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Abstract

Seasonal snow cover plays a critical role in regulating Arctic soil tempera-
tures, particularly in permafrost landscapes. Its insulating properties depend
not only on snow depth but also on snow density and stratigraphy. However,
these characteristics remain poorly understood in Arctic environments due to
limited availability of high-resolution measurements. This thesis investigates
how spatial variability in snow depth and snow density influences soil temper-
atures (6 cm) during late winter in a Low Arctic maritime tundra landscape on
Qeqertarsuaq (Disko Island), Kalaallit Nunaat (Greenland). The study com-
bines high-resolution snowpack data collected with the SnowMicroPen (SMP)
in April 2024 with hourly soil temperature records from 14 temperature sen-
SOTS.

Snow depths at the sensor locations ranged from 0.16 m to 1.10 m (mean:
0.56 m), while snowpack densities varied between 247 kgm 3 and 409 kgm 3.
Average soil temperatures from October 2023 to June 2024 spanned from
—4.67°C to —0.23 °C across the site.

To capture the relationship between snow cover characteristics and soil
temperatures, and to assess spatial variability and uncertainty, I used Bayesian
hierarchical modeling. The results show that snow depths greater than ap-
proximately 0.5 m effectively insulate the soil by dampening the impact of air
temperature fluctuations, reinforcing the snowpack’s role as a thermal buffer.
I also observed a positive, though more uncertain, relationship between snow
density and soil temperature, suggesting that denser snow may reduce insu-
lating capacity. These findings indicate that snow density plays an important
role in Arctic ground thermal regimes, but additional high-resolution observa-
tions and further model development are needed to better quantify its effects.
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INTRODUCTION

1 Introduction

Seasonal snow covers large parts of the Arctic for six to ten months of the year, reaching
a maximum extent of approximately 47 x 10 km? in the Northern Hemisphere between
December and February (Estilow et al. 2015). However, long-term satellite records show a
decline in arctic snow cover mass, with an average reduction of —1.4 % per decade (Mudryk
et al. 2022; Peng et al. 2024). This decline is primarily driven by anthropogenic climate
warming. This warming also leads to more frequent and intense rain-on-snow events and
mid-winter melt, which alter the physical structure and thermal behavior of snowpacks
(Rantanen et al. 2022; Tan et al. 2022; Du et al. 2025).

The seasonal snowpack plays a crucial role in regulating the Arctic soil thermal regime.
In autumn, the thin, fresh snow cover usually has a cooling effect because it reflects up to
90 % of the incoming shortwave solar radiation (Pomeroy and Brun 2011). The proportion
of reflected shortwave radiation is called albedo. As the snow ages, the surface albedo can
drop as low as 50 % (Pomeroy and Brun 2011). During winter, increasing snow depth and
falling air temperatures cause snow to act as an insulating layer, slowing the transfer of
heat from the relatively warmer soil to the colder atmosphere. This insulating effect is
due to high air content and low thermal conductivity of snow (Pomeroy and Brun 2011;
Huang et al. 2017; Pertermann 2017). Understanding the thermal behavior of snow and
the properties that influence it is crucial for predicting subsurface temperatures in Arctic
environments, which affect processes such as soil microbial activity, nutrient cycling, and
permafrost dynamics.

Thermal conductivity is the key factor controlling snow’s insulating capacity, as it
governs the rate at which heat is transferred through the snowpack. Because of this
relationship, snow with lower thermal conductivity insulates the ground more effectively.
Thermal conductivity is primarily influenced by snow density, followed by temperature,
microstructure (including grain size and bonding), moisture content, and anisotropy. Since
direct field measurements of thermal conductivity are difficult, snow density is widely used
as a practical and accessible proxy (Pertermann 2017; Macfarlane et al. 2023).

The relationship between density and thermal conductivity is non-linear (Macfarlane
et al. 2023). Dry fresh snow and depth hoar (large, faceted crystals that typically form near
the ground under strong temperature gradients) can have a density of less than 100 kg m 3
with a thermal conductivity between 0.03Wm 1K' to 0.11Wm 'K (Sturm and
Johnson 1992), whereas melting snow and wind slab (dense, hard layers formed by wind
compaction) can have a density above 600kgm 2 resulting in a thermal conductivity of
0.14Wm 'K ! to 0.35 Wm 'K ! (Sturm and Johnson 1992; Pomeroy and Brun 2011;
Pertermann 2017).

Variations in snow density within Arctic snowpacks arise from a combination of ac-
cumulation, transformation, and redistribution processes throughout the winter. For in-
stance, snow deposition under cold conditions leads to low-density snow, while wind com-
paction and refreezing after melt events create denser, more cohesive layers (Melgysund
et al. 2007; Lawrence and Slater 2010). Additionally, vertical temperature gradients
within the snowpack drive metamorphic processes, which cause changes in the size, shape,
and bonding of snow grains (Pomeroy and Brun 2011). Strong temperature gradients
(1°Cem 1Y) favor the formation of depth hoar through constructive metamorphism, while
weaker gradients promote destructive metamorphism and increased snow density (Bor-
mann et al. 2013). As a result, Arctic snowpacks typically display a distinct stratification,
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with dense, wind-compacted layers near the surface overlaying lower-density depth hoar
(Larose et al. 2013). The complex vertical and horizontal structure of the snowpack plays
a key role in determining its thermal properties (Schweizer et al. 2008; Pomeroy and Brun
2011; Bormann et al. 2013).

However, while the influence of snow depth on soil temperature is well established
(Overduin et al. 2007; Krab et al. 2022; Pongracz et al. 2024; Griinberg et al. 2025), with
deeper snow typically leading to warmer winter soils because of its stronger insulating ef-
fect, much less is known about the role of snow density. Snow density remains difficult to
simulate accurately in physical snow models (Domine et al. 2021). Most multilayer snow-
pack models, such as Crocus (Vionnet et al. 2012) and SNOWPACK (Bartelt and Lehning
2002), were developed for mid-latitude conditions and avalanche forecasting. These models
often perform poorly in the Arctic, where dominant processes like wind redistribution and
vapor flux are not well represented (Peng et al. 2024; Woolley et al. 2024). Consequently,
model outputs frequently simulate vertical snow density profiles inverse to actual observa-
tions (Peng et al. 2024; Woolley et al. 2024). Although these models estimate snow depth
reasonably, inaccuracies in simulating snow layering and thermal conductivity introduce
errors in soil temperature predictions (Wever et al. 2023).

To address these shortcomings, this study adopts an alternative approach by applying
a hierarchical Bayesian modeling framework to estimate how snow properties relate to
soil temperatures. Statistical models offer several advantages in this context as they are
flexible, data-driven, and capable of incorporating empirical snow measurements without
relying on assumptions about the physical processes that govern snow evolution (Webb
et al. 2010; Kruschke 2021).

Building on this framework, I apply Bayesian hierarchical modeling to snow profile
and soil temperature data collected during a field campaign in April 2024 on Qeqertarsuaq
(Disko Island), Kalaallit Nunaat (Greenland). The overarching research question guiding
this study is: How does spatial variability in snow cover characteristics, particularly snow
density, influence near-surface soil temperatures in a maritime permafrost setting? To
address this, the analysis pursues three main objectives: First, I assess whether the snow
profiles measured in April are representative of late-winter snowpack conditions. Second,
I investigate the spatial variability of snow properties and near-surface soil temperatures
across the study area. Third, I aim to quantify the relationship between snow density and
soil temperatures during the late winter season.
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2 Study area

The study area is located in the valley Kuup Ilua (Bleaesedalen valley, (69°16’N, 53°27°'W)),
on the southern-tip of Qeqertarsuaq, Kalaallit Nunaat (Figure 1). The glacially carved
U-shaped valley lies within the zone of discontinuous permafrost and features a typical low-
arctic climate with maritime influence. The research station Arctic Station just outside of
Qeqertarsuaq operates multiple Automated Weather Stations (AWS), with records dating
back to 1991. Between 1991 and 2018 the mean annual air temperature was —2.8°C.
The monthly mean air temperatures were highest in July (7.9°C) and lowest in March
(—14.0°C) (Blok et al. 2016).

Annual precipitation averages 418 mm (Zhang et al. 2019). Most precipitation (approx-
imately 75 %) occurs between June and December, driven by moist air masses advected
from the south and southwest along the Davis Strait. The winter months are compara-
tively dry, dominated by cold, continental air masses descending from the Greenland Ice
Sheet. Between 60 % to 70 % of the annual precipitation typically falls as snow, supporting
the development of a continuous snowpack from late September through late May / June
(Humlum 1998).

The soils in this valley originate from early Tertiary volcanic basalt and have weakly
developed soil horizons due to limited weathering and pedogenesis over the past 10,000
years, following deglaciation. The soil is classified as Haplic Cryosol (Liu et al. 2023). The
surface organic horizon is slightly acidic (5 pH to 6 pH), extends down to 0.25m in depth,
and contains 5 % to 15 % organic carbon, mostly derived from mosses, lichens, and dwarf
shrub litter. Beneath this layer, the soil consists of coarse sediments, predominantly sand
and gravel, with little organic matter and pH levels close to neutral. The mean annual soil
temperature at a depth of 5cm is 1.9°C (Nielsen et al. 2017; Zhang et al. 2019). Frozen
soil conditions last from October to May (Xu et al. 2021). The maximum active layer
thickness depends on drainage conditions, and varies from 0.4m in wet depressions up to
3m on well-drained slopes (Rasmussen et al. 2022).

Located in Bio-climatic sub-zone D of the Arctic, vegetation cover is relatively high
in comparison to other Arctic sub-zones. In the valley and on the slopes vegetation
is dense and covers between 80% to 100 % of the ground. On the flat mountaintops
vegetation patches cover 5% to 50 % of the ground (Hollesen et al. 2015; von Oppen
et al. 2022). Vegetation diversity is relatively high as well. Deciduous dwarf shrubs
(Betula nana, Saliz glauca, and Vaccinium uliginosum), evergreen shrubs (Empetrum ni-
grum and Cassiope tetragona), and various mosses and lichens form the dominant well-
drained mesic tundra heath ecosystem (Nielsen et al. 2017). Annual nitrogen deposition

is low at 1kgha 'yr—!

, while the fixation of nitrogen supplies the ecosystem with be-
tween 1kgha 'yr—! to 2kgha ! yr—!, with little (less than 10 %) inter annual variation
(Rasmussen et al. 2022).

Long-term data from the weather station near the Arctic Station (AWS1) reveal an
annual increase in air temperature of 0.13 °C per year between 1991 and 2017. The high-
est increase in monthly air temperatures occurs from December to March, with strongest
warming of 0.31°C in February. In comparison to the period from 1991 to 2008, precipi-
tation decreased by 25 % from 2008 to 2017, leading to shallow snow depths (Zhang et al.
2019). Additionally, warmer air temperatures have led to earlier snow melt that allows the
soils to drain and warm more quickly (Hollesen et al. 2015). Zhang et al. (2019) recorded

an increasing number of days with minimum soil temperatures above 0°C (1991 to 2017)

3
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which leads to a lengthening of the growing period. Consequently, the species composi-
tion is shifting as more shrubs are established, contributing to the widespread observed
greening of the Arctic (Callaghan et al. 2011; Hollesen et al. 2015).

53.50°W

69.27°N
69.27°N

53.50°W

Figure 1: Overview of the study area and its location in the West of Kalaallit Nunaat.
Arctic Station (house), automated weather stations (AWS1 and AWS2) (orange triangles) and
Temperature-Moisture-Sensors (TMS) (red points) are highlighted. Hydrological features: von Op-
pen et al. (2022). Basemap: Google satellite.
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3 Methodology

The following section outlines the methodological approach of my study. It describes the
datasets, the assessment of snow cover conditions during winter 2023/24, the evaluation
of spatial variability across the study area, and the modeling framework used to quantify
the relationship between snowcover and soil temperature. Detailed information on data
collection, processing steps, and sensor setup can be found in Appendix A.

3.1 Data sets

My datasets consisted of temperature and snow measurements, conducted during several
field trips between 2022 and 2024, as part of the MOMENT project (Permafrost Research
Towards Integrated Observation and Modeling of the Methane Budget of Ecosystems).
The fieldwork involved vegetation and soil surveys, the installation of automated temper-
ature sensors during the summers of 2022 and 2023, and snow measurements in April 2024
(Boike et al. 2024; Steffens et al. 2025).

For my analysis, I focused on the winter season of 2023 /24, utilizing temperature data
recorded at 15-minute intervals from 14 TOMST TMS-4 Temperature-Moisture Sensors
(TMS). Each sensor measured temperatures at three distinct depths: 16 cm above the
ground surface (representing snow temperature), directly at the ground surface (surface
temperature), and 6 cm below the ground surface (soil temperature). After ice bath cali-
bration, the sensors reached an accuracy of 0.3°C (Appendix A.1.2).

To link snow properties with temperature conditions, I assigned snow profiles to each
TMS based on data collected in April 2024. Snow density and depth profiles were measured
using the SnowMicroPen (SMP), a high-resolution, portable penetrometer developed by
Schneebeli et al. (1999). The SMP records the force required to penetrate the snowpack
at high vertical resolution, with a force sensor resolution of 0.01 N and an estimated depth
accuracy of 1 cm. From the force signal, I derived snow density profiles (Appendix A.1.1).

The SMP is limited to a maximum rod length of 1.20 m, which prevented measure-
ment of deeper snowpacks. To account for this limitation, I used snow depth data from
the MagnaProbe, a manual depth probe equipped with a GPS and digital depth sensor,
collected at the same locations and on the same day. I matched MagnaProbe measure-
ments to the closest SMP profiles to validate and complement depth estimates (Figure
A.3). MagnaProbe readings confirmed that snow depths exceeded 2m in some locations,
beyond the reach of the SMP.

I then spatially matched the snow profiles to the TMS using drone orthophotos taken on
the 10" and 11*" of September 2023. For each sensor, I selected between two and twelve
snow profiles (61 in total), based on proximity and similarity in surface characteristics
(Figure 2, Table A.7). The distances between TMS and their assigned snow profiles
ranged from 0.6m to 43.8 m, while the distances between the TMS themselves ranged
from 7.5m to 1337.5m.

In order to contextualize the field data, I used air temperature, precipitation and
wind observations from an automated weather station (AWS2) at the study site, as well
as long-term air temperature records from an automated weather station (AWS1) at the
Arctic Station operated by the Greenland Ecosystem Monitoring Program (Greenland
Ecosystem Monitoring 2020). Air temperature at AWS1 was measured at 9.5m. At AWS2
air temperature was measured at 2.2m and precipitation at 0.8 m with a precipitation
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Figure 2: Assignment of SMP Profiles to TMS. An overview of the assignment process,
showing TMS (red) and associated SMP profiles (blue) based on proximity and surface character-
istics. Yellow points represent SMP profiles excluded from the analysis. The upper panel provides
a broader view of several TMS, while the lower panel zooms in on TMS H and its corresponding
SMP profiles.

gauge (Table A.1).

My analysis was further supported with topographic data derived from a high-resolution
digital terrain model (DTM) provided by the Satellite-Based Crisis and Situation Service
of the German Federal Agency for Cartography and Geodesy (BKG-SKD). From this
DTM, I extracted elevation, slope, and aspect values for each TMS location. For previous
analysis the DTM was also used by Becker (2024) to derive geomorphon types, follow-
ing the method by Jasiewicz and Stepinski (2013), which classified terrain into distinct
landform elements called geomorphons. Based on TMS locations, my data included the
geomorphon types hollow/footslope, slope, and valley/depression (Appendix A.1.3).

