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Abstract

Seasonal snow cover plays a critical role in regulating Arctic soil tempera-

tures, particularly in permafrost landscapes. Its insulating properties depend

not only on snow depth but also on snow density and stratigraphy. However,

these characteristics remain poorly understood in Arctic environments due to

limited availability of high-resolution measurements. This thesis investigates

how spatial variability in snow depth and snow density influences soil temper-

atures (6 cm) during late winter in a Low Arctic maritime tundra landscape on

Qeqertarsuaq (Disko Island), Kalaallit Nunaat (Greenland). The study com-

bines high-resolution snowpack data collected with the SnowMicroPen (SMP)

in April 2024 with hourly soil temperature records from 14 temperature sen-

sors.

Snow depths at the sensor locations ranged from 0.16m to 1.10m (mean:

0.56m), while snowpack densities varied between 247 kgm−3 and 409 kgm−3.

Average soil temperatures from October 2023 to June 2024 spanned from

−4.67 °C to −0.23 °C across the site.

To capture the relationship between snow cover characteristics and soil

temperatures, and to assess spatial variability and uncertainty, I used Bayesian

hierarchical modeling. The results show that snow depths greater than ap-

proximately 0.5m effectively insulate the soil by dampening the impact of air

temperature fluctuations, reinforcing the snowpack’s role as a thermal buffer.

I also observed a positive, though more uncertain, relationship between snow

density and soil temperature, suggesting that denser snow may reduce insu-

lating capacity. These findings indicate that snow density plays an important

role in Arctic ground thermal regimes, but additional high-resolution observa-

tions and further model development are needed to better quantify its effects.
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INTRODUCTION

1 Introduction

Seasonal snow covers large parts of the Arctic for six to ten months of the year, reaching

a maximum extent of approximately 47 × 106 km2 in the Northern Hemisphere between

December and February (Estilow et al. 2015). However, long-term satellite records show a

decline in arctic snow cover mass, with an average reduction of −1.4% per decade (Mudryk

et al. 2022; Peng et al. 2024). This decline is primarily driven by anthropogenic climate

warming. This warming also leads to more frequent and intense rain-on-snow events and

mid-winter melt, which alter the physical structure and thermal behavior of snowpacks

(Rantanen et al. 2022; Tan et al. 2022; Du et al. 2025).

The seasonal snowpack plays a crucial role in regulating the Arctic soil thermal regime.

In autumn, the thin, fresh snow cover usually has a cooling effect because it reflects up to

90% of the incoming shortwave solar radiation (Pomeroy and Brun 2011). The proportion

of reflected shortwave radiation is called albedo. As the snow ages, the surface albedo can

drop as low as 50% (Pomeroy and Brun 2011). During winter, increasing snow depth and

falling air temperatures cause snow to act as an insulating layer, slowing the transfer of

heat from the relatively warmer soil to the colder atmosphere. This insulating effect is

due to high air content and low thermal conductivity of snow (Pomeroy and Brun 2011;

Huang et al. 2017; Pertermann 2017). Understanding the thermal behavior of snow and

the properties that influence it is crucial for predicting subsurface temperatures in Arctic

environments, which affect processes such as soil microbial activity, nutrient cycling, and

permafrost dynamics.

Thermal conductivity is the key factor controlling snow’s insulating capacity, as it

governs the rate at which heat is transferred through the snowpack. Because of this

relationship, snow with lower thermal conductivity insulates the ground more effectively.

Thermal conductivity is primarily influenced by snow density, followed by temperature,

microstructure (including grain size and bonding), moisture content, and anisotropy. Since

direct field measurements of thermal conductivity are difficult, snow density is widely used

as a practical and accessible proxy (Pertermann 2017; Macfarlane et al. 2023).

The relationship between density and thermal conductivity is non-linear (Macfarlane

et al. 2023). Dry fresh snow and depth hoar (large, faceted crystals that typically form near

the ground under strong temperature gradients) can have a density of less than 100 kgm−3

with a thermal conductivity between 0.03Wm−1K−1 to 0.11Wm−1K−1 (Sturm and

Johnson 1992), whereas melting snow and wind slab (dense, hard layers formed by wind

compaction) can have a density above 600 kgm−3 resulting in a thermal conductivity of

0.14Wm−1K−1 to 0.35Wm−1K−1 (Sturm and Johnson 1992; Pomeroy and Brun 2011;

Pertermann 2017).

Variations in snow density within Arctic snowpacks arise from a combination of ac-

cumulation, transformation, and redistribution processes throughout the winter. For in-

stance, snow deposition under cold conditions leads to low-density snow, while wind com-

paction and refreezing after melt events create denser, more cohesive layers (Meløysund

et al. 2007; Lawrence and Slater 2010). Additionally, vertical temperature gradients

within the snowpack drive metamorphic processes, which cause changes in the size, shape,

and bonding of snow grains (Pomeroy and Brun 2011). Strong temperature gradients

( 1 °Ccm−1) favor the formation of depth hoar through constructive metamorphism, while

weaker gradients promote destructive metamorphism and increased snow density (Bor-

mann et al. 2013). As a result, Arctic snowpacks typically display a distinct stratification,
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with dense, wind-compacted layers near the surface overlaying lower-density depth hoar

(Larose et al. 2013). The complex vertical and horizontal structure of the snowpack plays

a key role in determining its thermal properties (Schweizer et al. 2008; Pomeroy and Brun

2011; Bormann et al. 2013).

However, while the influence of snow depth on soil temperature is well established

(Overduin et al. 2007; Krab et al. 2022; Pongracz et al. 2024; Grünberg et al. 2025), with

deeper snow typically leading to warmer winter soils because of its stronger insulating ef-

fect, much less is known about the role of snow density. Snow density remains difficult to

simulate accurately in physical snow models (Domine et al. 2021). Most multilayer snow-

pack models, such as Crocus (Vionnet et al. 2012) and SNOWPACK (Bartelt and Lehning

2002), were developed for mid-latitude conditions and avalanche forecasting. These models

often perform poorly in the Arctic, where dominant processes like wind redistribution and

vapor flux are not well represented (Peng et al. 2024; Woolley et al. 2024). Consequently,

model outputs frequently simulate vertical snow density profiles inverse to actual observa-

tions (Peng et al. 2024; Woolley et al. 2024). Although these models estimate snow depth

reasonably, inaccuracies in simulating snow layering and thermal conductivity introduce

errors in soil temperature predictions (Wever et al. 2023).

To address these shortcomings, this study adopts an alternative approach by applying

a hierarchical Bayesian modeling framework to estimate how snow properties relate to

soil temperatures. Statistical models offer several advantages in this context as they are

flexible, data-driven, and capable of incorporating empirical snow measurements without

relying on assumptions about the physical processes that govern snow evolution (Webb

et al. 2010; Kruschke 2021).

Building on this framework, I apply Bayesian hierarchical modeling to snow profile

and soil temperature data collected during a field campaign in April 2024 on Qeqertarsuaq

(Disko Island), Kalaallit Nunaat (Greenland). The overarching research question guiding

this study is: How does spatial variability in snow cover characteristics, particularly snow

density, influence near-surface soil temperatures in a maritime permafrost setting? To

address this, the analysis pursues three main objectives: First, I assess whether the snow

profiles measured in April are representative of late-winter snowpack conditions. Second,

I investigate the spatial variability of snow properties and near-surface soil temperatures

across the study area. Third, I aim to quantify the relationship between snow density and

soil temperatures during the late winter season.

2
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2 Study area

The study area is located in the valley Kuup Ilua (Blæsedalen valley, (69o16’N, 53o27’W)),

on the southern-tip of Qeqertarsuaq, Kalaallit Nunaat (Figure 1). The glacially carved

U-shaped valley lies within the zone of discontinuous permafrost and features a typical low-

arctic climate with maritime influence. The research station Arctic Station just outside of

Qeqertarsuaq operates multiple Automated Weather Stations (AWS), with records dating

back to 1991. Between 1991 and 2018 the mean annual air temperature was −2.8 °C.
The monthly mean air temperatures were highest in July (7.9 °C) and lowest in March

(−14.0 °C) (Blok et al. 2016).

Annual precipitation averages 418mm (Zhang et al. 2019). Most precipitation (approx-

imately 75%) occurs between June and December, driven by moist air masses advected

from the south and southwest along the Davis Strait. The winter months are compara-

tively dry, dominated by cold, continental air masses descending from the Greenland Ice

Sheet. Between 60% to 70% of the annual precipitation typically falls as snow, supporting

the development of a continuous snowpack from late September through late May / June

(Humlum 1998).

The soils in this valley originate from early Tertiary volcanic basalt and have weakly

developed soil horizons due to limited weathering and pedogenesis over the past 10,000

years, following deglaciation. The soil is classified as Haplic Cryosol (Liu et al. 2023). The

surface organic horizon is slightly acidic (5 pH to 6 pH), extends down to 0.25m in depth,

and contains 5% to 15% organic carbon, mostly derived from mosses, lichens, and dwarf

shrub litter. Beneath this layer, the soil consists of coarse sediments, predominantly sand

and gravel, with little organic matter and pH levels close to neutral. The mean annual soil

temperature at a depth of 5 cm is 1.9 °C (Nielsen et al. 2017; Zhang et al. 2019). Frozen

soil conditions last from October to May (Xu et al. 2021). The maximum active layer

thickness depends on drainage conditions, and varies from 0.4m in wet depressions up to

3m on well-drained slopes (Rasmussen et al. 2022).

Located in Bio-climatic sub-zone D of the Arctic, vegetation cover is relatively high

in comparison to other Arctic sub-zones. In the valley and on the slopes vegetation

is dense and covers between 80% to 100% of the ground. On the flat mountaintops

vegetation patches cover 5% to 50% of the ground (Hollesen et al. 2015; von Oppen

et al. 2022). Vegetation diversity is relatively high as well. Deciduous dwarf shrubs

(Betula nana, Salix glauca, and Vaccinium uliginosum), evergreen shrubs (Empetrum ni-

grum and Cassiope tetragona), and various mosses and lichens form the dominant well-

drained mesic tundra heath ecosystem (Nielsen et al. 2017). Annual nitrogen deposition

is low at 1 kg ha−1 yr−1, while the fixation of nitrogen supplies the ecosystem with be-

tween 1 kg ha−1 yr−1 to 2 kg ha−1 yr−1, with little (less than 10%) inter annual variation

(Rasmussen et al. 2022).

Long-term data from the weather station near the Arctic Station (AWS1) reveal an

annual increase in air temperature of 0.13 °C per year between 1991 and 2017. The high-

est increase in monthly air temperatures occurs from December to March, with strongest

warming of 0.31 °C in February. In comparison to the period from 1991 to 2008, precipi-

tation decreased by 25% from 2008 to 2017, leading to shallow snow depths (Zhang et al.

2019). Additionally, warmer air temperatures have led to earlier snow melt that allows the

soils to drain and warm more quickly (Hollesen et al. 2015). Zhang et al. (2019) recorded

an increasing number of days with minimum soil temperatures above 0 °C (1991 to 2017)

3
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which leads to a lengthening of the growing period. Consequently, the species composi-

tion is shifting as more shrubs are established, contributing to the widespread observed

greening of the Arctic (Callaghan et al. 2011; Hollesen et al. 2015).

1

2

Figure 1: Overview of the study area and its location in the West of Kalaallit Nunaat.

Arctic Station (house), automated weather stations (AWS1 and AWS2) (orange triangles) and

Temperature-Moisture-Sensors (TMS) (red points) are highlighted. Hydrological features: von Op-

pen et al. (2022). Basemap: Google satellite.
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3 Methodology

The following section outlines the methodological approach of my study. It describes the

datasets, the assessment of snow cover conditions during winter 2023/24, the evaluation

of spatial variability across the study area, and the modeling framework used to quantify

the relationship between snowcover and soil temperature. Detailed information on data

collection, processing steps, and sensor setup can be found in Appendix A.

3.1 Data sets

My datasets consisted of temperature and snow measurements, conducted during several

field trips between 2022 and 2024, as part of the MOMENT project (Permafrost Research

Towards Integrated Observation and Modeling of the Methane Budget of Ecosystems).

The fieldwork involved vegetation and soil surveys, the installation of automated temper-

ature sensors during the summers of 2022 and 2023, and snow measurements in April 2024

(Boike et al. 2024; Steffens et al. 2025).

For my analysis, I focused on the winter season of 2023/24, utilizing temperature data

recorded at 15-minute intervals from 14 TOMST TMS-4 Temperature-Moisture Sensors

(TMS). Each sensor measured temperatures at three distinct depths: 16 cm above the

ground surface (representing snow temperature), directly at the ground surface (surface

temperature), and 6 cm below the ground surface (soil temperature). After ice bath cali-

bration, the sensors reached an accuracy of 0.3 °C (Appendix A.1.2).

To link snow properties with temperature conditions, I assigned snow profiles to each

TMS based on data collected in April 2024. Snow density and depth profiles were measured

using the SnowMicroPen (SMP), a high-resolution, portable penetrometer developed by

Schneebeli et al. (1999). The SMP records the force required to penetrate the snowpack

at high vertical resolution, with a force sensor resolution of 0.01N and an estimated depth

accuracy of 1 cm. From the force signal, I derived snow density profiles (Appendix A.1.1).

The SMP is limited to a maximum rod length of 1.20m, which prevented measure-

ment of deeper snowpacks. To account for this limitation, I used snow depth data from

the MagnaProbe, a manual depth probe equipped with a GPS and digital depth sensor,

collected at the same locations and on the same day. I matched MagnaProbe measure-

ments to the closest SMP profiles to validate and complement depth estimates (Figure

A.3). MagnaProbe readings confirmed that snow depths exceeded 2m in some locations,

beyond the reach of the SMP.

I then spatially matched the snow profiles to the TMS using drone orthophotos taken on

the 10th and 11th of September 2023. For each sensor, I selected between two and twelve

snow profiles (61 in total), based on proximity and similarity in surface characteristics

(Figure 2, Table A.7). The distances between TMS and their assigned snow profiles

ranged from 0.6m to 43.8m, while the distances between the TMS themselves ranged

from 7.5m to 1337.5m.

In order to contextualize the field data, I used air temperature, precipitation and

wind observations from an automated weather station (AWS2) at the study site, as well

as long-term air temperature records from an automated weather station (AWS1) at the

Arctic Station operated by the Greenland Ecosystem Monitoring Program (Greenland

Ecosystem Monitoring 2020). Air temperature at AWS1 was measured at 9.5m. At AWS2

air temperature was measured at 2.2m and precipitation at 0.8m with a precipitation

5
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Figure 2: Assignment of SMP Profiles to TMS. An overview of the assignment process,

showing TMS (red) and associated SMP profiles (blue) based on proximity and surface character-

istics. Yellow points represent SMP profiles excluded from the analysis. The upper panel provides

a broader view of several TMS, while the lower panel zooms in on TMS H and its corresponding

SMP profiles.

gauge (Table A.1).

My analysis was further supported with topographic data derived from a high-resolution

digital terrain model (DTM) provided by the Satellite-Based Crisis and Situation Service

of the German Federal Agency for Cartography and Geodesy (BKG-SKD). From this

DTM, I extracted elevation, slope, and aspect values for each TMS location. For previous

analysis the DTM was also used by Becker (2024) to derive geomorphon types, follow-

ing the method by Jasiewicz and Stepinski (2013), which classified terrain into distinct

landform elements called geomorphons. Based on TMS locations, my data included the

geomorphon types hollow/footslope, slope, and valley/depression (Appendix A.1.3).

