Radius of nucleus 1 m  
 𝑟𝑐 Critical radius 1 m  
 𝑟𝑎 Length at 𝛥𝐺𝑡𝑜𝑡 = 0 1 m  
 𝑟0 Scaling factor 1 m  
 𝑠 Salinity 1 g

kg  
 𝛥𝑆 Entropy difference 1 J

K  
 𝑇 Applied temperature 1 K  
 𝑇0 Melting point of pure water 1 K  
 𝑇𝑠 Lowest supercooling temperature 

of pure water
1 K  

 𝛥𝑇 Temperature difference between 
applied temperature and lowest 
supercooling temperature

1 K  

 𝛥𝑇0 Temperature difference between 
melting point and lowest 
supercooling temperature

1 K  

 𝑡 Time 1 s  
 𝑡0 Time scaling factor 1 s  
 𝑡1 Time scaling factor 1 s  
 𝑉 Nucleus volume 1 m3  
 𝑉𝑚 Molar volume of water 18 cm3

mol  
 𝑧 Length 1 m  
 𝑧0 Length scaling factor 1 m  
 𝑧1 Length scaling factor 1 m  
 𝛾𝑠𝑙 Surface tension solid/liquid 1 erg

cm2  
 𝛾𝑠𝑣 Surface tension solid/vapour 1 erg

cm2  
 𝛾𝑙𝑣 Surface tension liquid/vapour 1 erg

cm2  
 𝛥𝛾 Surface tension (remelting 

process)
1 erg

cm2  

 𝛾 Surface tension (nucleation 
process)

1 erg
cm2  

 𝛥𝜇 Chemical potential 1 J  
 𝜇𝑙 Chemical potential for ice 1 g

cm3  
 𝜇𝑠 Chemical potential for water 1 g

cm3  
 𝜚𝑙 Density 1 g

cm3  
 𝜚𝑙 Density of liquid water 1 g

cm3  
 𝜚𝑖𝑐𝑒 Density of ice 0.917 g

cm3  
3 
 Dimensionless quantities
 𝛽 Mean squared displacement of 

sodium and chloride ions
 

 𝜀 Thickness of transition layer  
 𝜁 Length  
 𝜁𝑏 Inflection point of order 

parameter 𝜂(𝜁𝑏) = 1
2

 

 𝜁𝑐 Critical length  
 𝜁 Wave variable  
 𝜂 Order parameter  
 𝛥𝛩 Applied temperature difference  
 𝜅 Wave number  
 𝜅𝑐 Critical wave number  
 𝜆 Eigenvalue  
 𝜌 Radius of nucleus  
 𝜌𝑐 Critical radius  
 𝜌𝑎 Length at 𝛥𝐺𝑡𝑜𝑡 = 0  
 𝜎 Salinity  
 𝜎̄ Mean of Salinity  
 𝜑𝐿𝐺 Landau–Ginzburg free energy 

density
 

 𝜑𝐿 Landau free energy density  
 𝜑𝐺 Ginzburg free energy density  
 𝛷𝐿𝐺 Landau–Ginzburg free energy  
 𝛷𝐿 Landau free energy  
 𝛷𝐺 Ginzburg free energy  
 𝜏 Time  
 𝜏0 Time scaling factor  
 𝜏1 Parameter for time dependent 

coefficient 𝛽
 

 𝑑 Parameter for time dependent 
coefficient 𝛽

 

 𝑐 Constant freezing velocity  
 𝑚 Temperature dependent driving 

force parameter
 

 𝑁 Number of water molecules  
 𝑃 Porosity  

one-dimensional problem because it is sufficient to consider the radius. 
He adopted a quartic free energy density-order parameter relation-
ship published by Harrowell and Oxtoby [39]. We extend Kobayashi’s 
approach by adding a salinity flow. We divide the article into time-
independent and time-dependent processes and try to find a connection 
between phase field and classical nucleation theory in Section 4.3. Sim-
ilar to Grandi [40] we use the Landau–Ginzburg theory [41]. With the 
assumption that salt is a passive tracer which does not undergo a phase 
transition we avoid the 4th derivation according to Cahn–Hilliard [42]. 
In the following we considers one-dimensional boundaries.  In this 
paper we designate the transition layers as kinks [43,44]  according 
to Appendix  A.3.  This one-dimensional approach is suitable to be 
extended to higher dimensions (see Fig.  1) as well as to sea water. 
A special focus of the present work will be stability of the appearing 
kink distribution in dependence of sea water salinity.  The thickness 
of the boundary layers corresponds to the double critical radius of 
a nucleus and is found to be the length of five hexagons (see Fig. 
2).  The article is divided into three main sections: ’’Time-independent 
processes’’ (Section 2), ’’Time-dependent processes’’ (Section 3), and 
’’Numerical solutions’’ (Section 4). Section 4 connects time-independent 
irreversible thermodynamic processes with the time-dependent phase 
field theory and extends the Kobayashi model with a salinity equation. 
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2. Time-independent processes

2.1. Phase field approach

The Landau–Ginzburg free energy density 𝜑𝐿𝐺(𝜂) = 𝜑𝐿(𝜂) + 𝜑𝐺(𝜂)
is composed of the Landau free energy density 𝜑𝐿 and the Ginzburg 
term of free energy density 𝜑𝐺. In the three-dimensional case, the index 
‘‘L’’ denotes the volume term or Landau potential and the index ‘‘G’’ 
refers to the gradient term introduced by Vitaly Ginzburg.  A general 
description can be found in Chapter 13 in [45]. For a time-dependent 
consideration, the Landau–Ginzburg free energy is often referred to as 
the Lyapunov function in the mathematical literature. The Landau free 
energy density bases on the assumption, that the Gibbs free energy 
density can be expanded in a series about the order parameter 𝜂(𝜁 ) [35]

𝜑𝐿(𝜂(𝜁 ), 𝑚(𝛥𝛩)) = 1
4
𝜂4 −

(1
2
− 𝑚

3

)

𝜂3 +
(1
4
− 𝑚

2

)

𝜂2

= 1
4
𝜂2(𝜂 − 1)2 + 𝑚

3
𝜂3 − 𝑚

2
𝜂2, (1)

with the order parameter 𝜂(𝜁 ) as a function of the position 𝜁 such as a 
driving force parameter 𝑚(𝛥(𝛩)) for phase transition 

𝑚(𝛥𝛩) = 1
2
𝛥𝑇0 − 𝛥𝑇

𝛥𝑇0
= 1

2
(1 − 𝛥𝛩) , (2)

which determines the shape of the double well potential density 𝜑𝐿
depending on the temperature 𝛥𝑇 = 𝑇 − 𝑇𝑠 with the dimensionless 
temperature difference 

𝛥𝛩 = 𝛥𝑇
𝛥𝑇0

=
𝑇 − 𝑇𝑠
𝑇0 − 𝑇𝑠

, (3)

where 𝑇𝑠 is the lowest supercooling temperature that can be reached 
and 𝑇0 the equilibrium temperature.  A restriction of the Landau 
theory relates to the value of the order parameter 𝜂(𝜁 ). This must 
be small enough for the development of the thermodynamic potential 
to be interrupted after the fourth order in 𝜂. The value of the order 
parameter changes with the temperature difference from the critical 
temperature. In order for the development to be valid this difference 
must be sufficiently small. In addition, the evolution coefficients must 
behave smoothly in the vicinity of the critical point, i.e. they must not 
become singular, so that the thermodynamic potential remains finite. 
We use the approach of Kobayashi, where the temperature dependence 
of the evolution coefficients are chosen such that the order parameter 
𝜂(𝜁 ) remains small enough, i.e. 𝜂(𝜁 ) ≤ 1.

2.2. Phase boundary solutions

The double well potential is symmetrical because of 𝑚 = 0. There-
fore we have two double zeros at 𝜂(𝜁 ) = 0 and 𝜂(𝜁 ) = 1.  There is 
neither supercooling or overheating. The Landau free energy density 
𝜑𝐿(𝜂(𝜁 ), 𝜂𝜁 (𝜁 )) can be written 

𝜑𝐿𝐺(𝜂, 𝜂𝜁 ) = 𝜑𝐿(𝜂(𝜁 ), 𝑚) + 𝜑𝐺(𝜂𝜁 ), (4)

with the gradient term 𝜑𝐺 = 𝜀2

2 𝜂
2
𝜁 (𝜁 ).  We denote 

𝜕𝜂
𝜕𝜁 = 𝜂𝜁 , 𝜕𝜂

𝜕𝜏 = 𝜂𝜏
etc. The coefficient 𝜀 determines the width of the transition regions 
between the domains and corresponds to the double critical radius 
of a stable nucleus. At the moment we consider only the symmetric 
double-well potential density, i.e. 𝛥𝛩 = 1 or 𝑚 = 0. The part 𝜑𝐿 of the 
Landau–Ginzburg free energy density 𝜑𝐿𝐺

𝜑𝐿𝐺(𝜂, 𝜂𝜁 ) =
𝜀2

2

(

𝜕𝜂
𝜕𝜁

)2

⏟⏞⏞⏞⏟⏞⏞⏞⏟
𝜑𝐺

+ 1
4
𝜂2 (𝜂 − 1)2

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
𝜑𝐿

(5)

possesses the double roots 𝜂0 = 0 and 𝜂0 = 1. If the variational action 
principle in Appendix  A.1 according to dimensionless quantities 

𝛿
𝜁2
𝜑𝐿𝐺(𝜂, 𝜂𝜁 )𝑑𝜁 = 0 (6)
∫𝜁1

4 
is applied to the free energy density, we obtain the Euler–Lagrange 
equation according to Eq. (A.1)
𝜕𝜑𝐿𝐺
𝜕𝜂

− 𝑑
𝑑𝜁

𝜕𝜑𝐿𝐺
𝜕𝜂𝜁

= 0, (7)

and subsequently 
1
2
𝜂 (𝜂 − 1) (2𝜂 − 1) − 𝜀2

𝜕2𝜂
𝜕𝜁2

=
𝜕𝜑𝐿(𝜂)
𝜕𝜂

− 𝜀2
𝜕2𝜂
𝜕𝜁2

= 0, (8)

with the solutions 𝜂 = 0, 𝜂 = 1
2  and 𝜂 = 1. Addition to the trivial 

solutions we search the first non trivial steady state solution for the 
phase field model. We also find a solution as a function of 𝜁 . For this 
purpose Eq. (8) can be integrated with respect to integration by parts 
on the right hand side 