To characterize vegetation around each TMS, I used an adjusted version of the Cir-
cumpolar Land Cover Map by Bartsch et al. (2024), modified by Gottuk et al. (2025),
which classified the sites into three vegetation types: dry tundra, moist tundra, and wet
tundra (Appendix A.1.4).

3.2 Characterization of winter snowpack

To evaluate the representativeness of the April 2024 SMP profiles for the full winter snow-
pack, I analyzed the seasonal snow evolution for the snow covered season prior to April
2024 using AWS2 records. I examined hourly air temperatures, snow depths, rainfall

6
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events, and wind conditions to determine the timing of snow accumulation and potential
melt events. In particular, I identified thawing degree days, where air temperatures ex-
ceeded 0°C, and corresponding rainfall events that could have influenced the formation of
ice lenses or snow metamorphism.

3.3 Cross site comparison

I assessed the spatial variability of snow cover and temperature across the study area by
linking multiple depth and density SMP profiles to each TMS (Table A.8). I computed
the average snow depth and density for each sensor and calculated their local standard
deviations in order to quantify small-scale heterogeneity (Figure 5). Additionally, I sum-
marized the TMS temperature data over the winter season to identify spatial and temporal
differences in the thermal regimes of the snow, surface, and soil (Figure 6 and 7). This
cross-site comparison enabled an initial evaluation of the relationships between snowpack
characteristics and soil temperatures at each location.

3.4 Statistical analysis

To investigate the relationship between snowpack properties and temperature conditions,
I applied Bayesian hierarchical modeling. This approach is better suited than traditional
frequentist methods because it handles unbalanced and sparse data more effectively, which
is essential given the uneven number of observations across locations. Frequentist models
typically struggle with partial pooling and often treat groups independently, leading to
overfitting or unstable estimates when sample sizes are small (Webb et al. 2010). In con-
trast, the Bayesian framework allows for sharing information across groups, incorporation
of prior knowledge, so called priors, and full uncertainty quantification through posterior
distributions. Its hierarchical structure also captures both overall trends and site-level
variability (Vehtari et al. 2017; Kruschke 2021).

The models were developed following the Bayesian workflow described by Gelman et al.
(2020), which involves model building, inference, checking, and comparison. I implemented
the models in Python (Version 3.13.2) (Python Software Foundation 2023) using the open-
source libraries PyMC (version 5.22.0) (Patil et al. 2023) and Bambi (version 0.15.0)
(Capretto et al. 2022) (Appendix A.2).

3.4.1 Model parameters

Before I set up my models, I scaled the predictor variables used in the analysis (Table 1).
First, I converted the snow depth from centimeters to meters. To create a dimensionless
variable, I then divided the snow density (in kgm3) by the density of liquid water at 0°C
(1000 kgm 3). This transformation yields a relative density that expresses snow density
as a fraction of water density, roughly corresponding to the snow’s volumetric ice content.
For a more detailed analysis, I split the relative density into bottom relative density,
referring to the bottom 16 cm of the snowpack below the snow temperature sensor, and top
relative density, representing the relative density of the snow above the temperature sensor.
My temperature variables comprise daily mean values from April 10th 2024 where air
temperature was measured at the AWS2 station, while snow, surface, and soil temperatures
were obtained from each TMS. Regarding topography, I divided the slope values in degrees

7
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by 10, converted the elevation from meters to kilometers, and decomposed the aspect into

sine and cosine components.

Table 1: Overview of the variables used in the models, including their units, sample
size, and value ranges. Snow depth and density were measured using the SnowMicroPen (SMP).
Density refers to the mean density over the entire profile. Bottom density was calculated for the
bottom 16 c¢cm of the snowpack beneath the snow temperature sensor, while top density represents
the density of the snowpack above the sensor. Temperature data (snow (16 c¢m above the surface),
surface, and soil (in 6 cm depth)) were collected using temperature-moisture sensors (TMS). Air
temperature was recorded by AWS2, an automated weather station equipped with various sensors,
including air temperature and snow depth sensors. Topographic variables (elevation, aspect, and
slope) were extracted from a digital elevation model (DEM). Additionally, geomorphon classes were
derived from the DEM to represent landscape form. Vegetation classes are based on the classification
from Bartsch et al. (2024), modified by Gottuk et al. (2025) to reflect local conditions.

Variable Unit N Min Mean Max Instrument

Snow variables

Depth m 61 0.16 057 1.10 SMP
Density kg/m3 61 247 297 409 SMP
Bottom density kg/m3 61 257 313 402 SMP
Top density kg/m3 61 51 286 411 SMP

Temperature variables

Air temperature °C 1 -103 -7.1 -3.1 AWS2
Snow temperature °C 14 -5.2 -4.0 -0.6 TMS
Surface temperature °C 14 -5.8 -3.6 -0.3 TMS
Soil temperature °C 14 -5.9 -3.6 -0.6 TMS

Topographic variables

Elevation m a.s.l. 14 838 952 110.7 DEM
Aspect degrees 14 4 213 321 DEM
Slope degrees 14 0 ) 20 DEM
Vegetation class categorical 3 - - - Gottuk et al. (2025)
Geomorphon class categorical 3 - - - derived from DEM

3.4.2 Bayesian linear regression models

As part of a Bayesian modeling workflow, I developed a series of regression models of
increasing complexity to explore how topography, vegetation, and geomorphology influence
snow depth, relative snow density, and snow temperature. The initial modeling stage used
the Python library Bambi to construct and compare simple Bayesian regression models,
which helped identify relevant predictors and informed the structure of more complex
hierarchical models implemented in the second stage.

To assess the role of terrain, I included elevation, slope, and aspect as fixed effects in
the models. In addition, I evaluated whether grouping observations by vegetation type
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or geomorphon class improved model performance by capturing additional variance in the
response variables. Accordingly, I fitted three versions of all models: a pooled model (no
grouping), a vegetation-group model, and a geomorphon-group model. The group models
allowed for partial pooling using varying intercepts to account for group-level variation
(Table A.4), enabling the models to borrow strength across categories while capturing
local differences (Gelman et al. 2013).

I selected weakly informative priors based on prior predictive checks, which ensured
that the priors produced plausible values within the range of the observed data. These
checks helped me calibrate the priors to avoid extreme or unrealistic predictions while
remaining agnostic about precise parameter values. Table A.4 provides the full list of
priors.

I fit all models using the No-U-Turn Sampler (NUTS) (Hoffman and Gelman 2011),
running each chain with 2000 warm-up steps. The sampler automatically discarded these
warm-up iterations before drawing samples from the posterior.

Linear regression on snow depth

To investigate the influence of topographic and categorical predictors on snow depth, I
fitted a Bayesian Gamma regression model with a log link function. I chose the Gamma
likelihood, since snow depth is a positive, continuous variable with a skewed distribution.
The log link ensured that predictions remained positive and allowed for multiplicative
relationships between predictors and the response.

Linear regression on relative snow density

To model relative snow density I used a Beta regression with a logit link. This approach
is well suited for continuous, bounded outcomes. The logit link function converts values
between 0 and 1 into an unbounded scale, enabling additive effects of predictors. All three
models included a precision parameter kappa (), controlling the dispersion of the Beta
distribution, allowing the models to adjust the width of the predicted relative density
interval.

Linear regression on snow temperature

To model snow temperature, I used Gaussian regression with an identity link function,
which is suitable for unbounded continuous variables such as temperature (in °C).

I chose the priors on the regression intercept and standard deviation based on observed
air temperatures and prior predictive checks. A sensitivity analysis compared the orig-
inal pooled model with domain-informed priors to a version using wide reference priors
(Normal(p = 0, ¢ = 100)). This comparison evaluated the influence of prior assumptions

on posterior inferences.

3.4.3 Bayesian hierarchical models

In the second stage, I used the information distilled from the first stage to construct
hierarchical models in PyMC. As previously, each model was configured in three different
versions, one pooled, one grouped by vegetation, and one grouped by geomorphons.

9
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Air-Soil Temperature model

The first model was a three-level hierarchical Bayesian model (Air-Soil Temperature
model) (Figure 3). It estimated snow, surface and soil temperatures at the TMS on a
single day (Table A.5). The model included linear effects between adjacent layers, so that
temperatures at deeper levels depend on those above. All temperatures were constrained
below 0°C using truncated normal distributions to reflect the physical limits. The first
level of the model predicted snow temperatures from air temperature, slope, aspect, snow
depth and relative snow density. Since the snow temperature sensor was installed 16 cm
above the ground, I subtracted 16 cm from the total snow depth and averaged relative
density above the sensor. The second level used the snow temperatures from level 1 and
the bottom layer relative density (between the snow and the surface temperature sensor)
to predict surface temperature (level 2). This surface temperature was then used as a
linear predictor for soil temperatures on the third level.

To assess the influence of prior assumptions on model behavior, I performed a sensi-
tivity analysis on the pooled model, comparing the initial version with a second version
that used reference priors (Normal(mu = 0, o = 100)).

Snow-Soil Temperature model

The second hierarchical model (Snow-Soil Temperature Model) omitted topographic pre-
dictors and treated snow temperature as a known input. This model directly estimated
surface and soil temperatures from snow temperature and bottom-layer relative density
(Table A.6).

To fit the hierarchical models, I utilized the NUTS approach again, running four
chains with 1,000 tuning steps and 1,000 posterior draws per chain. I increased the target
acceptance rate to 0.95 to ensure stable and efficient sampling.

10
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Figure 3: Model schemes of hierarchical models for soil temperature. Arrows indicate
linear effects. Solid-line boxes represent observed input variables, while dashed-line bozes represent
modeled variables. Model (1) corresponds to the Air-Soil Temperature model, Model (2) corresponds

to the Snow-Soil Temperature model.

3.4.4 Model comparison

To compare the models and assess the importance of grouping, I used the Leave-one-out
cross-validation (LOO) method to evaluate each model’s predictive performance. LOO
estimates the model’s out-of-sample prediction accuracy by removing one observation at
a time and computing its log-likelihood based on the remaining data. I used Pareto-
smoothed importance sampling, as implemented in the ArviZ Python package, and re-
ported the expected log pointwise predictive relative density (ELPD) and the effective
number of parameters pjo, for each model. Higher ELPD corresponds to better predictive
fit, while pjoo provides an estimate of model complexity, with higher values indicating
greater flexibility but also a higher risk of overfitting if not accompanied by improved
predictive performance. While other information criteria exist, such as the widely appli-
cable or Watanabe-Akaike information criterion, I selected the LOO criterion because it
is more robust for small datasets, weak priors, or when some observations have a high
influence (Vehtari et al. 2017). In addition, I consulted the Pareto k diagnostics to assess
the reliability of the estimates, with values below 0.7 being considered trustworthy.
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4 Results

In the following sections, I present the winter climate conditions, the spatial variability
of snow properties and snow temperature, and the findings from the statistical analy-
ses. Decimal precision in the reported values reflects either the measurement accuracy of
the respective sensors (Table A.1) or the limited relevance of finer detail for interpreting
specific variables.

4.1 Winter conditions

I chose my study period to align with the snow cover duration of the winter 2023/24 sea-
son, measured at the AWS2, which spanned from October 15, 2023, marked by the first
snowfall, to June 20*", 2024, when the snow cover had completely melted (Figure 4). Dur-
ing this interval, the mean daily air temperature measured at 2m at AWS2 was —6.7°C,
ranging from a minimum of —25.5°C to a maximum of 9.8 °C. During the long-term pe-
riod from 1991 to 2018, the average air temperature from October to June measured at
AWS1 was slightly warmer at —6.5 °C, with March typically being the coldest month with
a mean temperature of —13.3°C. Compared to this historical record, the winter of 2023 /24
exhibited slightly warmer monthly mean temperatures in November, March, and April,
and below-average values in the other months (October, December, January, February,
May, June), but all remained within one standard deviation of the historical variability
(Figure A.7).

During this period (October to June), winds at AWS2 predominantly originated from

1

the north to northeast sector. Most recorded wind speeds ranged between 0.1ms * and

4.8ms !, with fewer observations in the higher wind speed classes above 6.3 ms ! (Figure
A8).

Snow accumulation recorded at AWS2 showed an average depth of 0.32m between
October and June with a maximum snow depth of 0.53m by mid-February, which was
followed by a dry period.

Between October and April, 178 days had daily average temperatures below 0°C,
while only 17 days experienced thawing conditions, two of which (March 24'" and 25'")
took place about two weeks before the snow profile measurements. On each thawing day,
precipitation — either rain or the melting of old snow in the rain gauge — was recorded
by the AWS2, which could both have led to the formation of ice lenses in the snowpack.
Despite these thawing events, major snow melt had not begun by April, and snowpack
temperatures remained relatively stable, ranging between —5°C and —10°C.

Given these conditions, the April snow profiles were a reliable representation of the
winter snow cover, reflecting advanced metamorphism, with most layers well developed
and little fresh snow remaining untransformed. Furthermore, the spatial distribution of
the SMP profiles across varying aspects, elevations, and vegetation types supported their
representativeness of the broader winter snow conditions. Nonetheless, considerable local
variability existed in snowpack structure and thermal dynamics, which will be detailed in
the following section.
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Figure 4: Winter conditions 2023/202). Air temperature at 2m, snow cover, and precipita-
tion during the winter of 2023/2024, measured at AWS2.

4.2 Spatial variability

The spatial variability of the snow cover across the study area was evident not only in
the structural properties of the snowpack but also in the duration of the snow cover. I
observed pronounced differences between sites regarding the timing of snowmelt. At four
of the 14 locations (sensors A, B, C, and I), the snow cover lasted until June 2024, similar
to the AWS2 site. In contrast, the remaining sites showed earlier melt, with consistently
positive snow sensor temperatures by the end of April, indicating snow-free conditions.
One site in particular (sensor E) recorded only a shallow snowpack which had already
disappeared by early March.

4.2.1 Snow depth

The snow depths of the 61 SMP profiles ranged from 0.16 m to 1.10m (Table A.7). How-
ever, MagnaProbe measurements across the site indicate that snow depths exceeded 2m
in some areas. These deeper snowpacks could not be captured by the SMP, as it is lim-
ited to a maximum rod length of 1.20m. The mean SMP snow depth across all 14 TMS
was 0.56 m with a standard deviation (SD) of 0.13m. The highest mean was observed at
sensor D (0.96 m, SD: 0.29m), and the lowest at sensor F at 0.20m (SD: 0.06 m). The
largest SD was 0.35m (sensor M) at a mean depth of 0.50m (Table A.8).

4.2.2 Snow density

The average snow densities per profile varied from 247kgm 3 to 409kgm 3 (Figure 5).
The average snow density of all SMP profiles was 297 kgm 3 (SD: 13kgm 3). Local aver-
ages of the SMP profiles per TMS ranged from 273kgm 3 (SD: 21kgm 3) to 343kgm 3
(SD: 55kgm3). The greatest SD was 55kgm 3. Local SD was lower at six sensors (B,
G, H, K, L, N) compared to the overall SD (Table A.8).
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Figure 5: Spatial variability of snow depth and snow density measured in April 202/
at the Disko Study site. Averages of SMP profile measurements around their respective TMS.
Bars represent the standard deviation.

4.2.3 TMS temperatures

The thermal conditions measured by the TMS revealed substantial spatial variability
across the study area. Snow temperature was recorded 16 cm above the ground surface,
representing the temperature within the lower snowpack. Surface temperature was mea-
sured directly at the ground surface, while soil temperature was recorded 6 cm below the
surface. The complete winter temperature time series (Figure 6) illustrates the evolution
of these three temperature layers from snow onset in early October to snowmelt in late
spring.