To characterize vegetation around each TMS, I used an adjusted version of the Cir-

cumpolar Land Cover Map by Bartsch et al. (2024), modified by Gottuk et al. (2025),

which classified the sites into three vegetation types: dry tundra, moist tundra, and wet

tundra (Appendix A.1.4).

3.2 Characterization of winter snowpack

To evaluate the representativeness of the April 2024 SMP profiles for the full winter snow-

pack, I analyzed the seasonal snow evolution for the snow covered season prior to April

2024 using AWS2 records. I examined hourly air temperatures, snow depths, rainfall

6
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events, and wind conditions to determine the timing of snow accumulation and potential

melt events. In particular, I identified thawing degree days, where air temperatures ex-

ceeded 0 °C, and corresponding rainfall events that could have influenced the formation of

ice lenses or snow metamorphism.

3.3 Cross site comparison

I assessed the spatial variability of snow cover and temperature across the study area by

linking multiple depth and density SMP profiles to each TMS (Table A.8). I computed

the average snow depth and density for each sensor and calculated their local standard

deviations in order to quantify small-scale heterogeneity (Figure 5). Additionally, I sum-

marized the TMS temperature data over the winter season to identify spatial and temporal

differences in the thermal regimes of the snow, surface, and soil (Figure 6 and 7). This

cross-site comparison enabled an initial evaluation of the relationships between snowpack

characteristics and soil temperatures at each location.

3.4 Statistical analysis

To investigate the relationship between snowpack properties and temperature conditions,

I applied Bayesian hierarchical modeling. This approach is better suited than traditional

frequentist methods because it handles unbalanced and sparse data more effectively, which

is essential given the uneven number of observations across locations. Frequentist models

typically struggle with partial pooling and often treat groups independently, leading to

overfitting or unstable estimates when sample sizes are small (Webb et al. 2010). In con-

trast, the Bayesian framework allows for sharing information across groups, incorporation

of prior knowledge, so called priors, and full uncertainty quantification through posterior

distributions. Its hierarchical structure also captures both overall trends and site-level

variability (Vehtari et al. 2017; Kruschke 2021).

The models were developed following the Bayesian workflow described by Gelman et al.

(2020), which involves model building, inference, checking, and comparison. I implemented

the models in Python (Version 3.13.2) (Python Software Foundation 2023) using the open-

source libraries PyMC (version 5.22.0) (Patil et al. 2023) and Bambi (version 0.15.0)

(Capretto et al. 2022) (Appendix A.2).

3.4.1 Model parameters

Before I set up my models, I scaled the predictor variables used in the analysis (Table 1).

First, I converted the snow depth from centimeters to meters. To create a dimensionless

variable, I then divided the snow density (in kgm−3) by the density of liquid water at 0 °C
(1000 kgm−3). This transformation yields a relative density that expresses snow density

as a fraction of water density, roughly corresponding to the snow’s volumetric ice content.

For a more detailed analysis, I split the relative density into bottom relative density,

referring to the bottom 16 cm of the snowpack below the snow temperature sensor, and top

relative density, representing the relative density of the snow above the temperature sensor.

My temperature variables comprise daily mean values from April 10th 2024 where air

temperature was measured at the AWS2 station, while snow, surface, and soil temperatures

were obtained from each TMS. Regarding topography, I divided the slope values in degrees

7
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by 10, converted the elevation from meters to kilometers, and decomposed the aspect into

sine and cosine components.

Table 1: Overview of the variables used in the models, including their units, sample

size, and value ranges. Snow depth and density were measured using the SnowMicroPen (SMP).

Density refers to the mean density over the entire profile. Bottom density was calculated for the

bottom 16 cm of the snowpack beneath the snow temperature sensor, while top density represents

the density of the snowpack above the sensor. Temperature data (snow (16 cm above the surface),

surface, and soil (in 6 cm depth)) were collected using temperature-moisture sensors (TMS). Air

temperature was recorded by AWS2, an automated weather station equipped with various sensors,

including air temperature and snow depth sensors. Topographic variables (elevation, aspect, and

slope) were extracted from a digital elevation model (DEM). Additionally, geomorphon classes were

derived from the DEM to represent landscape form. Vegetation classes are based on the classification

from Bartsch et al. (2024), modified by Gottuk et al. (2025) to reflect local conditions.

Variable Unit N Min Mean Max Instrument

Snow variables

Depth m 61 0.16 0.57 1.10 SMP

Density kg/m3 61 247 297 409 SMP

Bottom density kg/m3 61 257 313 402 SMP

Top density kg/m3 61 51 286 411 SMP

Temperature variables

Air temperature ◦C 1 -10.3 -7.1 -3.1 AWS2

Snow temperature ◦C 14 -5.2 -4.0 -0.6 TMS

Surface temperature ◦C 14 -5.8 -3.6 -0.3 TMS

Soil temperature ◦C 14 -5.9 -3.6 -0.6 TMS

Topographic variables

Elevation m a.s.l. 14 83.8 95.2 110.7 DEM

Aspect degrees 14 4 213 321 DEM

Slope degrees 14 0 5 20 DEM

Vegetation class categorical 3 – – – Gottuk et al. (2025)

Geomorphon class categorical 3 – – – derived from DEM

3.4.2 Bayesian linear regression models

As part of a Bayesian modeling workflow, I developed a series of regression models of

increasing complexity to explore how topography, vegetation, and geomorphology influence

snow depth, relative snow density, and snow temperature. The initial modeling stage used

the Python library Bambi to construct and compare simple Bayesian regression models,

which helped identify relevant predictors and informed the structure of more complex

hierarchical models implemented in the second stage.

To assess the role of terrain, I included elevation, slope, and aspect as fixed effects in

the models. In addition, I evaluated whether grouping observations by vegetation type

8
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or geomorphon class improved model performance by capturing additional variance in the

response variables. Accordingly, I fitted three versions of all models: a pooled model (no

grouping), a vegetation-group model, and a geomorphon-group model. The group models

allowed for partial pooling using varying intercepts to account for group-level variation

(Table A.4), enabling the models to borrow strength across categories while capturing

local differences (Gelman et al. 2013).

I selected weakly informative priors based on prior predictive checks, which ensured

that the priors produced plausible values within the range of the observed data. These

checks helped me calibrate the priors to avoid extreme or unrealistic predictions while

remaining agnostic about precise parameter values. Table A.4 provides the full list of

priors.

I fit all models using the No-U-Turn Sampler (NUTS) (Hoffman and Gelman 2011),

running each chain with 2000 warm-up steps. The sampler automatically discarded these

warm-up iterations before drawing samples from the posterior.

Linear regression on snow depth

To investigate the influence of topographic and categorical predictors on snow depth, I

fitted a Bayesian Gamma regression model with a log link function. I chose the Gamma

likelihood, since snow depth is a positive, continuous variable with a skewed distribution.

The log link ensured that predictions remained positive and allowed for multiplicative

relationships between predictors and the response.

Linear regression on relative snow density

To model relative snow density I used a Beta regression with a logit link. This approach

is well suited for continuous, bounded outcomes. The logit link function converts values

between 0 and 1 into an unbounded scale, enabling additive effects of predictors. All three

models included a precision parameter kappa (κ), controlling the dispersion of the Beta

distribution, allowing the models to adjust the width of the predicted relative density

interval.

Linear regression on snow temperature

To model snow temperature, I used Gaussian regression with an identity link function,

which is suitable for unbounded continuous variables such as temperature (in °C).
I chose the priors on the regression intercept and standard deviation based on observed

air temperatures and prior predictive checks. A sensitivity analysis compared the orig-

inal pooled model with domain-informed priors to a version using wide reference priors

(Normal(µ = 0, σ = 100)). This comparison evaluated the influence of prior assumptions

on posterior inferences.

3.4.3 Bayesian hierarchical models

In the second stage, I used the information distilled from the first stage to construct

hierarchical models in PyMC. As previously, each model was configured in three different

versions, one pooled, one grouped by vegetation, and one grouped by geomorphons.
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Air-Soil Temperature model

The first model was a three-level hierarchical Bayesian model (Air-Soil Temperature

model) (Figure 3). It estimated snow, surface and soil temperatures at the TMS on a

single day (Table A.5). The model included linear effects between adjacent layers, so that

temperatures at deeper levels depend on those above. All temperatures were constrained

below 0 °C using truncated normal distributions to reflect the physical limits. The first

level of the model predicted snow temperatures from air temperature, slope, aspect, snow

depth and relative snow density. Since the snow temperature sensor was installed 16 cm

above the ground, I subtracted 16 cm from the total snow depth and averaged relative

density above the sensor. The second level used the snow temperatures from level 1 and

the bottom layer relative density (between the snow and the surface temperature sensor)

to predict surface temperature (level 2). This surface temperature was then used as a

linear predictor for soil temperatures on the third level.

To assess the influence of prior assumptions on model behavior, I performed a sensi-

tivity analysis on the pooled model, comparing the initial version with a second version

that used reference priors (Normal(mu = 0, σ = 100)).

Snow-Soil Temperature model

The second hierarchical model (Snow-Soil Temperature Model) omitted topographic pre-

dictors and treated snow temperature as a known input. This model directly estimated

surface and soil temperatures from snow temperature and bottom-layer relative density

(Table A.6).

To fit the hierarchical models, I utilized the NUTS approach again, running four

chains with 1,000 tuning steps and 1,000 posterior draws per chain. I increased the target

acceptance rate to 0.95 to ensure stable and efficient sampling.
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Figure 3: Model schemes of hierarchical models for soil temperature. Arrows indicate

linear effects. Solid-line boxes represent observed input variables, while dashed-line boxes represent

modeled variables. Model (1) corresponds to the Air-Soil Temperature model, Model (2) corresponds

to the Snow-Soil Temperature model.

3.4.4 Model comparison

To compare the models and assess the importance of grouping, I used the Leave-one-out

cross-validation (LOO) method to evaluate each model’s predictive performance. LOO

estimates the model’s out-of-sample prediction accuracy by removing one observation at

a time and computing its log-likelihood based on the remaining data. I used Pareto-

smoothed importance sampling, as implemented in the ArviZ Python package, and re-

ported the expected log pointwise predictive relative density (ELPD) and the effective

number of parameters ploo for each model. Higher ELPD corresponds to better predictive

fit, while ploo provides an estimate of model complexity, with higher values indicating

greater flexibility but also a higher risk of overfitting if not accompanied by improved

predictive performance. While other information criteria exist, such as the widely appli-

cable or Watanabe-Akaike information criterion, I selected the LOO criterion because it

is more robust for small datasets, weak priors, or when some observations have a high

influence (Vehtari et al. 2017). In addition, I consulted the Pareto k diagnostics to assess

the reliability of the estimates, with values below 0.7 being considered trustworthy.
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4 Results

In the following sections, I present the winter climate conditions, the spatial variability

of snow properties and snow temperature, and the findings from the statistical analy-

ses. Decimal precision in the reported values reflects either the measurement accuracy of

the respective sensors (Table A.1) or the limited relevance of finer detail for interpreting

specific variables.

4.1 Winter conditions

I chose my study period to align with the snow cover duration of the winter 2023/24 sea-

son, measured at the AWS2, which spanned from October 1st, 2023, marked by the first

snowfall, to June 20th, 2024, when the snow cover had completely melted (Figure 4). Dur-

ing this interval, the mean daily air temperature measured at 2m at AWS2 was −6.7 °C,
ranging from a minimum of −25.5 °C to a maximum of 9.8 °C. During the long-term pe-

riod from 1991 to 2018, the average air temperature from October to June measured at

AWS1 was slightly warmer at −6.5 °C, with March typically being the coldest month with

a mean temperature of −13.3 °C. Compared to this historical record, the winter of 2023/24

exhibited slightly warmer monthly mean temperatures in November, March, and April,

and below-average values in the other months (October, December, January, February,

May, June), but all remained within one standard deviation of the historical variability

(Figure A.7).

During this period (October to June), winds at AWS2 predominantly originated from

the north to northeast sector. Most recorded wind speeds ranged between 0.1m s−1 and

4.8m s−1, with fewer observations in the higher wind speed classes above 6.3m s−1 (Figure

A.8).

Snow accumulation recorded at AWS2 showed an average depth of 0.32m between

October and June with a maximum snow depth of 0.53m by mid-February, which was

followed by a dry period.

Between October and April, 178 days had daily average temperatures below 0 °C,
while only 17 days experienced thawing conditions, two of which (March 24th and 25th)

took place about two weeks before the snow profile measurements. On each thawing day,

precipitation – either rain or the melting of old snow in the rain gauge – was recorded

by the AWS2, which could both have led to the formation of ice lenses in the snowpack.

Despite these thawing events, major snow melt had not begun by April, and snowpack

temperatures remained relatively stable, ranging between −5 °C and −10 °C.

Given these conditions, the April snow profiles were a reliable representation of the

winter snow cover, reflecting advanced metamorphism, with most layers well developed

and little fresh snow remaining untransformed. Furthermore, the spatial distribution of

the SMP profiles across varying aspects, elevations, and vegetation types supported their

representativeness of the broader winter snow conditions. Nonetheless, considerable local

variability existed in snowpack structure and thermal dynamics, which will be detailed in

the following section.
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Figure 4: Winter conditions 2023/2024. Air temperature at 2m, snow cover, and precipita-

tion during the winter of 2023/2024, measured at AWS2.

4.2 Spatial variability

The spatial variability of the snow cover across the study area was evident not only in

the structural properties of the snowpack but also in the duration of the snow cover. I

observed pronounced differences between sites regarding the timing of snowmelt. At four

of the 14 locations (sensors A, B, C, and I), the snow cover lasted until June 2024, similar

to the AWS2 site. In contrast, the remaining sites showed earlier melt, with consistently

positive snow sensor temperatures by the end of April, indicating snow-free conditions.

One site in particular (sensor E) recorded only a shallow snowpack which had already

disappeared by early March.

4.2.1 Snow depth

The snow depths of the 61 SMP profiles ranged from 0.16m to 1.10m (Table A.7). How-

ever, MagnaProbe measurements across the site indicate that snow depths exceeded 2m

in some areas. These deeper snowpacks could not be captured by the SMP, as it is lim-

ited to a maximum rod length of 1.20m. The mean SMP snow depth across all 14 TMS

was 0.56m with a standard deviation (SD) of 0.13m. The highest mean was observed at

sensor D (0.96m, SD: 0.29m), and the lowest at sensor F at 0.20m (SD: 0.06m). The

largest SD was 0.35m (sensor M) at a mean depth of 0.50m (Table A.8).

4.2.2 Snow density

The average snow densities per profile varied from 247 kgm−3 to 409 kgm−3 (Figure 5).

The average snow density of all SMP profiles was 297 kgm−3 (SD: 13 kgm−3). Local aver-

ages of the SMP profiles per TMS ranged from 273 kgm−3 (SD: 21 kgm−3) to 343 kgm−3

(SD: 55 kgm−3). The greatest SD was 55 kgm−3. Local SD was lower at six sensors (B,

G, H, K, L, N) compared to the overall SD (Table A.8).
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Figure 5: Spatial variability of snow depth and snow density measured in April 2024

at the Disko Study site. Averages of SMP profile measurements around their respective TMS.

Bars represent the standard deviation.

4.2.3 TMS temperatures

The thermal conditions measured by the TMS revealed substantial spatial variability

across the study area. Snow temperature was recorded 16 cm above the ground surface,

representing the temperature within the lower snowpack. Surface temperature was mea-

sured directly at the ground surface, while soil temperature was recorded 6 cm below the

surface. The complete winter temperature time series (Figure 6) illustrates the evolution

of these three temperature layers from snow onset in early October to snowmelt in late

spring.