∫
𝜕𝜑𝐿
𝜕𝜂

𝜕𝜂
𝜕𝜁

𝑑𝜁 = 𝜀2 ∫
𝜕2𝜂
𝜕𝜁2

𝜕𝜂
𝜕𝜁

𝑑𝜁, (9)

and obtain an expression analogous to the virial theorem 

𝜑𝐿(𝜂) =
1
2
𝜀2

(

𝜕𝜂
𝜕𝜁

)2

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
𝜑𝐺

, (10)

which reflects the conservation of energy. This fact will allow us to 
solve the static problem by quadrature 

𝜁 − 𝜁𝑏 = 𝜀∫

𝜂(𝜁 )

𝜂(𝜁𝑏)

𝑑𝜂
√

2𝜑𝐿(𝑚 = 0)
= ±2

√

2𝜀 tanh−1(1 − 2𝜂), (11)

and obtain as a result of the quadrature, two solutions are obtained, a 
kink and an antikink according to the opposite choice of the sign([46]) 

𝜂(𝜁 ) = 1
2

(

1 ∓ tanh−1
( 1
4𝜀

√

2(𝜁 − 𝜁𝑏)
))

= 1

1 + exp(±
√

2
2𝜀 (𝜁 − 𝜁𝑏))

. (12)

The static solution (12) corresponds to a zero-energy trajectory because 
of 𝜑𝐿−𝜑𝐺 = 0 as a result of the symmetry of the non linear double-well 
potential. The stationary solution 𝜂(𝜁 ) in Eq. (12) can be designated 
as kink or antikink and is a sigmoid function where two states are 
also distinguished.  Eq. (12) is not a solution to a classical linear wave 
equation (26). The order parameter 𝜂(𝜁 ) can be seen as a quantitative 
relationship between the probabilities of the two states being occupied, 
𝜂(𝜁 ) > 1

2  (mostly ice) and 𝜂(𝜁 ) < 1
2  (mostly water) in Fig.  3. The 

inflection point of the order parameter 𝜂(𝜁 ) is determined by 𝜂(𝜁 = 𝜁𝑏) =
1
2 . An infinitely thin transition layer (𝜀 → 0) 

lim
𝜀→0

1

1 + exp
(

√

2
2𝜀

(

𝜁 − 𝜁𝑏
)

) =

⎧

⎪

⎨

⎪

⎩

0 for 𝜁 > 𝜁𝑏
1
2 for 𝜁 = 𝜁𝑏
1 for 𝜁 < 𝜁𝑏

(13)

only separates the states 𝜂 = 0 and 𝜂 = 1. Until now, only boundary 
conditions could be defined that do not allow any predictions about the 
freezing velocity. Therefore, time-dependent processes will considered 
in Section 3. By means of the slope of the kink 𝜂𝜁 (𝜁 ) determined by 𝜀
𝜕𝜂(𝜁 )
𝜕𝜁

= ∓ 1

4
√

2𝜀
sech2

( 1
4𝜀

√

2(𝜁 − 𝜁𝑏)
)

(14)

we obtain the corresponding stationary Landau–Ginzburg free energy 
density 𝜑𝐿𝐺(𝜁 )

𝜑𝐿𝐺(𝜁 ) = 𝜑𝐺 + 𝜑𝐿 = 2𝜑𝐺 = 2𝜑𝐿 = 𝜀2𝜂2𝜁 (𝜁 ) =
1
32

sech4
( 1
4𝜀

√

2(𝜁 − 𝜁𝑏)
)

,

(15)

with the maximum 𝜑𝐿(𝜁 = 𝜁𝑏) =
1
32 . If we integrate Eq. (15) we get the 

Landau–Ginzburg free energy 𝛷
𝐿𝐺
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Fig. 3. (a) Maximal superheating (red) and supercooling (blue). (b) Interface of the thickness of the twice critical radius 𝜁𝑐 = 2𝜌𝑐 with the critical length 𝜁𝑐 . This length 𝜁𝑐 is the 
shortest length as result of the stability analysis in Fig.  9 in Section 4.3 This length 𝜁𝑐 results from the intersection point of the eigenvalue 𝜏0𝜆̂ with the wave number axis 𝜅, 
i.e. 𝜏0𝜆̂ = 0. Karim and Haymet [47] used a TIP4P water model to calculate the oxygen density profile during a melting process. Gránásy [38] adopted this molecular dynamics 
simulation for its approach. The transition region between solid and liquid corresponds to the length 𝜁𝑐 . The melting process of ice (TIP3P-water model [48]) from solid state to 
liquid state was carried out using a molecular dynamic simulation.
𝛷𝐿𝐺 = ∫

∞

−∞
𝜑𝐿𝐺(𝜁 )𝑑𝜁

= 𝜀

24
√

2
tanh

(

𝜁 − 𝜁𝑏
2
√

2𝜀

)(

cosh

(

𝜁 − 𝜁𝑏
√

2𝜀

)

+ 2

)

sech2
(

𝜁 − 𝜁𝑏
2
√

2𝜀

)

|

|

|

|

∞

−∞

=

√

2𝜀
12

. (16)

A sharp interface boundary is associated with a small Landau free 
energy density and consequently with a small Landau free energy. 
The order parameter 𝜂(𝜁, 𝑚 = 0) in Eq. (12), the free energy density 
𝜑𝐿(𝜁, 𝑚 = 0) in Eq. (15) and the free energy 𝛷𝐿(𝜁, 𝑚 = 0) in Eq. (16) 
are solutions for the stationary case.
3. Time-dependent processes

For the time-dependent non-equilibrium case, we consider the
Landau–Ginzburg free energy 𝛷𝐿𝐺 as a function of an time and space 
dependent order parameter 𝜂(𝜏, 𝜁 ). The dynamics of the order parame-
ter is described by the  time dependent Landau–Ginzburg theory (TDLG 
theory)

𝜏0
𝜕𝜂(𝜏, 𝜁 )

𝜕𝜏
= −

𝛿𝛷𝐿𝐺
𝛿𝜂

= −𝜂3 +
( 3
2
− 𝑚

)

𝜂2 −
( 1
2
− 𝑚

)

𝜂 + 𝜀2
𝜕2𝜂(𝜏, 𝜁 )

𝜕𝜁2

= 𝜂 (𝜂 − 1)
(

−𝜂 + 1
2
− 𝑚

)

+ 𝜀2
𝜕2𝜂(𝜏, 𝜁 )

𝜕𝜁2
, (17)

with the dimensionless time 𝜏 = 𝑡
𝑡0
. Here 𝜏0 = 𝑡1

𝑡0
 denotes a di-

mensionless time factor. The right side of the  TDLG equation results 
from a variation derivative. The time-dependent term 𝜏0 𝜕𝜂

𝜕𝜏  is not a 
result of the variation and was only postulated. To introduce the 
parameter ‘‘time’’ for a irreversible process, an additional assumption 
is needed [49] sketched in Appendix  A.5. At this point it should be 
noted that the jump of 𝜂 at the freezing point, which characterizes a 
first-order phase transition, is missing because there is no root of 𝜂 that 
can become complex for any 𝑚.  We used a spectral method in order to 
solve the time-dependent partial differential equation. For this purpose 
we use the so-called exponential time differencing scheme of second 
order (ETD2) [50] described in Appendix  A.2. The periodic boundary 
conditions are ensured by a ‘‘Fast Fourier Transformation’’ (FFT). 

3.1. Propagating wave front solutions of the TDLG equation for |𝑚| ≤ 1
2

If a travelling wave front exists it can be written in the form 𝜂(𝜁, 𝜏) =
𝜂̄(𝜁 ) with 𝜁 = 𝜁 + 𝑐𝜏, where 𝑐 is the wave speed. Substituting the 
5 
travelling wave form into Eq. (17), 𝜂̄(𝜁 ) satisfies
𝜀2

𝜏0
𝑑2𝜂̄(𝜁 )
𝑑𝜁2

− 𝑐𝜂̄𝜁 +
1
𝜏0

𝜂̄
( 1
2
− 𝑚 − 𝜂̄

)

(𝜂̄ − 1)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

−𝛱(𝜂̄)

= 𝜀2

𝜏0
𝑑2𝜂̄(𝜁 )
𝑑𝜁2

− 𝑐𝜂̄𝜁 +
1
𝜏0

(

𝜂̄ (𝜂̄ − 1)
( 1
2
− 𝜂̄

)

+ 𝑚 (1 − 𝜂̄) 𝜂̄
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
−𝛱(𝜂̄)

= 0. (18)

Because of the fixed phase relationship 𝜁 = 𝜁+𝑐𝜏, the partial differential 
equation (17) is reduced to an ordinary differential equation. The drift 
term 𝑐𝜂̄𝜁  is associated with a running wave front with a constant 
velocity 𝑐. If the velocity 𝑐 = 0, Eq.  (18) is reduced to the stationary case 
(8). The fixed phase relation condition allows a reversible motion in the 
reverse direction, if we replace 𝜏 by −𝜏 or 𝑐 by −𝑐.  The function 𝛱(𝜂̄)
possesses two zeros as fixed points, zero and one and a movable zero 
within the interval [0,1] dependent on 𝑚. The part of the polynomial 
𝛱(𝜂̄) that includes the coefficient 𝑚 must be equal to the drift term 
𝑐𝜂̄𝜁 (𝜁 )

±
𝑑𝜂̄(𝜁 )
𝑑𝜁

= ± 𝑚
𝜏0

𝜂̄(𝜂̄ − 1) (19)

if we want to get a wave with a constant speed. The differential 
equation (19) can be integrated immediately 

𝜂̄±(𝜁 ) =
1
2

(

1 ∓ tanh
(

𝑚
2𝑐𝜏0

(

𝜁 − 𝜁𝑏
)

))

, (20)

if 𝜂̄(𝜁 = 𝜁𝑏) =
1
2 . Comparing solutions (20) and (12) in consideration of 

𝜁 − 𝜁𝑏 = 𝜁 − 𝜁𝑏, the wave velocity 𝑐 follows from 𝑚
2𝑐𝜏0

=
√

2
4𝜀 , so that 

𝑐 =
√

2 𝜀
𝜏0

𝑚 =

√

2
𝜀

𝑚 (21)

because of 𝜏0 = 𝜀2. From Eq. (19) one obtains a Lagrange function 

(𝜂̄, 𝜂̄𝜁 ) =
1
2
𝑐2
(

𝜕𝜂̄(𝜁 )
𝜕𝜁

)2
− 1

2
𝑚2

𝜏20
𝜂̄2(𝜁 )

(

𝜂̄(𝜁 ) − 1
)2 = 0. (22)

as a result of the fixed phase relation. If one uses the fixed phase 
relationship 𝜁 = 𝜁 + 𝑐𝜏, then the following relationships also apply 
𝜕𝜂(𝜁,𝜏)
𝜕𝜁 = 𝜕𝜂̄(𝜁 )