Across the study area, the mean snow temperature was —4.2°C (SD: 3.4°C), the mean
surface temperature was —2.0°C (SD: 2.9°C), and the mean soil temperature was —1.8 °C
(SD: 2.4°C). Starting in October, the time series shows that some sensors (e.g., A, G)
exhibited large diurnal fluctuations in snow and surface temperatures around 0°C. At
other sensors, no such amplitudes were observed as all three temperature measurements
(snow, surface, soil) started near 0°C and then dropped steadily as winter conditions
established. The snow temperature generally showed the strongest and earliest cooling.
The coldest snow temperature was recorded on February 15¢, 2024, at sensor E (—22.8°C).
The surface temperatures ranged from —14.0°C (sensor E) to 17.5°C (sensor I), with the
largest amplitude observed at sensor E (31.1°C). The smallest surface temperature range
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occurred at sensor D (3.9°C; range —2.2°C to 1.7°C). Soil temperatures varied between
—12.4°C (sensor E) and 11.3°C (sensor I), again with sensor E showing the largest soil
temperature range (21.1°C), and sensor D the smallest (1.9°C). Mean soil temperatures
across sensors ranged from —3.8°C (sensor F) to —0.3°C (sensor D).

At several sensors (e.g., D, H), once the snow cover was fully established, soil tem-
peratures plateaued close to 0°C during January before dropping further during February
and March. This plateau is a classic example of the zero-curtain effect, where latent heat
released during soil moisture refreezing, maintains temperatures near the freezing point
over extended periods. Most soils froze at the beginning of October and remained below
0°C over the whole study period. The last sensor that froze was sensor K at the beginning
of November 2023. Mid-winter marks the coldest and most thermally stable period. Snow
temperatures during this phase show the greatest amplitude and site-to-site variability,
ranging from about —5 °C to —15 °C at most sensors. Surface temperatures consistently re-
mained 1°C to 3 °C warmer than snow temperatures. The timing and magnitude of spring
warming also varied across the network. Some sensors began to show a gradual increase
in snow and soil temperatures by March or April, whereas others remained near freezing
until May (Figure 6). In early spring, daily temperature amplitudes, particularly at the
surface, increased again. Overall, the data revealed a consistent thermal gradient from the
snow (coldest), through the snow / soil interface, to the underlying soil (warmest), with a
clear damping of both daily and overall temperature amplitude with depth.

Snow temperature

Temperature [°C]

Temperature [°C]

Temperature [°C]

Figure 6: Time series of temperatures measured at the TMS. Hourly time series of snow,
surface, and soil temperatures from October 2023 to June 2024 for each TMS. Snow temperature
data are filtered to include only subzero value.
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An initial inspection of the data indicated that thicker snow cover was associated
with warmer winter soil temperatures. For example, Sensor D, which had the deepest
snowpack (0.96m), also recorded the highest mean soil temperature —0.3°C (Figure 7).
In contrast, sensors E and F, with the shallowest average snow depths (0.36 m and 0.20 m,
respectively), recorded the coldest winter soil temperatures (—3.6°C and —3.8°C). To
better understand the local variability in snow depth, snow density, and soil temperatures
and to explore the relationships among them, I used Bayesian hierarchical modeling. The
following section presents these results and explores how snow cover properties influence
(sub)surface thermal conditions.
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Figure 7: Average snow, surface and soil temperatures for each TMS between October
2023 and June 2024. Surface and soil temperatures represent full-period averages, while snow
temperatures include only values below 0 °C, reflecting a simplified representation of subzero snow

cover.

4.3 Model results

In the first stage of my modeling approach, I used Bayesian multivariate linear regression
models to identify relevant predictors for snow depth, relative snow density, and snow
temperature. These results informed the development of more complex hierarchical models
in the second stage.

Unless otherwise noted, all models showed satisfactory convergence diagnostics, with
R < 1.05 and effective sample sizes (ESS) typically exceeding 400. Monte Carlo standard
errors remained below 1% of the posterior standard deviations, indicating that posterior
means and standard deviations were estimated with high precision (Figures A.9, A.10,
A.11). Prior predictive checks confirmed that the chosen priors generated temperature
and snow property values that were physically plausible and consistent with observed
ranges, supporting the appropriateness of the prior distributions given domain knowledge.

To summarize uncertainty in the posterior estimates I report 94 % highest density
intervals (HDIs). These intervals represent the most credible values for a parameter,
bounded between the 3rd and 97th percentiles of the posterior distribution. While HDI
width reflects uncertainty, it also depends on the scale of the parameter being estimated,
thus wider intervals do not always imply higher uncertainty.
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4.3.1 Linear regression on snow depth

To predict snow depth across all sites, I fitted a Gamma regression with a log link using
slope, elevation, and aspect as predictors. The Gamma distribution is characterized by
the shape parameter alpha («), which controls the skewness of the distribution. Higher
values of « indicate a more symmetric (less skewed) distribution (Table A.4). The pooled
model estimated moderate residual variability in snow depth across all sites («, mean: 6.9,
HDI: 1.8 to 12.6). The intercept, reflecting expected snow depth at mean slope, elevation,
and aspect, was —0.1 (HDI: —0.7 to 0.5) (Table A.9). Among the fixed effects, snow depth
increases by approximately 15 % per unit increase in slope (slope scaled between 0 and 2;
mean: 0.14, HDI: —0.2 to 0.5). However, the probability that this effect is truly positive is
only 68 %, indicating weak support. The effect of elevation is small and uncertain (mean:
—6.9, HDI: —31.0 to 17.1). Given the limited elevation range across the study area (85 m
to 110m), this corresponds to an approximate snow depth change of +£17 %, but with
no clear trend. Aspect shows similarly weak patterns where west-facing slopes (sine of
aspect) have slightly lower snow depths (mean: —0.18, HDI: —0.9 to 0.6), while north-
south oriented slopes (cosine of aspect) had no systematic influence (mean: 0.04, HDI:
—0.6 to 0.6).

The vegetation-group model estimates greater heterogeneity in snow depth across sites,
with more right-skewed residuals than in the pooled model (o, mean: 2.9, HDI: 1.4 to
4.7). Snow depth varies modestly across vegetation types, with a standard deviation of
group-level intercepts (mean: 0.1, HDI: 0.0 to 0.2). Dry tundra has a slightly lower snow
depth (mean: —0.1, HDI: —0.4 to 0.2), moist tundra is similarly reduced (mean: —0.1,
HDI: —0.4 to 0.2), and wet tundra shows little difference (mean: 0.04, HDI: —0.3 to 0.2).
These correspond to expected decreases of approximately 9 %, 8 %, and 4 %, respectively,
compared to the baseline. However, the uncertainty intervals for all three, indicate weak

and uncertain vegetation effects.

The geomorphon-group model yields broadly similar fixed effects. Slope again shows
a weak positive association with snow depth (mean: 0.1, HDI: —0.4 to 0.6), suggesting
a potential increase of about 10 % in snow depth per unit increase in slope, though with
substantial uncertainty. There is no evidence for systematic control of snow depth by eleva-
tion or aspect. The standard deviation of group-level intercepts indicate small differences
between geomorphon classes (mean: 0.08, HDI: 0.00 to 0.18). Expected snow depths are
slightly higher in hollows and footslopes (mean: 0.03, HDI: —0.2 to 0.3), and slightly lower
on slopes (mean: —0.01, HDI: —0.2 to 0.2) and in valleys or depressions (mean: —0.01,
HDI: —0.2 to 0.2). All differences are distributed closely around zero and thus highly
uncertain. Overall, terrain types appear to have little influence on snow accumulation in
this landscape.

Based on LOO, the pooled model has the best predictive fit, with an ELPD of —1.4 and
a Ploo of 4.9. However, it also has one influential data point identified by a high Pareto-k
diagnostic, suggesting that this observation had a disproportionate influence on the model
fit. The vegetation-group model performed slightly worse (ELPD: —4.3, pioo : 0.7), as
did the geomorphon-group model (ELPD: —3.5, pioo : 1.5). Both group models had lower
complexity and showed good diagnostic values (all Pareto-k < 0.7). Although the pooled
model has the highest predictive score, the differences in ELPD across models are small.
Thus, there is no strong evidence that one model substantially outperforms the others.
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4.3.2 Linear regression on relative snow density

I also modeled relative snow density as a function of slope, aspect, and elevation using
a beta distribution, where the dispersion parameter is denoted by s (Table A.4). The
pooled model estimated a x of 939 (HDI: 195 to 1817; Table A.10). The posterior mean
of the intercept is —0.9 (HDI: —1.3 to —0.5). Among the fixed effects, slope has the
strongest influence: for every unit increase in slope, relative density increases by about
11% (mean: 0.1, HDI: 0.0 to 0.2), with a 99 % posterior probability of a positive effect.
Elevation contributes little explanatory power to the model (mean: —0.3, HDI: —4.5 to
4.0). For aspect, northeast-facing slopes (cosine of aspect) were associated with slightly
denser snow (mean: 0.1, HDI: 0.0 to 0.2), while east- or west-facing slopes (sine of aspect)
had no clear effect (mean: 0.0, HDI: —0.1 to 0.1).

The vegetation-group model, yields a s of 862 (HDI: 155 to 1693), lower than the
pooled model. The standard deviation of the group-level intercepts, indicates no variability
in relative density across vegetation types (mean: 0.0, HDI: 0.0 to 0.1). Fixed effects in
this model were nearly identical to the pooled model. In contrast, the geomorphon-group
model estimated a much lower x of 2.8, implying a higher residual variance in the predicted
relative densities. Unlike the other two models, terrain variables had no clear effect in this
model. The standard deviation of geomorphon-level intercepts (mean: 0.08, HDI: 0.00
to 0.18), points to slight differences among terrain types. However, group-level intercepts
don’t reveal systematic variation in relative snow density by geomorphon class. Looking at
LOO the geomorphon-group model has a much lower predictive performance (ELPD: 3.3)
compared to the pooled (ELPD: 36.4) and the vegetation-group model (ELPD: 35.3). This
might be due to the fact, that it is too simple (pjpo: 0.3) compared to the vegetation-group
model (pioo: 4.7) and the pooled model (pjoo: 4.1).

In summary, the relative snow density is weakly influenced by slope, with steeper slopes
associated with denser snow. However, this relationship is only evident in the pooled and
vegetation-group models, as the geomorphon-group model performs poorly. Elevation,
aspect, and vegetation type show minimal influence on density, and differences among
geomorphons are small and not systematically related to relative snow density.

4.3.3 Linear regression on snow temperature

The third model examines snow temperature as a response to slope, elevation and aspect
(Table A.4). In the pooled model, the estimated baseline snow temperature is highly
uncertain (intercept, mean: —1.2, HDI: —7.6 to 4.8; Table A.11). The residual standard
deviation (¢) is 1.1 (HDI: —0.5 to 0.8), indicating unexplained variability between observed
and predicted snow temperatures. The model provides evidence for a positive effect of
slope (mean: 1.1, HDI: 0.1 to 2.1), suggesting that snow temperature increases with steeper
terrain. Elevation has a large negative effect (mean: —37.9, HDI: —105.9 to 31.4) though
the wide interval reflects high uncertainty. Despite this, the trend suggests that snow
temperatures tend to decrease with elevation. Aspect effects were weak and uncertain.

In the vegetation-group model, uncertainty of the intercept increases (mean: —2.44,
HDI —9.5 to 4.0). The residual standard deviation as well as the fixed effects remain
similar to the pooled model. Snow temperature varies slightly between vegetation types
(group-level standard deviation, mean: 1.0, HDI: 0.0 to 2.4), where dry tundra is colder
(mean: —0.3, HDI: —1.8 to 1.0), and moist and wet tundra are warmer (mean: 0.6, HDI:
—0.7 to 2.2, and mean: 0.3, HDI: —1.1 to 1.9, respectively).
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The geomorphon-group model yields similar findings, with a positive slope effect, a
negative elevation effect and little support for aspect, as in the previous models. Snow
temperatures vary slightly by terrain type, with a group-level standard deviation of 1.06
(HDTI: 0.00 to 2.39). Warmer snow temperatures are likely in hollows and footslopes (mean:
0.8, HDI: —0.3 to 3.5), while slope (mean: 0.2, HDI: —1.5 to 2.1) and valley/depression
(mean: 0.0, HDI: —1.8 to 2.1) show no consistent effects. This model shows signs of
mild convergence issues, with some R values above 1.05 and low effective sample sizes for
several group-level parameters, likely due to small sample sizes within some geomorphon
categories, suggesting caution in interpreting the group effects.

According to LOO the vegetation-group model performs best (ELPD: —23.2) though
there are minor differences to the pooled (ELPD: —24.4) and the geomorphon-group model
(ELPD: —25.2). The geomorphon-group model has the highest complexity (pioo: 6.5),
suggesting potential overfitting. All models show Pareto k values slightly above the rec-
ommended threshold (k > 0.7), for two observations indicating moderate influence and
reduced stability of the LOO estimate for those points. This implies that the models may
not fully capture the structure of those specific cases, though overall LOO scores remain
interpretable.

In summary, the first part of my analysis suggests that slope is a weak positive predic-
tor for snow depth and snow temperature and possibly for relative density. The effects of
elevation and aspect remain uncertain, although north-facing slopes show some indication
of a positive effect on relative density, as suggested by the positive HDIs. Groupings allow
for model flexibility and add slight explanatory power to the models for snow depth and
snow temperature, but remain inconclusive. Based on LOO, models grouped by vegeta-
tion improve predictive performance for predicting snow temperature, while grouping by
geomorphon offers no predictive advantage. In two out of three cases, the pooled models
perform best, suggesting that snow and temperature responses are generally consistent
across sites and may not require additional grouping for prediction. However, this find-
ing is limited by very small sample sizes within some groups — sometimes as low as a
single observation — which reduces the power of hierarchical models to detect group-level
differences.

4.3.4 Air-Soil Temperature model

Based on my findings, I set up a hierarchical model that predicts the daily averaged
temperature at the snow, surface and soil sensor of each TMS based on the observed
average daily air temperature using linear effects of slope and cosine aspect (Figure 3).
Across all models, relationships between predictors and temperature are largely consistent,
with only subtle differences in coefficient strength and uncertainty.

In the pooled model, snow temperature increases as air temperature rises. On average,
a 1°C increase in air temperature leads to a 0.7 °C increase in snow temperature (Table
A.12). Snow depth also helps insulate snow temperature, with deeper snow associated
with warmer snow temperatures. Specifically, each additional meter of snow reduces the
gap between air and snow temperature by about 1.8 °C, supporting its insulating role.
The density of the snow layers plays a more complex role. Top-layer relative density
has a negative effect (mean: —2.0, HDI —16.5 to 12.5), but the wide uncertainty range
suggests that this relationship is not well supported by the data. Alternatively, this
uncertainty may also reflect limitations in the model’s ability to capture the true effect.
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In contrast, relative density of the bottom layer shows a more robust positive effect on
snow temperature estimated at 3.98°C (HDI —2.4 to 11.0). The uncertainty interval for
this estimate mostly includes positive values, indicating moderate evidence that denser
bottom layers provide less insulation. Terrain features such as slope and aspect have only
weak effects on snow temperature in this model (mean: 0.8, HDI —0.3 to 1.8 and mean:
0.4, HDI: —0.5 to 1.3, respectively). The temperature coupling from the snow layer to
the surface sensor is strong and positive (mean: 1.3, HDI: 0.9 to 1.6). Similarly, surface
temperature strongly influences soil temperature with an effect of 1.0 (HDI: 1.0 to 1.2),
suggesting direct and reliable propagation of heat through the snowpack. The model also
includes offset values for surface (mean: 0.3) and soil temperatures (mean: 0.2), which help
account for any systematic differences not explained by the main predictors. These offsets
adjust the temperature baseline at each level to better match observed data. While the
surface offset shows higher variability and a wider HDI (—1.5 to 2.0), suggesting greater
uncertainty, soil offset has a smaller mean and tighter HDI (—0.2 to 0.6), suggesting less
unexplained variation at this depth. Temperature variation also decreases with depth.
The estimated standard deviations decrease from snow (o : 1.1) to surface (¢ : 0.7) to
soil (o : 0.3) temperatures, which indicates that the model explains a larger share of the
variance at greater depths, consistent with fewer external influences on soil temperature.

