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A B S T R A C T

Turbidity currents on continental margins are often attributed to cyclic climate variability and sea-level change, while the causes of deep ocean turbidites are as yet to 
be tested. The Atlantic Iberian margin provides a unique setting to contrast deep ocean and continental environments, including depression features that further 
protect from resuspension and erosion by along-slope bottom currents. We present records of low-frequency, non-periodic, climate-independent turbidites from three 
deep cores covering up to 426,000 years in the Tore seamounts area. By evaluating a range of physical oceanographic mechanisms, the breaking of internal waves 
and mesoscale Mediterranean-eddies against unstable slopes in the seamounts area arises as the most likely triggers that precondition the recurrence pattern of the 
observed deep ocean turbidites.

1. Introduction

The deep sea experiences the occasional, geologically instantaneous 
emplacement of turbidite deposits originating from unstable seabed 
slopes (e.g., Gamboa et al., 2021). Sediment transport by turbidity 
currents is an important process that threatens critical global infra
structure such as submarine telecommunication cables, pipelines, or 
platforms in shallow and deep waters (e.g., Carter et al., 2014). Seldom 
discussed and of interest in this study are the triggering mechanisms for 
turbidity currents decoupled from continental margin sedimentary 
processes.

The recurrence and frequency of turbidites in the geological record 
emanating from the passive Portuguese continental margin have usually 
been attributed to major triggers such as eustatic sea-level shifts forced 

by climatic changes on different time scales (e.g., Lebreiro et al., 1997, 
2009), in parallel with devastating episodes of seismic shaking (e.g., 
Gràcia et al., 2010; Masson et al., 2011).

The former corresponds to the model of continental shelf exposure to 
erosion during low sea-level stands when submarine canyons develop, 
and turbidity currents and landslides transfer sediments to the deep 
ocean after accumulation during high sea-level stands (Vail et al., 1979; 
Shanmugam and Moiola, 1982; Posamentier and Vail, 1988; Nisbet and 
Piper, 1998; Owen et al., 2007; Knudson and Hendy, 2009). However, 
near the influence of continental margins, not only eustatic low-stands, 
but also the rising and falling of sea-level have been invoked to explain 
the occurrence of turbidites. On the Atlantic Iberian and 
Celtic-Armorican margins, millennial climate variability of Heinrich 
(Bond et al., 1993; Rahmstorf, 2003) and Dansgaard-Oeschger 

* Corresponding author.
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(Dansgaard et al., 1993; Grootes et al., 1993) extreme cold events, 
related to minor sea-level changes (Siddall et al., 2008), have also shown 
significant impact on higher frequencies of turbidites (Toucanne et al., 
2008; Lebreiro et al., 2009). Farther from the continental margins, for 
instance on the Atlantic Madeira Abyssal Plain (Weaver and Kuijpers, 
1983; Weaver et al., 1992), if only white-carbonate turbidites origi
nating from the nearby Mid-Atlantic Ridge and surrounding seamounts 
are considered, which thus exclude continental margin supply triggers, 
the recurrence would account 1 turbidite every 150 ka for the last 750 
ka. While it is true that some of these turbidites coincide either with 
glaciations and deglaciations during the early Pleistocene (Weaver and 
Kuijpers, 1983; Weaver et al., 1992) or with rising sea-levels and 
high-stands in a long 17 Ma-series of volcaniclastic turbidites originating 
from the flank collapse of the Canary Islands (Hunt et al., 2014), an 
increasing body of evidence suggests that there is no statistically sig
nificant association between these events and changes in sea-level and 
related climate (Urlaub et al., 2013; Hunt et al., 2014). In addition, from 
a geomechanical perspective, the potential effect of slow sea-level 
fluctuations on slope stability and failure is reduced, as the hydro
static pore water pressure and total stress on the seafloor are minimised 
with increasing water depth (Urlaub et al., 2013). This poses the chal
lenge of explaining non-periodic, low-frequency deep sea turbidite se
ries on a regional scale, addressing a knowledge gap that the present 
study aims to fill.

Seismic shaking is considered to be the second major trigger of 
turbidity currents, sustained by the regional spatial distribution of 
synchronous turbidite deposits. Paleoseismites have been reported in 
the Portuguese margin, ultimately related to the well-known 1755 Lis
bon earthquake and other instrumental and historical seismic events, 
but always associated with submarine canyon systems attached to the 
continental margin (Lebreiro et al., 1997; Gràcia et al., 2010; Masson 
et al., 2011). Assigning seismicity as a primary external trigger for 
turbidity currents is not unequivocal (Masson et al., 2011) and requires 
careful tracing of their source areas and validation of the regional cor
relation of individual simultaneous turbidites (e.g., Goldfinger et al., 
2007; Gràcia et al., 2010; Mérindol et al., 2022).

On the other hand, major external triggers such as sea-level changes, 
earthquakes and other triggers (seasonal storms, surface and internal 
tides, or intensive fishing) have been rejected as explanations for more 
than 1000 land-detached Whittard-type submarine canyon systems 
monitored over a period of time (Heijnen et al., 2022), which are 
certainly more influenced by continental sedimentary processes than the 
far-land and abyssal setting of our cores. Finding non-correlatable and 
inconsistent records, Heijnen et al. (2022) relegated the possibility of the 
occurrence of turbidity currents to a sustained or sudden preconditioned 
sediment supply, where a number of minor perturbations are sufficient 
to initiate a turbidity current. This is, in turn, contradictory to the direct 
irrelevance of rapid sedimentation rates in preconditioning slope failure, 
as argued by Urlaub et al. (2013). Besides, for the nearby Nazaré 
Canyon, Allin et al. (2016) discerned the discrepancy in the frequency of 
canyon-filling (triggered by sea–level change, storms and nepheloid 
transport) and canyon-flushing events. In their study, a random process 
or signal shredding (i.e., attenuation of the environmental signal by 
non-linear sediment transport processes; Jerolmack and Paola, 2010) is 
further introduced as a solution to explain this difference (Allin et al., 
2016).

Recognising the above ambiguities and controversies, which may be 
partly strengthened by uncertainties in statistical analysis (Allin et al., 
2017), we focus on the need for alternative mechanisms capable of 
triggering turbidity currents in the deep ocean other than those 
commonly attributed to continental margins.

We examine several physical oceanographic processes that would 
affect the deep domain of the Tore seamounts area from global and 
regional perspectives, in particular the influence of internal tides, or 
internal waves, over complex topography. The capacity of internal 
waves to trigger turbidity currents has already been demonstrated in 

submarine valleys and canyons (Miramontes et al., 2019; Heijnen et al., 
2022), as has the converse (Azpiroz-Zabala et al., 2017), thereby illus
trating their potential.