𝜕𝜁
𝜕𝜁
𝜕𝜁 = 𝜕𝜂̄(𝜁 )

𝜕𝜁  and 𝜕𝜂(𝜁,𝜏)𝜕𝜏 = 𝜕𝜂̄(𝜁 )
𝜕𝜁

𝜕𝜁
𝜕𝜏 = 𝑐 𝜕𝜂̄(𝜁 )

𝜕𝜁 = 𝑐 𝜕𝜂(𝜁,𝜏)
𝜕𝜁  so that 

(𝜂, 𝜂𝜏 ) =
1
(

𝜕𝜂(𝜏, 𝜁 )
)2

− 1 𝑚2

2
𝜂2(𝜁, 𝜏) (𝜂(𝜁, 𝜏) − 1)2 = 0. (23)
2 𝜕𝜏 2 𝜏0
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Fig. 4. A slight disturbance in the initial conditions of Eq. (32) determines which of the two states is reached. The trajectories run into one of the two minima at different times 
of the double well 𝜑𝐿(𝜂) of Eq. (5). If the initial conditions are chosen as random variable, the behaviour is similar to the stochastic Weidlich model [51] and can therefore serve 
as a basis for coupling to a stochastic model.
Using the virial theorem (10) for 𝜏 satisfying the fixed phase relation, 
4𝜑𝐿(𝜂, 𝜏) = 2𝜀2𝜂2𝜁 (𝜁, 𝜏) = 𝜂2(𝜁, 𝜏) (𝜂(𝜁, 𝜏) − 1)2 and 2𝑚2 = 𝜀2𝑐2 as well as 
𝜏0 = 𝜀2 one finally obtains 

(𝜂𝜁 , 𝜂𝜏 ) =
1
2

(

𝜕𝜂(𝜏, 𝜁 )
𝜕𝜏

)2
− 𝑐2

2

(

𝜕𝜂(𝜏, 𝜁 )
𝜕𝜁

)2
. (24)

The Euler–Lagrange equation 
𝜕(𝜂𝜁 , 𝜂𝜏 )

𝜕𝜂
− 𝑑

𝑑𝜁
𝜕(𝜂𝜁 , 𝜂𝜏 )

𝜕𝜂𝜁
− 𝑑

𝑑𝜏
𝜕(𝜂𝜁 , 𝜂𝜏 )

𝜕𝜂𝜏
= 0 (25)

yields a wave equation 

𝑐2
𝜕𝜂2(𝜏, 𝜁 )

𝜕𝜁2
−

𝜕𝜂2(𝜏, 𝜁 )
𝜕𝜏2

= 0, (26)

that is satisfied 

𝜂(𝜁, 𝜏) = 1
2

(

1 ∓ tanh

(

1

2
√

2𝜀
(𝜁 + 𝑐𝜏)

))

(27)

according to the solution (20) if 𝜁 is replaced by 𝜁 + 𝑐𝜏 and 𝜁𝑏 = 0. 
Eq. (27) solves the wave equation (26) because of the fixed phase 
relationship 𝜁 = 𝜁 + 𝑐𝜏 in contrast to Eq. (12). While in Eq. (17) the 
temporal derivative has only been postulated, the temporal derivative 
in the wave equation (26) is also obtained from a variational prob-
lem. Due to the fixed phase relationship, Eq. (27) is a topological 
reversible solution, which is also reflected in the symmetry of the 
wave equation (26). There is no specific direction of time for this 
propagating wave. Translocated position of the stationary solution by 
𝑐𝜏 due to velocity 𝑐 satisfies the condition of the zero-energy trajectory 
in Eq. (12) or (18) with the boundary conditions lim𝜁→∞ 𝜂̄+(𝜁 ) = 0 and 
lim𝜁→−∞ 𝜂̄+(𝜁 ) = 1 or lim𝜁→∞ 𝜂̄−(𝜁 ) = 1 and lim𝜁→−∞ 𝜂̄−(𝜁 ) = 0. Because 
the shape of the travelling wave front does not change, the gradient part 
of the Landau free energy density 𝜑𝐺 remains invariant and consider 
only the Landau part 𝜑𝐿

𝜏0
𝜕𝜂(𝜏)
𝜕𝜏

= −𝜑𝐿(𝜂) = 𝜂 (𝜂 − 1)
(

−𝜂 + 1
2

)

. (28)

This can be transformed into a Bernoulli differential equation. Then we 
shift 𝜂 by 12 , i.e. 𝜂 = 𝜂̄ + 1

2  and get 

𝜏0
𝑑𝜂̄(𝜁 )
𝑑𝜁

= −𝜂̄3 + 1
4
𝜂̄, (29)

which can be converted into a linear differential equation 

𝜏 𝜕𝑢 + 1 𝑢 = 2 (30)
0 𝜕𝜏 2

6 
by substitution 𝑢 = 1
𝜂̄2
. with the solution 

𝑢(𝜏) = 𝐶 exp
(

− 𝜏
2𝜏0

)

+ 4. (31)

Let us substitute again 𝑢 in 𝜂̄ and 𝜂̄ in 𝜂 and choose the initial condition 
𝜂(𝜏 = 0) = 𝜂𝑎, we get the final solution 

𝜂(𝜏) = 1
2
± 1

√

√

√

√4 +

(

1
(

𝜂𝑎−
1
2

)2 − 4

)

exp
(

− 𝜏
2𝜏0

)

. (32)

The closer the initial conditions are to the phase transition point 𝜂 = 1
2 , 

the later the two states 𝜂 = 0 and 𝜂 = 1 in Fig.  4 are reached. The time 
to reach a steady state is proportional to the square of the width of 
the transition layer 𝜀. Furthermore, if 𝜀 is proportional to the size of a 
critical nucleus, the nucleation rate 1

𝜏0
 becomes smaller, because larger 

nuclei are required to prevent that these nuclei decay again.

4. Irreversible time-dependent numerical solutions for freezing 
processes

4.1. Freezing of fresh water

The time dependent Eq. (17) describes a nucleation and isotropic 
growth during the freezing. Between the dimensioned velocity 𝑐 and 
the dimensionless velocity 𝑐 exists the relationship 

𝑐 = 𝑧
𝑡
=

𝑧0
𝑡0

𝜁
𝜏
=

𝑧0
𝑡0
𝑐 =

𝑧0
𝑡0

√

2𝑚 𝜀
𝜏0

. (33)

for a constant velocity at a constant temperature, i.e. 𝑚 = 𝑐𝑜𝑛𝑠𝑡. This 
method is used to determine 𝑡0 if 𝑧0 is known. The width of the liquid–
solid interface can be determined from a remelting process and this 
length 𝑧0 we use as a scaling factor. A arbitrary parameter 𝑧1 allows us 
to choose the dimensionless thickness of interface 𝜀 = 1

𝑧0
𝑧1 in such a 

way that the numerical problem is well-conditioned. Therefore, 𝜀 is the 
well-conditioned width of the liquid–solid interface. From the chemical 
potential

𝛥𝜇 =
𝑞(𝑇 − 𝑇0)

𝑇0
=

𝛥𝛾
𝜚𝑙

𝜕𝑓
𝜕𝑧0

and the specific interfacial potential [52,53]

𝑓 (𝑧0) =
𝑧20

2 2
𝑧0 + ℎ
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Fig. 5. Time dependent evolution (a) for a successful nucleation process if 𝛥𝜁 > 𝜁𝑐  or 𝛥𝜌 > 𝜌𝑐 and (b) for an unsuccessful nucleation process if 𝛥𝜁 < 𝜁𝑐  or 𝛥𝜌 < 𝜌𝑐 at the phase 
transition point. Initial conditions: 𝜂(𝜁, 𝜏 = 0) = 4

10
+ 2

10
exp

(

− 1
5
(1.4(𝜁 − 2.5))8

)

 (successful), 𝜂(𝜁, 𝜏 = 0) = 4
10

+ 2
10

exp
(

− 1
5
(2.8(𝜁 − 2.5))8

)

 (unsuccessful) for 𝜀 = 1
10
, 𝑚 = 0.

Fig. 6. Time dependent development of the Landau–Ginzburg free energy density corresponds to Fig.  5. The transition layers disappear in case (b).

Fig. 7. (a) Because of the virial theorem (10) we have 𝛷𝐿 = 𝛷𝐺 in the stationary case. (b) The Landau–Ginzburg energy disappears.
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Fig. 8. The initial formation of the phase boundaries leads to an increase in the gradient term while the Landau free energy decreases during the freezing process. Initial conditions 
and parameter: 𝜂(𝜏 = 0, 𝜁 ) = 0.4+ 1

5
exp

(

− 1
5

(

7
5
(𝜁 − 5)

)8
)

+ 1
5
exp

(

− 1
5

(

6
5

(

𝜁 − 15
2

))8
)

+ 1
5
exp

(

− 1
5

(

11
5

(

𝜁 − 45
4

))8
)

+ 1
5
exp

(

− 1
5

(

4
5
(𝜁 − 15)

)8
)

, 𝑑 = 3, 𝜏1 = 0.3, 𝛽 = 1
48𝑚

, 𝜏0 = 𝜀2 = 1
100
, 

𝑇0 = 273.15 K, 𝑇𝑠 = 236.6 K, 𝑇 = 270.93 K.
results
(ℎ2 + 𝑧20)

2

𝑧0
=

2ℎ2𝛥𝛾
𝜚𝑙𝛥𝜇

.