Across the study area, the mean snow temperature was −4.2 °C (SD: 3.4 °C), the mean

surface temperature was −2.0 °C (SD: 2.9 °C), and the mean soil temperature was −1.8 °C
(SD: 2.4 °C). Starting in October, the time series shows that some sensors (e.g., A, G)

exhibited large diurnal fluctuations in snow and surface temperatures around 0 °C. At

other sensors, no such amplitudes were observed as all three temperature measurements

(snow, surface, soil) started near 0 °C and then dropped steadily as winter conditions

established. The snow temperature generally showed the strongest and earliest cooling.

The coldest snow temperature was recorded on February 1st, 2024, at sensor E (−22.8 °C).
The surface temperatures ranged from −14.0 °C (sensor E) to 17.5 °C (sensor I), with the

largest amplitude observed at sensor E (31.1 °C). The smallest surface temperature range
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occurred at sensor D (3.9 °C; range −2.2 °C to 1.7 °C). Soil temperatures varied between

−12.4 °C (sensor E) and 11.3 °C (sensor I), again with sensor E showing the largest soil

temperature range (21.1 °C), and sensor D the smallest (1.9 °C). Mean soil temperatures

across sensors ranged from −3.8 °C (sensor F) to −0.3 °C (sensor D).

At several sensors (e.g., D, H), once the snow cover was fully established, soil tem-

peratures plateaued close to 0 °C during January before dropping further during February

and March. This plateau is a classic example of the zero-curtain effect, where latent heat

released during soil moisture refreezing, maintains temperatures near the freezing point

over extended periods. Most soils froze at the beginning of October and remained below

0 °C over the whole study period. The last sensor that froze was sensor K at the beginning

of November 2023. Mid-winter marks the coldest and most thermally stable period. Snow

temperatures during this phase show the greatest amplitude and site-to-site variability,

ranging from about −5 °C to −15 °C at most sensors. Surface temperatures consistently re-

mained 1 °C to 3 °C warmer than snow temperatures. The timing and magnitude of spring

warming also varied across the network. Some sensors began to show a gradual increase

in snow and soil temperatures by March or April, whereas others remained near freezing

until May (Figure 6). In early spring, daily temperature amplitudes, particularly at the

surface, increased again. Overall, the data revealed a consistent thermal gradient from the

snow (coldest), through the snow / soil interface, to the underlying soil (warmest), with a

clear damping of both daily and overall temperature amplitude with depth.
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Figure 6: Time series of temperatures measured at the TMS. Hourly time series of snow,

surface, and soil temperatures from October 2023 to June 2024 for each TMS. Snow temperature

data are filtered to include only subzero value.
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An initial inspection of the data indicated that thicker snow cover was associated

with warmer winter soil temperatures. For example, Sensor D, which had the deepest

snowpack (0.96m), also recorded the highest mean soil temperature −0.3 °C (Figure 7).

In contrast, sensors E and F, with the shallowest average snow depths (0.36m and 0.20m,

respectively), recorded the coldest winter soil temperatures (−3.6 °C and −3.8 °C). To

better understand the local variability in snow depth, snow density, and soil temperatures

and to explore the relationships among them, I used Bayesian hierarchical modeling. The

following section presents these results and explores how snow cover properties influence

(sub)surface thermal conditions.
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Figure 7: Average snow, surface and soil temperatures for each TMS between October

2023 and June 2024. Surface and soil temperatures represent full-period averages, while snow

temperatures include only values below 0 °C, reflecting a simplified representation of subzero snow

cover.

4.3 Model results

In the first stage of my modeling approach, I used Bayesian multivariate linear regression

models to identify relevant predictors for snow depth, relative snow density, and snow

temperature. These results informed the development of more complex hierarchical models

in the second stage.

Unless otherwise noted, all models showed satisfactory convergence diagnostics, with

R̂ < 1.05 and effective sample sizes (ESS) typically exceeding 400. Monte Carlo standard

errors remained below 1% of the posterior standard deviations, indicating that posterior

means and standard deviations were estimated with high precision (Figures A.9, A.10,

A.11). Prior predictive checks confirmed that the chosen priors generated temperature

and snow property values that were physically plausible and consistent with observed

ranges, supporting the appropriateness of the prior distributions given domain knowledge.

To summarize uncertainty in the posterior estimates I report 94% highest density

intervals (HDIs). These intervals represent the most credible values for a parameter,

bounded between the 3rd and 97th percentiles of the posterior distribution. While HDI

width reflects uncertainty, it also depends on the scale of the parameter being estimated,

thus wider intervals do not always imply higher uncertainty.
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4.3.1 Linear regression on snow depth

To predict snow depth across all sites, I fitted a Gamma regression with a log link using

slope, elevation, and aspect as predictors. The Gamma distribution is characterized by

the shape parameter alpha (α), which controls the skewness of the distribution. Higher

values of α indicate a more symmetric (less skewed) distribution (Table A.4). The pooled

model estimated moderate residual variability in snow depth across all sites (α, mean: 6.9,

HDI: 1.8 to 12.6). The intercept, reflecting expected snow depth at mean slope, elevation,

and aspect, was −0.1 (HDI: −0.7 to 0.5) (Table A.9). Among the fixed effects, snow depth

increases by approximately 15% per unit increase in slope (slope scaled between 0 and 2;

mean: 0.14, HDI: −0.2 to 0.5). However, the probability that this effect is truly positive is

only 68%, indicating weak support. The effect of elevation is small and uncertain (mean:

−6.9, HDI: −31.0 to 17.1). Given the limited elevation range across the study area (85m

to 110m), this corresponds to an approximate snow depth change of ±17%, but with

no clear trend. Aspect shows similarly weak patterns where west-facing slopes (sine of

aspect) have slightly lower snow depths (mean: −0.18, HDI: −0.9 to 0.6), while north-

south oriented slopes (cosine of aspect) had no systematic influence (mean: 0.04, HDI:

−0.6 to 0.6).

The vegetation-group model estimates greater heterogeneity in snow depth across sites,

with more right-skewed residuals than in the pooled model (α, mean: 2.9, HDI: 1.4 to

4.7). Snow depth varies modestly across vegetation types, with a standard deviation of

group-level intercepts (mean: 0.1, HDI: 0.0 to 0.2). Dry tundra has a slightly lower snow

depth (mean: −0.1, HDI: −0.4 to 0.2), moist tundra is similarly reduced (mean: −0.1,

HDI: −0.4 to 0.2), and wet tundra shows little difference (mean: 0.04, HDI: −0.3 to 0.2).

These correspond to expected decreases of approximately 9%, 8%, and 4%, respectively,

compared to the baseline. However, the uncertainty intervals for all three, indicate weak

and uncertain vegetation effects.

The geomorphon-group model yields broadly similar fixed effects. Slope again shows

a weak positive association with snow depth (mean: 0.1, HDI: −0.4 to 0.6), suggesting

a potential increase of about 10% in snow depth per unit increase in slope, though with

substantial uncertainty. There is no evidence for systematic control of snow depth by eleva-

tion or aspect. The standard deviation of group-level intercepts indicate small differences

between geomorphon classes (mean: 0.08, HDI: 0.00 to 0.18). Expected snow depths are

slightly higher in hollows and footslopes (mean: 0.03, HDI: −0.2 to 0.3), and slightly lower

on slopes (mean: −0.01, HDI: −0.2 to 0.2) and in valleys or depressions (mean: −0.01,

HDI: −0.2 to 0.2). All differences are distributed closely around zero and thus highly

uncertain. Overall, terrain types appear to have little influence on snow accumulation in

this landscape.

Based on LOO, the pooled model has the best predictive fit, with an ELPD of −1.4 and

a ploo of 4.9. However, it also has one influential data point identified by a high Pareto-k

diagnostic, suggesting that this observation had a disproportionate influence on the model

fit. The vegetation-group model performed slightly worse (ELPD: −4.3, ploo : 0.7), as

did the geomorphon-group model (ELPD: −3.5, ploo : 1.5). Both group models had lower

complexity and showed good diagnostic values (all Pareto-k < 0.7). Although the pooled

model has the highest predictive score, the differences in ELPD across models are small.

Thus, there is no strong evidence that one model substantially outperforms the others.
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4.3.2 Linear regression on relative snow density

I also modeled relative snow density as a function of slope, aspect, and elevation using

a beta distribution, where the dispersion parameter is denoted by κ (Table A.4). The

pooled model estimated a κ of 939 (HDI: 195 to 1817; Table A.10). The posterior mean

of the intercept is −0.9 (HDI: −1.3 to −0.5). Among the fixed effects, slope has the

strongest influence: for every unit increase in slope, relative density increases by about

11% (mean: 0.1, HDI: 0.0 to 0.2), with a 99% posterior probability of a positive effect.

Elevation contributes little explanatory power to the model (mean: −0.3, HDI: −4.5 to

4.0). For aspect, northeast-facing slopes (cosine of aspect) were associated with slightly

denser snow (mean: 0.1, HDI: 0.0 to 0.2), while east- or west-facing slopes (sine of aspect)

had no clear effect (mean: 0.0, HDI: −0.1 to 0.1).

The vegetation-group model, yields a κ of 862 (HDI: 155 to 1693), lower than the

pooled model. The standard deviation of the group-level intercepts, indicates no variability

in relative density across vegetation types (mean: 0.0, HDI: 0.0 to 0.1). Fixed effects in

this model were nearly identical to the pooled model. In contrast, the geomorphon-group

model estimated a much lower κ of 2.8, implying a higher residual variance in the predicted

relative densities. Unlike the other two models, terrain variables had no clear effect in this

model. The standard deviation of geomorphon-level intercepts (mean: 0.08, HDI: 0.00

to 0.18), points to slight differences among terrain types. However, group-level intercepts

don’t reveal systematic variation in relative snow density by geomorphon class. Looking at

LOO the geomorphon-group model has a much lower predictive performance (ELPD: 3.3)

compared to the pooled (ELPD: 36.4) and the vegetation-group model (ELPD: 35.3). This

might be due to the fact, that it is too simple (ploo: 0.3) compared to the vegetation-group

model (ploo: 4.7) and the pooled model (ploo: 4.1).

In summary, the relative snow density is weakly influenced by slope, with steeper slopes

associated with denser snow. However, this relationship is only evident in the pooled and

vegetation-group models, as the geomorphon-group model performs poorly. Elevation,

aspect, and vegetation type show minimal influence on density, and differences among

geomorphons are small and not systematically related to relative snow density.

4.3.3 Linear regression on snow temperature

The third model examines snow temperature as a response to slope, elevation and aspect

(Table A.4). In the pooled model, the estimated baseline snow temperature is highly

uncertain (intercept, mean: −1.2, HDI: −7.6 to 4.8; Table A.11). The residual standard

deviation (σ) is 1.1 (HDI: −0.5 to 0.8), indicating unexplained variability between observed

and predicted snow temperatures. The model provides evidence for a positive effect of

slope (mean: 1.1, HDI: 0.1 to 2.1), suggesting that snow temperature increases with steeper

terrain. Elevation has a large negative effect (mean: −37.9, HDI: −105.9 to 31.4) though

the wide interval reflects high uncertainty. Despite this, the trend suggests that snow

temperatures tend to decrease with elevation. Aspect effects were weak and uncertain.

In the vegetation-group model, uncertainty of the intercept increases (mean: −2.44,

HDI −9.5 to 4.0). The residual standard deviation as well as the fixed effects remain

similar to the pooled model. Snow temperature varies slightly between vegetation types

(group-level standard deviation, mean: 1.0, HDI: 0.0 to 2.4), where dry tundra is colder

(mean: −0.3, HDI: −1.8 to 1.0), and moist and wet tundra are warmer (mean: 0.6, HDI:

−0.7 to 2.2, and mean: 0.3, HDI: −1.1 to 1.9, respectively).
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The geomorphon-group model yields similar findings, with a positive slope effect, a

negative elevation effect and little support for aspect, as in the previous models. Snow

temperatures vary slightly by terrain type, with a group-level standard deviation of 1.06

(HDI: 0.00 to 2.39). Warmer snow temperatures are likely in hollows and footslopes (mean:

0.8, HDI: −0.3 to 3.5), while slope (mean: 0.2, HDI: −1.5 to 2.1) and valley/depression

(mean: 0.0, HDI: −1.8 to 2.1) show no consistent effects. This model shows signs of

mild convergence issues, with some R̂ values above 1.05 and low effective sample sizes for

several group-level parameters, likely due to small sample sizes within some geomorphon

categories, suggesting caution in interpreting the group effects.

According to LOO the vegetation-group model performs best (ELPD: −23.2) though

there are minor differences to the pooled (ELPD: −24.4) and the geomorphon-group model

(ELPD: −25.2). The geomorphon-group model has the highest complexity (ploo: 6.5),

suggesting potential overfitting. All models show Pareto k values slightly above the rec-

ommended threshold (k > 0.7), for two observations indicating moderate influence and

reduced stability of the LOO estimate for those points. This implies that the models may

not fully capture the structure of those specific cases, though overall LOO scores remain

interpretable.

In summary, the first part of my analysis suggests that slope is a weak positive predic-

tor for snow depth and snow temperature and possibly for relative density. The effects of

elevation and aspect remain uncertain, although north-facing slopes show some indication

of a positive effect on relative density, as suggested by the positive HDIs. Groupings allow

for model flexibility and add slight explanatory power to the models for snow depth and

snow temperature, but remain inconclusive. Based on LOO, models grouped by vegeta-

tion improve predictive performance for predicting snow temperature, while grouping by

geomorphon offers no predictive advantage. In two out of three cases, the pooled models

perform best, suggesting that snow and temperature responses are generally consistent

across sites and may not require additional grouping for prediction. However, this find-

ing is limited by very small sample sizes within some groups – sometimes as low as a

single observation – which reduces the power of hierarchical models to detect group-level

differences.

4.3.4 Air-Soil Temperature model

Based on my findings, I set up a hierarchical model that predicts the daily averaged

temperature at the snow, surface and soil sensor of each TMS based on the observed

average daily air temperature using linear effects of slope and cosine aspect (Figure 3).

Across all models, relationships between predictors and temperature are largely consistent,

with only subtle differences in coefficient strength and uncertainty.

In the pooled model, snow temperature increases as air temperature rises. On average,

a 1 °C increase in air temperature leads to a 0.7 °C increase in snow temperature (Table

A.12). Snow depth also helps insulate snow temperature, with deeper snow associated

with warmer snow temperatures. Specifically, each additional meter of snow reduces the

gap between air and snow temperature by about 1.8 °C, supporting its insulating role.

The density of the snow layers plays a more complex role. Top-layer relative density

has a negative effect (mean: −2.0, HDI −16.5 to 12.5), but the wide uncertainty range

suggests that this relationship is not well supported by the data. Alternatively, this

uncertainty may also reflect limitations in the model’s ability to capture the true effect.