The seabed is covered with seamounts affected by oscillations 
varying from lower to higher frequencies in a large spectrum of peri
odicities: inertial oscillations (a function of latitude), diurnal- and semi- 
diurnal- tides (23.93 h, K1; and 12.42 h, M2 tidal components, respec
tively), and buoyancy-forced motions (a function of local ocean strati
fication) (Lavelle and Mohn, 2010). Internal tides (i.e. internal waves of 
tidal frequencies) are generated by the interaction of barotropic tides 
with topography in a stratified ocean. Rougher topography and greater 
stratification increase internal wave activity and mixing (Polzin et al., 
1997). In the deep sea, seamounts act as sources and sinks of eddies and 
are the main features converting periodic processes (ocean tides) into 
higher-frequency waves and ultimately turbulence (Lavelle and Mohn, 
2010). Despite the substantial number of seamounts distributed across 
abyssal settings (e.g., isolated basins such as Tore), their role as turbidite 
sources remains under-explored, and their triggers remain speculative.

Several processes operate on abyssal circulation, including the 
transfer of energy from mesoscale to small-scale processes including 
diapycnal mixing in the deep ocean (Liang and Thurnherr, 2012), mean 
flow–seamount interaction over crests and slopes (Ledwell et al., 2000; 
Lavelle and Mohn, 2010), internal wave shear-induced mixing 
(MacKinnon et al., 2017), mesoscale eddy–seamount collisions (Bell, 
1975; Richardson et al., 2000), and occasional internal wave breaking 
near steep slopes (Polzin, 2009; van Haren, 2018). However, these have 
only been marginally linked to sediment erosion/deposition in the deep 
ocean, notwithstanding work from Lonsdale et al. (1976) to Turnewitsch 
et al. (2013) and van Haren et al. (2015).

We provide three new time series of turbidites from tactical deep 
ocean environments in the Atlantic Iberian margin to test whether in
ternal ocean processes precondition slope failure and turbidity trig
gering in the deep sea. By combining sediment core records, numerical 
model simulations of tidally driven circulation over deep sea topography 
and realistic mesoscale flow, and CTD observations, we introduce 
methodological innovations that help to resolve debates on abyssal 
sediment dynamics.

2. Materials and methods

2.1. Core sites

Calypso core MD13-3473 (39◦22.680′ N; 12◦50.114′ W) was 
collected at − 5505 m in the basin surrounded by the Tore seamounts, in 
the absence of resuspension and erosion by along-slope bottom currents 
(Fig. 1a, Table S1). This internal basin, with a depth of − 5505 m and a 
diameter of 120 × 90 km, has summits at − 2200 m below the sea surface 
and is externally isolated except for two narrow sills that reach depths of 
− 4300 m. Morphologically, it emerges from the surrounding abyssal 
floor and is 300 km from the Portuguese continental margin, providing 
an opportunity to analyse a record set aside of continental margin- 
associated sedimentary processes. Giant piston core D219/3P 
(39◦18.03′N; 11◦21.31′W) was collected at − 4860 m in the Rincão da 
Pomba basin, positioned between the Iberian margin and the Tore 
seamount (Fig. 1a), and collects sediments from the surrounding sea
mounts and, eventually, continental slopes. Piston core D11956 T/P 
(38◦21.9′N; 12◦35.6′W) was recovered at − 4825 m in the distal Tagus 
Abyssal Plain, adjacent to the SE outer flank of the Tore seamounts. It is 
reached by turbidity currents that may originate both at the summit rim 
and outer slopes of the Tore seamounts and at the continental margin via 
the Tagus and Sado submarine canyons after a run-out distance of 300 
km (Lebreiro, 1995). No sediment transport pathways connect these 
three sites. Calypso core MD03-2698 (38◦14.37′N; 10◦23.42′W), taken 
from the Iberian margin at a water depth of − 4602 m, is used here as a 
contrasting continental reference core (Lebreiro et al., 2009).
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Fig. 1. Turbidite series setting from − 5000 m in the deep ocean off the Iberian margin over the past 426 ky. (a) Location of marine cores MD13-3473, D219/3P, and 
D11956 T/P; reference core MD03-2698 is also shown. Bathymetry in metres, from GEBCO. (b) Contrast between non-periodic sedimentary records of turbidites 
deposited off the Iberian margin and a cyclic record from the continental margin. From top to bottom: (i) MD03-2698, which is an example of a millennial-scale 
climate-dependent turbidite series from the continental margin (see Suppl. Material); (ii) D11956 T/P from the distal Tagus Abyssal Plain on the outer SE flank 
of the Tore seamounts; (iii) D219/3P from the Rincão da Pomba basin located between the Tore seamounts and the continental margin, and (iv) MD13-3473 from the 
internal basin of the Tore seamounts. Ca/Ti oscillations (blue line, X-ray fluorescence at 1 cm resolution) depict carbonate sedimentation during interglacial and 
glacial stages (darker blue rectangles for glacials, and light blue bars for the Younger Dryas (YD) and Heinrich (H) cold events (Bond et al., 1993; Rahmstorf, 2003)). 
The orange circles symbolise turbidites, and the length of the lines is proportional to the thickness of each turbidite. Note that turbidites are represented by vertical 
lines as they respond to geologically instant deposition. MIS stands for Marine Isotope Stage and a-c-e represent warm substages. (For interpretation of the references 
to colour in this figure legend, the reader is referred to the Web version of this article.)
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2.2. Ca/Ti curves

The split halves of the cores were carefully scraped and covered with 
40 micron-thick “Ultralene” film and flattened to the sediment surface to 
remove any air bubbles trapped underneath. These sections were then 
analysed by using non-destructive, continuous X-ray fluorescence (XRF), 
with an irradiated area of 5 mm in length (down-core) and 12 mm in 
width (cross-core). The full length of MD13-3473 was measured every 1 
cm using an Avaatech core scanner at the University of Barcelona, Spain. 
Spectra were processed using WinAxiBatch software. The SMAR4 stan
dard supplied by Avaatech (Analytical X-ray Technology, The 
Netherlands) was used for external calibration. Two replicates were 
performed along each of the sixteen 1.5 m long sections.

For cores D219/3P and D11956 T/P, the resolution was 1 cm and 2 
mm respectively, and were measured at BOSCORF, National Oceanog
raphy Center, UK, using a COX Analytical Systems Itrax X-ray Fluores
cence (XRF) scanner, while the data were processed using the supplied 
bAxil software.

The elements considered here (Ca, Ti, Zr, Sr, and Rb) were extracted 
from a series of 15 (10 kV), 17 (30 kV) and 7 (50 kV) elements (Lebreiro 
et al., 2025d,e,f,g,h).