Comparing the pooled model to the two grouped models, all models confirm the posi-
tive influence of snow depth, which is especially pronounced in the vegetation model (mean:
2.7, HDI 0.3 to 4.9). Likewise, the effect of bottom relative density is similar across the
models, showing a moderately uncertain positive effect. In contrast, all models show a
negative effect of top relative density, counter to the prior. As in the pooled model, both
vegetation and geomorphon models find a moderate positive effect for slope (both 1.0), but
only the geomorphon-group model detects an influence of aspect (mean: 0.4, HDI —0.4 to
1.4). Additionally, both models confirm the strong temperature propagation from snow
to surface and soil, evident already in the pooled model. In the vegetation-group model,
differences between vegetation types show up as varying baseline temperatures. Dry tun-
dra is associated with lower temperatures (mean: —0.8, HDI —2.0 to 0.5), whereas wet
tundra is associated with higher temperatures (mean: 0.6, HDI —0.7 to 1.9). Moist tun-
dra shows no clear effect (mean: 0.1, HDI —1.3 to 1.3). In the geomorphon-group model
footslopes have slightly higher temperatures (mean: 0.5, HDI —0.9 to 1.9), and slopes and
valleys/depressions slightly lower temperatures (mean: 0.3, HDI —1.6 to 1.1 and mean:
0.3, HDIL: —1.9 to 1.3, respectively). However, all posterior means have high standard de-
viations and distribute around zero, suggesting uncertainty in these group effects. Thus,
while the inclusion of group-level intercepts helps to adjust for some variability, most of
the predictive power comes from snow properties and temperature coupling across the
layers.

Model comparison using LOO supports these findings (Figure 8). For snow temper-
ature, the vegetation-group model performs best (ELPD: —20.6), followed by the pooled
model (ELPD: —24.3) and the geomorphon-group model (ELPD: —24.5). The vegetation-
group model also has the highest model complexity (pioo: 6.7), suggesting a better fit at
the cost of added complexity. For surface temperature, all models perform similarly, with
negligible differences in ELPD and p),,. However, the vegetation-group model has the
highest ELPD (—13.6) and the lowest pjy, (2.4), indicating a slightly better and more effi-
cient fit. For soil temperature, the geomorphon-group model shows the best performance
(ELPD: —2.0, pioo: 3.9), followed by the pooled and vegetation-group models, though the
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differences are minor. Overall, these comparisons suggest that the hierarchical structure
improves predictions for snow and soil temperatures, particularly when grouping by veg-
etation. However, most of the model’s predictive performance is driven by the physical
covariates (such as snow depth and relative density) and the way temperatures at different
depths are linked within the model.

In summary and as expected, increasing air temperature shows a consistent positive
effect on snow temperature across all models. The insulation effect of snow depth on snow
temperatures is also evident in all three models. While increased top relative density shows
a cooling effect on snow temperatures, and thus more insulation, across all models, higher
bottom relative density provide less insulation. Terrain effects from slope and aspect are
subtle but present. The strongest and most consistent finding across all models is the clear
and direct propagation of temperature down through the snowpack. Including vegetation
and geomorphon group-level intercepts improves model fit modestly but most predictive
power still comes from snow properties and thermal coupling.

4.3.5 Snow-Soil Temperature model

In the second hierarchical model, I excluded snow depth, air temperature, aspect and slope
from the previous model to only investigate the effect of the bottom relative density of
the snowpack on surface temperatures (Figure 3). Thus, I treated snow temperatures as
a given variable, assuming that the effects of the excluded predictors are included in the
snow temperatures. The pooled model reveals a strong positive effect of snow temperature
on surface temperature (mean: 1.7, HDI: 0.9 to 1.6), and likewise between surface and
soil temperature (mean: 1.0, HDI 0.9 to 1.1; Table A.13). The effect of bottom relative
density has a positive posterior mean (4.4), and a mostly positive HDI (—2.6 to 11.6), that
shifted substantially from its diffuse prior (mean: 0.6, HDI: —20.4 to 19.7), indicating the
data contribute evidence for a positive, though uncertain, effect. Residual variance is
low — especially for soil temperature (o: 0.3°C) — suggesting that the model explains a
substantial portion of the observed variability.

The vegetation-group model modestly strengthens the snow-to-surface temperature
relationship (mean: 1.3, HDI 0.9 to 1.8), while the surface-to-soil effect remains nearly
identical (mean: 1.0, HDI 0.9 to 1.1). The bottom relative density effect increases slightly
(mean: 5.2, HDI —2.7 to 11.5). The varying intercepts by vegetation class are weak and
uncertain, with all HDIs centered around zero, indicating little evidence for systematic
vegetation effects.

The geomorphon-group model introduces weak differentiation across terrain types.
The hollow/footslope type shows a possible positive effect (mean: 0.4, HDI —0.8 to 1.5),
while the valley/depression type suggests a negative effect (mean: —0.6, HDI —1.9 to
0.8). However, all geomorphon-specific intercepts remain highly uncertain. The snow-
to-surface temperature effect slightly weakens (mean: 1.2, HDI 0.8 to 1.6), while the
surface-to-soil relationship remains robust (mean: 1.0, HDI 1.0 to 1.1). The model also
exhibits a slightly lower surface temperature residual variance (o: 0.6 °C), compared to
the pooled and vegetation models (both 0.7°C), suggesting geomorphon grouping may
marginally improve model fit for surface temperatures. Together, these models show
that snow and surface temperatures are strong predictors of soil temperature, and that
bottom relative density may have a positive albeit uncertain effect on heat transfer through
the snowpack. Although vegetation-based grouping does not yield clearly interpretable
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intercepts, it marginally improves predictive performance for soil temperature, as shown
by leave-one-out cross-validation.

For surface temperatures, the pooled model achieves the highest ELPD (—13.7) with
the lowest effective number of parameters (pjo, 2.5), indicating the most efficient and
accurate fit. Vegetation and geomorphon grouped models have slightly lower predictive
accuracy (ELPD: —15.6 and —14.6, respectively) and increased complexity (pjoo: 4.0 and
4.5, respectively). This suggests that including group-level effects does not substantially
improve predictions of surface temperature and may slightly reduce model efficiency. In
contrast, for soil temperatures, the vegetation-group model performs best, with the highest
ELPD (—1.9) and lowest pio, (4.0), suggesting it captures relevant structure with min-
imal added complexity (Figure 8). The pooled model performs similarly (ELPD: —2.1,
Ploo: 4.0), while the geomorphon-group model has slightly lower predictive accuracy and
higher complexity (ELPD: —2.2, pjoo: 4.2). These results indicate once more that vege-
tation grouping may offer marginal improvements for soil temperature prediction, while
geomorphon-based grouping does not consistently enhance model performance.

Snow-soil temperature model (vegetation)
-2.0
@ Air-soil temperature model (geomorphon)
Snow-soil temperature model (pooled)
@ Air-soil temperature model (pooled)
o
o
—
w - .
@ Air-soil temperature model (vegetation)
-2.2
Snow-soil temperature model (geomorphon)
-24 T T T
3.8 4.0 4.2 4.4

Pioo

Figure 8: Comparison of expected log pointwise predictive density (ELPD) and effec-
tive number of parameters (pi,,) for hierarchical models on soil temperature. Snow-Soil
Temperature models (blue) predict soil temperature using snow temperature as an input; Air-Soil
Temperature models (red) include air temperature as an additional hierarchical level. Higher ELPD

values indicate better predictive performance while higher pjo, values indicate more complex models.
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4.3.6 Sensitivity analysis

To assess the influence of prior assumptions on model behavior, I compared two versions
of the pooled linear regression model on snow temperatures, one using informative pri-
ors and the other using reference priors. The model with reference priors generates a
greater number of extreme outliers, with predictions ranging from approximately —500 °C
to 700 °C, far beyond any physically meaningful range. In contrast, the informative-prior
model produces predictions within a more plausible range, between —23.8°C to —7.5°C.
Despite these differences at the extremes, the central tendency and overall spread of the
predictions were similar across both models. The reference model shows substantially
wider posterior intervals and larger effect estimates, while the informed model constrains
parameter estimates to more realistic ranges and avoids implausible extrapolations. Con-
sistent with this, the informative-prior model achieves a slightly higher ELPD (—24.4)
compared to the reference model (ELPD: —25.2). Both models have similar moderate
effective complexity, with estimated effective parameters (pjo,) of 4.9 and 5.7.

I performed a second sensitivity analysis for the Air-Soil Temperature model that
predicts snow, surface and soil temperatures. The results show that the core temperature
relationships remain stable in both models, indicating that these parameters are well
supported by the data. Some coefficients, such as those for snow depth, relative snow
density and the surface temperature, are more sensitive to the choice of the prior. These
parameters shift in posterior means and increase in width of their uncertainty intervals
under vague priors. The effect of bottom relative density even changes direction from
positive to negative.
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5 Discussion

In the following, I will first discuss the spatial variability of snow cover and surface and
soil temperatures at my study site, contextualizing these patterns with observations from
comparable Arctic environments. Next, I evaluate how my models captured key relation-
ships between snow properties and soil temperatures, and consider how different predictors
and modeling choices influenced the results. Finally, I reflect on the main strengths and
limitations of the study, including data constraints and methodological assumptions, and
suggest directions for future research.

5.1 Spatial variability of snow characteristics and soil tem-
peratures

The snow depth in April exhibited considerable spatial heterogeneity across the study
area, ranging from 0.15m to 1.10m, with a mean of 0.56 m and a standard deviation of
0.13m based on SMP profile data. This reflects typical small-scale variation in Arctic
tundra snow cover, where wind redistribution and microtopographic controls lead to un-
even accumulation (Sturm et al. 1995). Comparable snow depth ranges were observed
by Van Tatenhove and Olesen (1994) near Sisimiut in Western Greenland, who reported
mean maximum depths of 0.55 m over a 12-year period (1968-1980), with individual win-
ters spanning from only 0.10 m to 0.90 m. In contrast, spatial variability was highlighted by
Griinberg et al. (2025), who used data from 13 spatially distributed temperature loggers in
the Trail Valley Creek (TVC) catchment, Northwest Territories, Canada, to examine snow
and soil temperature dynamics. They recorded snow depths ranging from Om to 1.7m,
demonstrating the potential for extreme spatial variation. Similarly, Shirley et al. (2025)
examined snow cover across the Seward Peninsula, Alaska, using snow depth data collected
in both 2019 (mean: 1.0m) and 2022 (mean: 0.59m). They found that approximately
80 % of snow depth variability occurred at small scales (less than 90 m), emphasizing the
dominant role of microtopography in governing snow distribution. Earlier modeling work
by Liston and Sturm (1998) further supports these observations, showing that snow depths
can vary by a factor of ten or more over short distances in Arctic terrain due to wind and
topographic influences. In my study area, terrain elevation ranges from 80m to 112m,
with slope angles between 0° to 20°. These variations, together with prevailing winds from
the north to northeast, likely shaped the observed snow depth patterns through localized
drift formation and wind scour.

Average snow density at the TMS sites also displayed spatial variability, ranging
from 247kgm 3 to 409kgm 3, with a mean of 297kgm 3 and a standard deviation
of 13kgm 3. Mean densities per TMS ranged from 273kgm > to 343kgm 3. These
values are higher than many reported Arctic tundra snowpack densities, which typically
fall within the 150kgm 2 to 300kgm 3 range (Damseaux et al. 2025). For example,
Bormann et al. (2013) measured snow density at twelve sites in the Siberian tundra and
reported a spring mean of 219kg m 3, indicating a lighter snowpack under colder continen-
tal conditions. In contrast, higher pre-melt densities were observed in central Northeast
Greenland, where Hollesen et al. (2011) documented snow densities of 386 & 56 kgm 3. A
recent large-scale synthesis by Zhao et al. (2023) found an average tundra snow density of
225kgm 3 across Arctic sites, placing the results from my study at the upper end of the
observed distribution. The relatively high densities measured on Disko Island likely reflect
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the effects of wind packing and enhanced snow metamorphism. In particular, prevailing
winds from the north to northeast sector and frequent wind speeds above 5ms—! suggest
strong redistribution and compaction of snow in the valley. This aligns with the site’s
English name, Windy Valley, and supports the interpretation that wind-driven processes
contributed to the denser snow structure observed at the TMS sites.

Temperature patterns across the study area mirrored the spatial heterogeneity ob-
served in snow depth and density. The snowpack exhibited a clear dampening effect on
ground thermal conditions. Snow temperatures measured 16 cm above the ground were
the coldest, averaging —4.2°C (SD: 3.4°C). Surface temperatures at the ground-snow in-
terface were milder at —2.0°C (SD: 2.9°C), and soil temperatures at 6 cm depth were the
warmest, averaging —1.8°C (SD: 2.4°C). This vertical gradient highlights the snowpack’s
insulating role, reducing heat loss from the ground and buffering subnivean conditions
from atmospheric impacts.

The minimum winter soil temperatures occurred at sensor E, where April snow depth
only reached 0.4m and the minimum temperature reached —12.4 °C, while the warmest
soil conditions were observed at sensor D with a snow depth of 1.0m and a minimum
temperature of —0.6 °C. While the range of minimum winter soil temperatures in my study
was relatively moderate, greater variability was observed by Griinberg et al. (2025), who
recorded winter minima from —31.0°C to —4.0 °C across 13 temperature loggers in TVC in
2022/23. Mirroring the patterns observed at my study site, the coldest soil temperatures
occurred at locations with little or no snow, while warmer soils were consistently found
beneath thicker snowpacks, reinforcing the critical role of snow insulation in Arctic tundra
Systems

This insulating effect was also evident at the snow-ground interface. Winter average
surface temperatures across my study area ranged from —3.8 °C to —0.03 °C, further reflect-
ing the high degree of spatial variability typical of Arctic tundra environments. Although
the range I observed was smaller, it aligns with results from four tundra sites in Alaska
where Sturm and Holmgren (1994) recorded spatial surface temperature ranges of up to
7.0°C over transects only 1.5m long during the 1989-1990 winter, primarily driven by
microtopographic contrasts between cold-exposed tussocks and better-insulated hollows
during cold spells with air temperatures dropping below —30.0°C. My average winter
surface temperature of —2.0°C (SD: 2.9°C) was also markedly warmer than the mean
air temperature (—6.7 °C) over the same period, underscoring the moderating influence of
snow. A similar offset was observed in the Kuparuk Basin in Arctic Alaska, where Taras
et al. (2002) found that snow-ground interface temperatures averaged 7.5 °C higher than
air temperatures. They also noted that interface temperatures varied on much finer spatial
scales than air temperature and were more closely influenced by snow properties. More-
over, temperature amplitudes attenuated progressively from air to snow surface to soil,
highlighting the layered dampening imposed by the snowpack, which was also evident at
my study site. This attenuation depends strongly on snow depth. In my April records, soil
temperatures at sensor H (0.60 m snow) and sensor D (1.00 m) showed virtually no trace
of concurrent air-temperature fluctuations, whereas sensorsE (0.40m) and F (0.20 m) still
exhibited clear oscillations. These observations suggest a local threshold of roughly 0.50 m
(Figure 6). At a broader regional scale, Goncharova et al. (2019) employed vertical iBut-
ton arrays to monitor ground-surface temperatures in West Siberia over an eight-month
winter. They found that snow thicker than 0.80 m on lower, forested terrain produced the
strongest insulation, but even 0.20 m of snow was enough to generate notable reduction in
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soil cooling. The timing of when a site first accumulated > 20 cm of snow exerted the dom-
inant control on seasonal soil-temperature trajectories, underlining the importance of both
depth and duration. A different depth threshold emerged from the hemispheric analysis
by Slater et al. (2017), who used six-month continuous records (October-March) to exam-
ine how snow controls the seasonal amplitude of soil temperature. Their results showed
the expected exponential decay in soil-temperature variability with increasing snow depth
and demonstrated that the marginal effect of insulation diminishes beyond approximately
0.5m. Although my study is based on discrete snow surveys and TMS data, it captures
the same physical pattern.