The long-range potentials fall off quadratically with distance similar 
to the van der Waals equation, in which the attractive pressure is 
proportional to the square of the particle density. With ℎ ≪ 𝑧0, i.e. ℎ2+
𝑧20 ≈ 𝑧20 can be estimated the layer thickness for a remelting process [53] 

𝑧0 =
(

−
2ℎ2𝛥𝛾𝑇0

𝜚𝑙𝑞(𝑇0 − 𝑇 )

)

1
3
. (34)

The surface tension 𝛥𝛾 = 𝛾𝑙𝑣 + 𝛾𝑠𝑙 − 𝛾𝑠𝑣 is composed of various in-
terfaces, liquid–vapour, solid–liquid and solid–vapour, 𝜚𝑙 is the density 
of the liquid and ℎ a constant of the order of a molecular spacing. 
The distance ℎ can be interpreted as an expression, which contributes 
to a non-negligible residual volume according to the van der Waals 
equation. More measurements at the interface were carried out by Bea-
glehole et al. [54,55] and Dosch et al. [56,57] and Furukawa et al. [58]. 
Besides the known measured values 𝑇0 = 273.15 K, 𝑇 −𝑇0 = 20 mK [59,
60], 𝛥𝛾 = 6.64 erg

cm2  [53], 𝜚𝑙 = 0.99 g
cm3 , 𝑞 = 3.33⋅109 erg

g , the value for the 
molecular distance ℎ still remains undetermined. For this, an interval 
between 2.77Å and 4.52Å could be chosen according to Fig.  2. For 
ℎ = 2.89Å this gives a layer thickness of 𝑧0 = 2.84 nm, approximately 
one order of magnitude greater than the molecular distance ℎ. With 
these values, the layer thickness 𝑧0 coincides with the double critical 
radius 2𝑟𝑐 . The second scaling factor 𝑡0 = 𝑧0

𝑐
𝑐  can be determined from 

the freezing velocity 𝑐. The forming wurtzite structure of hexagonal ice 
8 
prefers the growth perpendicular to the c axis in the c-plane (Fig.  2). 
The different growth rates are based on the observation that only two-
molecular groups are needed to build up the c-plane in contrast to the 
a-plane, where four-molecular groups are needed and the probability 
of the occurrence of the four-molecular group is much smaller than for 
the two-molecular group [60,61]. For this reason, different empirical 
relationships are given for the growth rates according to the growth 
direction [60]. With a supercooling of 20 mK there is a freezing velocity 
of 𝑐 = 1

2
μm
s  perpendicular to the c-axis [7], (Fig. 9.10 in [60]) and 

therefore a scaling factor 𝑡0 = 𝑧0
𝑐
𝑐 = 𝑧0

1
𝑐

√

2𝑚 𝜀
𝜏0
. A supercooling of 

20 mK corresponds to 𝑚 = 0.00027359 and we get 𝑡0 = 0.02197 ms
with 𝜀2 = 𝜏0 = 1

100 .  First, we consider only the nucleation process 
without growth, i.e. without a propagation of the wave front, 𝑐 = 0
in Fig.  5, Fig.  6 and Fig.  7. Initially, the nucleus radius 𝜌(𝜏 = 0) is 
larger than the critical radius 𝜌𝑐 = 1

2 𝜁𝑐 . A stable nucleus develops 
without a subsequent growth process. For 𝜏 → ∞ a state of a dynamic 
equilibrium between a melting and a freezing process is reached and 
the nucleation is completed. The gradient term of the Landau free 
energy 𝛷𝐺(𝜏) does not decrease over the entire time. This stabilizes the 
structure in this open system. Because the Landau–Ginzburg free energy 
𝛷𝐿𝐺(𝜏) no longer changes, the second phase, the growth is missing. In 
contrast to Fig.  5a, the radius 𝜌(𝜏 = 0) of the nucleus in Fig.  5b is less 
than the critical radius 𝜌𝑐 . The nucleus does develop to a maximum size, 
but then it decays because the critical radius 𝜌𝑐 is not reached and is 
not exceeded although 𝛥𝛩 = 1 has been set. We remark, that the free 
energy 𝛥𝐺𝑡𝑜𝑡 of the classical nucleation theory in Section 4.2 describes 
only the free energy of the nucleus without an additional environment. 
This is different, however, in the case of the phase field model where we 
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integrate the Landau free energy over the entire system. The gradient 
component of the Landau free energy 𝛷𝐺(𝜏) is always smaller than or 
equal to the potential component 𝛷𝐿(𝜏) because only the nucleation, 
i.e. 𝑚 = 0, is considered.  In the next step we could assume arbitrary 
initial conditions in the vicinity of 𝜂 = 0. A certain freezing time is 
necessary until the critical phase transition point 𝜂 = 0.5 is reached. We 
start the simulation in the vicinity of the phase transition point 𝜂 = 0.5
in Fig.  8 because the first time period is not interesting for the structure 
formation. During the freezing process, more and more boundary layers 
disappear. Each loss of a boundary layer means a jump in the Landau–
Ginzburg free energy in Fig.  8. During the freezing fronts spread, the 
Ginzburg term of the free energy 𝛷𝐺 does not change, the Landau term 
𝛷𝐿 decreases. 

4.2. Classical nucleation theory

The classical nucleation theory considers the Gibbs free energy 𝛥𝐺
which is composed of a bulk and a surface term. For the homogeneous 
nucleation one obtains an equation for the Gibbs free energy barrier 
𝛥𝐺𝑡𝑜𝑡(𝑟) = 𝛥𝐺(𝑟) + 4𝜋𝑟2𝛾 = 𝑁𝛥𝜇 + 4𝜋𝑟2𝛾 and therefore 

𝛥𝐺𝑡𝑜𝑡 = − 4
3
𝜋𝑟3𝛥𝑔𝑣

⏟⏞⏞⏟⏞⏞⏟
𝑣𝑜𝑙𝑢𝑚𝑒 𝑡𝑒𝑟𝑚

+ 4𝜋𝑟2𝛾
⏟⏟⏟

𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑡𝑒𝑟𝑚

= −4
3
𝜋𝑟3𝑁

𝑉
𝛥𝜇 + 4𝜋𝑟2𝛾, (35)

with the Gibbs free energy density 𝛥𝑔𝑣 = 𝛥𝐺
𝑉 , the volume 𝑉 = 4

3𝜋𝑟
3, the 

number of molecules 𝑁 , the radius 𝑟, the chemical potential 𝛥𝜇 = 𝜇𝑙−𝜇𝑠
as difference between the liquid and solid state and the interfacial 
tension 𝛾 between two phases. The necessary condition 𝛥𝐺′(𝑟) = 0
determines the critical radius 𝑟 = 𝑟𝑐 = 2𝛾

𝛥𝑔𝑣
= 2𝛾

𝛥𝜇
𝑉
𝑁  at the maximum of 

the Gibbs free energy 𝛥𝐺𝑐 = 16
3 𝜋

𝛾3

(𝛥𝑔𝑣)2
 for the smallest stable nucleus. 

Similar to the approach of Mori et al. [62] we assume that the relation 
𝑁𝛥𝜇 = 𝛥𝐺 = 𝛥𝐻 − 𝑇𝛥𝑆 ≈ 𝛥𝐻 − 𝑇 𝛥𝐻

𝑇0
= 𝛥𝐻

(

1 − 𝑇
𝑇0

)

 is also valid 
approximately at the first-order phase transition, where 𝑇 = 𝑇𝑠 denotes 
the deepest supercooling temperature, 𝑇0 the freezing temperature, 𝛥𝑆
the entropy and 𝛥𝐻 the Helmholtz free energy (enthalpy). Using the 
density of ice 𝜚𝑖𝑐𝑒 with 𝜚𝑖𝑐𝑒𝑉 = 𝑛𝑀H2O for 𝑛 = 1 m𝑜𝑙 and the specific 
enthalpy (latent heat or heat of fusion) 𝑞 = 𝛥𝐻

𝑛𝑀H2O
, the critical radius 

𝑟𝑐 in the framework of the Gibbs–Thomson equation for an isotropic 
sphere can be written in the form 

𝑟𝑐 =
2𝛾𝑇0

𝜚𝑖𝑐𝑒𝑞(𝑇0 − 𝑇𝑠)
(36)

for 𝑇 = 𝑇𝑠 < 𝑇0 with the Gibbs free energy 

𝛥𝐺𝑐 =
16
3
𝜋𝛾3

𝑇 2
0

𝜚𝑖𝑐𝑒2𝑞2(𝑇0 − 𝑇𝑠)2
. (37)

The number of molecules 𝑁 in the critical nucleus is the ratio of the 
total volume divided by the volume of one molecule 

𝑁(𝑟𝑐 ) =
𝑉
𝑉𝑚
𝑁𝐴

=
4
3𝜋𝑟

3
𝑐

𝑉𝑚
𝑁𝐴

= 32
3
𝜋𝛾3

𝑇 3
0

(𝑇0 − 𝑇𝑠)3𝜚𝑖𝑐𝑒3𝑞3
𝑁𝐴
𝑉𝑚

, (38)

with the Avogadro constant 𝑁𝐴 and the molar volume of water 𝑉𝑚. 
For a first-order phase transition, a critical radius 𝑟𝑐 = 1.42 nm at the 
maximum of the Gibbs free energy 𝛥𝐺𝑐 = 2.45 ⋅ 10−12 erg is calculated 
with the measured values 𝛾 = 29 erg

cm2 , 𝜚 = 𝜚𝑖𝑐𝑒 = 0.917 g
cm3 , 𝑞 = 3.33 ⋅

109 erg
g , 𝑇0 = 273.15 K and 𝑇𝑠 = 236.6 K. This critical nucleus contains 

𝑁 = 401 molecules with the molar volume of water 𝑉𝑚 = 18 cm3

mol . The 
contributions from the surface and volume term are equal if 𝛥𝐺(𝑟) = 0. 
At this point the nucleus has the radius 

𝑟𝑎 =
3𝛾
𝛥𝑔𝑣

=
3𝛾𝑉
𝑁𝛥𝜇

=
3𝛾𝑇0

𝜚𝑖𝑐𝑒𝑞(𝑇0 − 𝑇𝑠)
, (39)

or 𝑟𝑎 = 3
2 𝑟𝑐 . We use the relationships 𝑟 = 𝑟0𝜌 and 𝑟𝑎 = 𝑟0𝜌𝑎 in order to 

introduce the dimensionless radius 𝜌 and 𝜌𝑎 and obtain from Eq. (35)

𝛥𝐺𝑡𝑜𝑡(𝜌) = 4𝜋𝛾𝑟2𝜌2
(

1 −
𝜌
)

, (40)
0 𝜌𝑎

9 
with 2𝑟0 = 𝑧0.