2.3. Stratigraphy, timing of turbidites and estimation of frequency

Turbidites are the result of geologically instantaneous events. Their 
facies exhibit homogeneous chemical characteristics, as determined by 
colour change and XRF-elemental ratios, and show bioturbation at the 
top and sharp erosive sandy-silt bases at the bottom. As the term ’tida
lites’ is vaguely defined and their facies are mostly indistinguishable 
(Shanmugam, 2021), we prefer to refer to the facies presented in this 
study as turbidites. To develop the time frame for the turbidite units, 
facies were identified together with the hemipelagic sedimentary re
cord. Turbidites can be extracted (stratigraphically removed) from the 
hemipelagic curve without compromising the quality of the sections 
used for stratigraphy and paleoceanography. The hemipelagic stratig
raphy was constructed using XRF Ca/Ti, Zr/Sr (biogenic and detrital 
proxies; Dypvik and Harris, 2001; Wu et al., 2020) and δ18O of benthic 
foraminifera (ice volume and temperature proxy) (Fig. S1; Lebreiro 
et al., 2025k). The result of our methodological procedure is a 
well-timed long series of turbidite deposition for the three deep ocean 
cores.

The age models and sedimentation rates of cores MD13-3473, D219/ 
3P, and D11956 T/P (Suppl. Material, Figs. S1–S6; Lebreiro et al., 
2025a,b,c,j), were constrained for the hemipelagic sediment by inter
polation between fixed depths dated by AMS 14C (Table S2) together 
with age-depth pointers aligned with high-resolution chronostrati
graphic reference sequences in the area, such as MD03-2698 (Lebreiro 
et al., 2009, 2025f; Waelbroeck et al., 2019, 2023; 2022: SEANOE 
database: doi.org/10.17882/59554), SHAK05-3P, U1385 and 
MD01-2444/2443 (Hodell et al., 2015), and MD01-2446 (Voelker et al., 
2010; Nave et al., 2019) (Fig. S1; Table S3). Sedimentation rates are 
assumed to be constant between fixed dated depths. To date the turbi
dites, the interpolated age corresponding to the 1 cm layer above the top 
of each turbidite is assigned as the age of the turbidite after the turbidite 
units were restored to the hemipelagic stratigraphy (Table S4). We 
considered the erosion caused by occasional turbidite deposition to be 
negligible, as reported for the Iberian surrounding abyssal plains 
(Weaver and Kuijpers, 1983; Lebreiro et al., 1997; Vizcaíno et al., 2006) 
and the margins of North America (Goldfinger et al., 2007; Gutierrez-
Pastor et al., 2009; Mérindol et al., 2022). The average frequency of 
turbidites is estimated by the number of events per core length in 
thousands of years (Table 1). The depth and thickness of each turbidite 
are given in Table S4. The datasets are stored in the PANGAEA-Publisher 
for Earth & Environmental Science repository (Felden et al., 2023).

2.4. CTD

CTD data were collected in the Tore basin during cruises ARCANE- 
Action Recherche Circulation Atlantique in 1998 (Le Cann et al., 
2000) and Eurofleets-TORE in 2013 (Nave et al., 2013). In the latter, the 
SEABIRD SBE 911Plus System equipped with a 24-bottle carousel water 
sampler (SBE32) was deployed for the upper − 3000 m, while a CTD 
coupled to the head of the Casq corer was used for the − 5000 m depth 
(Nave et al., 2013). CTD profiles are available from the IFREMER 
oceanographic data repository.

2.5. Numerical model studies

Simulations were produced with the Regional Ocean Modelling 
System (ROMS) (Shchepetkin and McWilliams, 2005a,b) to investigate 
the flow–topography interactions around the Tore seamounts, consid
ering tidal forcing only and mesoscale flows. In the case of tidal forcing, 
simulations are initialised with a laterally homogeneous climatological 
density stratification. The model was forced with tidal constituents from 
TPXO (https://www.tpxo.net/global) (global tidal model amplitudes 
and phases: M2, S2, N2, K2, K1 and O1). No surface fluxes were imposed. 
The domain limits may be sensitive to remotely generated baroclinic 
tidal energy. The option to include the shelf in the domain was moti
vated by the identification of internal tide generation over the prom
ontory. Additionally, the shelf to the east helped to reduce the strong 
velocities along the eastern boundary associated with Kelvin wave 
propagation. The meridional and zonal dimensions of the domain were 
selected to allow the internal tide to propagate away from the Tore 
seamounts (Fig. S7). The southern, western, and northern boundaries 
were open, and a set of radiative (Orlansky) conditions for 3D mo
mentum and tracers, Flather for 2D variables and passive/active 
nudging type conditions were used. The solutions along the boundaries 
were also complemented with a sponge layer for viscosity and diffu
sivity. The horizontal resolution was 1/90◦ (<1 km), and the 100 sigma 
layers had stretching factors θb = 0 and hc = 20. A linear bottom drag 
parameterization was used (Cd = 3x10− 4 m/s). The diffusion and vis
cosity in the sponge area were applied using Laplacian operators along 
geopotential surfaces. Surface and bottom boundary layers (BBL) were 
parameterized using KPP. Tidal simulations are two-months long, and 
the results presented are the averages over the entire simulation period.

The second simulation used in this study is a high-resolution (~1 km) 
regional circulation model aimed at studying mesoscale flow patterns 
associated with Mediterranean water in the Atlantic. Representing the 
Mediterranean undercurrent requires a higher vertical resolution, so a 
greater number of sigma layers (80) is used. The model does not include 
tides, and the simulations span a period of six months following a three- 
year spin-up. These simulations build on two decades of accumulated 
experience in regional circulation simulations of the Mediterranean 
outflow (e.g., Peliz et al., 2007; Peliz et al., 2013). These are rather 
complex simulations, so for the sake of brevity, we refer interested 

Table 1 
Number of turbidites per core, thickness, and average frequency.

MD13- 
3473

D219/ 
3P

D11956 T/P MD03- 
2698

# turb/core 19 8 41 262
Minimum thickness of 

turbidite (m)
0.01 0.01 0.01 0.001

Maximum thickness of 
turbidite (m)

2.003 2.72 0.37 0.04

Thickness average of 
turbidite (m)

0.41 0.49 0.13 0.002

Frequency (turbidite/kya) 1/22 1/18 1/3 1/0.258
Length of core (m) 23.90 15.43 8.44 (piston) 

+0.34 
(trigger)

35.40

a ky for thousands of years.
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readers to these studies for a detailed description of the model. The 
updates relative to previous modelling versions are essentially related to 
higher resolutions and numerical implementations aligned with the 
current standard of CROCO version V1.2.

However, it is worth noting that, in relation to this study, sigma- 
coordinate models such as ROMS always produce spurious flow over 
steep topography (not necessarily over the bottom itself), particularly in 
those parts of the water column where steep model layers coincide with 
high buoyancy gradients. These errors can be minimised either by using 
less vertical resolution (a lower number of sigma-layers) or smoother 
topographies.