19



RESULTS

In contrast, relative density of the bottom layer shows a more robust positive effect on

snow temperature estimated at 3.98oC (HDI −2.4 to 11.0). The uncertainty interval for

this estimate mostly includes positive values, indicating moderate evidence that denser

bottom layers provide less insulation. Terrain features such as slope and aspect have only

weak effects on snow temperature in this model (mean: 0.8, HDI −0.3 to 1.8 and mean:

0.4, HDI: −0.5 to 1.3, respectively). The temperature coupling from the snow layer to

the surface sensor is strong and positive (mean: 1.3, HDI: 0.9 to 1.6). Similarly, surface

temperature strongly influences soil temperature with an effect of 1.0 (HDI: 1.0 to 1.2),

suggesting direct and reliable propagation of heat through the snowpack. The model also

includes offset values for surface (mean: 0.3) and soil temperatures (mean: 0.2), which help

account for any systematic differences not explained by the main predictors. These offsets

adjust the temperature baseline at each level to better match observed data. While the

surface offset shows higher variability and a wider HDI (−1.5 to 2.0), suggesting greater

uncertainty, soil offset has a smaller mean and tighter HDI (−0.2 to 0.6), suggesting less

unexplained variation at this depth. Temperature variation also decreases with depth.

The estimated standard deviations decrease from snow (σ : 1.1) to surface (σ : 0.7) to

soil (σ : 0.3) temperatures, which indicates that the model explains a larger share of the

variance at greater depths, consistent with fewer external influences on soil temperature.

Comparing the pooled model to the two grouped models, all models confirm the posi-

tive influence of snow depth, which is especially pronounced in the vegetation model (mean:

2.7, HDI 0.3 to 4.9). Likewise, the effect of bottom relative density is similar across the

models, showing a moderately uncertain positive effect. In contrast, all models show a

negative effect of top relative density, counter to the prior. As in the pooled model, both

vegetation and geomorphon models find a moderate positive effect for slope (both 1.0), but

only the geomorphon-group model detects an influence of aspect (mean: 0.4, HDI −0.4 to

1.4). Additionally, both models confirm the strong temperature propagation from snow

to surface and soil, evident already in the pooled model. In the vegetation-group model,

differences between vegetation types show up as varying baseline temperatures. Dry tun-

dra is associated with lower temperatures (mean: −0.8, HDI −2.0 to 0.5), whereas wet

tundra is associated with higher temperatures (mean: 0.6, HDI −0.7 to 1.9). Moist tun-

dra shows no clear effect (mean: 0.1, HDI −1.3 to 1.3). In the geomorphon-group model

footslopes have slightly higher temperatures (mean: 0.5, HDI −0.9 to 1.9), and slopes and

valleys/depressions slightly lower temperatures (mean: 0.3, HDI −1.6 to 1.1 and mean:

0.3, HDI: −1.9 to 1.3, respectively). However, all posterior means have high standard de-

viations and distribute around zero, suggesting uncertainty in these group effects. Thus,

while the inclusion of group-level intercepts helps to adjust for some variability, most of

the predictive power comes from snow properties and temperature coupling across the

layers.

Model comparison using LOO supports these findings (Figure 8). For snow temper-

ature, the vegetation-group model performs best (ELPD: −20.6), followed by the pooled

model (ELPD: −24.3) and the geomorphon-group model (ELPD: −24.5). The vegetation-

group model also has the highest model complexity (ploo: 6.7), suggesting a better fit at

the cost of added complexity. For surface temperature, all models perform similarly, with

negligible differences in ELPD and ploo. However, the vegetation-group model has the

highest ELPD (−13.6) and the lowest ploo (2.4), indicating a slightly better and more effi-

cient fit. For soil temperature, the geomorphon-group model shows the best performance

(ELPD: −2.0, ploo: 3.9), followed by the pooled and vegetation-group models, though the
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differences are minor. Overall, these comparisons suggest that the hierarchical structure

improves predictions for snow and soil temperatures, particularly when grouping by veg-

etation. However, most of the model’s predictive performance is driven by the physical

covariates (such as snow depth and relative density) and the way temperatures at different

depths are linked within the model.

In summary and as expected, increasing air temperature shows a consistent positive

effect on snow temperature across all models. The insulation effect of snow depth on snow

temperatures is also evident in all three models. While increased top relative density shows

a cooling effect on snow temperatures, and thus more insulation, across all models, higher

bottom relative density provide less insulation. Terrain effects from slope and aspect are

subtle but present. The strongest and most consistent finding across all models is the clear

and direct propagation of temperature down through the snowpack. Including vegetation

and geomorphon group-level intercepts improves model fit modestly but most predictive

power still comes from snow properties and thermal coupling.

4.3.5 Snow-Soil Temperature model

In the second hierarchical model, I excluded snow depth, air temperature, aspect and slope

from the previous model to only investigate the effect of the bottom relative density of

the snowpack on surface temperatures (Figure 3). Thus, I treated snow temperatures as

a given variable, assuming that the effects of the excluded predictors are included in the

snow temperatures. The pooled model reveals a strong positive effect of snow temperature

on surface temperature (mean: 1.7, HDI: 0.9 to 1.6), and likewise between surface and

soil temperature (mean: 1.0, HDI 0.9 to 1.1; Table A.13). The effect of bottom relative

density has a positive posterior mean (4.4), and a mostly positive HDI (−2.6 to 11.6), that

shifted substantially from its diffuse prior (mean: 0.6, HDI: −20.4 to 19.7), indicating the

data contribute evidence for a positive, though uncertain, effect. Residual variance is

low – especially for soil temperature (σ: 0.3 °C) – suggesting that the model explains a

substantial portion of the observed variability.

The vegetation-group model modestly strengthens the snow-to-surface temperature

relationship (mean: 1.3, HDI 0.9 to 1.8), while the surface-to-soil effect remains nearly

identical (mean: 1.0, HDI 0.9 to 1.1). The bottom relative density effect increases slightly

(mean: 5.2, HDI −2.7 to 11.5). The varying intercepts by vegetation class are weak and

uncertain, with all HDIs centered around zero, indicating little evidence for systematic

vegetation effects.

The geomorphon-group model introduces weak differentiation across terrain types.

The hollow/footslope type shows a possible positive effect (mean: 0.4, HDI −0.8 to 1.5),

while the valley/depression type suggests a negative effect (mean: −0.6, HDI −1.9 to

0.8). However, all geomorphon-specific intercepts remain highly uncertain. The snow-

to-surface temperature effect slightly weakens (mean: 1.2, HDI 0.8 to 1.6), while the

surface-to-soil relationship remains robust (mean: 1.0, HDI 1.0 to 1.1). The model also

exhibits a slightly lower surface temperature residual variance (σ: 0.6 °C), compared to

the pooled and vegetation models (both 0.7 °C), suggesting geomorphon grouping may

marginally improve model fit for surface temperatures. Together, these models show

that snow and surface temperatures are strong predictors of soil temperature, and that

bottom relative density may have a positive albeit uncertain effect on heat transfer through

the snowpack. Although vegetation-based grouping does not yield clearly interpretable
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intercepts, it marginally improves predictive performance for soil temperature, as shown

by leave-one-out cross-validation.

For surface temperatures, the pooled model achieves the highest ELPD (−13.7) with

the lowest effective number of parameters (ploo 2.5), indicating the most efficient and

accurate fit. Vegetation and geomorphon grouped models have slightly lower predictive

accuracy (ELPD: −15.6 and −14.6, respectively) and increased complexity (ploo: 4.0 and

4.5, respectively). This suggests that including group-level effects does not substantially

improve predictions of surface temperature and may slightly reduce model efficiency. In

contrast, for soil temperatures, the vegetation-group model performs best, with the highest

ELPD (−1.9) and lowest ploo (4.0), suggesting it captures relevant structure with min-

imal added complexity (Figure 8). The pooled model performs similarly (ELPD: −2.1,

ploo: 4.0), while the geomorphon-group model has slightly lower predictive accuracy and

higher complexity (ELPD: −2.2, ploo: 4.2). These results indicate once more that vege-

tation grouping may offer marginal improvements for soil temperature prediction, while

geomorphon-based grouping does not consistently enhance model performance.

3.8 4.0 4.2 4.4
ploo

2.4

2.2

2.0

EL
PD

Snow-soil temperature model (pooled)

Snow-soil temperature model (vegetation)

Snow-soil temperature model (geomorphon)

Air-soil temperature model (pooled)

Air-soil temperature model (vegetation)

Air-soil temperature model (geomorphon)

Figure 8: Comparison of expected log pointwise predictive density (ELPD) and effec-

tive number of parameters (ploo) for hierarchical models on soil temperature. Snow-Soil

Temperature models (blue) predict soil temperature using snow temperature as an input; Air-Soil

Temperature models (red) include air temperature as an additional hierarchical level. Higher ELPD

values indicate better predictive performance while higher ploo values indicate more complex models.
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4.3.6 Sensitivity analysis

To assess the influence of prior assumptions on model behavior, I compared two versions

of the pooled linear regression model on snow temperatures, one using informative pri-

ors and the other using reference priors. The model with reference priors generates a

greater number of extreme outliers, with predictions ranging from approximately −500 °C
to 700 °C, far beyond any physically meaningful range. In contrast, the informative-prior

model produces predictions within a more plausible range, between −23.8 °C to −7.5 °C.
Despite these differences at the extremes, the central tendency and overall spread of the

predictions were similar across both models. The reference model shows substantially

wider posterior intervals and larger effect estimates, while the informed model constrains

parameter estimates to more realistic ranges and avoids implausible extrapolations. Con-

sistent with this, the informative-prior model achieves a slightly higher ELPD (−24.4)

compared to the reference model (ELPD: −25.2). Both models have similar moderate

effective complexity, with estimated effective parameters (ploo) of 4.9 and 5.7.

I performed a second sensitivity analysis for the Air-Soil Temperature model that

predicts snow, surface and soil temperatures. The results show that the core temperature

relationships remain stable in both models, indicating that these parameters are well

supported by the data. Some coefficients, such as those for snow depth, relative snow

density and the surface temperature, are more sensitive to the choice of the prior. These

parameters shift in posterior means and increase in width of their uncertainty intervals

under vague priors. The effect of bottom relative density even changes direction from

positive to negative.
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5 Discussion

In the following, I will first discuss the spatial variability of snow cover and surface and

soil temperatures at my study site, contextualizing these patterns with observations from

comparable Arctic environments. Next, I evaluate how my models captured key relation-

ships between snow properties and soil temperatures, and consider how different predictors

and modeling choices influenced the results. Finally, I reflect on the main strengths and

limitations of the study, including data constraints and methodological assumptions, and

suggest directions for future research.

5.1 Spatial variability of snow characteristics and soil tem-

peratures

The snow depth in April exhibited considerable spatial heterogeneity across the study

area, ranging from 0.15m to 1.10m, with a mean of 0.56m and a standard deviation of

0.13m based on SMP profile data. This reflects typical small-scale variation in Arctic

tundra snow cover, where wind redistribution and microtopographic controls lead to un-

even accumulation (Sturm et al. 1995). Comparable snow depth ranges were observed

by Van Tatenhove and Olesen (1994) near Sisimiut in Western Greenland, who reported

mean maximum depths of 0.55m over a 12-year period (1968–1980), with individual win-

ters spanning from only 0.10m to 0.90m. In contrast, spatial variability was highlighted by

Grünberg et al. (2025), who used data from 13 spatially distributed temperature loggers in

the Trail Valley Creek (TVC) catchment, Northwest Territories, Canada, to examine snow

and soil temperature dynamics. They recorded snow depths ranging from 0m to 1.7m,

demonstrating the potential for extreme spatial variation. Similarly, Shirley et al. (2025)

examined snow cover across the Seward Peninsula, Alaska, using snow depth data collected

in both 2019 (mean: 1.0m) and 2022 (mean: 0.59m). They found that approximately

80% of snow depth variability occurred at small scales (less than 90m), emphasizing the

dominant role of microtopography in governing snow distribution. Earlier modeling work

by Liston and Sturm (1998) further supports these observations, showing that snow depths

can vary by a factor of ten or more over short distances in Arctic terrain due to wind and

topographic influences. In my study area, terrain elevation ranges from 80m to 112m,

with slope angles between 0° to 20°. These variations, together with prevailing winds from

the north to northeast, likely shaped the observed snow depth patterns through localized

drift formation and wind scour.

Average snow density at the TMS sites also displayed spatial variability, ranging

from 247 kgm−3 to 409 kgm−3, with a mean of 297 kgm−3 and a standard deviation

of 13 kgm−3. Mean densities per TMS ranged from 273 kgm−3 to 343 kgm−3. These

values are higher than many reported Arctic tundra snowpack densities, which typically

fall within the 150 kgm−3 to 300 kgm−3 range (Damseaux et al. 2025). For example,

Bormann et al. (2013) measured snow density at twelve sites in the Siberian tundra and

reported a spring mean of 219 kgm−3, indicating a lighter snowpack under colder continen-

tal conditions. In contrast, higher pre-melt densities were observed in central Northeast

Greenland, where Hollesen et al. (2011) documented snow densities of 386 ± 56 kgm−3. A

recent large-scale synthesis by Zhao et al. (2023) found an average tundra snow density of

225 kgm−3 across Arctic sites, placing the results from my study at the upper end of the

observed distribution. The relatively high densities measured on Disko Island likely reflect
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the effects of wind packing and enhanced snow metamorphism. In particular, prevailing

winds from the north to northeast sector and frequent wind speeds above 5m s−1 suggest

strong redistribution and compaction of snow in the valley. This aligns with the site’s

English name, Windy Valley, and supports the interpretation that wind-driven processes

contributed to the denser snow structure observed at the TMS sites.

Temperature patterns across the study area mirrored the spatial heterogeneity ob-

served in snow depth and density. The snowpack exhibited a clear dampening effect on

ground thermal conditions. Snow temperatures measured 16 cm above the ground were

the coldest, averaging −4.2 °C (SD: 3.4 °C). Surface temperatures at the ground-snow in-

terface were milder at −2.0 °C (SD: 2.9 °C), and soil temperatures at 6 cm depth were the

warmest, averaging −1.8 °C (SD: 2.4 °C). This vertical gradient highlights the snowpack’s

insulating role, reducing heat loss from the ground and buffering subnivean conditions

from atmospheric impacts.

The minimum winter soil temperatures occurred at sensor E, where April snow depth

only reached 0.4m and the minimum temperature reached −12.4 °C, while the warmest

soil conditions were observed at sensor D with a snow depth of 1.0m and a minimum

temperature of −0.6 °C. While the range of minimum winter soil temperatures in my study

was relatively moderate, greater variability was observed by Grünberg et al. (2025), who

recorded winter minima from −31.0 °C to −4.0 °C across 13 temperature loggers in TVC in

2022/23. Mirroring the patterns observed at my study site, the coldest soil temperatures

occurred at locations with little or no snow, while warmer soils were consistently found

beneath thicker snowpacks, reinforcing the critical role of snow insulation in Arctic tundra

systems

This insulating effect was also evident at the snow-ground interface. Winter average

surface temperatures across my study area ranged from −3.8 °C to −0.03 °C, further reflect-
ing the high degree of spatial variability typical of Arctic tundra environments. Although

the range I observed was smaller, it aligns with results from four tundra sites in Alaska

where Sturm and Holmgren (1994) recorded spatial surface temperature ranges of up to

7.0 °C over transects only 1.5m long during the 1989-1990 winter, primarily driven by

microtopographic contrasts between cold-exposed tussocks and better-insulated hollows

during cold spells with air temperatures dropping below −30.0 °C. My average winter

surface temperature of −2.0 °C (SD: 2.9 °C) was also markedly warmer than the mean

air temperature (−6.7 °C) over the same period, underscoring the moderating influence of

snow. A similar offset was observed in the Kuparuk Basin in Arctic Alaska, where Taras

et al. (2002) found that snow-ground interface temperatures averaged 7.5 °C higher than

air temperatures. They also noted that interface temperatures varied on much finer spatial

scales than air temperature and were more closely influenced by snow properties. More-

over, temperature amplitudes attenuated progressively from air to snow surface to soil,

highlighting the layered dampening imposed by the snowpack, which was also evident at

my study site. This attenuation depends strongly on snow depth. In my April records, soil

temperatures at sensorH (0.60m snow) and sensorD (1.00m) showed virtually no trace

of concurrent air-temperature fluctuations, whereas sensors E (0.40m) andF (0.20m) still

exhibited clear oscillations. These observations suggest a local threshold of roughly 0.50m

(Figure 6). At a broader regional scale, Goncharova et al. (2019) employed vertical iBut-

ton arrays to monitor ground-surface temperatures in West Siberia over an eight-month

winter. They found that snow thicker than 0.80m on lower, forested terrain produced the

strongest insulation, but even 0.20m of snow was enough to generate notable reduction in
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soil cooling. The timing of when a site first accumulated ≥ 20 cm of snow exerted the dom-

inant control on seasonal soil-temperature trajectories, underlining the importance of both

depth and duration. A different depth threshold emerged from the hemispheric analysis

by Slater et al. (2017), who used six-month continuous records (October-March) to exam-

ine how snow controls the seasonal amplitude of soil temperature. Their results showed

the expected exponential decay in soil-temperature variability with increasing snow depth

and demonstrated that the marginal effect of insulation diminishes beyond approximately

0.5m. Although my study is based on discrete snow surveys and TMS data, it captures

the same physical pattern.