4.3. Bridge between phase field and classical nucleation theory

The relation between the critical length and the critical radius 
𝜁𝑐 = 2𝜌𝑐 connects the phase field theory with the classical nucleations 
theory. Then the double critical radius 2𝜌𝑐 from classic nucleation 
theory should be equal to the critical length 𝜁𝑐 = 2𝜋

𝜅𝑐
. Here 𝜅𝑐 designed 

the largest possible wave number in the TDLG equation if 𝑚 = 0, 
i.e. 𝛥(𝛩) = 1. The critical value 𝜅𝑐 is determined by a linear stability 
analysis by introducing small perturbations 𝜂̃ = 𝜂 − 𝜂0 in Eq. (17) for 
𝑚 = 0 and obtain the linearized TDGL equation 

𝜏0
𝜕𝜂(𝜏, 𝜁 )

𝜕𝜏
=
(

−1
2
+ 3𝜂0 − 3𝜂20

)

𝜂 + 𝜀2
𝜕2𝜂(𝜏, 𝜁 )

𝜕𝜁2
. (41)

Using the Fourier ansatz ̃𝜂 = exp(𝜆𝜏+𝜆𝜁 ) = exp(𝜆𝜏+ 𝑖𝜅𝜁 ), where 𝜆 = 𝑖𝜅
with the wave number 𝜅 = 2𝜋

𝜁 , we find 

𝜏0𝜆 = −1
2
+ 3𝜂0(1 − 𝜂0) − 𝜀2𝜅2. (42)

Only if the eigenvalues 𝜆 in a certain range of wave numbers 𝜅 are 
larger than zero, structures can arise. This condition is fulfilled by the 
fixed point 𝜂0 = 1

2

𝜏0𝜆 = 1
4
− 𝜀2𝜅2. (43)

The other two fixed points 𝜂0 = 0 and 𝜂0 = 1 are therefore excluded. 
The critical wave number 𝜅𝑐 is obtained for 𝜆 = 0. With 𝜀 = 1

10  we 
have 𝜅 = 𝜅𝑐 = 1

2𝜀 = 2𝜋
𝜁𝑐

= 2𝜋
2𝜌𝑐

= 5 and thus 𝜌𝑎 = 3
2𝜌𝑐 = 3

10𝜋. An ice 
structure can only arise if 𝜅 ≤ 𝜅𝑐 or 𝜌𝑐 ≤ 𝜌. With respect to Eq. (16) we 
set 𝛾 = 𝛾0𝛷𝐺 = 𝛾0

𝛷𝐿𝐺
2 = 𝛾0

√

2
24 𝜀 and obtain from Eq. (40)

𝛥𝐺𝑡𝑜𝑡(𝜌)
𝛾0𝑟20

= 4𝜋

√

2
24

𝜀𝜌2
(

1 −
𝜌
𝜌𝑎

)

. (44)

The scaling parameters 𝛾0 = 24
√

2𝜀
𝛾 and 𝑟0 = 5

𝜋 𝑟𝑐 = 5
𝜋

2𝛾𝑇0
𝜚𝑞(𝑇0−𝑇𝑠)

 can 
be obtained with respect to Eqs. (16) and (36). The critical length of 
the phase field theory can be identified with the critical radius of the 
classical nucleation theory in Fig.  9. This is the unique point where 
we can find a connection between phase field theory and equilibrium 
thermodynamics in the time independent thermodynamics equilibrium. 
In the following Section, the critical radii and the interfacial tensions 
are compared with the simulations at the molecular level.

4.4. Comparison of the total Gibbs free energy 𝛥𝐺𝑡𝑜𝑡 with free energy 
calculations of TIP4P model of 𝐻2𝑂

In contrast to the phenomenological classical nucleation and growth 
theory, molecular dynamics and Monte Carlo methods use partition 
functions of a Einstein reference crystal for the calculation of the 
free energy [63–65]. Because an interfacial tension is not explicitly 
considered in this concept, only the total Gibbs free energy can be 
compared with each other. Vlot et al. [65] performed a Monte Carlo 
Simulation of a 4-site transferable intermolecular potential (TIP4P) 
model with 𝑁 = 576 molecules and calculated for this grand canonical 
ensemble a molar Gibbs free energy 54.9 kJ

mol , i.e. 𝛥𝐺𝑡𝑜𝑡 = 9.11 ⋅ 10−13 erg
for an ice nucleus. The Gibbs free energy for an ice nucleus of 578
molecules is 2.32 ⋅10−12 erg for an interfacial tension of 29 erg

cm2  shown in 
Fig.  10 on the left side. We consider only the right intersection point 
for the successful nucleation because the second intersection point 
does not form an ice nucleus. We overestimate the Gibbs free energy 
more than double compared to the Monte Carlo simulation. In order 
to achieve the same Gibbs free energy, the interfacial tension must be 
reduced to 𝛾 = 24.65 erg

cm2  according to the right side of Fig.  10. The 
experimentally determined values for the interfacial tension for liquid 
water-ice 𝛾 vary from 15 erg  to 32 erg  [60]. This interfacial tensions 
cm2 cm2
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Fig. 9. Comparison between phase field theory and classical nucleation theory for estimation of critical nucleus: 𝜁𝑐 = 2𝜋
𝜅𝑐

= 2𝜌𝑐 with 𝜀 = 1
10
 and 𝜌𝑐 = 𝜋

5
. The double critical radius 

𝜌𝑐 is equal to the critical length 𝜁𝑐 , because the classical nucleation theory determines critical radii in contrast to the stability analysis of phase field theory, which determines the 
total length. The critical length 𝜁𝑐 is the length for the eigenvalue 𝜏0𝜆̂ = 0 and the critical radius is determined from the maximum of Gibbs free energy.
Fig. 10. Influence of the interfacial tension on the Gibbs free energy with 𝛾0 = 24
√

2𝜀
𝛾, 𝑟0 = 5

𝜋
𝑟𝑐 =

5
𝜋

2𝛾𝑇0
𝜚𝑞(𝑇0−𝑇𝑠 )

 and 𝜀 = 1
10
.

determine the critical radii from 𝑟𝑐 (𝑁 = 55) = 0.73 nm to 𝑟𝑐 (𝑁 = 538) =
1.57 nm with the corresponding number of molecules 𝑁 from 55 to 
538. Unfortunately, the TIP4P water model underestimates the melting 
temperature between 230K and 250K and overestimates the density 
of ice between 0.942 g

cm3  and 0.963 g
cm3  [65]. As long as the range of 

interfacial energy cannot be narrowed down more, the question of the 
most plausible interfacial energy has to remain unanswered.

4.5. Freezing in seawater

For the description of seawater we extend the Landau–Ginzburg 
functional for fresh water 𝛷  by interaction between salt and ice.  The 
𝐿𝐺

10 
Ginzburg–Landau function used in this manuscript subsumes a possible 
mixing entropy for salt in the coupling terms 𝜎𝜂2 and 𝜎𝜂3. This is a 
simplifying assumption compared to the description in [40] and follows 
for seawater by considering the entropy of mixing

𝜎 ln 𝜎 + (1 − 𝜎 ln(1 − 𝜎)

in the regime 𝜎 ≪ 1. In this regime, the second term is unimportant. At 
𝜎 = 0, the term 𝜎 ln 𝜎 is an indeterminate form 0×∞. For the description 
of the regime 𝜎 ≪ 1 (seawater), we therefore apply the  L’Hospital rule:

lim(−𝜎 ln 𝜎) = − lim
(ln 𝜎)′

= − lim 1 (

−𝜎2
)

= lim 𝜎,

𝜎→0 𝜎→0 (1∕𝜎)′ 𝜎→0 𝜎 𝜎→0
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and replace 𝜎 ln 𝜎 by 𝜎.  The linear shift 𝑚 by 12𝜎 describes a freezing 
point depression due to  the colligative property of salt in Eq. (45) 
correspond to Appendix  A.4

𝜑𝐿𝐺 = 1
4
𝜂4 −

( 1
2
− 1

3

(

𝑚 − 1
2
𝜎
))

𝜂3 +
( 1
4
− 1

2

(

𝑚 − 1
2
𝜎
))

𝜂2 +
𝛽
2
𝜎2

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝜑𝐿

+ 1
2
𝜀2

(

𝜕𝜂
𝜕𝜁

)2

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
𝜑𝐺

. (45)

The dimensionless salinity  scaled to the maximal supercooling because 
of Eq. (2) is 𝜎 = 𝑖⋅𝐾𝐹

−𝛥𝑇0
𝑠 with the cryoscopic constant 𝐾𝐹 = −1.853 K kg

mol
of NaCl in water, the van’t Hoff-factor 𝑖 = 2 for NaCl  and the universal 
gas constant 𝑅. The expression 𝛥𝑇0 = 𝑇0−𝑇𝑠 designates the temperature 
difference between the freezing point 𝑇0 and the maximal supercooling 
temperature 𝑇𝑠 of pure water. The mean salinity of the oceans is 
approximately 𝑠 = 0.598 mol

kg  or 35 g
kg  and leads to a freezing point 

depression of 𝐾𝐹 ⋅ 𝑖𝑠 = −
𝑅𝑇 2

0
𝑞 ⋅ 𝑖𝑠 = −

𝑅𝑇 2
0 𝑛𝑀H2O

𝛥𝐻 ⋅ 𝑖𝑠 = −
𝑅𝑇0𝑛𝑀H2O

𝛥𝑆 ⋅ 𝑖𝑠 =
−2.2 K  as result of the Clausius–Clapeyron relation valid only for 
low concentrations.  According to the mole fraction 𝑥 = 35

1000
𝑛𝐻𝑖𝑜𝑛20
𝑛NaCl

=

0.0107 contain approximately 100 H2O molecules 1 NaCl molecule, also 
1Na+ ion and 1 Cl−.  The value of 𝛽 determines the width of the 
salinity distribution similar to diffusion constant. The parameter 𝛽 can 
be determined from the condition that 𝜎 = 0 for 𝜂 = 1 in the equilibrium 
case. This condition can be satisfied only as long as everything does not 
thaw or freeze, because salinity 𝜎 is a  conserved quantity. Analogous 
to the potentials in thermodynamics the Landau–Ginzburg potential 
density 𝜑𝐿𝐺 guarantee the equality 𝜕2𝜑𝐿𝐺

𝜕𝜂𝜕𝜎 = 𝜕2𝜑𝐿𝐺
𝜕𝜎𝜕𝜂  for the existence 

of a total differential. The functional derivatives yield the evolution 
equations

𝜏0
𝜕𝜂(𝜏, 𝜁 )

𝜕𝜏
= −

𝛿𝛷𝐿𝐺
𝛿𝜂

= −
𝜕𝜑𝐿
𝜕𝜂

+ 𝜀2
𝜕2𝜂(𝜏, 𝜁 )

𝜕𝜁2

= −𝜂3 +
(3
2
−
(

𝑚 − 1
2
𝜎
))

𝜂2 −
( 1
2
−
(

𝑚 − 1
2
𝜎
))

𝜂

+𝜀2
𝜕2𝜂(𝜏, 𝜁 )

𝜕𝜁2

= 𝜂(1 − 𝜂)
(

𝜂 − 1
2
+ 𝑚 − 1

2
𝜎
)

+ 𝜀2
𝜕2𝜂(𝜏, 𝜁 )

𝜕𝜁2
, (46)

𝜏0
𝜕𝜎(𝜏, 𝜁 )

𝜕𝜏
= − 𝜕2

𝜕𝜁2
𝛿𝛷𝐿𝐺
𝛿𝜎

= −𝜀2 𝜕2

𝜕𝜁2
( 1
3
1
2
𝜂3 − 1

4
𝜂2 − 𝛽𝜎

)

. (47)