These errors manifest as rim-like or contour (along-isobath) time- 
mean currents, which, in extreme cases, can reach a few centimetres 
per second.

In the case of Tore, we aimed for values below 1 cm/s, and we will 
discuss the possible impact on the validity of the results below.

3. Results and discussion

3.1. Deep ocean turbidite records

The mid-latitude Iberian margin has yielded key turbidite datasets 
interbedded with Late Quaternary hemipelagites at unusual water 
depths of approximately − 5000 m, and precluding the potential influ
ence of land-attached canyon systems. The sediment cores studied come 
from three exclusive deep basins: MD13-3473 (Tore seamounts semi- 
enclosed basin), D219/3P (Rincão da Pomba basin) and D11956 T/P 
(distal Tagus Abyssal Plain) (Fig. 1a; Table S1). The previously pub
lished dataset MD03-2698 on the levee of the Tagus and Sado river 
canyon system, which is thus connected to land (Lebreiro et al., 2009), is 
used here as a comparison site, where clusters of increasing turbidites 
responding to millennial-scale cyclicity clearly dissent from the new 
sites.

Sources and frequency of turbidites - The turbidites found at MD13- 
3473 (Tore basin) can only be triggered from the rim and inner slopes of 
the Tore seamounts deeper than − 2200 m, where the potential effect of 
sea-level fluctuations on slope stability and failure is somewhat reduced 
(Urlaub et al., 2013). Together with a discontinuous pattern and a slow 
average frequency of 1 turbidite/22 ky (Table 1), this semi-enclosed site 
ensures entire independence from continental sedimentary processes 
and sea-level climate change related forcing.

The other two series, although most likely influenced by mixed 
continental and deep ocean processes, also show discontinuous deposi
tion of turbidites. Core D219/3P (Rincão da Pomba basin) collects tur
bidites from the slopes of nearby seamounts and has an average 
frequency of 1 turbidite/18 ky. Further away, D11956 T/P (Tagus 
Abyssal Plain) is reached by turbidity currents that have initiated on the 
summit rim and outer slopes of the Tore seamounts, as well as on the 
continental margin via the Tagus and Sado submarine canyons 
(Lebreiro, 1995), with an average frequency of 1 turbidite/3 ky.

Our results show no linear relationship between the turbidite depo
sition and continental shelf proximity as deduced from the lowest and 
highest frequencies of nearby MD13-3473 and D11956 T/P, respec
tively. The few analogies between site D11956 T/P (partly fed by can
yons) and MD03-2698 (at the levee and fully supplied by a canyon) 
suggest that submarine canyons may play a role in partially explaining 
the relatively higher frequency of turbidites sourced in the continent 
(Lebreiro et al., 2009) (Fig. 1b).

Timing of turbidites – The three new series of turbidites are detailed 
in the Supplementary Material (Table S3; Table S4). The MD13-3473 
sequence spans 426 ky with nineteen individual turbidites up to 2 m 
thick, covering five orbital glacial-interglacial cycles (Fig. 1b–iv). There 
is no coherence between the emplaced turbidites and either (sub)orbital 
(full glacial low sea-level stand versus full interglacial high sea-level 
stand, including warmer/cooler substages) or millennial time scales 
(Fig. 1b–iv). D219/3P covers 141 ky and contains eight turbidites of 

variable thickness exceeding 2.7 m (Fig. 1b–iii). D11956T/P extends 
back to MIS-5 through 128 ky, with a record of forty-one turbidites and 
an average thickness (maximum thickness of 0.37 m; Table 1) that is the 
lowest of the three series (Fig. 1b–ii).

These findings contrast with those of continental margin studies, 
particularly core MD03-2698, which 2- to 4-fold higher sedimentation 
rate during the last glacial low-stand compared to the Holocene high- 
stand, exhibited a turbidite record that is climate-dependent, with a 
coherent pattern of increasing frequency of very thin turbidites (average 
frequency of 1 every 258 years; Table 1; Lebreiro et al., 2025i) 
concentrated in clusters preferentially during Heinrich stadials H6 to 1 
and Greenland stadial events over the last 63 ky (Lebreiro et al., 2009) 
(Fig. 1b–I; Fig. S3). These are also linked to sea-level oscillations and 
rapid shifts in global circulation in the Atlantic (Lebreiro et al., 2009).

Regardless of the distance between our land-detached sites, the fre
quency and timing of turbidites reveal non-periodic series in all three 
records. There is no consistent, predictable pattern in these three new 
series, with only a few temporal coincidences occurring during 
millennial-scale climate events or suborbital transitions. Given the 
absence of turbidites during H3, H4 and H5 in both MD13-3473 and 
D219/3P, and over older sections of the last five glacial–interglacial 
cycles (Fig. 1b), the synchronicity of a few turbidites with millennial 
variability Heinrich stadials cannot be translated into convergent trig
gers in the deep ocean. Therefore, based on observations of disruptive 
turbidites at very low frequencies in general, and the lack of synchro
nicity of events in particular, it cannot be proven that global sea-level 
and climate changes (on orbital and millennial scales) are the primary 
forcing cause of slope instability and the triggering of turbidity currents 
in the Tore and nearby Rincão da Pomba basins, and the distal Tagus 
Abyssal Plain.

The earthquake-turbidite cause-effect relationship seems conceptu
ally easy to postulate and demonstrate in areas of strong seismic activity 
and proximity to the earthquake source, where canyons are fed by 
continental shelf sensitive shaking sediments led to abyssal depths (e.g., 
Goldfinger et al., 2007; Mérindol et al., 2022; Bektaş et al., 2024). 
Although paleoseismicity reconstructions from turbidites are known to 
be associated with canyons and proximal to major earthquake sources in 
the southwest Portuguese passive margin (Lebreiro et al., 1997; Gràcia 
et al., 2010; Masson et al., 2011), ground-truth events at all three of our 
sites lack synchronicity and widespread concurrence, and cannot 
therefore be interpreted as paleoseismites. It is improbable that a single 
earthquake could destabilise the slopes of three morphologically inde
pendent and unconnected abyssal domains in this relatively large 
regional area, rendering these scenarios unlikely in paleoseismological 
terms (Sumner et al., 2013). Tectonically, the Tore seamounts represent 
the northern end of the Early Cretaceous aseismic Madeira-Tore Rise 
ridge, formed near the slow seafloor spreading Mid-Atlantic Ridge 
(Peirce and Barton, 1991). These two considerations lead us to rule out 
seismic shocks as an applicable external forcing mechanism to explain 
our turbidite sequences.