However, the limited spatial variability in my dataset and the snapshot nature of the
snow surveys posed challenges for fully resolving complex snow-soil interactions using tra-
ditional modeling approaches. These constraints motivated the development of a flexible
Bayesian framework that explicitly incorporates uncertainty and hierarchical structure.

5.2 Model outputs
5.2.1 Modeling snow depth

In the first model, I set up a simple linear regression on snow depth. This model only found
minimal differences in snow depth between vegetation and geomorphon groups. These
effects appeared negligible, which is likely due to the limited variability in vegetation types
and terrain features at the study site. The relatively homogeneous conditions may not have
provided sufficient contrast to detect such differences that are well-documented in more
heterogeneous environments. For instance, Griinberg et al. (2020) reported substantial
snow accumulation beneath tall shrubs (up to 2m) at TVC, compared to areas with short
or sparse vegetation. Their findings illustrate how vegetation height and structure enhance
snow trapping and reduce wind erosion. These mechanisms were less evident in my study
due to the prevalence of low-lying tundra vegetation (less than 20 cm).

Despite the overall weak grouping effect, all three models indicated a minor positive
influence of slope on snow depth, eventhough this effect was likely limited, due to the
gentle topography of the site. Other studies such as by Borges (2024) demonstrate more
pronounced effects of topography and vegetation on snow distribution. The high-resolution
LiDAR-based snow depth mapping within an area of 127 km? in TVC revealed deeper snow
in micro- and macrotopographic lows, leeward slopes, and densely vegetated areas. Snow
depths were highest on northeast- to southeast-facing slopes, consistent with dominant
wind directions (west and northwest) that facilitate snow transport and deposition. The
importance of wind redistribution and its interaction with topography and vegetation
which are widely reported (Konig and Sturm 1998; Liston and Sturm 1998; Taras et al.
2002; Domine et al. 2015; Shirley et al. 2025) were less evident in this study because the
measurements were situated in relatively flat areas, with limited variation in vegetation
cover and a relatively small number of sampling points.

5.2.2 Modeling snow density

I also examined potential landscape controls on snow density. In the linear regression
models, cosine aspect showed a weak but positive effect on relative density (mean: 0.1,
HDI: 0.0 to 0.2), suggesting slightly higher densities on north-facing slopes. This pattern
may reflect wind slab formation caused by frequent strong winds (above 8 ms 1) from the
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north-northeast, which likely enhance compaction and densification of the snowpack on
leeward-facing slopes. Elevation and sine aspect had no meaningful influence on relative
density, and models including group-level effects such as geomorphon classification were
not supported by the data and tended to overfit. These results align with expectations,
given that the models did not incorporate major climatological drivers of snow densifica-
tion, namely precipitation amount, air temperature, wind exposure, and snow duration.
Large-scale analyses, such as by Bormann et al. (2013), which used over 1,700 snow density
records across the United States, Australia, and the former Soviet Union, have shown that
these climate variables are the primary controls on snow density development over time.
However, the primary aim of this study was not to predict snow density under varying
climate conditions, but rather to understand how small-scale spatial variations in density
may influence near-surface soil temperatures.

5.2.3 Influence of snow depth on temperature

The hierarchical models used in the second part of the analysis revealed consistent positive
effects of snow depth on winter soil temperature across all model structures. This effect
was most pronounced in the vegetation model, where a 1.0m increase in snow depth
was associated with a 2.7°C increase in snow temperature (HDI: 0.3 to 4.9). While this
estimate reflects the modeled slope, it should not be interpreted as a linear relationship
that holds across the entire range of snow depths. In fact, the observed data suggest a much
stronger insulation effect at shallow depths. As shown in Figure 7, temperature differences
between the snow and surface sensors ranged from 2°C to 4 °C, even though the vertical
distance between these sensors is just 16 cm, which would imply a much steeper local
gradient than the modeled slope. This discrepancy highlights the limits of interpreting
the modeled slope at face value: the model estimates an average effect over the entire snow
depth range, while in reality the relationship is nonlinear. The intercept may include part
of the initial insulation effect already present at low snow depths, flattening the estimated
slope. Much of the insulation effect likely occurs at low snow depths and then diminishes,
as also reported by earlier findings from Slater et al. (2017), who showed that around 0.5m
of snow is often sufficient to decouple soil from air temperature.

While vegetation heterogeneity at the study site was limited, vegetation types still con-
tributed to measurable differences in winter soil temperatures. Dry tundra sites had the
lowest average soil temperatures (—0.8 °C), while wet tundra sites were notably warmer
(0.6°C), likely due to higher initial soil moisture content and associated latent heat buffer-
ing during freeze-up. Moist tundra showed no clear thermal signature (0.1°C). These
modest differences suggest that even subtle variations in vegetation and soil moisture can
influence ground thermal regimes, especially in shallow, variably insulated snowpacks. In
more heterogeneous environments, vegetation-related contrasts in soil temperatures are
more pronounced. Griinberg et al. (2020) found that tall shrub patches accumulated
deeper snow and had markedly warmer soils, while dwarf shrub and lichen tundra — as-
sociated with sparse snow — exhibited colder and more variable ground temperatures.
Similarly, Van Tatenhove and Olesen (1994) documented substantial vegetation-driven
differences in West Greenland, attributing warmer soils to deeper and more stable snow
cover. Both studies highlight how vegetation primarily modifies soil thermal regimes via
its effect on snow accumulation and retention, often exerting stronger control than regional
air temperature. These snow-soil-vegetation interactions have important implications in
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the context of Arctic greening. Long-term records from western Greenland show that Be-
tula nana expansion correlates with warmer soils and earlier meltout in spring (Hollesen
et al. 2015). Increasing shrub cover can trap more snow, reduce its compaction, and en-
hance thermal insulation, raising winter soil temperatures by several degrees (Sturm et al.
2001; Domine et al. 2015; Paradis et al. 2016; Rixen et al. 2022). Although vegetation
effects at my study site were less pronounced due to the limited range of types, the ob-
served temperature patterns still align with these broader dynamics and underscore the
importance of vegetation-snow interactions in shaping soil thermal conditions.

In the geomorphon-group model, the geomorphon-level intercepts reveal subtle to-
pographic ordering. Hollows/footslopes tend to be warmest, followed by slopes, whereas
valley /depression sites tend to be coolest. Although all highest-density intervals distribute
around zero, the relative ranking of the posterior distributions echoes the snow-depth re-
sults: micro-relief is too subdued for consistent thermal offsets to emerge. Hollows are
marginally warmer because they hold slightly deeper, denser snow; valleys and gentle
slopes lack enough depth contrast to sustain a systematic temperature advantage. This
muted hierarchy contrasts with stronger-relief tundra, where deeper snow in leeward hol-
lows and depressions yields 4°C to 8 °C warmer winter soils than wind-scoured ridges
(Sturm and Holmgren 1994; Van Tatenhove and Olesen 1994). Recent LiDAR surveys at
TVC show more than 0.5m of additional snow accumulation in leeward hollows, corre-
sponding to soil temperatures up to 6°C warmer than those on exposed slopes (Borges
2024).

5.2.4 Influence of relative density on temperature

I assessed how vertical snow density structure affects thermal coupling from the atmo-
sphere through the snowpack to the soil. My hierarchical models showed that denser snow
in the bottom 16 cm of the snowpack (i.e., between the snow and surface temperature
sensors) exerts a positive effect on surface and soil temperatures. Denser snow at the base
of the pack implies higher thermal conductivity, reduced insulation and stronger thermal
coupling between the surface and the soil. On April 9, air temperatures were around —6°C,
colder than the snowpack (about —4°C), which was itself colder than the surface and soil
temperatures (about —2°C). These conditions, might in principle promote soil heat loss
toward the colder snowpack and atmosphere. But since the air temperature measured at
AWS?2 during the first days of April was higher than most of the snow temperatures at that
time, soil temperatures measured on April 9 may have been influenced by these warmer
air temperatures resulting in downward heat flux where the stronger thermal coupling
due to denser snow has a positive effect on soil temperatures. The denser snowpack may
also have allowed the soil to track the diurnal cycles in early spring where solar input is
increasing more closely. The daily averages might hide the actual daytime heat transfer,
which is more complicated than a single-direction flux.

The negative effect of denser snow near the surface is likely less reliable, as my initial
model predicting snow temperature from air temperature performed poorly, limiting con-
fidence in this result. If the effect is meaningful, however, it is also physically difficult to
interpret; one possible explanation is that denser upper layers inhibit energy transfer from
the air into the snowpack, potentially forming crusts or compact layers that delay surface
warming.

Integrating density into soil temperature models is not merely a refinement but is
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essential for correct soil-temperature prediction as my results suggest that differentiating
only two layers might already capture thermal contrasts. Other studies support the impor-
tance of accurate snow density profiles for modeling soil thermal dynamics. For instance,
Marchand et al. (2018) used satellite microwave polarization ratios to optimize simulated
snow density in a land surface model. Incorporating more accurate density profiles led
to better estimates of soil temperature, showing that denser snow increases thermal con-
ductivity, thereby reducing snow insulation and leading to cooler soils beneath. Their
results from a site near TVC, demonstrated that underestimated snow densities led to
overly warm soil simulations due to excessive insulation. In their study they use snow
density to derive the thermal conductivity of snowpacks, where higher densities generally
lead to increased conductivity and reduced insulation, which aligns with my observations
of bottom snow density.

5.2.5 Temperature propagation

All models consistently indicated strong temperature propagation from snow to the surface
and ultimately to the soil. This directional patter highlights the insulating role of the
snowpack in winter. The modulation of the temperature signal by snow depth and snow
density underscores the conclusions of Zhang (2005) and Slater et al. (1998), who both
demonstrated that snow properties strongly influence the thermal regime of tundra soils.
Their models and observations revealed that even small changes in snow depth or density
could shift soil freezing dynamics, highlighting snow’s insulating role in Arctic energy
balance. Collectively, the models presented here align with these earlier studies in showing
that, even in relatively uniform terrain, snowpack structure and depth exert primary
control over winter soil temperatures — more so than terrain or vegetation alone.

5.3 Model strengths, limitations, and opportunities for ad-
vancement

The Bayesian models developed for this study successfully captured the principal relation-
ships between snow cover and ground-surface temperature, with snow depth consistently
emerging as the dominant predictor. The hierarchical structure of the model enabled
partial pooling across sites, which was especially valuable given the limited dataset (14
TMS and a single-day mean of observations from April 9th, 2024). This structure allowed
the model to incorporate group-level predictors, such as vegetation type and geomorphon
class, even when some categories were sparsely represented. For instance, the weak esti-
mated effects of vegetation and geomorphon likely reflect small sample sizes rather than a
true absence of influence. By sharing statistical strength across groups, the model reduces
overfitting while preserving variation that may emerge more clearly in larger datasets.

A key strength of the Bayesian framework lies in its ability to integrate diverse sources
of information including field observations, expert knowledge, and physical understanding
while explicitly accounting for uncertainty in both predictor effects and measurement vari-
ability (Berliner et al. 2003; Ekici et al. 2014). This capacity is particularly important in
Arctic research, where logistical constraints limit data collection and environmental het-
erogeneity is high. Incorporating informative priors proved essential for ensuring physically
realistic model behavior. When vague or reference priors were used, the model occasionally
produced implausible predictions such as soil temperatures hundreds of degrees outside
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the physical range highlighting the danger of overfitting and nonphysical extrapolation
in the absence of prior constraints. Informative priors, by contrast, anchored model esti-
mates within meaningful geophysical bounds and improved predictive performance, even
though the central tendencies remained similar between models. This sensitivity to prior
specification was especially evident in the effect of snow density. A particularly notable
case involved bottom relative density, whose association with soil temperature reversed
direction depending on the priors used. Under vague priors, denser basal snow layers
appeared to increase insulation (a negative association), whereas under informative priors
they were linked to reduced insulation (a positive association). This instability suggests
that the model cannot reliably estimate the influence of snow density on soil temperature
without being guided by physically grounded prior knowledge.

Compared to physically based snow models, which simulate energy and mass exchange
through mechanistic equations, the Bayesian statistical approach offers several advantages
under Arctic field conditions. Physical models often struggle to represent key processes
such as wind redistribution of snow, vapor flux, and fine-scale heterogeneity in snow lay-
ering and vegetation cover. These limitations can lead to large simulation errors, partic-
ularly when model parameters are poorly constrained by local observations. In contrast,
Bayesian models estimate probabilistic relationships directly from observed data, while
incorporating physical understanding through priors. They do not aim to simulate ev-
ery process explicitly but instead focus on producing robust inference under uncertainty.
This makes Bayesian methods especially well suited for Arctic environments where full
process representation is infeasible. Lastly, the Bayesian models provided full posterior
distributions for all parameters, supporting more nuanced inference and explicit uncer-
tainty quantification (Figures A.12, A.13). Unlike traditional statistical approaches that
rely on point estimates and strict assumptions, Bayesian methods can adapt flexibly to
the structure and limitations of the available data, further enhancing model transparency
and interpretability (Webb et al. 2010; Kruschke 2021).

Despite these strengths, several limitations should be acknowledged. Most fundamen-
tally, the models are based on a single-day snapshot of snow and temperature conditions,
which constrains inference about seasonal dynamics or cumulative effects. The limited
number of TMS (14) also restricted the complexity of the model and reduced statistical
power, particularly for categorical predictors such as vegetation and geomorphon class.
As a result, some potentially meaningful differences may remain undetected. To advance
beyond this limitation, future work should shift toward time series modeling that cap-
tures the evolution of snow insulation and soil thermal dynamics over the entire season.
The current focus on a single day in April limits inference about temporal variation, yet
snow-soil interactions unfold across months. Hierarchical Bayesian models are particu-
larly suited for temporal extensions, as they can incorporate autocorrelation structures
and model latent states developing through time (Gregory 2005).