The operator −𝜀2 𝜕2

𝜕𝜁2
 leads to a continuity equation with the salinity 

as a conserved quantity.  Eq. (47) has a character of a Cahn–Hilliard 
equation without the 4th derivative of the order parameter or salin-
ity. We would obtain such a type of equation for the salinity if we 
replace 𝛽2 𝜎2 with a Ginzburg energy density 

1
2 𝛽

(

𝜕𝜎
𝜕𝜁

)2
 for the salinity 

in Eq. (45). However, it was not absolutely necessary to consider the 
fourth derivative for a brine channel formation. The salinity flow is 
balanced by the opposite fluxes − 1

6 𝜀
2 𝜕2

𝜕𝜁2
𝜂3 and 14 𝜀2

𝜕2

𝜕𝜁2
𝜂2. This flux is 

determined by the parameter 𝛽 in Eq. (47). In the stationary case, this 
equation 

𝜏0
𝜕𝜎(𝜏, 𝜁 )

𝜕𝜏
= −𝜀2 𝜕2

𝜕𝜁2
( 1
6
𝜂3 − 1

4
𝜂2 − 𝛽𝜎

)

= 0 (48)

can be integrated 

0 = 𝜕
𝜕𝜁

( 1
6
𝜂3 − 1

4
𝜂2 − 𝛽𝜎

)

+ 𝐶1, (49)

with 𝐶1 = 0 if 𝜕𝜂𝜕𝜁 = 𝜕𝜎
𝜕𝜁 = 0. As a result of the second integration 

0 = 1
6
𝜂3 − 1

4
𝜂2 − 𝛽𝜎 + 𝐶2 (50)
11 
the constant 𝐶2 is determined from the condition 𝜎(𝜂𝑚𝑎𝑥) = 𝜎𝑚𝑖𝑛 and 
obtain 𝐶2 = 𝛽𝜎𝑚𝑖𝑛 + 𝜂2𝑚𝑎𝑥

(

1
4 − 1

6 𝜂𝑚𝑎𝑥
)

 and therefore 

0 = 𝜂2
( 1
6
𝜂 − 1

4

)

− 𝜂2𝑚𝑎𝑥
( 1
6
𝜂𝑚𝑎𝑥 −

1
4

)

− 𝛽(𝜎 − 𝜎𝑚𝑖𝑛) (51)

For 𝜎 = 𝜎𝑚𝑎𝑥 and 𝜂 = 𝜂𝑚𝑖𝑛 we get 

𝛽 =
𝜂2𝑚𝑖𝑛

(

1
6 𝜂𝑚𝑖𝑛 −

1
4

)

− 𝜂2𝑚𝑎𝑥
(

1
6 𝜂𝑚𝑎𝑥 −

1
4

)

𝜎𝑚𝑎𝑥 − 𝜎𝑚𝑖𝑛
. (52)

Because the values 𝜂𝑚𝑖𝑛 = 0 and 𝜂𝑚𝑎𝑥 = 1 in the stationary case 
𝜕𝜂
𝜕𝜏 = 0 be achieved 

𝜂0 =

⎧

⎪

⎨

⎪

⎩

0 = 𝜂𝑚𝑖𝑛,
1
2 − 𝑚 + 1

2𝜎,
1 = 𝜂𝑚𝑎𝑥

(53)

the parameter 𝛽 is simplified to 

𝛽 = 1
12(𝜎𝑚𝑎𝑥 − 𝜎𝑚𝑖𝑛)

. (54)

Should salt completely suppressed from the ice, i.e. 𝜎𝑚𝑖𝑛 = 0 then we 
obtain 

𝛽 = 1
12𝜎𝑚𝑎𝑥

. (55)

According to Eq. (46) or (53) the unstable fixed point 𝜂0 = 1
2  is reached 

if 12𝜎 = 𝑚 and obtain 𝜎
(

𝜂 = 1
2

)

= 2𝑚. If we set 𝜂𝑚𝑎𝑥 = 1 and 𝜎𝑚𝑖𝑛 = 0 in 
Eq. (51) then 𝛽𝜎 = 𝜂2

(

1
6 𝜂 −

1
4

)

+ 1
12 . Because of 𝛽𝜎𝑚𝑎𝑥 = 𝛽𝜎(𝜂 = 0) = 1

12

and 𝛽𝜎(𝜂 = 1
2 ) =

1
24  we find 𝜎𝑚𝑎𝑥 = 𝜎(𝜂 = 0) = 2𝜎

(

𝜂 = 1
2

)

= 4𝑚 and 
finally 

𝛽 = 1
12𝜎𝑚𝑎𝑥

= 1
48𝑚

. (56)

 Three cases can be distinguished:
(I) 𝛽 < 1

48𝑚 : 𝜎𝑚𝑎𝑥 − 𝜎𝑚𝑖𝑛 > 2𝜎̄
(II) 𝛽 = 1

48𝑚 : 𝜎𝑚𝑎𝑥 − 𝜎𝑚𝑖𝑛 = 2𝜎̄
(III) 𝛽 > 1

48𝑚 : 𝜎𝑚𝑎𝑥 − 𝜎𝑚𝑖𝑛 < 2𝜎̄
In case (I), the salinity becomes negative during the desalination 

of ice and remains negative. In case (II), the salinity becomes negative 
during the desalination of ice but becomes exactly 0 in the stationary 
state  or if the nucleation process is complete and only a wave front is 
still propagating. Assuming condition (II), negative salinities can only 
occur initially during the nucleation phase. Case (III) is a necessary 
condition, that the salinity does remain non-negative during the entire 
process. In addition, a minimum threshold of 𝛽 must also be exceeded. 
The consequence of this is that a residual salinity always remains in the 
ice. Alternatively, a time-dependent coefficient 𝛽1(𝜏)  of the kind

lim
𝜏→∞

𝛽(𝜏) = lim
𝜏→∞

𝑑 + 1

𝑑 + exp
(

− 𝜏1
𝜏

)

1
48𝑚

could also be introduced with two suitable constants 𝑑 and 𝜏1  in Fig. 
11 that prevent the initial overshoot of the salinity into the negative 
range.  After a certain cooling phase, spatial distribution of ordered 
phase could occur at the critical phase transition point 𝜂 = 1

2  as shown 
in Fig.  12.

The result from numerical integration of Eqs. (46) and (47) is shown 
in Fig.  12.  On the left two growing nuclei merge, in the centre the 
critical radius is not reached and the nucleus decays again and on the 
right a wave front moves until the salinity slows down the freezing 
front. The fusion of phase boundaries and the disappearance of an 
unstable nucleus leads to jumps in free energy 𝛷𝐿𝐺, 𝛷𝐿, 𝛷𝐺 and 
porosity 𝑃 = 1 − 𝑠𝑜𝑙𝑖𝑑 𝑣𝑜𝑙𝑢𝑚𝑒

𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 𝑣𝑜𝑙𝑢𝑚𝑒  in Fig.  13. In contrast to fresh water in 
Fig.  8, the Landau free energy can also increase if the porosity increases 
due to the loss of an unstable nucleus at 𝜏 = 13.5.
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Fig. 11. The salinity flow is controlled by the time dependent coefficient 𝛽 with 
𝑇𝑠 = 236.6 K, 𝑇0 = 273.15 K, 𝑇 = 270.93 K.

5. Summary and conclusion

For Kobayashi’s time-dependent approach, a link to classical time-
independent classical nucleation theory is proposed. In a further step, 
salinity is introduced as a second field and Kobayashi’s approach is 
extended. Without an alternating temperature field or an changing 
salinity field, the maximum of the eigenvalue 𝜏0𝜆 in Fig.  9 is assigned 
to wave number 𝜅 = 0, that means, the wave length 𝜆 → ∞. The 
frozen areas are not completely desalinated because flux in ice − 1

6 𝜀
2𝜂3𝜁𝜁

is opposed by a flux out from ice 1
4 𝜀

2𝜂2𝜁𝜁  including in Eq. (47). The 
parameter 𝛽 is determined by the condition that the salinity is positive. 
In the steady state this can be done by integrating of Eq. (48) for 
suitable boundary conditions for the salinity. For the approach to the 
steady state we introduce the time dependent 𝛽(𝜏) that always fulfils 
the condition 0 ≤ 𝜎 ≤ 𝜎𝑚𝑎𝑥 at each 𝜁 . In our extended Kobayashi 
approach the structure size is limited by a salinity profile that develops 
during the ice growth. This approach described the growth of the ice 
domain at small supercooling in connection with the salinity equation 
in difference to [42]. Furthermore, we used our enhanced model in 
order to simulate the fusion of the ice domains. The fusion of ice 
domains reduce the number of phase boundaries. This results in jumps 
of the Landau–Ginzburg energy at the time of domain fusions. The 
salinity-dependent isotropic approach can be extended with respect to 
different growth rates in different directions, resulting in anisotropic 
growth [66,67].
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Appendix

A.1. First variation - one dimension

The variation of the functional 𝐹𝐿𝐺[𝜂, 𝑠] = ∫ 𝑧2
𝑧1

𝑓𝐿𝐺(𝑧, 𝜂, 𝜂𝑧)𝑑𝑧 yields

𝛿𝐹𝐿𝐺[𝜂] = 𝛿 ∫

𝑧2

𝑧1
𝑓𝐿𝐺(𝑠, 𝜂, 𝜂𝑧)𝑑𝑧 = ∫

𝑧2

𝑧1
𝛿𝑓𝐿𝐺(𝑠, 𝜂, 𝜂𝑧)𝑑𝑧

= ∫

𝑧2

𝑧1

(

𝜕𝑓𝐿𝐺
𝜕𝜂

𝛿𝜂 +
𝜕𝑓𝐿𝐺
𝜕𝜂𝑧

𝛿𝜂𝑧

)

𝑑𝑧,

and the integration by parts

∫

𝑧2

𝑧1

𝜕𝑓𝐿𝐺
𝜕𝜂𝑧

𝛿𝜂𝑧𝑑𝑧 = 𝛿 ∫

𝑧2

𝑧1

𝜕𝑓𝐿𝐺
𝜕𝜂𝑧

𝜂𝑧𝑑𝑧

= 𝛿

(

[

𝜕𝑓𝐿𝐺
𝜕𝜂𝑧

𝜂
]𝑧2

𝑧1
− ∫

𝑧2

𝑧1

𝑑
𝑑𝑧

𝜕𝑓𝐿𝐺
𝜕𝜂𝑧

𝜂𝑑𝑧

)

=
[

𝜕𝑓𝐿𝐺
𝜕𝜂𝑧

𝛿𝜂
]𝑧2

𝑧1
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

=0

−𝛿 ∫

𝑧2

𝑧1

𝑑
𝑑𝑧

𝜕𝑓𝐿𝐺
𝜕𝜂𝑧

𝜂𝑑𝑧

= −∫

𝑧2

𝑧1

𝑑
𝑑𝑧

𝜕𝑓𝐿𝐺
𝜕𝜂𝑧

𝛿𝜂𝑑𝑧.