Assessment of sediment accumulation at sites prior to turbidite 
deposition – The intrinsic properties of the sediment, such as excess 
weight and pore pressure due to changing sedimentation rates, can 
induce sediment stress and subsequent slope instability in the deep sea. 
The potential amount of sediment available in situ prior to turbidite 
triggering can be inferred from sedimentation rate estimation (Fig. 2). 
Our data show that a higher accumulation rate in situ prior to placement 
of a given turbidite is not a necessary condition for either triggering or 
generating thicker turbidites. This is particularly verifiable at site MD13- 
3473, which is confined in the deep basin of the Tore seamounts and is 
undisturbed from resuspension and erosion of bottom currents, and 
where the turbidite record is therefore assumed to be hypothetically 
complete. Sites D219 and D11956, combining continental and subma
rine seamounts sediment sources, would, however, imply a more 
cautious approach. Consequently, our observations suggest that pre
conditioning or oversteepening by increased sediment accumulation is 
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unlikely to explain turbidite recurrence here. This is consistent with the 
findings of Urlaub et al. (2013), who reported delayed landslide failure 
thousands of years after increased sedimentation rates.

Since sea-level/climate, seismic forcing or rapid accumulation rates 
cannot explain the irregular pattern of turbidite occurrence in the three 
new offshore deep sea records, we now consider alternative mechanisms 
that could be at work, capable of triggering turbidity currents in the 
deep ocean.

3.2. Tides on the Tore seamounts

Tides may be potentially important in preconditioning failure of 
slopes in the Tore area through several mechanisms: (1) conversion of 
barotropic to baroclinic energy at depth by tidal forcing; (2) scattering of 
energy across the internal wave spectrum towards higher modes; (3) 
production of local resonantly generated trapped waves and Taylor 
column caps by low-frequency forcing; and (4) nonlinear rectified and 
amplified flow around the Tore seamounts by tide-slope interaction.

Conversion of barotropic to baroclinic tides - The effect of 
impinging oscillatory tidal flow on seamounts depends greatly on the 
seamount morphology (size, shape, and flank slope). We first focused on 
the flow dynamics along the edges and inside the Tore seamounts to 

determine how tides may promote energetic motions near the Tore 
slopes. We were concerned with i) the mean flow associated with tidal 
rectification and ii) mixing processes forced by internal tide generation 
and interaction with the Tore topography.

The interaction of tidal flow with seamounts is dependent on lati
tude, its incident wave frequency and local slope steepness. To assess the 
criticality of the response to topography we measured the steepness 
parameter (s/α; s being the topographic slope), where the critical slope 
of the internal tidal beams is α=((ω2-f02)/(N2 – ω2))½ (f0 is the local Co
riolis parameter, N2 is the buoyancy frequency squared, ω = 2π/T is the 
tidal frequency, and T is the tidal period). For frequencies above the 
local Earth rotation (ω>f0), if s/α is higher than 1, the baroclinic 
response to barotropic tidal forcing is in the supercritical regime, and 
higher baroclinic modes will likely be generated. For subcritical regimes 
(s/α < 1), low modes are generated that are not efficient in producing 
enough shear. Although some interaction and energy transfer between 
modes is possible, the time scale for this spectral interaction is larger 
than that associated with the group velocity, which propagates the en
ergy away from the generation point. Unless supercritical conditions are 
met, a transfer of barotropic tidal energy to small-scale turbulence is not 
expected. The agreement between the s/α parameter estimated from 
observations and the one estimated with model data is good (Fig. 3). 

Fig. 2. Assessment of sediment accumulation at sites prior to turbidite deposition for cores D11956 T/P (a), D219/3P (b), and MD13-3473 (c, split into two panels). 
Sedimentation rate of hemipelagic sediment (grey rectangles and blue line) and thickness of turbidites (black vertical lines; small numbers next to vertical lines are 
turbidites with cm-thickness exceeding the Y-axis scale). (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version 
of this article.)
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High values of s/α, including near critical and supercritical conditions, 
are present on the summit of the individual seamounts, especially along 
the northern flank of the Tore seamounts (Fig. 3). Inside the Tore sea
mounts the estimates are below the critical conditions. Other topo
graphic features located in the vicinity of the Tore seamounts at 
distances not exceeding 1 to 3 mode 1 M2 baroclinic wavelengths (we 
estimate the M2 mode 1 wavelength to be about 150 km) also support 
the hypothesis that baroclinic tides generated remotely may interact 
with the Tore seamounts. Turnewitsch et al. (2013) suggest that even in 
subcritical regimes, the orientation of the internal tidal beams may align 
parallel to the slope and induce velocity shear near the ground.

On the nearby Josephine seamounts, S of the Tore seamounts and SW 
of the Tagus Abyssal Plain, based on high-resolution temperature sensor 
moorings (water depths 2200–2900 m), a 100-fold increase in turbu
lence on the steepest (9.4◦) and supercritical (α ≈ 0.4s) bottom slopes is 
reported to be associated with large nonlinear internal wave breaking, 
with strong variations in magnitude over relatively short distances of 
3–5 km though (Van Haren et al., 2015). Waves steepen and break when 
the dominant internal wave phase speed matches the particle velocity 
(Van Haren et al., 2015) and the seamount slope angle approaches the 
characteristic slope of the internal waves (Lister, 1976). Accordingly, 
local features and the topographic configuration can induce significant 
flow-field and mirrored sediment distribution asymmetry (Lonsdale 
et al., 1972) in the interaction of internal tides with the bottom, and this 
is a determining factor in sediment mobilisation (Van Haren et al., 
2015). Similar asymmetry is also evident in sediments deposited by 
turbidity currents on the eastern side of the Great Meteor seamount, 
South of the Azores islands in the Atlantic (von Stackelberg et al., 1979). 
At the Horizon guyot in the northern central Pacific, Lonsdale et al. 
(1972) propose that the interaction of internal tides with 
sediment-covered seamounts controls the inclination of eroding sedi
ment slopes when the slope angle equals the inclination of internal tide 
energy flux. Likewise, they note that the seamount bed sediment appears 
to be swept upslope by accelerated tidal currents, contributing to slope 

erosion.
Scattering to higher energy modes - Scattering of internal waves is an 

efficient process for energy transfer between modes. Scattering over 
steep topography, especially convex slopes, may produce a flattening of 
the internal wave spectra with a flux of energy towards higher modes. 
More energy on higher modes (higher frequencies) implies a higher 
likelihood of turbulence that ultimately may affect the resuspension 
processes of the benthic layers around the Tore seamounts.