However, the limited spatial variability in my dataset and the snapshot nature of the

snow surveys posed challenges for fully resolving complex snow-soil interactions using tra-

ditional modeling approaches. These constraints motivated the development of a flexible

Bayesian framework that explicitly incorporates uncertainty and hierarchical structure.

5.2 Model outputs

5.2.1 Modeling snow depth

In the first model, I set up a simple linear regression on snow depth. This model only found

minimal differences in snow depth between vegetation and geomorphon groups. These

effects appeared negligible, which is likely due to the limited variability in vegetation types

and terrain features at the study site. The relatively homogeneous conditions may not have

provided sufficient contrast to detect such differences that are well-documented in more

heterogeneous environments. For instance, Grünberg et al. (2020) reported substantial

snow accumulation beneath tall shrubs (up to 2m) at TVC, compared to areas with short

or sparse vegetation. Their findings illustrate how vegetation height and structure enhance

snow trapping and reduce wind erosion. These mechanisms were less evident in my study

due to the prevalence of low-lying tundra vegetation (less than 20 cm).

Despite the overall weak grouping effect, all three models indicated a minor positive

influence of slope on snow depth, eventhough this effect was likely limited, due to the

gentle topography of the site. Other studies such as by Borges (2024) demonstrate more

pronounced effects of topography and vegetation on snow distribution. The high-resolution

LiDAR-based snow depth mapping within an area of 127 km2 in TVC revealed deeper snow

in micro- and macrotopographic lows, leeward slopes, and densely vegetated areas. Snow

depths were highest on northeast- to southeast-facing slopes, consistent with dominant

wind directions (west and northwest) that facilitate snow transport and deposition. The

importance of wind redistribution and its interaction with topography and vegetation

which are widely reported (König and Sturm 1998; Liston and Sturm 1998; Taras et al.

2002; Domine et al. 2015; Shirley et al. 2025) were less evident in this study because the

measurements were situated in relatively flat areas, with limited variation in vegetation

cover and a relatively small number of sampling points.

5.2.2 Modeling snow density

I also examined potential landscape controls on snow density. In the linear regression

models, cosine aspect showed a weak but positive effect on relative density (mean: 0.1,

HDI: 0.0 to 0.2), suggesting slightly higher densities on north-facing slopes. This pattern

may reflect wind slab formation caused by frequent strong winds (above 8m s−1) from the
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north-northeast, which likely enhance compaction and densification of the snowpack on

leeward-facing slopes. Elevation and sine aspect had no meaningful influence on relative

density, and models including group-level effects such as geomorphon classification were

not supported by the data and tended to overfit. These results align with expectations,

given that the models did not incorporate major climatological drivers of snow densifica-

tion, namely precipitation amount, air temperature, wind exposure, and snow duration.

Large-scale analyses, such as by Bormann et al. (2013), which used over 1,700 snow density

records across the United States, Australia, and the former Soviet Union, have shown that

these climate variables are the primary controls on snow density development over time.

However, the primary aim of this study was not to predict snow density under varying

climate conditions, but rather to understand how small-scale spatial variations in density

may influence near-surface soil temperatures.

5.2.3 Influence of snow depth on temperature

The hierarchical models used in the second part of the analysis revealed consistent positive

effects of snow depth on winter soil temperature across all model structures. This effect

was most pronounced in the vegetation model, where a 1.0m increase in snow depth

was associated with a 2.7 °C increase in snow temperature (HDI: 0.3 to 4.9). While this

estimate reflects the modeled slope, it should not be interpreted as a linear relationship

that holds across the entire range of snow depths. In fact, the observed data suggest a much

stronger insulation effect at shallow depths. As shown in Figure 7, temperature differences

between the snow and surface sensors ranged from 2 °C to 4 °C, even though the vertical

distance between these sensors is just 16 cm, which would imply a much steeper local

gradient than the modeled slope. This discrepancy highlights the limits of interpreting

the modeled slope at face value: the model estimates an average effect over the entire snow

depth range, while in reality the relationship is nonlinear. The intercept may include part

of the initial insulation effect already present at low snow depths, flattening the estimated

slope. Much of the insulation effect likely occurs at low snow depths and then diminishes,

as also reported by earlier findings from Slater et al. (2017), who showed that around 0.5m

of snow is often sufficient to decouple soil from air temperature.

While vegetation heterogeneity at the study site was limited, vegetation types still con-

tributed to measurable differences in winter soil temperatures. Dry tundra sites had the

lowest average soil temperatures (−0.8 °C), while wet tundra sites were notably warmer

(0.6 °C), likely due to higher initial soil moisture content and associated latent heat buffer-

ing during freeze-up. Moist tundra showed no clear thermal signature (0.1 °C). These

modest differences suggest that even subtle variations in vegetation and soil moisture can

influence ground thermal regimes, especially in shallow, variably insulated snowpacks. In

more heterogeneous environments, vegetation-related contrasts in soil temperatures are

more pronounced. Grünberg et al. (2020) found that tall shrub patches accumulated

deeper snow and had markedly warmer soils, while dwarf shrub and lichen tundra – as-

sociated with sparse snow – exhibited colder and more variable ground temperatures.

Similarly, Van Tatenhove and Olesen (1994) documented substantial vegetation-driven

differences in West Greenland, attributing warmer soils to deeper and more stable snow

cover. Both studies highlight how vegetation primarily modifies soil thermal regimes via

its effect on snow accumulation and retention, often exerting stronger control than regional

air temperature. These snow-soil-vegetation interactions have important implications in
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the context of Arctic greening. Long-term records from western Greenland show that Be-

tula nana expansion correlates with warmer soils and earlier meltout in spring (Hollesen

et al. 2015). Increasing shrub cover can trap more snow, reduce its compaction, and en-

hance thermal insulation, raising winter soil temperatures by several degrees (Sturm et al.

2001; Domine et al. 2015; Paradis et al. 2016; Rixen et al. 2022). Although vegetation

effects at my study site were less pronounced due to the limited range of types, the ob-

served temperature patterns still align with these broader dynamics and underscore the

importance of vegetation-snow interactions in shaping soil thermal conditions.

In the geomorphon-group model, the geomorphon-level intercepts reveal subtle to-

pographic ordering. Hollows/footslopes tend to be warmest, followed by slopes, whereas

valley/depression sites tend to be coolest. Although all highest-density intervals distribute

around zero, the relative ranking of the posterior distributions echoes the snow-depth re-

sults: micro-relief is too subdued for consistent thermal offsets to emerge. Hollows are

marginally warmer because they hold slightly deeper, denser snow; valleys and gentle

slopes lack enough depth contrast to sustain a systematic temperature advantage. This

muted hierarchy contrasts with stronger-relief tundra, where deeper snow in leeward hol-

lows and depressions yields 4 °C to 8 °C warmer winter soils than wind-scoured ridges

(Sturm and Holmgren 1994; Van Tatenhove and Olesen 1994). Recent LiDAR surveys at

TVC show more than 0.5m of additional snow accumulation in leeward hollows, corre-

sponding to soil temperatures up to 6 °C warmer than those on exposed slopes (Borges

2024).

5.2.4 Influence of relative density on temperature

I assessed how vertical snow density structure affects thermal coupling from the atmo-

sphere through the snowpack to the soil. My hierarchical models showed that denser snow

in the bottom 16 cm of the snowpack (i.e., between the snow and surface temperature

sensors) exerts a positive effect on surface and soil temperatures. Denser snow at the base

of the pack implies higher thermal conductivity, reduced insulation and stronger thermal

coupling between the surface and the soil. On April 9, air temperatures were around –6oC,

colder than the snowpack (about –4oC), which was itself colder than the surface and soil

temperatures (about –2oC). These conditions, might in principle promote soil heat loss

toward the colder snowpack and atmosphere. But since the air temperature measured at

AWS2 during the first days of April was higher than most of the snow temperatures at that

time, soil temperatures measured on April 9 may have been influenced by these warmer

air temperatures resulting in downward heat flux where the stronger thermal coupling

due to denser snow has a positive effect on soil temperatures. The denser snowpack may

also have allowed the soil to track the diurnal cycles in early spring where solar input is

increasing more closely. The daily averages might hide the actual daytime heat transfer,

which is more complicated than a single-direction flux.

The negative effect of denser snow near the surface is likely less reliable, as my initial

model predicting snow temperature from air temperature performed poorly, limiting con-

fidence in this result. If the effect is meaningful, however, it is also physically difficult to

interpret; one possible explanation is that denser upper layers inhibit energy transfer from

the air into the snowpack, potentially forming crusts or compact layers that delay surface

warming.

Integrating density into soil temperature models is not merely a refinement but is
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essential for correct soil-temperature prediction as my results suggest that differentiating

only two layers might already capture thermal contrasts. Other studies support the impor-

tance of accurate snow density profiles for modeling soil thermal dynamics. For instance,

Marchand et al. (2018) used satellite microwave polarization ratios to optimize simulated

snow density in a land surface model. Incorporating more accurate density profiles led

to better estimates of soil temperature, showing that denser snow increases thermal con-

ductivity, thereby reducing snow insulation and leading to cooler soils beneath. Their

results from a site near TVC, demonstrated that underestimated snow densities led to

overly warm soil simulations due to excessive insulation. In their study they use snow

density to derive the thermal conductivity of snowpacks, where higher densities generally

lead to increased conductivity and reduced insulation, which aligns with my observations

of bottom snow density.

5.2.5 Temperature propagation

All models consistently indicated strong temperature propagation from snow to the surface

and ultimately to the soil. This directional patter highlights the insulating role of the

snowpack in winter. The modulation of the temperature signal by snow depth and snow

density underscores the conclusions of Zhang (2005) and Slater et al. (1998), who both

demonstrated that snow properties strongly influence the thermal regime of tundra soils.

Their models and observations revealed that even small changes in snow depth or density

could shift soil freezing dynamics, highlighting snow’s insulating role in Arctic energy

balance. Collectively, the models presented here align with these earlier studies in showing

that, even in relatively uniform terrain, snowpack structure and depth exert primary

control over winter soil temperatures – more so than terrain or vegetation alone.

5.3 Model strengths, limitations, and opportunities for ad-

vancement

The Bayesian models developed for this study successfully captured the principal relation-

ships between snow cover and ground-surface temperature, with snow depth consistently

emerging as the dominant predictor. The hierarchical structure of the model enabled

partial pooling across sites, which was especially valuable given the limited dataset (14

TMS and a single-day mean of observations from April 9th, 2024). This structure allowed

the model to incorporate group-level predictors, such as vegetation type and geomorphon

class, even when some categories were sparsely represented. For instance, the weak esti-

mated effects of vegetation and geomorphon likely reflect small sample sizes rather than a

true absence of influence. By sharing statistical strength across groups, the model reduces

overfitting while preserving variation that may emerge more clearly in larger datasets.

A key strength of the Bayesian framework lies in its ability to integrate diverse sources

of information including field observations, expert knowledge, and physical understanding

while explicitly accounting for uncertainty in both predictor effects and measurement vari-

ability (Berliner et al. 2003; Ekici et al. 2014). This capacity is particularly important in

Arctic research, where logistical constraints limit data collection and environmental het-

erogeneity is high. Incorporating informative priors proved essential for ensuring physically

realistic model behavior. When vague or reference priors were used, the model occasionally

produced implausible predictions such as soil temperatures hundreds of degrees outside
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the physical range highlighting the danger of overfitting and nonphysical extrapolation

in the absence of prior constraints. Informative priors, by contrast, anchored model esti-

mates within meaningful geophysical bounds and improved predictive performance, even

though the central tendencies remained similar between models. This sensitivity to prior

specification was especially evident in the effect of snow density. A particularly notable

case involved bottom relative density, whose association with soil temperature reversed

direction depending on the priors used. Under vague priors, denser basal snow layers

appeared to increase insulation (a negative association), whereas under informative priors

they were linked to reduced insulation (a positive association). This instability suggests

that the model cannot reliably estimate the influence of snow density on soil temperature

without being guided by physically grounded prior knowledge.

Compared to physically based snow models, which simulate energy and mass exchange

through mechanistic equations, the Bayesian statistical approach offers several advantages

under Arctic field conditions. Physical models often struggle to represent key processes

such as wind redistribution of snow, vapor flux, and fine-scale heterogeneity in snow lay-

ering and vegetation cover. These limitations can lead to large simulation errors, partic-

ularly when model parameters are poorly constrained by local observations. In contrast,

Bayesian models estimate probabilistic relationships directly from observed data, while

incorporating physical understanding through priors. They do not aim to simulate ev-

ery process explicitly but instead focus on producing robust inference under uncertainty.

This makes Bayesian methods especially well suited for Arctic environments where full

process representation is infeasible. Lastly, the Bayesian models provided full posterior

distributions for all parameters, supporting more nuanced inference and explicit uncer-

tainty quantification (Figures A.12, A.13). Unlike traditional statistical approaches that

rely on point estimates and strict assumptions, Bayesian methods can adapt flexibly to

the structure and limitations of the available data, further enhancing model transparency

and interpretability (Webb et al. 2010; Kruschke 2021).

Despite these strengths, several limitations should be acknowledged. Most fundamen-

tally, the models are based on a single-day snapshot of snow and temperature conditions,

which constrains inference about seasonal dynamics or cumulative effects. The limited

number of TMS (14) also restricted the complexity of the model and reduced statistical

power, particularly for categorical predictors such as vegetation and geomorphon class.

As a result, some potentially meaningful differences may remain undetected. To advance

beyond this limitation, future work should shift toward time series modeling that cap-

tures the evolution of snow insulation and soil thermal dynamics over the entire season.

The current focus on a single day in April limits inference about temporal variation, yet

snow-soil interactions unfold across months. Hierarchical Bayesian models are particu-

larly suited for temporal extensions, as they can incorporate autocorrelation structures

and model latent states developing through time (Gregory 2005).

Furthermore, model assumptions such as normality in the response distributions may

be too restrictive. For instance, the soil temperature response to snow depth may flatten

under deep snow due to insulation saturation, leading to nonlinear behavior that is not well

captured by linear-normal models. Replacing the Gaussian likelihood with non-Gaussian

models could better capture skewed or nonlinear responses in snow and soil temperatures,

such as thresholds beyond which insulation effects plateau. This shift would help ad-

dress cases where snow insulation effects are not linear but saturate or intensify abruptly.