Furthermore, model assumptions such as normality in the response distributions may
be too restrictive. For instance, the soil temperature response to snow depth may flatten
under deep snow due to insulation saturation, leading to nonlinear behavior that is not well
captured by linear-normal models. Replacing the Gaussian likelihood with non-Gaussian
models could better capture skewed or nonlinear responses in snow and soil temperatures,
such as thresholds beyond which insulation effects plateau. This shift would help ad-
dress cases where snow insulation effects are not linear but saturate or intensify abruptly.
Similarly, the linear modeling framework complicates the interpretation of certain results,
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particularly the effect of snow density. Including snow density as an additive linear pre-
dictor fails to capture the conditional nature of thermal conduction, where the effect of
snow density depends on the direction of the temperature gradient. That is, the same
density profile may either enhance or suppress warming depending on whether the soil
is losing (winter) or gaining (spring) heat. Future models should address this by allow-
ing snow density to modulate the strength of the coupling between air, snow, and soil
temperatures. For example, snow density could interact with temperature gradients or
be incorporated as a scaling factor on the regression coeflicients linking air, snow, and
surface temperatures. This would better reflect the nonlinear and state-dependent role of
snow structure in controlling subsurface thermal dynamics. Another important modeling
challenge is collinearity among predictors such as elevation, slope, aspect, and geomorphon
class. While Bayesian shrinkage helps to regularize estimates, collinearity can still inflate
uncertainty and obscure the effects of individual predictors (Webb et al. 2010).

Furthermore, spatial mismatch between snow and soil measurements limited the reso-
lution of the models. SMP profiles were assigned to TMS sensors based on proximity, with
distances ranging from less than a meter to over 40 m. This introduced spatial noise that
likely weakened the ability to detect precise relationships between snow properties and soil
temperatures. Reducing this mismatch through closer spatial alignment between snow and
soil measurements would improve model sensitivity. However, co-locating snow and soil
measurements is challenging in practice, as invasive snow profiling can disturb the snow-
pack directly above the temperature sensors. More precise placement, e.g. using tools like
DGPS or clearly marked reference points along transects, could help minimize offsets with-
out compromising the integrity of the snow or soil measurements. Furthermore, strategic
sensor placement should also target diverse microtopographic settings (e.g., ridges, slopes,
depressions) and vegetation types (e.g., shrub, grass, bare ground) to better capture land-
scape heterogeneity. Complementing this, expanding sensor coverage along elevational
gradients and different slopes and aspects will help disentangle climatic and topographic
influences on snowpack structure and soil thermal behavior. Increasing the frequency of
snow measurements through automated profiling or repeated manual sampling would en-
able the resolution of temporal dynamics. These enhancements would improve the models
abilities to quantify the respective roles of snow properties, vegetation, and topography in
mediating soil temperatures.

Meteorological variables such as incoming radiation, wind speed, and precipitation are
also key drivers of snowpack development and energy exchange at the snow-soil interface,
which have not been included in the presented models. Their future inclusion could
substantially enhance predictive accuracy, especially given their projected changes under
climate warming. For example, rain-on-snow events — expected to increase by up to 40 %
by the end of the century — can alter snow hardness and melt dynamics (Putkonen and
Roe 2003). Climate projections for Disko Island suggest winter snowfall may increase,
but this is unlikely to offset enhanced ablation due to warming (Bonsoms et al. 2024). At
the same time, increased atmospheric moisture could lead to thicker snowpacks that delay
ground freeze-up and intensify soil insulation in mid-winter (Pongracz et al. 2024).

Overall, while the models robustly capture the primary snow insulation effect and
demonstrate the value of Bayesian approaches for small, uncertain datasets, future studies
would benefit from expanded temporal coverage, increased sensor density, and improved
spatial alignment of measurements to better resolve the drivers of snow-soil interactions.
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6 Conclusion

This thesis investigated the interactions between snow depth and snow density and near-
surface soil temperatures in a coastal Arctic tundra environment on Qeqertarsuaq, Kalaal-
lit Nunaat. By combining SMP profiles, TMS temperature data, and detailed topographic
and vegetation information with a Bayesian modeling framework, the study aimed to iden-
tify key controls on snowpack structure and its insulating effects during the late winter
period of 2023/24.

The first objective was to determine whether the April snow profiles accurately re-
flected late-winter snowpack conditions. Given the relatively stable weather and minimal
melting observed throughout the winter, the snowpack measured in April was deemed
representative of the seasonal snow conditions.

The second objective focused on assessing the spatial variability of snow properties and
near-surface soil temperatures. Results revealed substantial heterogeneity in both snow
depth and density, as well as in soil temperatures, even across a landscape that appears
relatively uniform in terms of topography and vegetation variability.

For the third objective of quantifying the relationship between snow density and soil
temperatures, the two- and three-level Bayesian hierarchical models effectively captured
broad patterns in temperature behavior and provided evidence that denser bottom layers
were associated with reduced insulation of soil temperatures. This supports the hypothesis
that snow density, not just depth, play a critical role in regulating soil thermal regimes.

In summary, these findings highlight the critical, yet underrepresented, role of snow
density in controlling soil thermal regimes in Arctic environments. While current physical
snow models often perform poorly in Arctic conditions due to inadequate representation
of key processes such as wind-driven snow redistribution and vapor fluxes, this study
demonstrates that Bayesian statistical approaches offer a promising alternative for under-
standing snow-soil thermal interactions. By building probabilistic, data-informed models
that explicitly incorporate uncertainty and complexity, the Bayesian framework developed
here provides a foundation for future modeling efforts.
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EXTENDED METHODOLOGY

A Extended methodology

The following section provides a detailed description of the data sets, data collection,
processing, and analysis.

A.1 Data sets

Table A.1: Sensors used for field measurements. AWS2 refers to the automatic weather

station installed at the study site, which recorded meteorological data during the field campaign.

Sensor Brand / Model Measurement Accuracy

Air Temperature  Vaisala HMP115A Air temperature +(0.226-

(AWS2) 0.0028 x temperature)°C (-80 to
+20°C)

Precipitation RM Young 52203 Liquid precipitation (unheated 2% up to 25 mm/h; 3% up to

(AWS2) tipping bucket) 50 mm/h

Wind speed and di- RM Young 05108-45  Wind speed and direction Speed: +0.3 m/s or 1% of

rection (AWS2) reading; Direction: +3°

TMS sensor TOMST, TMS-4 Soil, surface, and snow 40.5 °C (-40 to 60°C)

temperature at 3 depths (MAX31850 sensor)

Snow Micro Pen  WSL, SMP5 Penetration resistance profile Resolution: 0.3 mm; Force:

(SMP) 0.01 N (0-50 N)

MagnaProbe SnowHydro, Mag- Snow depth +1 cm

naProbe

A.1.1 Snow measurements

Snow density can be derived from snow hardness which can be obtained from manual
measurements or penetrometers (Hagenmuller and Pilloix 2016). Manual measurements
from snow pits are operator biased and time consuming (Kaltenborn et al. 2023). In
contrast, the SnowMicroPen (SMP), a portable high resolution penetrometer, developed
by Schneebeli et al. (1999) measures snow stratigraphy of a meter profile in less than a
minute (Proksch et al. 2015). The SMP determines the bond strength between snow grains
within the snowpack. The bond strength can be obtained from the penetration resistance
and is directly influenced by the micro-structural properties of snow, such as density and
surface area. For example, high-density snow has a higher bond strength and consequently
a higher penetration resistance than low-density snow (Kaltenborn et al. 2023). Hence,
the force signal can be used to infer snow structural parameters such as density or specific
surface area. The device consists of a conic measurement tip with a 60° included angle
which is connected to a force transducer in a drive cone. The force transducer ranges
from ON to 52N (WSL Institute for Snow and Avalanche Research SLF 2023). A rotary
motor drives the rod up to 1.2m into the snowpack at a constant penetration velocity of
20mms—!. The motor is fixed above the snow surface by ski poles (Schneebeli et al. 1999;
Hagenmuller et al. 2018). The penetrometer acquires a force measurement every 4pm
(i.e., 250mm™!) (Schneebeli et al. 1999). Each SMP profile consists of the penetration
force signal at the measurement tip in Newtons along its depth signal (Kaltenborn et al.
2023). The force sensor’s resolution is 0.01 N, and the depth accuracy is estimated to be
1cm.
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During a field campaign in April 2024, 224 snow profiles were conducted across three
transects in Kuup Ilua (Blaesedalen valley), using the fifth generation SnowMicroPen. For
each profile, an additional GNSS measurement was performed using Emild GNSS. An
Emlid Reach M+ was used as a rover and connected to the SMP. It received real-time
kinematic corrected position information from the base, an Emlid RS24. Thereby, the
position estimates of the profiles were improved from 2m to 3 m accuracy to a few centime-
ters accuracy during post-processing. Another essential post-processing step involved the
combination of multiple SMP signals into complete profiles. This was necessary as there
were layers within the snowpack (likely ice layers) that could not be penetrated by the
SMP due to their hardness. At these points, the snow profile measurement was continued
after carefully breaking the hard layer with an avalanche probe. During post-processing,
the individual measurements were stitched into one profile. This leads to the following im-
plications: 1) Some layers of the SMP profile are missing (NAs), 2) the properties of these
layers, specifically their density and height are unknown, 3) by breaking hard layers with
an avalanche probe, snow properties directly below might have been altered. I decided
to keep the missing values in the profiles, since treating the resulting sequence of missing
values as ice layers with a respective density of 917kgm > was not adequate because of
their different length. Ice layer thickness would have likely ranged between 1cm to 2 cm;
however, there were longer sequences (up to 8 cm) of NAs within the profiles.

Lastly, I converted the penetration force signal into density using algorithms provided
by the SnowMicroPyn software (Mewes 2024). As there are different algorithms to derive
snow properties from the penetration force signal, I compared deviations from Proksch
et al. (2015), Calonne et al. (2020) and King et al. (2020) with manual measurements
from five snow pits to choose the best fitting algorithm and validated the data (Figure
A.1). I selected the closest SMP profile to each snow pit and averaged its density for the
depth interval of each sample in the snow pit. Then, I compared the density estimations of
the derivatives to the manual measurements and calculated R? and SD of each derivative
(Table A.2).
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Figure A.1: Selection of Derivative. Comparison of snow pit density and SnowMicroPen
(SMP) average density for density estimation algorithms by Proksch et al. (2015), Calonne et al.
(2020) and King et al. (2020). Point size represents the standard deviation of SMP density within
each snow pit depth interval, categorized into small, medium, and large SD ranges. The black

diagonal line indicates a 1:1 relationship between snow pit and SMP densities.

Table A.2: SMP derivatives statistics. Coefficient of determination (R?) quantifies the linear
relationship between SMP and snow pit densities. Standard deviation (SD) reflects the variability

in SMP-derived densities within each snow pit depth interval.

Derivative R? SD (kg/m?3) Publication

P2015 -0.341 52 Proksch et al. (2015)
CR2020 -0.456 43 Calonne et al. (2020)
K2020a 20.781 24 King et al. (2020)
K2020b -0.773 26 King et al. (2020)

Based on my results, I used densities obtained from the algorithm of Proksch et al.
(2015). The statistical model developed in this approach was calibrated by combining SMP
data with 3D micro structural data from micro computed tomography from alpine, arctic
and antarctic snow profiles. The density derived from the SMP had a mean relative error
of 10.6 %. Within the derived data, I recognized invalid density values outside the possible
physical range. These values can stem from errors in the force signal. For instance, large
temperature changes during the measurements may cause signal drift (Bellaire et al. 2009).
Furthermore, the piezoelectric force sensor captures not only compression but also tensile
forces. Negative peaks result from sudden changes of snow hardness from soft to hard snow,
where the sensor is exposed to compression forces and shear forces. Other reasons leading
to negative force signals can be a bent or broken tooth of the cogwheel or movement of the
rod during the measurement (WSL Institute for Snow and Avalanche Research SLF 2023).
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However, I also obtained invalid density values for profiles in which the force signal was not
negative / erroneous, in other words, where the deviation methods yielded wrong values.
Different derivation methods applied to the raw force signal produce markedly different
results, especially at force peaks where small variations in the calculation approach lead
to large discrepancies in estimated densities (Figure A.2).
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Figure A.2: Comparison of snow density derivations from different deviation al-
gorithms. Density profiles derived from the force signal (blue) using calculation methods after
Proksch et al. (2015) P2015 (orange), Calonne et al. (2020) CR2020 (purple), King et al. (2020)
K2020a (light blue), K2020b (light green). Substantial differences at force peaks lead to discrepan-

cies in both peak magnitude and profile shape, influencing the interpretation of snow density.

As all four deviation methods included invalid density estimations, I adhered to the
Proksch et al. (2015) algorithm, since its density distribution aligned best with the ob-
served density values from the snow pits (Table A.3). I handled invalid values within the
derived data by removing all densities outside Okgm 3 to 917kgm 3. It is important to
note that the derived data were analyzed in a relative context rather than an absolute
one. Absolute values are not suitable for direct comparisons between different sites, due
to the mentioned differences between the derivation methods.
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Table A.3: Summary statistics of snow density derivation methods. Mean, standard
deviation (SD), and percentiles (25%, 50%, 75%) for snowpit and SMP-derived snow densities

[kg/m?].

Statistic Snowpit P2015 CR2020 K2020a K2020b
Mean 272 299 318 228 230
SD 57 125 83 89 101
25% 246 264 289 211 215
50% 281 286 321 226 229
75% 314 336 354 252 252

To validate snow depth data, I compared the measurements of the SMP to Mag-
naProbe measurements, which were taken on the same days along the same transects.
Based on their coordinates, I paired the closest SMP and MagnaProbe measurements,
to compare their recorded snow depths (Figure A.3). Overall, the measurements aligned
well. However, because the SMP rod is limited to a maximum length of 1.20 m and was
positioned approximately 10 cm above the snow surface, the effective measurement range
was approximately 1.10m. As a result, large deviations occurred in deeper snowpacks,
where MagnaProbe recorded snow depths up to 2.43 m.
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Figure A.3: Snow depth comparison. Comparison of snow depth measured by the MagnaProbe

(z-axis) and SnowMicroPen (y-axzis). The black line indicates a 1:1 relationship between the two

measurement methods.
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A.1.2 Temperature measurements

Snow, soil surface, and subsurface soil temperatures were recorded using TOMST TMS-4
temperature and moisture sensors (Wild et al. 2019). Each sensor contains three digi-
tal thermometers (DS7505U+; www.maximintegrated.com) and is designed to mimic the
structure of a small herbaceous plant. The sensors recorded temperatures at 15-minute
intervals at three positions: 16 cm above the surface (snow layer), directly at the sur-
face (snow / soil interface), and 6 cm below the surface (soil temperature). According to
the manufacturer, the sensors have a resolution of 0.0625°C and an accuracy of £0.5°C.
To improve accuracy, all sensors were calibrated in an ice-bath before installation. Each
sensor was placed in a 0°C ice-bath until its readings stabilized. The difference between
the observed and expected value (0°C) was recorded as the sensor’s individual measure-
ment error. These offsets were then subtracted from the raw data to produce a calibrated
temperature time series, which was used for all further analyses.