Internal wave generation converts barotropic to baroclinic energy in 
stratified water with variable seafloor bathymetry (Garrett and Kunze, 
2007). An estimate of the available baroclinic energy indicates that a 
substantial part of the barotropic energy is converted to baroclinic 
higher modes, which produce significant interactions with the sharp 
topography of the Tore seamounts as seen in Fig. 4, even at very deep 
levels. Although the bulk of the energy is shown concentrated around 
the permanent pycnocline above − 1500 m, part of it propagates 
downwards as expected along internal tide rays. In our simulations, we 
observe several rays that are rooted at the summits around Tore. Note 
that these peaks were classified as critical in the previous analysis 
(Fig. 3). However, we should note that this analysis is an approximation, 
as we are using a hydrostatic model. Higher-frequency internal waves 
may arise from the interaction of the baroclinic tide with topography, 
which we cannot estimate in this study. Near-inertial internal waves are 
also known to be relevant for the BBL dynamics and slope flows (Xie 
et al., 2023). Future studies should consider these dynamics.

Trapped waves and Taylor caps - At the Tore seamounts latitude, the 
inertial period (Tf = 2π/f) is approximately 18.8 h, implying that diurnal 
tides are subinertial (ω<f0) and may generate freely propagating topo
graphic trapped waves (Lavelle and Mohn, 2010; Turnewitsch et al., 
2013) around these seamounts. The amplitude of diurnal tides over the 
Tore seamounts is, however, rather small (below 0.1 m in the TPXO 
model). To predict the tendency of low-frequency forcing (ω<f0) to 
develop coherent time-mean flow structures such as trapped waves or 
Taylor caps on isolated topographic features, we use the Burger number 
(S=NH/f0L) and the Rossby number (Ro = U/Lf0) (where H is the water 
depth and L is a lateral length scale of the Tore seamounts; and N is the 
buoyancy frequency and f0 is the Coriolis parameter as above), together 
with the fractional seamount height δ = hmax/H (where hmax is the 
height of the seamount and H is the water depth ~5000 m) (e.g, Lavelle 
and Mohn, 2010). By introducing climatological stratification data and 
certain intervals for hmax (~2500 m) and L (L = 100 km as the outer 
length of the whole seamount, and L ~ 20 km as the inner boundary of 
topographic features such as the small seamounts around the Tore), we 
estimate some intervals for these dimensionless dynamical scales: S =
[0.3–2.3]; δ = 0.62; Ro = [0.005–0.01]. Assuming these limits, the Tore 
seamounts appear to have the potential to produce resonantly generated 
trapped waves and trapped Taylor column/caps, as otherwise shown in 
the cases of the nearby Seine and Sedlo seamounts in the Atlantic (White 
and Mohn, 2002), or the Fieberling and Caiwei guyots in the Pacific 
(Beckmann and Haidvogel, 1997; Brink, 1995; Guo et al., 2024). Guo 
et al. (2024) further suggest mesoscale perturbations from the upper 
layer to provide energy to excite trapped waves on the deep Pacific 
Caiwei guyot. Periodic forcing is capable of producing a strong wave 
response to resonant amplification (Beckmann, 1995). 
Seamount-trapped waves are therefore likely to lead to higher-frequency 
(diurnal) and high-amplitude fluctuations in current speed and direction 
on and around the summits of seamounts. These processes are relevant 
to the dynamics of sediment deposition and/or erosion; in many loca
tions of the seamounts, the maximum total tidal current speed near the 
seafloor is higher than the threshold current speed (6–8 cm/s) needed 
for resuspension (Turnewitsch et al., 2013).

Non linear rectified flow - A final aspect of the circulation at sea
mounts caused by an impinging oscillatory flow is the generation of a 
steady unidirectional residual current (Lavelle and Mohn, 2010). Thus, 
we addressed the production of time-mean residual flows over topog
raphy by nonlinear rectification driven by both semidiurnal and diurnal 

Fig. 3. Estimation of the slope criticality (s/α ratio) using model topography in 
the Tore seamounts area. Climatological hydrographic data are used to estimate 
N2 (buoyancy frequency squared). The colour scale is saturated at s/α = 1.5. 
There are many critical and near critical values around the Tore seamounts. 
Supercritical values (s/α > 1) are contoured in magenta. Solid contours 
represent isobaths (black lines: 4, 4.5 and 5 km; red lines: 3 and 3.5 km). The 
real ocean topography (not shown) should have even steeper slopes and higher 
criticality. (For interpretation of the references to colour in this figure legend, 
the reader is referred to the Web version of this article.)
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tides. Fig. 5a shows the bottom time-mean flow (averaged over two 
months) produced by the interaction between tides and topography, 
with velocities rarely exceeding 2–3 cm/s. This flow is too small and 
may have contributions from both periodic trapped motions and back
ground spurious numerical currents (see methods).

At the Fieberling Guyot, Beckman & Haidvogel (1997) show that 

rectification depends critically on the eddy fluxes balancing the time- 
mean downwelling over the seamount summit and upper flanks. Tidal 
rectification and amplification at the seamounts contribute significantly 
to the residual circulation (Brink, 1995; Turnewitsch et al., 2013). Re
sidual flows can consequently reach substantial amplitudes with strong 
implications for sediment dynamics (White and Mohn, 2002). However, 

Fig. 4. Estimation of tidal energy conversion (from barotropic to baroclinic) w’N2 (w’ vertical velocity fluctuations; N2 buoyancy frequency squared) in metres per 
second squared (m/s2), averaged over the entire two-month simulation.

Fig. 5. Bottom flow magnitude (speed) maximum (left) and mean (right) for the entire two-month of the tidally-forced (a) and mesoscale (b) simulations. Solid 
contours represent isobaths (black lines: 4, 4.5 and 5 km; red lines: 3 and 3.5 km). Note the difference in colour scale between the tidal and mesoscale cases. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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in the case of Tore, the tidally driven time-mean rectified flow does not 
seem to be relevant. The maximum bottom velocities shown in Fig. 5b 
indicate that the maximum values can exceed the background flow by a 
large margin, reaching values above 5 cm/s in some places. These are 
mainly associated with periodic (5–12 day periodicities - not shown) 
trapped modes.

The several CTD casts collected in the Tore basin and around its 
periphery showed a strong homogenisation of the entire water column 
inside the Tore basin (Fig. 6) for depths below the − 4300 m sills (Fig. 1). 
Such a level of mixing is much higher than that found at equivalent 
depths outside the Tore seamounts, where mixing is one to two orders 
lower, indicating that some specific mixing processes might occur inside 
the Tore basin. Note that the potential temperature of the Tore basin 
mixed water (station 60) is close to that of the lower level near the sill 
depth (station 59) in Fig. 6.