Similarly, the linear modeling framework complicates the interpretation of certain results,

30



DISCUSSION

particularly the effect of snow density. Including snow density as an additive linear pre-

dictor fails to capture the conditional nature of thermal conduction, where the effect of

snow density depends on the direction of the temperature gradient. That is, the same

density profile may either enhance or suppress warming depending on whether the soil

is losing (winter) or gaining (spring) heat. Future models should address this by allow-

ing snow density to modulate the strength of the coupling between air, snow, and soil

temperatures. For example, snow density could interact with temperature gradients or

be incorporated as a scaling factor on the regression coefficients linking air, snow, and

surface temperatures. This would better reflect the nonlinear and state-dependent role of

snow structure in controlling subsurface thermal dynamics. Another important modeling

challenge is collinearity among predictors such as elevation, slope, aspect, and geomorphon

class. While Bayesian shrinkage helps to regularize estimates, collinearity can still inflate

uncertainty and obscure the effects of individual predictors (Webb et al. 2010).

Furthermore, spatial mismatch between snow and soil measurements limited the reso-

lution of the models. SMP profiles were assigned to TMS sensors based on proximity, with

distances ranging from less than a meter to over 40m. This introduced spatial noise that

likely weakened the ability to detect precise relationships between snow properties and soil

temperatures. Reducing this mismatch through closer spatial alignment between snow and

soil measurements would improve model sensitivity. However, co-locating snow and soil

measurements is challenging in practice, as invasive snow profiling can disturb the snow-

pack directly above the temperature sensors. More precise placement, e.g. using tools like

DGPS or clearly marked reference points along transects, could help minimize offsets with-

out compromising the integrity of the snow or soil measurements. Furthermore, strategic

sensor placement should also target diverse microtopographic settings (e.g., ridges, slopes,

depressions) and vegetation types (e.g., shrub, grass, bare ground) to better capture land-

scape heterogeneity. Complementing this, expanding sensor coverage along elevational

gradients and different slopes and aspects will help disentangle climatic and topographic

influences on snowpack structure and soil thermal behavior. Increasing the frequency of

snow measurements through automated profiling or repeated manual sampling would en-

able the resolution of temporal dynamics. These enhancements would improve the models

abilities to quantify the respective roles of snow properties, vegetation, and topography in

mediating soil temperatures.

Meteorological variables such as incoming radiation, wind speed, and precipitation are

also key drivers of snowpack development and energy exchange at the snow-soil interface,

which have not been included in the presented models. Their future inclusion could

substantially enhance predictive accuracy, especially given their projected changes under

climate warming. For example, rain-on-snow events – expected to increase by up to 40%

by the end of the century – can alter snow hardness and melt dynamics (Putkonen and

Roe 2003). Climate projections for Disko Island suggest winter snowfall may increase,

but this is unlikely to offset enhanced ablation due to warming (Bonsoms et al. 2024). At

the same time, increased atmospheric moisture could lead to thicker snowpacks that delay

ground freeze-up and intensify soil insulation in mid-winter (Pongracz et al. 2024).

Overall, while the models robustly capture the primary snow insulation effect and

demonstrate the value of Bayesian approaches for small, uncertain datasets, future studies

would benefit from expanded temporal coverage, increased sensor density, and improved

spatial alignment of measurements to better resolve the drivers of snow-soil interactions.
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6 Conclusion

This thesis investigated the interactions between snow depth and snow density and near-

surface soil temperatures in a coastal Arctic tundra environment on Qeqertarsuaq, Kalaal-

lit Nunaat. By combining SMP profiles, TMS temperature data, and detailed topographic

and vegetation information with a Bayesian modeling framework, the study aimed to iden-

tify key controls on snowpack structure and its insulating effects during the late winter

period of 2023/24.

The first objective was to determine whether the April snow profiles accurately re-

flected late-winter snowpack conditions. Given the relatively stable weather and minimal

melting observed throughout the winter, the snowpack measured in April was deemed

representative of the seasonal snow conditions.

The second objective focused on assessing the spatial variability of snow properties and

near-surface soil temperatures. Results revealed substantial heterogeneity in both snow

depth and density, as well as in soil temperatures, even across a landscape that appears

relatively uniform in terms of topography and vegetation variability.

For the third objective of quantifying the relationship between snow density and soil

temperatures, the two- and three-level Bayesian hierarchical models effectively captured

broad patterns in temperature behavior and provided evidence that denser bottom layers

were associated with reduced insulation of soil temperatures. This supports the hypothesis

that snow density, not just depth, play a critical role in regulating soil thermal regimes.

In summary, these findings highlight the critical, yet underrepresented, role of snow

density in controlling soil thermal regimes in Arctic environments. While current physical

snow models often perform poorly in Arctic conditions due to inadequate representation

of key processes such as wind-driven snow redistribution and vapor fluxes, this study

demonstrates that Bayesian statistical approaches offer a promising alternative for under-

standing snow-soil thermal interactions. By building probabilistic, data-informed models

that explicitly incorporate uncertainty and complexity, the Bayesian framework developed

here provides a foundation for future modeling efforts.
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S. L., Streletskiy, D. A., Stuenzi, S. M., Westermann, S., and Wilcox, E. J.: Standard-

ized Monitoring of Permafrost Thaw: A User-Friendly, Multiparameter Protocol, Arctic

Science, 8, 153–182, https://doi.org/10.1139/as-2021-0007, 2022.

Boike, J., Stünzi, S. M., Gottuk, J., Bornemann, N., and Groenke, B.: Arctic Land Expe-

ditions in Permafrost Research. The MOMENT Project: Expedition to the Arctic Sta-

tion, Qeqertarsuaq, Disko Island and Ilulissat, West Greenland in 2022, https://doi.org/

10.57738/BzPM 0782 2024, 2024.
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EXTENDED METHODOLOGY

A Extended methodology

The following section provides a detailed description of the data sets, data collection,

processing, and analysis.

A.1 Data sets

Table A.1: Sensors used for field measurements. AWS2 refers to the automatic weather

station installed at the study site, which recorded meteorological data during the field campaign.

Sensor Brand / Model Measurement Accuracy

Air Temperature

(AWS2)

Vaisala HMP115A Air temperature ±(0.226-

0.0028× temperature)°C (-80 to

+20°C)

Precipitation

(AWS2)

RM Young 52203 Liquid precipitation (unheated

tipping bucket)

2% up to 25 mm/h; 3% up to

50 mm/h

Wind speed and di-

rection (AWS2)

RM Young 05108-45 Wind speed and direction Speed: ±0.3 m/s or 1% of

reading; Direction: ±3°
TMS sensor TOMST, TMS-4 Soil, surface, and snow

temperature at 3 depths

±0.5 °C (-40 to 60°C)

(MAX31850 sensor)

Snow Micro Pen

(SMP)

WSL, SMP5 Penetration resistance profile Resolution: 0.3 mm; Force:

0.01 N (0-50 N)

MagnaProbe SnowHydro, Mag-

naProbe

Snow depth ±1 cm

A.1.1 Snow measurements

Snow density can be derived from snow hardness which can be obtained from manual

measurements or penetrometers (Hagenmuller and Pilloix 2016). Manual measurements

from snow pits are operator biased and time consuming (Kaltenborn et al. 2023). In

contrast, the SnowMicroPen (SMP), a portable high resolution penetrometer, developed

by Schneebeli et al. (1999) measures snow stratigraphy of a meter profile in less than a

minute (Proksch et al. 2015). The SMP determines the bond strength between snow grains

within the snowpack. The bond strength can be obtained from the penetration resistance

and is directly influenced by the micro-structural properties of snow, such as density and

surface area. For example, high-density snow has a higher bond strength and consequently

a higher penetration resistance than low-density snow (Kaltenborn et al. 2023). Hence,

the force signal can be used to infer snow structural parameters such as density or specific

surface area. The device consists of a conic measurement tip with a 60° included angle

which is connected to a force transducer in a drive cone. The force transducer ranges

from 0N to 52N (WSL Institute for Snow and Avalanche Research SLF 2023). A rotary

motor drives the rod up to 1.2m into the snowpack at a constant penetration velocity of

20mms−1. The motor is fixed above the snow surface by ski poles (Schneebeli et al. 1999;

Hagenmuller et al. 2018). The penetrometer acquires a force measurement every 4 µm
(i.e., 250mm−1) (Schneebeli et al. 1999). Each SMP profile consists of the penetration

force signal at the measurement tip in Newtons along its depth signal (Kaltenborn et al.

2023). The force sensor’s resolution is 0.01N, and the depth accuracy is estimated to be

1 cm.
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During a field campaign in April 2024, 224 snow profiles were conducted across three

transects in Kuup Ilua (Blæsedalen valley), using the fifth generation SnowMicroPen. For

each profile, an additional GNSS measurement was performed using Emild GNSS. An

Emlid Reach M+ was used as a rover and connected to the SMP. It received real-time

kinematic corrected position information from the base, an Emlid RS2+. Thereby, the

position estimates of the profiles were improved from 2m to 3m accuracy to a few centime-

ters accuracy during post-processing. Another essential post-processing step involved the

combination of multiple SMP signals into complete profiles. This was necessary as there

were layers within the snowpack (likely ice layers) that could not be penetrated by the

SMP due to their hardness. At these points, the snow profile measurement was continued

after carefully breaking the hard layer with an avalanche probe. During post-processing,

the individual measurements were stitched into one profile. This leads to the following im-

plications: 1) Some layers of the SMP profile are missing (NAs), 2) the properties of these

layers, specifically their density and height are unknown, 3) by breaking hard layers with

an avalanche probe, snow properties directly below might have been altered. I decided

to keep the missing values in the profiles, since treating the resulting sequence of missing

values as ice layers with a respective density of 917 kgm−3 was not adequate because of

their different length. Ice layer thickness would have likely ranged between 1 cm to 2 cm;

however, there were longer sequences (up to 8 cm) of NAs within the profiles.

Lastly, I converted the penetration force signal into density using algorithms provided

by the SnowMicroPyn software (Mewes 2024). As there are different algorithms to derive

snow properties from the penetration force signal, I compared deviations from Proksch

et al. (2015), Calonne et al. (2020) and King et al. (2020) with manual measurements

from five snow pits to choose the best fitting algorithm and validated the data (Figure

A.1). I selected the closest SMP profile to each snow pit and averaged its density for the

depth interval of each sample in the snow pit. Then, I compared the density estimations of

the derivatives to the manual measurements and calculated R2 and SD of each derivative

(Table A.2).
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Figure A.1: Selection of Derivative. Comparison of snow pit density and SnowMicroPen

(SMP) average density for density estimation algorithms by Proksch et al. (2015), Calonne et al.

(2020) and King et al. (2020). Point size represents the standard deviation of SMP density within

each snow pit depth interval, categorized into small, medium, and large SD ranges. The black

diagonal line indicates a 1:1 relationship between snow pit and SMP densities.

Table A.2: SMP derivatives statistics. Coefficient of determination (R2) quantifies the linear

relationship between SMP and snow pit densities. Standard deviation (SD) reflects the variability

in SMP-derived densities within each snow pit depth interval.

Derivative R2 SD (kg/m3) Publication

P2015 -0.341 52 Proksch et al. (2015)

CR2020 -0.456 43 Calonne et al. (2020)

K2020a -0.781 24 King et al. (2020)

K2020b -0.773 26 King et al. (2020)

Based on my results, I used densities obtained from the algorithm of Proksch et al.

(2015). The statistical model developed in this approach was calibrated by combining SMP

data with 3D micro structural data from micro computed tomography from alpine, arctic

and antarctic snow profiles. The density derived from the SMP had a mean relative error

of 10.6%. Within the derived data, I recognized invalid density values outside the possible

physical range. These values can stem from errors in the force signal. For instance, large

temperature changes during the measurements may cause signal drift (Bellaire et al. 2009).

Furthermore, the piezoelectric force sensor captures not only compression but also tensile

forces. Negative peaks result from sudden changes of snow hardness from soft to hard snow,

where the sensor is exposed to compression forces and shear forces. Other reasons leading

to negative force signals can be a bent or broken tooth of the cogwheel or movement of the

rod during the measurement (WSL Institute for Snow and Avalanche Research SLF 2023).
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However, I also obtained invalid density values for profiles in which the force signal was not

negative / erroneous, in other words, where the deviation methods yielded wrong values.

Different derivation methods applied to the raw force signal produce markedly different

results, especially at force peaks where small variations in the calculation approach lead

to large discrepancies in estimated densities (Figure A.2).
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Figure A.2: Comparison of snow density derivations from different deviation al-

gorithms. Density profiles derived from the force signal (blue) using calculation methods after

Proksch et al. (2015) P2015 (orange), Calonne et al. (2020) CR2020 (purple), King et al. (2020)

K2020a (light blue), K2020b (light green). Substantial differences at force peaks lead to discrepan-

cies in both peak magnitude and profile shape, influencing the interpretation of snow density.

As all four deviation methods included invalid density estimations, I adhered to the

Proksch et al. (2015) algorithm, since its density distribution aligned best with the ob-

served density values from the snow pits (Table A.3). I handled invalid values within the

derived data by removing all densities outside 0 kgm−3 to 917 kgm−3. It is important to

note that the derived data were analyzed in a relative context rather than an absolute

one. Absolute values are not suitable for direct comparisons between different sites, due

to the mentioned differences between the derivation methods.
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Table A.3: Summary statistics of snow density derivation methods. Mean, standard

deviation (SD), and percentiles (25%, 50%, 75%) for snowpit and SMP-derived snow densities

[kg/m3].

Statistic Snowpit P2015 CR2020 K2020a K2020b

Mean 272 299 318 228 230

SD 57 125 83 89 101

25% 246 264 289 211 215

50% 281 286 321 226 229

75% 314 336 354 252 252

To validate snow depth data, I compared the measurements of the SMP to Mag-

naProbe measurements, which were taken on the same days along the same transects.

Based on their coordinates, I paired the closest SMP and MagnaProbe measurements,

to compare their recorded snow depths (Figure A.3). Overall, the measurements aligned

well. However, because the SMP rod is limited to a maximum length of 1.20m and was

positioned approximately 10 cm above the snow surface, the effective measurement range

was approximately 1.10m. As a result, large deviations occurred in deeper snowpacks,

where MagnaProbe recorded snow depths up to 2.43m.
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Figure A.3: Snow depth comparison. Comparison of snow depth measured by the MagnaProbe

(x-axis) and SnowMicroPen (y-axis). The black line indicates a 1:1 relationship between the two

measurement methods.
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A.1.2 Temperature measurements

Snow, soil surface, and subsurface soil temperatures were recorded using TOMST TMS-4

temperature and moisture sensors (Wild et al. 2019). Each sensor contains three digi-

tal thermometers (DS7505U+; www.maximintegrated.com) and is designed to mimic the

structure of a small herbaceous plant. The sensors recorded temperatures at 15-minute

intervals at three positions: 16 cm above the surface (snow layer), directly at the sur-

face (snow / soil interface), and 6 cm below the surface (soil temperature). According to

the manufacturer, the sensors have a resolution of 0.0625 °C and an accuracy of ±0.5 °C.
To improve accuracy, all sensors were calibrated in an ice-bath before installation. Each

sensor was placed in a 0 °C ice-bath until its readings stabilized. The difference between

the observed and expected value (0 °C) was recorded as the sensor’s individual measure-

ment error. These offsets were then subtracted from the raw data to produce a calibrated

temperature time series, which was used for all further analyses.