Hence becomes

𝛿𝐹𝐿𝐺[𝜂] = 𝛿 ∫

𝑧2

𝑧1
𝑓𝐿𝐺(𝜂, 𝜂𝑧)𝑑𝑧 = ∫

𝑧2

𝑧1

(

𝜕𝑓𝐿𝐺
𝜕𝜂

− 𝑑
𝑑𝑧

𝜕𝑓𝐿𝐺
𝜕𝜂𝑧

)

𝛿𝜂𝑑𝑧,

or the first variation 
𝛿
𝛿𝜂

𝐹𝐿𝐺[𝜂] =
𝜕𝑓𝐿𝐺
𝜕𝜂

− 𝑑
𝑑𝑧

𝜕𝑓𝐿𝐺
𝜕𝜂𝑧

. (A.1)

The first variation of the Landau–Ginzburg free energy density 𝑓𝐿𝐺

𝑓𝐿𝐺(𝜂, 𝜂𝑧) =
1
4
𝜂4 −

( 1
2
− 𝑚

3

)

𝜂3 +
( 1
4
− 𝑚

2

)

𝜂2

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑓𝐿

+
𝑧21
2

(

𝜕𝜂
𝜕𝑧

)2

⏟⏞⏞⏞⏟⏞⏞⏞⏟
𝑓𝐺

, (A.2)

with 𝑚(𝛥𝑇 ) = 1
2
𝛥𝑇0−𝛥𝑇
𝛥𝑇0

 yields corresponding to Eqs. (A.1)

𝑡1
𝜕𝜂(𝑡, 𝑧)

𝜕𝑡
= −

𝛿𝐹𝐿𝐺
𝛿𝜂

= −
𝜕𝑓𝐿𝐺
𝜕𝜂

+ 𝑑
𝑑𝑧

𝜕𝑓𝐿𝐺
𝜕𝜂𝑧

= −𝜂3 +
( 3
2
− 𝑚

)

𝜂2 −
( 1
2
− 𝑚

)

𝜂 + 𝑧21
𝜕2𝜂(𝑡, 𝑧)
𝜕𝑧2

= 𝜂(1 − 𝜂)
(

𝜂 − 1
2
+ 𝑚

)

+ 𝑧21
𝜕2𝜂(𝑡, 𝑧)
𝜕𝑧2

. (A.3)

Here 𝜂 represents the order parameter, 𝛥𝑇 = 𝑇 − 𝑇𝑠 the temperature 
difference between the current temperature 𝑇  and the supercooling 
temperature 𝑇𝑠 with the equilibrium temperature 𝑇0, the space variable 
𝑧 and the time 𝑡. The corresponding greek letters denote the dimension-
less quantities, linked by scaling factors 𝑧0 and 𝑡0, that means 𝑧 = 𝑧0𝜁
and 𝑡 = 𝑡0𝜏. We have to do
𝜕𝜂
𝜕𝜏

=
𝜕𝜂
𝜕𝑡

𝜕𝑡
𝜕𝜏

,

𝜕𝜂
=

𝜕𝜂 𝜕𝑧 ,

𝜕𝜁 𝜕𝑧 𝜕𝜁
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Fig. 12. In contrast to Fig.  8, the salinity here prevents the entire area from being frozen. Initial conditions and parameter: 𝜂(𝜏 = 0, 𝜁 ) = 0.4 + 1
5
exp

(

− 1
5

(

7
5
(𝜁 − 5)

)8
)

+

1
5
exp

(

− 1
5

(

6
5

(

𝜁 − 15
2

))8
)

+ 1
5
exp

(

− 1
5

(

11
5

(

𝜁 − 45
4

))8
)

+ 1
5
exp

(

− 1
5

(

4
5
(𝜁 − 15)

)8
)

, 𝜎(𝜏 = 0, 𝜁 ) = 1
10
(1−𝜂(𝜏 = 0, 𝜁 ))+0.0081, 𝑑 = 3, 𝜏1 = 0.3, 𝜏0 = 𝜀2 = 1

100
, 𝑇0 = 273.15 K, 𝑇𝑠 = 236.6 K, 

𝑇 = 270.93𝐾, ⟨𝜎⟩ = 0.0606.
Fig. 13. The porosity increases immediately when a unstable nucleus disappears. This 
correlates with the increase of Landau free energy 𝛷𝐿.
13 
𝜕2𝜂
𝜕𝜁2

=
𝜕2𝜂
𝜕𝑧2

(

𝜕𝑧
𝜕𝜁

)2
+

𝜕𝜂
𝜕𝑧

𝜕2𝑧
𝜕𝜁2

⏟⏟⏟
=0

,

and obtain with 𝜕𝜂𝜕𝑡 = 1
𝑡0

𝜕𝜂
𝜕𝜏 , 

𝜕𝜂
𝜕𝑧 = 1

𝑧0
𝜕𝜂
𝜕𝜁 , 

𝜕2𝜂
𝜕𝑧2

= 1
𝑧20

𝜕2𝜂
𝜕𝜁2

 the equation 

𝑡1
𝑡0

𝜕𝜂(𝜏, 𝜁 )
𝜕𝜏

= −𝜂3 + 3
2
𝜂2 − 𝑚𝜂2 − 1

2
𝜂 + 𝑚𝜂 +

𝑧21
𝑧20

𝜕2𝜂(𝜏, 𝜁 )
𝜕𝜁2

, (A.4)

and choose for example
𝑡1
𝑡0

= 𝜏0,

𝑧21
𝑧20

= 𝜀2.

In Eq. (A.4), 𝑧1 and 𝑡1 are scaling parameters. Therefore, we can set 
𝜀2

𝜏0
= 1 without loss of generality. The factors 𝑡0 and 𝑧0 are determined 

from experimental values in Section 4.1. and do not depend on 𝑡1
and 𝑧1. Because 𝑡1 and 𝑧1 are free parameters, we can set 𝜀2 = 𝜏0, 
which also avoids numerical instabilities of an ill-conditioned problem. 
Accordingly is

𝜏0
𝜕𝜂(𝜏, 𝜁 )

𝜕𝜏
= −𝜂3 +

( 3
2
− 𝑚

)

𝜂2 −
( 1
2
− 𝑚

)

𝜂 + 𝜀2
𝜕2𝜂(𝜏, 𝜁 )

𝜕𝜁2

= 𝜂(1 − 𝜂)
(

𝜂 − 1
2
+ 𝑚

)

+ 𝜀2
𝜕2𝜂(𝜏, 𝜁 )

𝜕𝜁2
, (A.5)

and the corresponding dimensionless Landau–Ginzburg free energy 
density 𝜑𝐿𝐺

𝜑𝐿𝐺(𝜂, 𝜂𝜁 ) =
1
4
𝜂4 −

( 1
2
− 𝑚

3

)

𝜂3 +
( 1
4
− 𝑚

2

)

𝜂2

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝜑𝐿

+ 1
2
𝜀2

(

𝜕𝜂
𝜕𝜁

)2

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
𝜑𝐺

. (A.6)

A.2. Exponential time differencing

Cox and Matthews [50] discussed several numerical iteration meth-
ods. We use the higher-order approximation for exponential time dif-
ferencing method (ETD2) described by Eqs.  (5) and (6) therein. The 
procedure is illustrated using Eq. (A.5). The real one-dimensional space 
is discretized and a reciprocal space is assigned to this space

𝜁 = 𝐿
𝑁

(0, 1,… , 𝑁 − 1) , real space

𝜅 = 2𝜋
𝐿

(

0, 1,… , 𝑁
2

− 1, 0,−𝑁
2

+ 1,… ,−1
)

, reciprocal space
where 𝑁 is the number of grid points and L is the total length. 
Eq. (17) must be transformed into reciprocal space by means of Fourier 
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transformation in order to be able to apply the iteration method
𝜏(𝑛+1)(𝜂(𝜁 ))(𝜅) = 𝜏(𝑛)(𝜂(𝜁 )) exp(𝐴𝛥𝜏)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑙𝑖𝑛𝑒𝑎𝑟

+ (𝑓1𝑓3)𝜏(𝑛) + (𝑓2𝑓3)𝜏(𝑛−1)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑛𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟

,

with

𝐴 = − 1
𝜏0

( 1
2
− 𝑚

)

+ 𝜀2

𝜏0
(𝑖𝜅)2 ,

𝑓1 =
(1 + 𝐴𝛥𝜏) exp(𝐴𝛥𝜏) − 1 − 2𝐴𝛥𝜏

𝐴2𝛥𝜏
,

𝑓2 =
(− exp(𝐴𝛥𝜏) + 1 + 𝐴𝛥𝜏

𝐴2𝛥𝜏
,

𝑓3 = 1
𝜏0


(

−𝜂3 +
( 3
2
− 𝑚

)

𝜂2
)

(𝜅) . (A.7)

In order to avoid indefinite expressions, the two limit values

lim
𝐴→0

𝑓1 =
3
2
𝛥𝜏,

lim
𝐴→0

𝑓2 = −1
2
𝛥𝜏

should be implied separately in the numerics. Finally. the inverse 
Fourier transform
𝜂(𝜁 ) = −1(𝜏(𝑛+1)(𝜂(𝜁 ))(𝜅))(𝜁 )

yields the order parameter 𝜂 in real space. 

A.3. Instanton - kink - wavefront

The most general term is a ‘‘wavefront’’. We can adopt Rajara-
man’s intention that instantons are localized solutions of Euclidic field 
equations with finite Euclidian action [46]. In order to show that the 
solution of the time-independent Eq. (A.5)

𝜂(1 − 𝜂)
(

𝜂 − 1
2
+ 𝑚

)

+ 𝜀2
𝜕2𝜂
𝜕𝜁2

= 0 (A.8)

possesses the properties of an instanton, at least one corresponding 
time-dependent equation must exist. Eq. (A.8) should result from a 
suitable substitution of time of the time-dependent equation. The time-
independent Eq. (A.8) for a static state can be obtained from a corre-
sponding non linear time-dependent wave equation 
1
2
𝜀2

𝜕2𝜂(𝜏, 𝜁 )
𝜕𝜏2

− 1
2
𝜀2

𝜕2𝜂
𝜕𝜁2

= −𝜂3 +
( 3
2
− 𝑚

)

𝜂2 −
( 1
2
− 𝑚

)

𝜂, (A.9)

if we replace 𝜏 = −𝑖𝜁 we obtain Eq. (A.8).