The casts obtained on the external part of the Tore seamounts exhibit 
a change in the slope of the potential temperature profile close to the 
bottom (Fig. 6). This may be an indication of slope flow. Using a simple 
scaling method (e.g., MacCready and Rhines, 1993) that relates the 
bottom layer height Hbl, the slope s, stratification N2, and bottom ve
locity V, one can make a rough assessment of the velocities for the 
different stations. The bottom slope was estimated from the topography 
at the CTD cast position. Then temperature and salinity were used to 
estimate N2. Applying the N2 values shown in Fig. 6 to estimate 
V=Hbl*N2*s/f (f for local Coriolis), the velocities obtained are in the 
range of 2–5 cm/s. Despite the simplicity of the scaling, the values agree 
in terms of magnitude with the estimates of bottom currents produced 
by the model at the Tore seamounts. This flow may complement other 
processes triggering turbidity currents. We see that these values are even 
higher in the case of the mesoscale simulations.

3.3. Interaction of intermediate mesoscale eddies with the Tore seamounts

In addition to the tidally driven dynamics discussed above (3.2), 
intermittent interaction of eddies with topography may favour intense 
slope flows and thereby develop the conditions conducive to significant 
downslope turbidity currents.

The seamounts along the paths of the Mediterranean Overflow Water 
(MOW) are known to be places of intense ocean eddy activity 

(Richardson et al., 2000). The Tore seamounts are located in an area of 
considerable transit of Mediterranean Overflow Water eddies (Meddies) 
(Ambar et al., 2008), and have their main salinity signature roughly 
between − 500 m to − 1500 m. Previous work on the census of drifter 
tracks trapped by Meddies shows that the probability of Meddy–Tore 
encounters in a time-window of a few years is significant (Richardson 
et al., 2000; Barbosa-Aguiar et al., 2013). Although a large portion of 
Meddies tend to separate off Cape S. Vincent, a substantial number 
(10/year) are generated close to the Estremadura Spur and drift off the 
slope along a corridor that crosses the latitudes of the Tore (Fig. 7). The 
trajectories of a large population of Meddies generated in the Gulf of 
Cadiz, submarine canyons, seamounts and the Extremadura Spur were 
traced around the Iberian margin, while running an eddy-tracking al
gorithm for a high-resolution 20-year simulation of Meddy formation 
and propagation, identifying salinity and density anomalies 
(Barbosa-Aguiar et al., 2013). These modelled Meddies migrated and 
impacted the Tore seamounts region (Fig. 7), where their trajectories 
showed signs of being deflected around the Tore summits, and vertically 
reached the approximate depth of the Tore seamounts summit at − 2200 
m water depth (Barbosa-Aguiar et al., 2013). Therefore, the likelihood of 
Meddy–Tore seamount interactions at present appears to be high (e.g., 
Richardson et al., 2000; Barbosa-Aguiar et al., 2013), and the downward 
influence of eddies colliding with bottom topography is not uncommon.

We examined the mesoscale structure and bottom flow of a realistic 
circulation model with a resolution of 1 km covering the Tore area. 
During the available 6-month period, there were no clear examples of a 
’canonical Meddy’-Tore encounter. However, there were several in
stances of upper-ocean mesoscale structures around the Tore area that 
coincided with bottom-trapped flows. Fig. 7a shows the model’s syn
optic salinity distribution at − 1000 m, where high salinity structures 
(’Meddies’ in the broad sense) are present. The Tore is located at the 
northwestern end of the domain, and a cyclonic, high-salinity core 
structure is observed to the north at this time, surrounded by swirling, 
low-salinity arms that can be classified as a shallow, cyclonic ’Meddy’ 
(see Barbosa-Aguiar et al., 2013). Over the Tore seamounts, a salinity 
front is visible, produced by a northward-protruding ’mushroom-like’ 
deformed vortex pair. The corresponding vertical distribution of zonal 
velocities (quasi-cross-section flow) along the section marked by the 
blue line is shown in Fig. 7b.

Fig. 6. Mixed layer inside and outside the Tore seamounts based on bottom temperature profiles (profiles are plotted bottom-up). CTD data were collected as close as 
possible to the bottom. The y-axis refers to the height above the deepest sample depth. Profiles are positioned in the abyss (black lines), inside the Tore seamounts 
(magenta; station 60), and over the Tore slopes/sill (green, blue, red). Solid lines show the possible depth of the bottom mixed layer associated with residual flows 
(see text). The numbers indicate the approximate value of stratification (buoyancy frequency squared, N2) for the different stations computed for the last 200 m. The 
inset illustrates the position of stations above topography. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version 
of this article.)
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We observe that velocity structures in the upper ocean are generally 
more pronounced than salinity structures. However, the velocity 
signature becomes much weaker below − 2000 m. Conversely, we 
observe localised flows on the seamount slopes that can reach velocities 
of up to 6 cm/s.

Mesoscale structures in the upper ocean may be associated with 
seamount-trapped flows. However, this association is not straightfor
ward (e.g., Jiang et al., 2021, for a review). In our particular case, the 
advection of deep fluid parcels across the isobaths by upper ocean 
vortices due to constraints on potential vorticity conservation, seems 
especially important (e.g., Herbette et al., 2003). There is also a number 
of studies reporting the influence of surface structures on deep sea 
seamounts via the excitation of topographic Rossby Waves (see, e.g., 
Guo et al., 2020; Wang et al., 2021; Shu et al., 2022).

We have produced the same statistics for the bottom flow (maximum 
and mean over a six-month period), which are presented in Fig. 5. As can 
be seen, the mean flow (which may be contaminated by spurious nu
merical currents to some degree) is much lower than the maximum. This 
suggests that mesoscale, event-like flows dominate other modes of 
lower-frequency circulation. Conversely, it is interesting to note that 
mesoscale bottom flows are significantly larger than those tidally driven 
(note the difference in scale when comparing the figures). Mean meso
scale bottom flows may reach 0.1 m/s around the Tore summits, with 
maximum speeds of up to 0.2 m/s being registered.

Eddies have been observed down to depths as great as − 4200 m in 
the Kyushu-Palau Ridge in the North Pacific (Andres et al., 2019). It is 
expected that energy will be transferred from mesoscale eddies to in
ternal waves, turbulence, mixing and dissipation in regions of rough 
topography in the deep ocean (Liang and Thurnherr, 2012; Löb et al., 
2020), such as the Iberian margin. In particular, Meddies are plausible 
candidates for such interactions because of their depth levels and 
frequent encounters with topography (Cenedese et al., 2005; Barbo
sa-Aguiar et al., 2013).