A.1.3 Topography

I used a digital terrain model (DTM, GRL_Qeqertarsuaq_0m50_L1_DTM_001_EGM96.tif

© 2024 Maxar Technologies) provided by the German Federal Agency for Cartography

and Geodesy’s Satellite Based Crisis and Situation Service (Bundesamt für Kartographie

und Geodäsie (BKG), Satellitengestützter Krisen- und Lagedienst (SKD)). The DTM has a

horizontal resolution of 0.5m, and was derived from WorldView-3 optical satellite imagery

in stereo configuration using the Semi-Global Matching photogrammetric algorithm devel-

oped by the German Aerospace Center (Deutsches Zentrum für Luft- und Raumfahrt). To

improve the relative alignment, image geometry was refined with 243 tie points. According

to the provider, the native accuracy of the WorldView-3 data is less than 3.5m vertically

and less than 5m horizontally. The final DTM was created by applying ground-point

masks to exclude surface features such as vegetation and buildings. Additionally, I calcu-

lated the slope using the terrain analysis tool included in QGIS (QGIS Development Team

2019). The DEM has previously been used to classify the terrain into topographic land-

forms, termed Geomorphons (Jasiewicz and Stepinski 2013). For the detailed description

and application of the method, see Becker (2024). The TMS sites cover the geomorphon

types: hollow/footslope, slope, and valley/depression (Figure A.4).
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Figure A.4: Digital Terrain Model of the Study Area. Topographic overview of

Blæsedalen in the south of Disko Island, showing TMS locations (red points) overlaid on

geomorphon landform classifications and 10 m elevation contour lines. Hydrological fea-

tures: von Oppen et al. (2022). DTM License: Based on material by Maxar Products.

GRL Qeqertarsuaq 0m50 L1 DTM 001 EGM96.tif © 2024 Maxar Technologies, including ma-

terial by AW3D Enhanced, AW3D Metro, AW3D Standard and AW3D Telecom Products.

GRL Qeqertarsuaq 0m50 L1 DTM 001 EGM96.tif © 2024 NTT Data Corporation and by Ecopia

Building Footprints Powered by Maxar. Ecopia Building Footprints © 2024 Ecopia Tech Corpo-

ration. Imagery © 2024 Maxar Technologies, provided by BKG and BMI, all rights reserved.

A.1.4 Vegetation

I used an adjusted version of the circumpolar land cover unit map by Bartsch et al. (2024)

to categorize the vegetation around each TMS. The initial map provides three types of

wetland and 14 terrestrial tundra units based on shrub physiognomy and soil moisture, at a

resolution of 10 x 10m. For previous studies, Gottuk et al. (2025) aggregated and validated

the vegetation units using vegetation records from September 2023, where vegetation cover

was assessed in a 1 x 1m plot around each TMS (Boike et al. 2024) (Figure A.5 and

Figure A.6). Within each plot, vegetation heights ranging from 1.5 cm to 20 cm (mean

8.1 cm, SD 3.3 cm) were recorded at four points according to the standardized permafrost

monitoring protocol (Boike et al. 2022). In summary, the TMS locations feature three

different vegetation classes: dry tundra, moist tundra and wet tundra.
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Figure A.5: TMS plots vegetation. TMS sensor locations (A–I) with site-specific vegetation.

Photos taken by Simone Stuenzi and Jannika Gottuk in August 2022 and 2023.
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Figure A.6: TMS plots vegetation. TMS sensor locations (J–N) with site-specific vegetation.

Photos taken by Simone Stuenzi and Jannika Gottuk in August 2022 and 2023.
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A.2 Statistical analysis

I followed the Bayesian workflow outlined by Gelman et al. (2020), which includes model

building, inference, model checking, and model comparison. I began by selecting an initial

model. Bayesian models can be viewed as consisting of modules that are adjusted as

necessary throughout the process. I incorporated prior information through both the

prior distributions, ranging from non-informative to highly informative, and the likelihood

function, which reflects assumptions about the data-generating process (Gelman et al.

2020). When using strongly informative priors or small datasets, the posterior distribution

can be strongly dependent on the prior distribution. To ensure appropriate prior choices, I

performed prior predictive checks and sensitivity analyses. Prior predictive checks display

the data that is being simulated from the parameter values in the prior distribution. A

sensitivity analysis investigates how much the posterior distribution changes when the

prior is changed (Kruschke 2021).

After checking the prior predictive distribution, I fit the model using the No-U-Turn

Sampler (NUTS), an efficient Markov Chain Monte Carlo (MCMC) algorithm imple-

mented in PyMC (Hoffman and Gelman 2011). For this, the MCMC explores the pa-

rameter space randomly, tending to explore the high-probability regions more often than

low-probability regions. The resulting sequence of samples formed Markov chains that,

in the limit of infinite samples, approximated the posterior distribution. To ensure that

the chains explored the parameter space sufficiently and thus generated a representative

posterior distribution, I ran at least three chains and verified their convergence using the

potential scale reduction factor (R̂). I also monitored the stability of the MCMC esti-

mates by evaluating the effective sample size (ESS). For all key parameters, I ensured

an ESS greater than 400, which indicates sufficient chain length and reliable estimation

(Kruschke 2021). I used the Monte Carlo Standard Error (MCSE) to assess the precision

of the parameter estimates. Low MCSE values indicate that the estimated means and

standard deviations from the MCMC draws are stable. PyMC reports both the mean and

standard deviation for each parameter, which helped to quantify uncertainty due to the

finite number of posterior samples (Gelman et al. 2020).

Next, I performed posterior predictive checks by comparing simulated data from the

posterior distributions to the actual observations (Gelman et al. 2020; Kruschke 2021).

These checks helped me evaluate the model’s fit to the data. After validating model fit,

I reported the parameters by summarizing their central tendency and credible intervals

(e.g., highest density intervals, HDI).

As recommended in the Bayesian workflow, I fit and compared several models to ad-

dress the same problem. I concluded the process with model comparison, results reporting,

and, where necessary, further model refinement or reassessment (Gelman et al. 2020).
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Table A.4: Linear regression formulas and prior specifications

Model Formula All Priors

snow depth ∼ slope + elevation + aspect Intercept ∼ Normal(-0.69, 1.1)

slope ∼ Normal(0, 0.4)

elevation ∼ Normal(0, 20)

aspect sin ∼ Normal(0, 0.6)

aspect cos ∼ Normal(0, 0.5)

alpha ∼ HalfCauchy(1.0)

snow depth ∼ 0 + (1—vegetation) 1—vegetation ∼ Normal(σ: HalfNormal(0.1))

alpha ∼ HalfNormal(2.0)

snow depth ∼ (1—geomorphon) + slope + elevation + aspect Intercept ∼ Normal(-0.693, 1.1)

slope ∼ Normal(0, 0.4)

elevation ∼ Normal(0, 10)

aspect sin ∼ Normal(0, 0.6)

aspect cos ∼ Normal(0, 0.5)

1—geomorphon ∼ Normal(σ: HalfNormal(0.1))

alpha ∼ HalfNormal(1.0)

snow density ∼ slope + elevation + aspect Intercept ∼ Normal(0, 0.5)

slope ∼ Normal(0, 0.15)

elevation ∼ Normal(0, 3)

aspect sin ∼ Normal(0, 0.3)

aspect cos ∼ Normal(0, 0.3)

kappa ∼ HalfCauchy(1.0)

snow density ∼ (1—vegetation) + slope + elevation + aspect Intercept ∼ Normal(0, 0.5)

slope ∼ Normal(0, 0.15)

elevation ∼ Normal(0, 3)

aspect sin ∼ Normal(0, 0.3)

aspect cos ∼ Normal(0, 0.3)

1—vegetation ∼ Normal(σ: HalfNormal(0.1))

kappa ∼ HalfCauchy(1.0)

snow density ∼ (1—geomorphon) + slope + elevation + aspect Intercept ∼ Normal(-0.8, 0.3)

slope ∼ Normal(0, 0.15)

elevation ∼ Normal(0, 3)

aspect sin ∼ Normal(0, 0.3)

aspect cos ∼ Normal(0, 0.3)

1—geomorphon ∼ Normal(σ: HalfNormal(0.1))

kappa ∼ HalfNormal(1.0)

T snow ∼ slope + elevation + aspect Intercept ∼ Normal(-6.09, 2.0)

slope ∼ Normal(0, 1.0)

elevation ∼ Normal(0, 70)

aspect sin ∼ Normal(0, 0.5)

aspect cos ∼ Normal(0, 0.5)

σ ∼ HalfStudentT(4.0, 1.20)

T snow ∼ (1—vegetation) + slope + elevation + aspect Intercept ∼ Normal(-6.09, 2.0)

slope ∼ Normal(0, 1.0)

elevation ∼ Normal(0, 70)

aspect sin ∼ Normal(0, 0.5)

aspect cos ∼ Normal(0, 0.5)

1—vegetation ∼ Normal(mu: 0.0, σ: HalfNormal(2.0))

σ ∼ HalfStudentT(4.0, 1.20)

T snow ∼ (1—geomorphon) + slope + elevation + aspect Intercept ∼ Normal(-6.09, 2.0)

slope ∼ Normal(0, 1.0)

elevation ∼ Normal(0, 70)

aspect sin ∼ Normal(0, 0.5)

aspect cos ∼ Normal(0, 0.5)

1—geomorphon ∼ Normal(mu: 0.0, σ: HalfNormal(2.0))

σ ∼ HalfStudentT(4.0, 1.20)
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Table A.5: Air-Soil Temperature model formulas and prior specifications. This table

shows the structure and priors for the pooled model, which does not include group-level effects. In

the vegetation and geomorphon models, additional varying intercepts are added to account for hi-

erarchical structure, allowing either vegetation type or geomorphon class to influence the intercepts

of the temperature models.

Level Priors

T snow ∼ βair · T air

+ βdepth· snow depth adj

+ βdensity top· bulk density top

+ βaspect cos· aspect cos
+ βslope· slope scaled

βair ∼ Normal(0, 1)

βdepth ∼ Normal(0, 2)

βdensity top ∼ Normal(0, 10)

βaspect cos ∼ Normal(0, 1)

βslope ∼ Normal(0, 1)

σsnow ∼ Exponential(1.0)

T surface ∼ offset surface

+ βsnow to surface· T snow

+ βdensity bottom· bulk density bottom

βsnow to surface ∼ Normal(1, 0.5)

βdensity bottom ∼ Normal(0, 10)

offset surface ∼ Normal(0, 1)

σsurface ∼ Exponential(1.0)

T soil ∼ offset soil

+ βsurface to soil· T surface

βsurface to soil ∼ Normal(1, 0.5)

offset soil ∼ Normal(0, 1)

σsoil ∼ Exponential(1.0)

Table A.6: Snow-Soil Temperature model formulas and prior specifications. This table

shows the structure and priors for the pooled model, which does not include group-level effects. In

the vegetation and geomorphon models, additional varying intercepts are added to account for hi-

erarchical structure, allowing either vegetation type or geomorphon class to influence the intercepts

of the temperature models.

Level All Priors

T surface ∼ offset surface

+ βsnow→surface· T snow,obs

+ βdensity bottom· density bottom

βdensity bottom ∼ Normal(0, 10)

βsnow→surface ∼ Normal(1, 1)

offset surface ∼ Normal(0, 1)

T soil ∼ offset soil

+ βsurface→soil· T surface

βsurface→soil ∼ Normal(1, 1)

offset soil ∼ Normal(0, 1)

Residual Standard Deviations: σsurface ∼ Exponential(1.0)

σsoil ∼ Exponential(1.0)
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B Extended results

In the following, I provide further information on my results including complementing

figures of the study site, its meteorology, model set ups and tables of the model outputs.

B.1 Winter conditions
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Figure A.7: Winter air temperatures. Monthly temperatures of winters from October to June

between 1991 and 2018 (orange) and Winter 23/24 (red). Shaded areas represent the standard

deviation of the long term averages.
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Figure A.8: Wind direction. Hourly wind direction derived from u and v wind components

measured at AWS2 during the winter of 2023/2024.
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B.2 Spatial variability

Table A.7: Snow depth and density measurements across sampling locations.

Measurements including respective TMS, SMP profile, coordinates, snow depth, average snow

density and standard deviation.

Location Coordinates Snow properties

TMS SMP Lat Lon Depth Avg Density SD

profile (m) (kg/m3) Density

A 1 69.27862568 -53.47877289 0.88 294 61

A 2 69.27862505 -53.47876705 0.87 289 77

A 3 69.27863077 -53.47872824 0.90 309 77

A 4 69.27863868 -53.47864465 0.81 330 91

A 5 69.27862622 -53.47855965 0.59 314 106

B 15 69.2786507 -53.47783208 0.60 304 113

B 16 69.2786562 -53.47781112 0.55 302 104

B 17 69.27865238 -53.47775932 0.61 285 73

C 25 69.27864073 -53.4772056 0.79 272 66

C 26 69.27864004 -53.47717692 0.79 300 77

C 27 69.27862769 -53.4771072 0.64 286 92

D 48 69.27856329 -53.47500329 1.09 332 89

D 49 69.27857068 -53.47493736 1.10 409 96

D 50 69.27857952 -53.47481456 1.09 385 87

D 52 69.27859035 -53.4745902 1.09 316 57

D 53 69.27860308 -53.47452524 0.44 272 54

E 57 69.27862343 -53.474387 0.41 298 112

E 58 69.27862571 -53.47436199 0.17 247 155

E 59 69.27862455 -53.47431125 0.40 273 64

E 60 69.27864745 -53.47449362 0.48 272 87

F 68 69.26998314 -53.46994687 0.17 352 136

F 69 69.26997184 -53.46988947 0.24 312 67

G 110 69.27101946 -53.46847495 0.61 285 71

G 111 69.27103038 -53.46845644 0.51 291 93

G 112 69.27103622 -53.4684467 0.68 290 90

G 114 69.27104952 -53.46842689 0.49 292 66

G 115 69.27105545 -53.46841545 0.48 283 71

H 191 69.2676718 -53.46677536 0.55 296 96

H 194 69.26769353 -53.46667398 0.60 290 94

H 195 69.26770514 -53.46664313 0.56 281 99

Continued on next page
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Table A.7 continued from previous page

Location Coordinates Snow properties

TMS SMP Lat Lon Depth Avg Density SD

profile (m) (kg/m3) Density

I 224 69.26790057 -53.46593019 0.49 318 115

I 225 69.26791663 -53.46589791 0.71 283 84

I 226 69.26794237 -53.46578396 0.84 284 69

J 204 69.26782024 -53.46624638 0.51 293 96

J 207 69.26784907 -53.46616708 0.55 275 88

J 208 69.26785983 -53.46613246 0.58 269 94

J 209 69.2678662 -53.46609865 0.49 268 86

J 210 69.2678685 -53.46607898 0.44 287 100

J 211 69.26786331 -53.46606759 0.54 302 96

J 212 69.2678543 -53.46604897 0.55 289 98

J 213 69.26784633 -53.46603139 0.42 278 95

J 214 69.26784172 -53.46601645 0.46 292 105

J 215 69.26783754 -53.46599636 0.40 299 85

J 216 69.26783234 -53.46598553 0.43 295 88

J 217 69.26782895 -53.46597267 0.35 323 101

K 234 69.26816819 -53.46488751 0.48 284 123

K 235 69.26820738 -53.46478164 0.66 298 124

K 236 69.26823673 -53.46465205 0.65 278 72

L 251 69.26877319 -53.46248167 0.46 288 59

L 252 69.26876664 -53.46243988 0.56 297 77

L 253 69.26876051 -53.46240625 0.62 286 53

L 254 69.26875348 -53.46238008 0.66 304 93

L 257 69.26874112 -53.46229166 0.66 307 99

L 258 69.26873469 -53.46228772 0.41 314 89

M 246 69.26870657 -53.46274333 0.89 308 84

M 262 69.2686984 -53.4622556 0.21 274 100

M 263 69.26869444 -53.46224385 0.39 333 128

N 247 69.26874708 -53.46265237 0.60 302 63

N 248 69.26875731 -53.462611 0.55 295 67

N 249 69.26877667 -53.46257024 0.41 280 65
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Table A.8: Soil temperature and snow properties for each TMS. Mean soil temperature

from October 2023 to June 2024 per TMS, and snow properties averaged from surrounding SMP

profiles conducted in April 2024.