A.4. Dimensionless equations with salinity - one dimension

The first variation of the Landau free energy density 𝑓𝐿𝐺
𝑓𝐿𝐺 = 1

4
𝜂4 −

( 1
2
− 1

3

(

𝑚 − 1
2
𝜎
))

𝜂3 +
( 1
4
− 1

2

(

𝑚 − 1
2
𝜎
))

𝜂2 +
𝛽
2
𝜎2

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑓𝐿

+
𝑧21
2

(

𝜕𝜂
𝜕𝑧

)2

⏟⏞⏞⏞⏟⏞⏞⏞⏟
𝑓𝐺

, (A.10)

with 𝜎 = 1
2

𝐾𝐹 𝑖
𝑇𝑠−𝑇0

𝑠 and 𝑚(𝛥𝑇 ) = 1
2
𝛥𝑇0−𝛥𝑇
𝛥𝑇0

 yields corresponding to Eqs.

𝑡1
𝜕𝜂(𝑡, 𝑧)

𝜕𝑡
= −

𝛿𝐹𝐿𝐺
𝛿𝜂

= −
𝜕𝑓𝐿𝐺
𝜕𝜂

+ 𝑑
𝑑𝑧

𝜕𝑓𝐿𝐺
𝜕𝜂𝑧

= −𝜂3 +
( 3
2
−
(

𝑚 − 1
2
𝜎
))

𝜂2

−
( 1
2
−
(

𝑚 − 1
2
𝜎
))

𝜂 + 𝑧1
𝜕2𝜂(𝑡, 𝑧)
𝜕𝑧2

= 𝜂(1 − 𝜂)
(

𝜂 − 1
2
+ 𝑚 − 1

2
𝜎
)

+ 𝑧1
𝜕2𝜂𝑡, 𝑧)
𝜕𝜁2

, (A.11)

𝑡1
𝜕𝜎(𝑡, 𝑧)

= −
𝛿𝐹𝐿𝐺 = −

𝜕𝑓𝐿𝐺 + 𝑑 𝜕𝑓𝐿𝐺

𝜕𝑡 𝛿𝜎 𝜕𝜎 𝑑𝑧 𝜕𝜎𝑧

14 
= 1
6
𝜂 − 1

4
𝜂 − 𝛽𝜎 (A.12)

Here 𝜂 represents the order parameter, 𝛥𝑇 = 𝑇 − 𝑇𝑠 the temperature 
difference between the current temperature 𝑇  and the supercooling 
temperature 𝑇𝑠 with the equilibrium temperature 𝑇0, 𝑠 the molality of 
the salinity, 𝐾𝐹  the cryoscopic constant, 𝑖 the van’t Hoff factor, 𝑧 the 
space variable and 𝑡 the time. The corresponding greek letters denote 
the dimensionless quantities, linked by scaling factors 𝑧0 and 𝑡0, that 
means 𝑧 = 𝑧0𝜁 and 𝑡 = 𝑡0𝜏. We have to do

𝜕𝜂
𝜕𝜏

=
𝜕𝜂
𝜕𝑡

𝜕𝑡
𝜕𝜏

,

𝜕𝜎
𝜕𝜏

= 𝜕𝜎
𝜕𝑡

𝜕𝑡
𝜕𝜏

,

𝜕𝜂
𝜕𝜁

=
𝜕𝜂
𝜕𝑧

𝜕𝑧
𝜕𝜁

,

𝜕2𝜂
𝜕𝜁2

=
𝜕2𝜂
𝜕𝑧2

(

𝜕𝑧
𝜕𝜁

)2
+

𝜕𝜂
𝜕𝑧

𝜕2𝑧
𝜕𝜁2

⏟⏟⏟
=0

,

𝜕2𝜂2

𝜕𝜁2
= 2

⎛

⎜

⎜

⎜

⎜

⎝

(

𝜕𝜂
𝜕𝑧

)2 ( 𝜕𝑧
𝜕𝜁

)2
+ 𝜂 𝜕2𝑧

𝜕𝜁2
⏟⏟⏟

=0

𝜕𝜂
𝜕𝑧

+ 𝜂
(

𝜕𝑧
𝜕𝜁

)2 𝜕2𝜂
𝜕𝑧2

⎞

⎟

⎟

⎟

⎟

⎠

= 2
(

𝜕𝑧
𝜕𝜁

)2
(

(

𝜕𝜂
𝜕𝑧

)2
+ 𝜂

𝜕2𝜂
𝜕𝑧2

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
1
2
𝜕2𝜂2

𝜕𝑧2

,

𝜕2𝜂3

𝜕𝜁2
= 3𝜂

⎛

⎜

⎜

⎜

⎜

⎝

2𝜂
(

𝜕𝜂
𝜕𝑧

)2 ( 𝜕𝑧
𝜕𝜁

)2
+ 𝜂 𝜕2𝑧

𝜕𝜁2
⏟⏟⏟

=0

𝜕𝜂
𝜕𝑧

+ 𝜂
(

𝜕𝑧
𝜕𝜁

)2 𝜕2𝜂
𝜕𝑧2

⎞

⎟

⎟

⎟

⎟

⎠

= 3
(

𝜕𝑧
𝜕𝜁

)2
(

2𝜂
(

𝜕𝜂
𝜕𝑧

)2
+ 𝜂2

𝜕2𝜂
𝜕𝑧2

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
1
3
𝜕2𝜂3

𝜕𝑧2

,

𝜕2𝜎
𝜕𝜁2

= 𝜕2𝜎
𝜕𝑧2

(

𝜕𝑧
𝜕𝜁

)2
+ 𝜕𝜎

𝜕𝑧
𝜕2𝑧
𝜕𝜁2

⏟⏟⏟
=0

,

and obtain with 𝜕𝜂
𝜕𝑡 = 1

𝑡0
𝜕𝜂
𝜕𝜏 , 

𝜕𝜎
𝜕𝑡 = 1

𝑡0
𝜕𝜎
𝜕𝜏 , 

𝜕𝜂
𝜕𝑧 = 1

𝑧0
𝜕𝜂
𝜕𝜁 , 

𝜕2𝜂
𝜕𝑧2

= 1
𝑧20

𝜕2𝜂
𝜕𝜁2
, 

𝜕2𝜂2

𝜕𝑧2
= 1

𝑧20

𝜕2𝜂2

𝜕𝜁2
, 𝜕2𝜂3

𝜕𝑧2
= 1

𝑧20

𝜕2𝜂3

𝜕𝜁2
, 𝜕2𝜎

𝜕𝑧2
= 1

𝑧20

𝜕2𝜎
𝜕𝜁2

 the equations

𝑡1
𝑡0

𝜕𝜂(𝜏, 𝜁 )
𝜕𝜏

= −𝜂3 + 3
2
𝜂0𝜂

2 − 𝑚𝜂2 + 1
2
𝜎𝜂2 − 1

2
𝜂 + 𝑚𝜂 − 1

2
𝜎𝜂 +

𝑧21
𝑧20

𝜕2𝜂(𝜏, 𝜁 )
𝜕𝜁2

𝑡1
𝑡0

𝜕𝜎(𝜏, 𝜁 )
𝜕𝜏

= 1
6
𝜂3 − 1

4
𝜂2 − 𝛽𝜎,

and choose again
𝑡1
𝑡0

= 𝜏0,

𝑧21
𝑧20

= 𝜀2.

Accordingly is

𝜏0
𝜕𝜂(𝜏, 𝜁 )

𝜕𝜏
= −𝜂3 +

( 3
2
−
(

𝑚 − 1
2
𝜎
))

𝜂2

−
( 1
2
−
(

𝑚 − 1
2
𝜎
))

𝜂 + 𝜀2
𝜕2𝜂(𝜏, 𝜁 )

𝜕𝜁2

= 𝜂(1 − 𝜂)
(

𝜂 − 1
2
+ 𝑚 − 1

2
𝜎
)

+ 𝜀2
𝜕2𝜂(𝜏, 𝜁 )

𝜕𝜁2
, (A.13)

𝜏
𝜕𝜎(𝜏, 𝜁 )

= 1 𝜂3 − 1 𝜂2 − 𝛽𝜎. (A.14)
0 𝜕𝜏 6 4
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The conserved equation for salinity is given by 

𝑡1
𝜕𝜎(𝑡, 𝑧)

𝜕𝑡
= −𝑧21

𝜕2

𝜕𝑧2
( 1
6
𝜂3 − 1

4
𝜂2 − 𝛽𝜎

)

, (A.15)

𝑡1
𝑡0

𝜕𝜎(𝜏, 𝜁 )
𝜕𝜏

= −
𝑧21
𝑧20

𝜕2

𝜕𝜁2

(

1
6
𝜂3 − 1

4
𝜂2 − 𝛽

𝑧21
𝑧20

𝜎

)

, (A.16)

𝜏0
𝜕𝜎(𝜏, 𝜁 )

𝜕𝜏
= −𝜀2 𝜕2

𝜕𝜁2
( 1
6
𝜂3 − 1

4
𝜂2 − 𝛽𝜎

)

, (A.17)

and the corresponding dimensionless Landau–Ginzburg free energy 
density 𝜑𝐿𝐺 of Eq. (A.2)

𝜑𝐿𝐺 = 1
4
𝜂4 −

( 1
2
− 1

3

(

𝑚 − 1
2
𝜎
))

𝜂3 +
( 1
4
− 1

2

(

𝑚 − 1
2
𝜎
))

𝜂2 +
𝛽
2
𝜎2

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝜑𝐿

+ 1
2
𝜀2

(

𝜕𝜂
𝜕𝜁

)2

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
𝜑𝐺

. (A.18)

A.5. Irreversibility

A large number of Euler–Lagrange functions can be found which 
are invariant with respect to time reversal, that means, either there 
is only reversible processes or equations which do not contain ’’time’’ 
as an explicit parameter. It requires to introduce a non-equilibrium 
entropy, a Boltzmann H-theorem, a projection operator or similar 
assumptions [49,68–72] to achieve symmetry breaking in time. The 
time-dependent term 𝜏0 𝜕𝜂

𝜕𝜏  in 

𝜏0
𝜕𝜂(𝜏, 𝜁 )

𝜕𝜏
= 𝜂 (𝜂 − 1)

(

−𝜂 + 1
2
− 𝑚

)

+ 𝜀2
𝜕2𝜂(𝜏, 𝜁 )

𝜕𝜁2
(A.19)

is based on this additional assumption and not a result of the variation 
and was only postulated. This expression can be interpreted as a 
deterministic equivalent to a random assumption. Only for the special 
case of a running wave it is possible to specify a Lagrange function for 
the equation of motion, that includes the time 𝜏.

Data availability

No data was used for the research described in the article.
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