A.1.3 Topography

I used a digital terrain model (DTM, GRL_Qeqertarsuaq_Om50_L1_DTM_001_EGM96.tif
(©) 2024 Maxar Technologies) provided by the German Federal Agency for Cartography
and Geodesy’s Satellite Based Crisis and Situation Service (Bundesamt fir Kartographie
und Geoddsie (BKG), Satellitengestitzter Krisen- und Lagedienst (SKD)). The DTM has a
horizontal resolution of 0.5 m, and was derived from WorldView-3 optical satellite imagery
in stereo configuration using the Semi-Global Matching photogrammetric algorithm devel-
oped by the German Aerospace Center (Deutsches Zentrum fir Luft- und Raumfahrt). To
improve the relative alignment, image geometry was refined with 243 tie points. According
to the provider, the native accuracy of the WorldView-3 data is less than 3.5 m vertically
and less than 5m horizontally. The final DTM was created by applying ground-point
masks to exclude surface features such as vegetation and buildings. Additionally, I calcu-
lated the slope using the terrain analysis tool included in QGIS (QGIS Development Team
2019). The DEM has previously been used to classify the terrain into topographic land-
forms, termed Geomorphons (Jasiewicz and Stepinski 2013). For the detailed description
and application of the method, see Becker (2024). The TMS sites cover the geomorphon
types: hollow/footslope, slope, and valley/depression (Figure A.4).
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Figure A.4: Digital Terrain Model of the Study Area. Topographic overview of
Blesedalen in the south of Disko Island, showing TMS locations (red points) overlaid on
geomorphon landform classifications and 10 m elevation contour lines.  Hydrological fea-
tures: wvon Oppen et al. (2022). DTM License: Based on material by Mazar Products.
GRL_Qegertarsuaq-0m50-L1_-DTM_001_EGM96.tif ©) 2024 Mazar Technologies, including ma-
terial by AWSD Enhanced, AWSD Metro, AWSD Standard and AWSD Telecom Products.
GRL_Qegertarsuaq-0m50-L1_DTM_001_EGMI6.tif ©) 2024 NTT Data Corporation and by Ecopia
Building Footprints Powered by Mazar. Ecopia Building Footprints () 2024 Ecopia Tech Corpo-
ration. Imagery (©) 2024 Mazar Technologies, provided by BKG and BMI, all rights reserved.

A.1.4 Vegetation

I used an adjusted version of the circumpolar land cover unit map by Bartsch et al. (2024)
to categorize the vegetation around each TMS. The initial map provides three types of
wetland and 14 terrestrial tundra units based on shrub physiognomy and soil moisture, at a
resolution of 10 x 10 m. For previous studies, Gottuk et al. (2025) aggregated and validated
the vegetation units using vegetation records from September 2023, where vegetation cover
was assessed in a 1 x 1m plot around each TMS (Boike et al. 2024) (Figure A.5 and
Figure A.6). Within each plot, vegetation heights ranging from 1.5c¢m to 20 cm (mean
8.1cm, SD 3.3 cm) were recorded at four points according to the standardized permafrost
monitoring protocol (Boike et al. 2022). In summary, the TMS locations feature three
different vegetation classes: dry tundra, moist tundra and wet tundra.
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Figure A.5: TMS plots vegetation. TMS sensor locations (A-I) with site-specific vegetation.
Photos taken by Simone Stuenzi and Jannika Gottuk in August 2022 and 2023.
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Figure A.6: TMS plots vegetation. TMS sensor locations (J-N) with site-specific vegetation.
Photos taken by Simone Stuenzi and Jannika Gottuk in August 2022 and 2023.
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A.2 Statistical analysis

I followed the Bayesian workflow outlined by Gelman et al. (2020), which includes model
building, inference, model checking, and model comparison. I began by selecting an initial
model. Bayesian models can be viewed as consisting of modules that are adjusted as
necessary throughout the process. I incorporated prior information through both the
prior distributions, ranging from non-informative to highly informative, and the likelihood
function, which reflects assumptions about the data-generating process (Gelman et al.
2020). When using strongly informative priors or small datasets, the posterior distribution
can be strongly dependent on the prior distribution. To ensure appropriate prior choices, I
performed prior predictive checks and sensitivity analyses. Prior predictive checks display
the data that is being simulated from the parameter values in the prior distribution. A
sensitivity analysis investigates how much the posterior distribution changes when the
prior is changed (Kruschke 2021).

After checking the prior predictive distribution, I fit the model using the No-U-Turn
Sampler (NUTS), an efficient Markov Chain Monte Carlo (MCMC) algorithm imple-
mented in PyMC (Hoffman and Gelman 2011). For this, the MCMC explores the pa-
rameter space randomly, tending to explore the high-probability regions more often than
low-probability regions. The resulting sequence of samples formed Markov chains that,
in the limit of infinite samples, approximated the posterior distribution. To ensure that
the chains explored the parameter space sufficiently and thus generated a representative
posterior distribution, I ran at least three chains and verified their convergence using the
potential scale reduction factor (R). I also monitored the stability of the MCMC esti-
mates by evaluating the effective sample size (ESS). For all key parameters, I ensured
an ESS greater than 400, which indicates sufficient chain length and reliable estimation
(Kruschke 2021). I used the Monte Carlo Standard Error (MCSE) to assess the precision
of the parameter estimates. Low MCSE values indicate that the estimated means and
standard deviations from the MCMC draws are stable. PyMC reports both the mean and
standard deviation for each parameter, which helped to quantify uncertainty due to the
finite number of posterior samples (Gelman et al. 2020).

Next, I performed posterior predictive checks by comparing simulated data from the
posterior distributions to the actual observations (Gelman et al. 2020; Kruschke 2021).
These checks helped me evaluate the model’s fit to the data. After validating model fit,
I reported the parameters by summarizing their central tendency and credible intervals
(e.g., highest density intervals, HDI).

As recommended in the Bayesian workflow, I fit and compared several models to ad-
dress the same problem. I concluded the process with model comparison, results reporting,
and, where necessary, further model refinement or reassessment (Gelman et al. 2020).
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Table A.4: Linear regression formulas and prior specifications

Model Formula

All Priors

snow_depth ~ slope + elevation + aspect

Intercept ~ Normal(-0.69, 1.1)
slope ~ Normal(0, 0.4)
elevation ~ Normal(0, 20)
aspect_sin ~ Normal(0, 0.6)
aspect_cos ~ Normal(0, 0.5)
alpha ~ HalfCauchy(1.0)

snow_depth ~ 0 + (1—vegetation)

1—vegetation ~ Normal(o: HalfNormal(0.1))
alpha ~ HalfNormal(2.0)

snow_depth ~ (1-—geomorphon) + slope + elevation + aspect

Intercept ~ Normal(-0.693, 1.1)

slope ~ Normal(0, 0.4)

elevation ~ Normal(0, 10)

aspect_sin ~ Normal(0, 0.6)

aspect_cos ~ Normal(0, 0.5)

1—geomorphon ~ Normal(o: HalfNormal(0.1))
alpha ~ HalfNormal(1.0)

snow_density ~ slope + elevation + aspect

Intercept ~ Normal(0, 0.5)
slope ~ Normal(0, 0.15)
elevation ~ Normal(0, 3)
aspect_sin ~ Normal(0, 0.3)
aspect_cos ~ Normal(0, 0.3)
kappa ~ HalfCauchy(1.0)

snow_density ~ (1—vegetation) + slope + elevation + aspect

Intercept ~ Normal(0, 0.5)

slope ~ Normal(0, 0.15)

elevation ~ Normal(0, 3)

aspect_sin ~ Normal(0, 0.3)

aspect_cos ~ Normal(0, 0.3)

1—vegetation ~ Normal(o: HalfNormal(0.1))
kappa ~ HalfCauchy(1.0)

snow_density ~ (1—geomorphon) + slope + elevation + aspect

Intercept ~ Normal(-0.8, 0.3)

slope ~ Normal(0, 0.15)

elevation ~ Normal(0, 3)

aspect_sin ~ Normal(0, 0.3)

aspect_cos ~ Normal(0, 0.3)

1—geomorphon ~ Normal(o: HalfNormal(0.1))
kappa ~ HalfNormal(1.0)

T_snow ~ slope + elevation + aspect

Intercept ~ Normal(-6.09, 2.0)
slope ~ Normal(0, 1.0)
elevation ~ Normal(0, 70)
aspect_sin ~ Normal(0, 0.5)
aspect_cos ~ Normal(0, 0.5)

o ~ HalfStudentT(4.0, 1.20)

T_snow ~ (1—vegetation) + slope + elevation + aspect

Intercept ~ Normal(-6.09, 2.0)

slope ~ Normal(0, 1.0)

elevation ~ Normal(0, 70)

aspect_sin ~ Normal(0, 0.5)

aspect_cos ~ Normal(0, 0.5)

1—vegetation ~ Normal(mu: 0.0, o: HalfNormal(2.0))
o ~ HalfStudentT(4.0, 1.20)

T_snow ~ (1—geomorphon) + slope + elevation + aspect

Intercept ~ Normal(-6.09, 2.0)

slope ~ Normal(0, 1.0)

elevation ~ Normal(0, 70)

aspect_sin ~ Normal(0, 0.5)

aspect_cos ~ Normal(0, 0.5)

1—geomorphon ~ Normal(mu: 0.0, o: HalfNormal(2.0))
o ~ HalfStudentT(4.0, 1.20)
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Table A.5: Air-Soil Temperature model formulas and prior specifications. This table
shows the structure and priors for the pooled model, which does not include group-level effects. In
the vegetation and geomorphon models, additional varying intercepts are added to account for hi-
erarchical structure, allowing either vegetation type or geomorphon class to influence the intercepts

of the temperature models.

Level Priors
T_snow ~ B, - T_air Bair ~ Normal(0, 1)
+ Baepth- snow_depth_adj Baepth ~ Normal(0, 2)
+ Bdensity top: bulk_density_top Bensity_top ~ Normal(0, 10)
+ Baspect_cos* aspect_cos Baspect_cos ~ Normal(0, 1)
+ Bsiope: slope_scaled Bstope ~ Normal(0, 1)
Tsnow ~ Exponential(1.0)

T _surface ~ offset_surface Bsnow.tosurface ~ Normal(1,0.5)
+ Bsnow,to,surface' T _snow ﬁdensity,bottom ~ NOI‘HI&I(O, 10)
+ Baensity_bottom® bulk_density_bottom offset_surface ~ Normal(0, 1)

Osurface ~ Exponential(1.0)

T _soil ~ offset_soil Bsurface_tosoil ~ Normal(1,0.5)

+ Bsurface_tosoil* L _surface offset_soil ~ Normal(0, 1)

Osoil ~ Exponential(1.0)

Table A.6: Snow-Soil Temperature model formulas and prior specifications. This table
shows the structure and priors for the pooled model, which does not include group-level effects. In
the vegetation and geomorphon models, additional varying intercepts are added to account for hi-
erarchical structure, allowing either vegetation type or geomorphon class to influence the intercepts

of the temperature models.

Level All Priors
T _surface ~ offset_surface Baensity bottom ~ Normal(0, 10)
+ Bsnow%surface' T,SIIOW,ObS ﬁsnow%surface ~ Normal(l, 1)
+ Bdensity_bottom® density_bottom offset_surface ~ Normal(0, 1)
T _soil ~ offset_soil Bsurface—soil ~ Normal(1, 1)
+ Bsurface—ssoil: I _surface offset_soil ~ Normal(0, 1)
Residual Standard Deviations: Osurface ~ Fxponential(1.0)

Osoil ~ Exponential(1.0)

53



EXTENDED RESULTS

B Extended results

In the following, I provide further information on my results including complementing
figures of the study site, its meteorology, model set ups and tables of the model outputs.

B.1 Winter conditions
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Figure A.7: Winter air temperatures. Monthly temperatures of winters from October to June

between 1991 and 2018 (orange) and Winter 23/24 (red). Shaded areas represent the standard
deviation of the long term averages.
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Figure A.8: Wind direction. Hourly wind direction derived from uw and v wind components
measured at AWS2 during the winter of 2023/2024.
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EXTENDED RESULTS

B.2 Spatial variability

Table A.7: Snow depth and density measurements across sampling locations.

Measurements including respective TMS, SMP profile, coordinates, snow depth, average snow

density and standard deviation.

Location Coordinates Snow properties
TMS SMP Lat Lon Depth  Avg Density SD
profile (m) (kg/m3) Density
A 1 69.27862568 -53.47877289 | 0.88 294 61
A 2 69.27862505 -53.47876705 | 0.87 289 77
A 3 69.27863077 -53.47872824 | 0.90 309 77
A 4 69.27863868 -53.47864465 | 0.81 330 91
A 5 69.27862622 -53.47855965 | 0.59 314 106
B 15 69.2786507 -53.47783208 | 0.60 304 113
B 16 69.2786562 -53.47781112 | 0.55 302 104
B 17 69.27865238 -53.47775932 | 0.61 285 73
C 25 69.27864073  -53.4772056 0.79 272 66
C 26 69.27864004 -53.47717692 | 0.79 300 77
C 27 69.27862769  -53.4771072 0.64 286 92
D 48 69.27856329 -53.47500329 | 1.09 332 89
D 49 69.27857068 -53.47493736 | 1.10 409 96
D 50 69.27857952 -53.47481456 | 1.09 385 87
D 52 69.27859035  -53.4745902 1.09 316 57
D 53 69.27860308 -53.47452524 | 0.44 272 54
E 57 69.27862343  -53.474387 0.41 298 112
E 58 69.27862571 -53.47436199 | 0.17 247 155
E 59 69.27862455 -53.47431125 | 0.40 273 64
E 60 69.27864745 -53.47449362 | 0.48 272 87
F 68 69.26998314  -53.46994687 | 0.17 352 136
F 69 69.26997184 -53.46988947 | 0.24 312 67
G 110 | 69.27101946 -53.46847495 | 0.61 285 71
G 111 | 69.27103038 -53.46845644 | 0.51 291 93
G 112 | 69.27103622 -53.4684467 0.68 290 90
G 114 | 69.27104952 -53.46842689 | 0.49 292 66
G 115 | 69.27105545 -53.46841545 | 0.48 283 71
H 191 69.2676718 -53.46677536 | 0.55 296 96
H 194 | 69.26769353 -53.46667398 | 0.60 290 94
H 195 | 69.26770514 -53.46664313 | 0.56 281 99
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Table A.7 continued from previous page

Location Coordinates Snow properties
T™S SMP Lat Lon Depth  Avg Density SD
profile (m) (kg/m3) Density
I 224 | 69.26790057 -53.46593019 | 0.49 318 115
I 225 | 69.26791663 -53.46589791 | 0.71 283 84
1 226 | 69.26794237 -53.46578396 | 0.84 284 69
J 204 | 69.26782024 -53.46624638 | 0.51 293 96
J 207 | 69.26784907 -53.46616708 | 0.55 275 88
J 208 | 69.26785983 -53.46613246 | 0.58 269 94
J 209 69.2678662  -53.46609865 | 0.49 268 86
J 210 69.2678685 -53.46607898 | 0.44 287 100
J 211 | 69.26786331 -53.46606759 | 0.54 302 96
J 212 69.2678543  -53.46604897 | 0.55 289 98
J 213 | 69.26784633 -53.46603139 | 0.42 278 95
J 214 | 69.26784172 -53.46601645 | 0.46 292 105
J 215 | 69.26783754 -53.46599636 | 0.40 299 85
J 216 | 69.26783234 -53.46598553 | 0.43 295 88
J 217 | 69.26782895 -53.46597267 | 0.35 323 101
K 234 | 69.26816819 -53.46488751 | 0.48 284 123
K 235 | 69.26820738 -53.46478164 | 0.66 298 124
K 236 | 69.26823673 -53.46465205 | 0.65 278 72
L 251 | 69.26877319 -53.46248167 | 0.46 288 59
L 252 | 69.26876664 -53.46243988 | 0.56 297 7
L 253 | 69.26876051 -53.46240625 | 0.62 286 53
L 254 | 69.26875348 -53.46238008 | 0.66 304 93
L 257 | 69.26874112 -53.46229166 | 0.66 307 99
L 258 | 69.26873469 -53.46228772 | 0.41 314 89
M 246 | 69.26870657 -53.46274333 | 0.89 308 84
M 262 69.2686984  -53.4622556 0.21 274 100
M 263 | 69.26869444 -53.46224385 | 0.39 333 128
N 247 | 69.26874708 -53.46265237 | 0.60 302 63
N 248 | 69.26875731  -53.462611 0.55 295 67
N 249 | 69.26877667 -53.46257024 | 0.41 280 65
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Table A.8: Soil temperature and snow properties for each TMS. Mean soil temperature
from October 2023 to June 2024 per TMS, and snow properties averaged from surrounding SMP
profiles conducted in April 202/.