TMS Soil temperature (oC) Snow depth (m) Snow density (kg/m-3)

Avg SD Avg SD

A -2.3 0.8 0.13 307 17

B -1.2 0.6 0.03 297 10

C -1.7 0.7 0.09 286 14

D -0.3 1.0 0.29 343 55

E -3.7 0.4 0.14 272 21

F -3.8 0.2 0.06 332 28

G -2.3 0.6 0.09 288 4

H -0.5 0.6 0.03 289 8

I -1.2 0.7 0.17 295 20

J -1.9 0.5 0.07 289 16

K -1.3 0.6 0.10 286 10

L -1.6 0.6 0.11 299 11

M -1.8 0.5 0.35 305 30

N -2.1 0.5 0.10 292 11
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B.3 Bayesian linear regression models

Table A.9: Posterior summary statistics of linear regression models on snow depth.

Each subsection shows the posterior means, standard deviations (SD) and 94% highest density

interval (HDI) for the pooled model, vegetation-group model, and geomorphon-group model. Monte

Carlo standard errors (MCSE) for the mean and SD are omitted from this table because, for all

parameters except alpha, elevation, and slope (where MCSE values are up to about 2% of the

posterior SD), MCSE values are less than 1% of the corresponding posterior standard deviation.

For the snow depth models, the mean ESS bulk and mean ESS tail are as follows: the pooled model

has a mean ESS bulk of 3300 and a mean ESS tail of 2832; the vegetation-grouped model has a

mean ESS bulk of 2158 and a mean ESS tail of 2557; and the geomorphon-grouped model has

a mean ESS bulk of 3586 and a mean ESS tail of 2853. These values indicate strong sampling

efficiency and reliable posterior estimates for all three models. R̂ is below 1.05 for all variables.

Pooled model

Parameter Mean SD 3% HDI 97% HDI

alpha 6.93 3.11 1.76 12.56

Intercept -0.04 1.15 -2.20 2.12

slope 0.14 0.19 -0.23 0.51

elevation -6.92 12.74 -30.98 17.07

aspect sin -0.18 0.21 -0.58 0.22

aspect cos 0.04 0.18 -0.29 0.41

Vegetation-group model

Parameter Mean SD 3% HDI 97% HDI

alpha 2.90 0.91 1.41 4.70

vegetation sigma 0.11 0.07 0.00 0.24

[dry tundra] -0.10 0.14 -0.39 0.12

[moist tundra] -0.085 0.14 -0.37 0.13

[wet tundra] -0.04 0.13 -0.33 0.17

Geomorphon-group model

Parameter Mean SD 3% HDI 97% HDI

alpha 2.280 0.63 1.17 3.48

Intercept -0.53 0.88 -2.23 1.12

slope 0.10 0.26 -0.37 0.61

elevation -1.07 9.32 -18.04 17.14

aspect sin -0.12 0.31 -0.68 0.49

aspect cos 0.07 0.25 -0.40 0.58

geomorphon sigma 0.08 0.06 0.00 0.18

[hollow/footslope] 0.03 0.09 -0.17 0.21

[slope] -0.012 0.093 -0.215 0.155

[valley/depression] -0.01 0.10 -0.24 0.16
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Figure A.9: Posterior predictive distributions for snow depth. Boxplots show the predicted

distribution from the posterior predictive samples of the linear regression on snow depth across the

TMS. Red stars indicate the observed values.
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Table A.10: Posterior summary statistics of linear regression models on relative snow

density. Each subsection shows the posterior means, standard deviations (SD) and 94% highest

density interval (HDI) for the pooled model, vegetation-group model, and geomorphon-group model.

MCSE (Mean) and MCSE (SD) columns are omitted as all values are below 1% of the posterior

SD for all parameters except kappa (where they are about 2%). All reported ESS values for the

pooled, vegetation-group, and geomorphon-group models are reliable, with mean ESS bulk values

around 2631, 2296, and 4558 respectively, and mean ESS tail values around 2329, 1896, and 2973

respectively. R̂ is below 1.05 for all variables.

Pooled model

Parameter Mean SD 3% HDI 97% HDI

kappa 939.08 466.23 195.03 1816.95

Intercept -0.86 0.20 -1.26 -0.49

slope 0.10 0.04 0.03 0.19

elevation -0.29 2.25 -4.45 4.02

aspect sin 0.04 0.05 -0.05 0.12

aspect cos 0.08 0.04 0.01 0.15

Vegetation-group model

Parameter Mean SD 3% HDI 97% HDI

kappa 861.96 447.75 154.65 1692.93

Intercept -0.87 0.21 -1.26 -0.46

slope 0.10 0.04 0.01 0.18

elevation -0.14 2.34 -4.74 4.08

aspect sin 0.04 0.05 -0.06 0.12

aspect cos 0.08 0.04 -0.00 0.16

vegetation sigma 0.04 0.04 0.00 0.11

[dry tundra] -0.01 0.04 -0.10 0.05

[moist tundra] -0.01 0.04 -0.08 0.08

[wet tundra] -0.00 0.04 -0.09 0.08

Geomorphon-group model

Parameter Mean SD 3% HDI 97% HDI

kappa 2.88 0.65 1.68 4.12

Intercept -0.71 0.38 -1.40 0.03

slope 0.01 0.15 -0.27 0.27

elevation 0.06 2.97 -5.67 5.47

aspect sin -0.00 0.26 -0.48 0.49

aspect cos 0.03 0.24 -0.43 0.48

geomorphon sigma 0.08 0.06 0.00 0.18

[hollow/footslope] 0.01 0.09 -0.16 0.20

[slope] 0.00 0.10 -0.19 0.20

[valley/depression] 0.00 0.10 -0.19 0.20
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Figure A.10: Posterior predictive distributions for snow density. Boxplots show the

predicted distribution from the posterior predictive samples of the pooled linear regression on snow

density across the TMS. Red stars indicate the observed values.
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Table A.11: Posterior summary statistics of linear regression models on snow tem-

perature. Each subsection shows the posterior means, standard deviations (SD) and 94% highest

density interval (HDI) for the pooled model, vegetation-group model, and geomorphon-group model.

For most parameters, MCSE mean and SD values are below 4% of the corresponding posterior

standard deviation. However, for the group-level parameters sigma, hollow/footslope, slope, val-

ley/depression, and geomorphon sigma in the geomorphon-group model, MCSE values reach up to

18% of SD, and ESS values are as low as 22, reflecting less precise posterior estimates for those

parameters. The pooled model has a mean ESS bulk of 3711 and a mean ESS tail of 2848. The

vegetation-group model has a mean ESS bulk of 1827 and a mean ESS tail of 1686. In contrast,

the geomorphon-group model shows much lower sampling efficiency, with a mean ESS bulk of 727

and a mean ESS tail of 1036, mainly due to some parameters (sigma and geomorphon groups) with

very low (22) ESS values. R̂ is below 1.05 for all variables.

Pooled model

Parameter Mean SD 3% HDI 97% HDI

sigma 1.12 0.27 0.68 1.60

Intercept -1.16 3.34 -7.59 4.84

slope 1.08 0.55 0.05 2.13

elevation -37.86 36.66 -105.94 31.41

aspect sin -0.28 0.40 -1.01 0.49

aspect cos 0.15 0.35 -0.50 0.83

Vegetation-group model

Parameter Mean SD 3% HDI 97% HDI

sigma 1.04 0.26 0.62 1.53

Intercept -3.01 3.56 -9.46 3.95

slope 0.97 0.52 -0.02 1.92

elevation -19.70 38.45 -91.52 52.69

aspect sin -0.38 0.39 -1.09 0.38

aspect cos 0.08 0.35 -0.59 0.72

vegetation sigma 1.0 0.77 0.00 2.355

[dry tundra] -0.26 0.73 -1.79 1.04

[moist tundra] 0.628 0.82 -0.73 2.24

[wet tundra] 0.26 0.78 -1.10 1.90

Geomorphon-group model

Parameter Mean SD 3% HDI 97% HDI

sigma 1.05 0.28 0.57 1.53

Intercept -3.60 4.17 -10.90 4.30

slope 1.05 0.52 0.03 1.96

elevation -17.76 43.22 -101.70 59.45

aspect sin -0.24 0.38 -0.97 0.46

aspect cos 0.21 0.34 -0.43 0.86

geomorphon sigma 1.06 0.77 0.00 2.39

[hollow/footslope] 0.84 1.05 -0.33 3.49

[slope] 0.18 0.93 -1.46 2.12

[valley/depression] 0.03 1.00 -1.81 2.11
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Figure A.11: Posterior predictive distributions for snow temperature. Boxplots show

the predicted distribution from the posterior predictive samples of the pooled linear regression on

snow temperature across the TMS. Red stars indicate the observed values.

64



EXTENDED RESULTS

B.4 Bayesian hierarchical models

Table A.12: Posterior summary statistics for Air-Soil Temperature model. Each sub-

section shows posterior means, standard deviations (SD), and 94% highest density intervals (HDI)

for the pooled model, the vegetation-group model, and the geomorphon-group model. Monte Carlo

standard errors (MCSE) are omitted because they are mostly below 1% of the posterior SD, except

for two parameters (beta density top and beta density bottom) where MCSE is up to about 2% of

the SD. Effective sample sizes (ESS) are greater than 2000, and R̂ is below 1.01 for all variables.

Pooled model

Parameter Mean SD 3% HDI 97% HDI

beta air 0.65 0.31 0.11 1.26

beta depth 1.77 1.37 -0.93 4.21

beta density top -1.96 7.68 -16.45 12.48

beta density bottom 3.98 3.53 -2.43 11.01

beta aspect cos 0.37 0.47 -0.52 1.26

beta slope 0.82 0.53 -0.25 1.78

beta snow to surface 1.24 0.18 0.91 1.60

beta surface to soil 1.04 0.05 0.95 1.15

offset surface 0.24 0.91 -1.46 2.00

offset soil 0.20 0.21 -0.18 0.61

sigma snow 1.13 0.30 0.69 1.66

sigma surface 0.66 0.15 0.42 0.94

sigma soil 0.26 0.61 0.16 0.36

Vegetation-group model

Parameter Mean SD 3% HDI 97% HDI

beta air 0.50 0.29 -0.04 1.04

beta depth 2.69 1.22 0.34 4.89

beta density top -6.65 7.13 -20.14 6.70

beta density bottom 4.32 3.77 -2.72 11.53

beta aspect cos 0.24 0.38 -0.48 0.93

beta slope 1.00 0.42 0.15 1.72

beta snow to surface 1.27 0.20 0.91 1.65

beta surface to soil 1.05 0.05 0.94 1.14

offset surface 0.25 0.95 -1.45 2.05

offset soil 0.21 0.21 -0.18 0.61

sigma snow 0.80 0.25 0.42 1.23

sigma surface 0.66 0.15 0.42 0.92

sigma soil 0.26 0.06 0.16 0.37

[dry tundra] -0.78 0.67 -1.99 0.50

[wet tundra] 0.57 0.68 -0.69 1.85

[moist tundra] 0.08 0.70 -1.26 1.33
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Table A.12 continued from previous page

Geomorphon-group model

Parameter Mean SD 3% HDI 97% HDI

beta air 0.58 0.32 -0.04 1.19

beta depth 0.94 1.51 -1.74 3.87

beta density top -3.23 7.92 -18.78 11.08

beta density bottom 4.40 3.75 -2.42 11.44

beta aspect cos 0.44 0.46 -0.40 1.29

beta slope 1.02 0.54 0.07 2.07

beta snow to surface 1.27 0.20 0.89 1.65

beta surface to soil 1.04 0.05 0.95 1.15

offset surface 0.24 0.94 -1.58 1.92

offset soil 0.20 0.21 -0.19 0.60

sigma snow 1.08 0.29 0.64 1.62

sigma surface 0.66 0.15 0.42 0.93

sigma soil 0.25 0.06 0.15 0.36

[hollow/footslope] 0.48 0.74 -0.90 1.87

[slope] -0.30 0.72 -1.57 1.12

[valley/depression] -0.25 0.87 -1.89 1.30
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Figure A.12: Posterior predictive distributions for TMS temperatures. Boxplots show

the distribution of posterior predictions of the pooled hierarchical Air-Soil Temperature Model for

snow, surface, and soil temperatures across the TMS. Red stars indicate observed temperature

values.
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Table A.13: Posterior summary statistics for Snow-Soil Temperature model. Each

subsection shows posterior means, standard deviations (SD) and 94% highest density intervals

(HDI) for the pooled model, the vegetation-group model, and the geomorphon-group model. Monte

Carlo standard errors (MCSE) for the mean and SD w are less than 1% of the corresponding

posterior standard deviation. Effective sample sizes (ESS, bulk and tail) are always greater than

1700, and R̂ is below 1.01 for all variables.

Pooled model

Parameter Mean SD 3% HDI 97% HDI

beta density bottom 4.36 3.78 -2.61 11.55

offset surface 0.25 0.94 -1.49 2.02

beta snow to surface 1.27 0.20 0.90 1.63

offset soil 0.20 0.21 -0.17 0.60

beta surface to soil 1.04 0.05 0.94 1.14

sigma surface 0.65 0.14 0.43 0.92

sigma soil 0.25 0.06 0.16 0.36

Vegetation-group model

Parameter Mean SD 3% HDI 97% HDI

beta density bottom 5.16 4.29 -2.32 13.39

offset surface 0.20 0.95 -1.59 1.90

beta snow to surface 1.34 0.24 0.91 1.82

offset soil 0.20 0.20 -0.17 0.58

beta surface to soil 1.04 0.05 0.94 1.13

sigma surface 0.70 0.18 0.42 1.02

sigma soil 0.25 0.06 0.16 0.36

[dry tundra] 0.24 0.63 -0.97 1.40

[wet tundra] -0.04 0.65 -1.21 1.22

[moist tundra] 0.00 0.66 -1.22 1.21

Geomorphon-group model

Parameter Mean SD 3% HDI 97% HDI

beta density bottom 3.51 4.02 -3.94 11.13

offset surface 0.00 0.97 -1.76 1.86

beta snow to surface 1.20 0.21 0.81 1.58

offset soil 0.20 0.21 -0.19 0.57

beta surface to soil 1.04 0.05 0.95 1.14

sigma surface 0.63 0.16 0.37 0.91

sigma soil 0.25 0.06 0.16 0.37

[hollow/footslope] 0.36 0.61 -0.79 1.52

[slope] 0.21 0.62 -0.95 1.35

[valley/depression] -0.56 0.72 -1.87 0.83
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Figure A.13: Posterior predictive distributions for TMS temperatures. Boxplots show

the distribution of posterior predictions of the pooled hierarchical Snow-Soil Temperature Model for

surface (left), and soil temperatures (right) across the TMS. Red stars indicate observed temperature

values.
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