TMS  Soil temperature (°C) Snow depth (m) Snow density (kg/m™)

Avg SD Avg SD
A -2.3 0.8 0.13 307 17
B -1.2 0.6 0.03 297 10
C -1.7 0.7 0.09 286 14
D -0.3 1.0 0.29 343 55
E -3.7 0.4 0.14 272 21
F -3.8 0.2 0.06 332 28
G -2.3 0.6 0.09 288 4
H -0.5 0.6 0.03 289
| -1.2 0.7 0.17 295 20
J -1.9 0.5 0.07 289 16
K -1.3 0.6 0.10 286 10
L -1.6 0.6 0.11 299 11
M -1.8 0.5 0.35 305 30
N -2.1 0.5 0.10 292 11
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B.3 Bayesian linear regression models

Table A.9: Posterior summary statistics of linear regression models on snow depth.
Each subsection shows the posterior means, standard deviations (SD) and 94% highest density
interval (HDI) for the pooled model, vegetation-group model, and geomorphon-group model. Monte
Carlo standard errors (MCSE) for the mean and SD are omitted from this table because, for all
parameters except alpha, elevation, and slope (where MCSE wvalues are up to about 2% of the
posterior SD), MCSE values are less than 1% of the corresponding posterior standard deviation.
For the snow depth models, the mean ESS bulk and mean ESS tail are as follows: the pooled model
has a mean ESS bulk of 8300 and a mean ESS tail of 2832; the vegetation-grouped model has a
mean ESS bulk of 2158 and a mean ESS tail of 2557; and the geomorphon-grouped model has
a mean ESS bulk of 3586 and a mean ESS tail of 2853. These values indicate strong sampling

efficiency and reliable posterior estimates for all three models. R is below 1.05 for all variables.

Pooled model
Parameter Mean SD 3% HDI 97% HDI

alpha 6.93 3.11 1.76 12.56
Intercept -0.04 1.15 -2.20 2.12
slope 0.14  0.19 -0.23 0.51
elevation -6.92  12.74 -30.98 17.07
aspect_sin -0.18 0.21 -0.58 0.22
aspect_cos 0.04 0.18 -0.29 0.41

Vegetation-group model

Parameter Mean SD 3% HDI 97% HDI
alpha 290 0.91 1.41 4.70
vegetation_sigma 0.11 0.07 0.00 0.24
[dry tundra] -0.10 0.14 -0.39 0.12
[moist tundra] -0.085 0.14 -0.37 0.13
[wet tundra] -0.04 0.13 -0.33 0.17

Geomorphon-group model

Parameter Mean SD 3% HDI 97% HDI
alpha 2.280  0.63 1.17 3.48
Intercept -0.53  0.88 -2.23 1.12
slope 0.10  0.26 -0.37 0.61
elevation -1.07  9.32 -18.04 17.14
aspect_sin -0.12  0.31 -0.68 0.49
aspect_cos 0.07  0.25 -0.40 0.58
geomorphon_sigma 0.08  0.06 0.00 0.18
[hollow/footslope] 0.03  0.09 -0.17 0.21
[slopel -0.012  0.093 -0.215 0.155
[valley/depression] -0.01  0.10 -0.24 0.16
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Figure A.9: Posterior predictive distributions for snow depth. Boxplots show the predicted

distribution from the posterior predictive samples of the linear regression on snow depth across the
TMS. Red stars indicate the observed values.
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Table A.10: Posterior summary statistics of linear regression models on relative snow
density. Each subsection shows the posterior means, standard deviations (SD) and 94% highest
density interval (HDI) for the pooled model, vegetation-group model, and geomorphon-group model.
MCSE (Mean) and MCSE (SD) columns are omitted as all values are below 1% of the posterior
SD for all parameters except kappa (where they are about 2%). All reported ESS wvalues for the
pooled, vegetation-group, and geomorphon-group models are reliable, with mean ESS bulk values
around 2631, 2296, and 4558 respectively, and mean ESS tail values around 2329, 1896, and 2973
respectively. R is below 1.05 for all variables.

Pooled model
Parameter Mean SD 3% HDI 97% HDI

kappa 939.08 466.23 195.03 1816.95
Intercept -0.86 0.20 -1.26 -0.49
slope 0.10 0.04 0.03 0.19
elevation -0.29 2.25 -4.45 4.02
aspect_sin 0.04 0.05 -0.05 0.12
aspect_cos 0.08 0.04 0.01 0.15

Vegetation-group model

Parameter Mean SD 3% HDI 97% HDI
kappa 861.96 447.75 154.65 1692.93
Intercept -0.87 0.21 -1.26 -0.46
slope 0.10 0.04 0.01 0.18
elevation -0.14 2.34 -4.74 4.08
aspect_sin 0.04 0.05 -0.06 0.12
aspect_cos 0.08 0.04 -0.00 0.16
vegetation_sigma 0.04 0.04 0.00 0.11
[dry tundra] -0.01 0.04 -0.10 0.05
[moist tundra] -0.01 0.04 -0.08 0.08
[wet tundral -0.00 0.04 -0.09 0.08

Geomorphon-group model

Parameter Mean SD 3% HDI 97% HDI
kappa 2.88 0.65 1.68 4.12
Intercept -0.71  0.38 -1.40 0.03
slope 0.01 0.15 -0.27 0.27
elevation 0.06 2.97 -5.67 5.47
aspect_sin -0.00 0.26 -0.48 0.49
aspect_cos 0.03 0.24 -0.43 0.48
geomorphon_sigma 0.08 0.06 0.00 0.18
[hollow/footslopel 0.01 0.09 -0.16 0.20
[slope] 0.00 0.10 -0.19 0.20
[valley/depression] 0.00 0.10 -0.19 0.20
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Figure A.10: Posterior predictive distributions for snow density. Boxplots show the
predicted distribution from the posterior predictive samples of the pooled linear regression on snow

density across the TMS. Red stars indicate the observed values.
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Table A.11: Posterior summary statistics of linear regression models on snow tem-
perature. Each subsection shows the posterior means, standard deviations (SD) and 94 % highest
density interval (HDI) for the pooled model, vegetation-group model, and geomorphon-group model.
For most parameters, MCSE mean and SD values are below 4% of the corresponding posterior
standard deviation. However, for the group-level parameters sigma, hollow/footslope, slope, val-
ley/depression, and geomorphon_sigma in the geomorphon-group model, MCSE values reach up to
18% of SD, and ESS values are as low as 22, reflecting less precise posterior estimates for those
parameters. The pooled model has a mean ESS bulk of 3711 and a mean ESS tail of 2848. The
vegetation-group model has a mean ESS bulk of 1827 and a mean ESS tail of 1686. In contrast,
the geomorphon-group model shows much lower sampling efficiency, with a mean ESS bulk of 727
and a mean ESS tail of 1036, mainly due to some parameters (sigma and geomorphon groups) with
very low (22) ESS values. R is below 1.05 for all variables.

Pooled model
Parameter Mean SD 3% HDI 97% HDI

sigma 112 0.27 0.68 1.60
Intercept -1.16  3.34 -7.59 4.84
slope 1.08  0.55 0.05 2.13
elevation -37.86 36.66 -105.94 31.41
aspect_sin  -0.28  0.40 -1.01 0.49
aspect_cos 0.15 0.35 -0.50 0.83

Vegetation-group model

Parameter Mean SD 3% HDI 97% HDI
sigma 1.04  0.26 0.62 1.53
Intercept -3.01  3.56 -9.46 3.95
slope 0.97  0.52 -0.02 1.92
elevation -19.70 38.45 -91.52 52.69
aspect_sin -0.38  0.39 -1.09 0.38
aspect_cos 0.08 0.35 -0.59 0.72
vegetation_sigma 1.0  0.77 0.00 2.355
[dry tundral -0.26  0.73 -1.79 1.04
[moist tundra] 0.628  0.82 -0.73 2.24
[wet tundral 0.26  0.78 -1.10 1.90

Geomorphon-group model

Parameter Mean SD 3% HDI 97% HDI
sigma 1.05  0.28 0.57 1.53
Intercept -3.60  4.17 -10.90 4.30
slope 1.05  0.52 0.03 1.96
elevation -17.76  43.22  -101.70 59.45
aspect_sin -0.24  0.38 -0.97 0.46
aspect_cos 021 0.34 -0.43 0.86
geomorphon_sigma 1.06  0.77 0.00 2.39
[hollow/footslopel 0.84 1.05 -0.33 3.49
[slopel 0.18  0.93 -1.46 2.12
[valley/depression] 0.03  1.00 -1.81 2.11
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Figure A.11: Posterior predictive distributions for snow temperature. Boxplots show

the predicted distribution from the posterior predictive samples of the pooled linear regression on
snow temperature across the TMS. Red stars indicate the observed values.
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B.4 Bayesian hierarchical models

Table A.12: Posterior summary statistics for Air-Soil Temperature model. FEach sub-
section shows posterior means, standard deviations (SD), and 94% highest density intervals (HDI)
for the pooled model, the vegetation-group model, and the geomorphon-group model. Monte Carlo
standard errors (MCSE) are omitted because they are mostly below 1% of the posterior SD, except
for two parameters (beta_density_top and beta_density_bottom) where MCSE is up to about 2% of
the SD. Effective sample sizes (ESS) are greater than 2000, and R is below 1.01 for all variables.

Pooled model

Parameter Mean SD 3% HDI 97% HDI
beta_air 0.65 0.31 0.11 1.26
beta_depth 1.77  1.37 -0.93 4.21
beta_density_top -1.96  7.68 -16.45 12.48
beta_density_bottom 3.98 3.53 -2.43 11.01
beta_aspect_cos 0.37 047 -0.52 1.26
beta_slope 0.82 0.53 -0.25 1.78
beta_snow_to_surface 1.24 0.18 0.91 1.60
beta_surface_to_soil 1.04 0.05 0.95 1.15
offset_surface 0.24 091 -1.46 2.00
offset_soil 0.20 0.21 -0.18 0.61
sigma_snow 1.13 0.30 0.69 1.66
sigma_surface 0.66 0.15 0.42 0.94
sigma_soil 0.26 0.61 0.16 0.36

Vegetation-group model

Parameter Mean SD 3% HDI 97% HDI
beta_air 0.50 0.29 -0.04 1.04
beta_depth 269 1.22 0.34 4.89
beta_density_top -6.65 7.13 -20.14 6.70
beta_density_bottom 4.32  3.77 -2.72 11.53
beta_aspect_cos 0.24 0.38 -0.48 0.93
beta_slope 1.00 0.42 0.15 1.72
beta_snow_to_surface 1.27 0.20 0.91 1.65
beta_surface_to_soil 1.05 0.05 0.94 1.14
offset_surface 0.25 0.95 -1.45 2.05
offset_soil 0.21 0.21 -0.18 0.61
sigma_snow 0.80 0.25 0.42 1.23
sigma_surface 0.66 0.15 0.42 0.92
sigma_soil 0.26  0.06 0.16 0.37
[dry tundral -0.78  0.67 -1.99 0.50
[wet tundral 0.57 0.68 -0.69 1.85
[moist tundra] 0.08 0.70 -1.26 1.33
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Table A.12 continued from previous page

Geomorphon-group model

Parameter Mean SD 3% HDI 97% HDI
beta_air 0.58 0.32 -0.04 1.19
beta_depth 094 1.51 -1.74 3.87
beta_density_top -3.23  7.92 -18.78 11.08
beta_density_bottom 4.40 3.75 -2.42 11.44
beta_aspect_cos 0.44 0.46 -0.40 1.29
beta_slope 1.02 0.54 0.07 2.07
beta_snow_to_surface 1.27 0.20 0.89 1.65
beta_surface_to_soil 1.04 0.05 0.95 1.15
offset_surface 0.24 0.94 -1.58 1.92
offset_soil 0.20 0.21 -0.19 0.60
sigma_snow 1.08 0.29 0.64 1.62
sigma_surface 0.66 0.15 0.42 0.93
sigma_soil 0.25 0.06 0.15 0.36
[hollow/footslope] 0.48 0.74 -0.90 1.87
[slope] -0.30 0.72 -1.57 1.12
[valley/depression]  -0.25 0.87 -1.89 1.30
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Figure A.12: Posterior predictive distributions for TMS temperatures. Boxplots show
the distribution of posterior predictions of the pooled hierarchical Air-Soil Temperature Model for
snow, surface, and soil temperatures across the TMS. Red stars indicate observed temperature
values.
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Table A.13: Posterior summary statistics for Snow-Soil Temperature model. FEach
subsection shows posterior means, standard deviations (SD) and 94% highest density intervals
(HDI) for the pooled model, the vegetation-group model, and the geomorphon-group model. Monte
Carlo standard errors (MCSE) for the mean and SD w are less than 1% of the corresponding
posterior standard deviation. Effective sample sizes (ESS, bulk and tail) are always greater than
1700, and R is below 1.01 for all variables.

Pooled model

Parameter Mean SD 3% HDI 97% HDI
beta_density_bottom 4.36  3.78 -2.61 11.55
offset_surface 0.25 0.94 -1.49 2.02
beta_snow_to_surface 1.27 0.20 0.90 1.63
offset_soil 0.20 0.21 -0.17 0.60
beta_surface_to_soil 1.04 0.05 0.94 1.14
sigma_surface 0.65 0.14 0.43 0.92
sigma_soil 0.25 0.06 0.16 0.36

Vegetation-group model

Parameter Mean SD 3% HDI 97% HDI
beta_density_bottom 5.16 4.29 -2.32 13.39
offset_surface 0.20 0.95 -1.59 1.90
beta_snow_to_surface 1.34 0.24 0.91 1.82
offset_soil 0.20 0.20 -0.17 0.58
beta_surface_to_soil 1.04 0.05 0.94 1.13
sigma_surface 0.70 0.18 0.42 1.02
sigma_soil 0.25 0.06 0.16 0.36
[dry tundral 0.24 0.63 -0.97 1.40
[wet tundra] -0.04 0.65 -1.21 1.22
[moist tundra] 0.00 0.66 -1.22 1.21

Geomorphon-group model

Parameter Mean SD 3% HDI 97% HDI
beta_density_bottom 3.51  4.02 -3.94 11.13
offset_surface 0.00 0.97 -1.76 1.86
beta_snow_to_surface 1.20 0.21 0.81 1.58
offset_soil 0.20 0.21 -0.19 0.57
beta_surface_to_soil 1.04 0.05 0.95 1.14
sigma_surface 0.63 0.16 0.37 0.91
sigma_soil 0.25 0.06 0.16 0.37
[hollow/footslope] 0.36 0.61 -0.79 1.52
[slopel 0.21 0.62 -0.95 1.35
[valley/depression]  -0.56 0.72 -1.87 0.83
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Figure A.13: Posterior predictive distributions for TMS temperatures. Bozplots show
the distribution of posterior predictions of the pooled hierarchical Snow-Soil Temperature Model for
surface (left), and soil temperatures (right) across the TMS. Red stars indicate observed temperature

values.
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