There is insufficient information on the depth range of eddies in the 

real ocean, or on how they interact with topography (Bashmachnikov 
et al., 2009; Andres et al., 2019; Löb et al., 2020). Scaled models of 
eddies comparable in size to Meddies found that eddy collisions occur in 
several ways (Cenedese, 2002). One particularly interesting feature is 
the development of toroidal-like circulation, known as “streamers” 
(Cenedese, 2002). Streamers are strong, slope-trapped flows that 
develop around seamounts as a result of eddy collisions. The direction of 
streamers depends on the incidence angle of the eddy collision, and they 
can be as intense as the eddies themselves. Previous analysis of several 
Meddy–seamount collisions (Barbosa-Aguiar et al., 2013) (not specif
ically on Tore) revealed that streamers are a common feature in Med
dy–seamount interactions. Very high-resolution simulations of 
eddy–seamount interactions have also shown nearly balanced flows 
colliding and triggering the development of high-frequency internal 
waves (Dewar and Hogg, 2010). While no such study has been con
ducted for Meddies, one could expect the collisions to promote inter
mittent higher-frequency motions together with streamers (Löb et al., 
2020).

As the results of our models only cover a very short period, it is not 
possible to conduct a consistent analysis of the eddy field. However, they 
already suggest that mesoscale flows may be even more important than 
tidally driven flows (Fig. 7). In our simulation, we did not detect any 
canonical Meddy (i.e., an isolated, unipolar vortex with a negative 
vorticity and a high-salinity core, intensified at around − 1200 m depth). 
Nevertheless, it has previously been demonstrated (e.g., Aguiar et al., 
2013) that the eddy field produced by the Mediterranean outflow in
cludes a rich spectrum of vortices with different polarities, depth ranges, 
and modes of interaction that can be relevant in eddy-topography in
teractions. In this respect, ’Meddies’ in the broad sense must be 
considered in future studies of mesoscale flows.

3.4. Oceanographic processes during glacial periods

The extent to which the interaction of Meddies with topography has 

Fig. 7. Mesoscale simulation. (a) Instantaneous salinity field at a depth of − 1000 m. The Tore is located in the north-west corner of the domain. The solid black 
contours represent isobaths (3, 3.5, 4, 4.5 and 5 km). (b) Vertical section of zonal velocity (positive values [m/s] indicate eastward flow) along the south-north 
section (blue line), as shown in (a). The contours are at 2 cm/s intervals, with the bold black line indicating zero velocity. The red lines show the vertical 
salinity distribution (from 35.2 to 36.2 in increments of 0.2). The bottom trapped flow features on the edges of the eddy reach values of 6–8 cm/s. (c) Vertical salinity 
profile from three CTDs deployed in the interior of the Tore seamount basin (site MD13-3473) showing Mediterranean Outflow Water (MOW) at depths between 
− 600 and − 1200 m. The other water masses in the profile are North Atlantic Central Water (NACW) and Northeast Atlantic Deep Water (NEADW) (van Aken, 2000a, 
2000b). (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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been different in the past requires additional analysis. Stronger, deeper 
Meddies may have been more frequent in some periods in the recent 
past, as reported in a time series over the last 20 years, albeit with 
irregular periodicity (Siedler et al., 2005). If internal wave activity is, in 
theory, favoured by ocean stratification (Polzin et al., 1997) and glacial 
periods have supposedly enhanced deep salinity-driven stratification 
(Adkins and Pasquero, 2004; Wilmes et al., 2019), cold periods would be 
more prone to the generation of internal waves as a consequence of 
intermittent Meddies. Several studies have indeed shown an increase in 
Mediterranean outflow during glacial stages and cold millennial events 
(Cacho et al., 2006; Voelker et al., 2006; Rogerson et al., 2010; Lebreiro 
et al., 2018), but the formation and intensity of the Meddies in the 
Atlantic Iberian margin have not been correlated to specific 
sea-level/climate stages.

Egbert and Ray (2001) pointed out the often neglected important 
interaction between internal tides and ocean stratification. Model 
studies suggested that the last glacial (sea-level lowered by ~130 m; 
Lambeck et al., 2014) led to two times enhanced tidal amplitudes of 
global semidiurnal tides (M2) in the North Atlantic, and increased 
dissipation in the deep ocean (a significant 30 % M2 energy dissipation 
occurs in the deep ocean; 10 % below − 1000 m) with reduced stratifi
cation, although the authors acknowledge that stratification is not well 
constrained in the models (Egbert et al., 2004) and abyssal tidal dissi
pation rates are relatively insensitive to changes in hydrography 
(Wilmes and Green, 2014).

On the other hand, the internal thermohaline structure of the deep 
ocean still contains caveats not fully resolved, such as the more salinity- 
stratified glacial ocean compared to today’s temperature-driven strati
fication, supported by salinity contrasts in the glacial shoaling bound
aries of different North or South-sourced water masses and kinks in the 
density profiles (Adkins, 2013). Adkins (2013) cites the MIS 5–MIS 4 
transition as a prime example of increasing deep-ocean stratification. 
However, our records from the Tore and Rincão da Pomba basins show 
no turbidites during this transition, except for those in the Tagus AP 
(Fig. 1). This is consistent with evidence suggesting that under current 
global warming, an 8 % increase in energy conversion to high-mode 
internal tides and near-bottom stratification intensification is expected 
by the end of the 21st century (Yang et al., 2024).

4. Concluding remarks

Far from continental margins, the MD13-3473 non-periodic turbidite 
time series exhibit a lack of consistency associated with (sub)orbital and 
millennial (cold glacial/stadial or warm interglacial/interstadial) time 
scales, deviating from predictable mechanisms driven by any regular 
climatic forcing. It also shows no association with excess accumulation 
rates and no verifiable relationship with seismic shaking. D219/3P and 
D11956 T/P exhibit minor climatic similarities, likely due to the inter
posed sediment input from continental sources.

Potential oceanic mechanisms are identified and simulated for trig
gering turbidity currents in the deep ocean, potentially affecting the 
stability of critical seamount slopes and sediments, away from the 
continental margin. The contrast of our findings with continental margin 
studies underscore the uniqueness of deep-ocean mechanisms.

The tidal conversion estimates shown here suggest that although 
most of the internal tide activity is concentrated in the upper ocean 
(thermocline and above), a significant portion of the energy is produced 
at the summits of the Tore system. Internal waves can promote intense 
mixing and turbulence regardless of depth in well-mixed abyssal zones, 
with occasional breaking, inducing the disturbance of sediments. Hence, 
the influence of internal tides, even with small amplitudes, cannot be 
dismissed as a potential mechanism and should be considered further in 
future modelling studies that also include non-hydrostatic effects and 
higher resolution topography.

It appears that the Tore seamounts are rather susceptible to the 
mechanisms analysed above (barotropic to baroclinic energy 

conversion; internal wave–topography interactions: trapped waves, 
rectified flow, slope flow; and Meddy–seamount collision). Med
dy–seamount (and here we refer to ’Meddies’ in the broad sense) 
collision is probably the most likely candidate to generate bottom ve
locity stresses sufficiently strong to trigger turbidity currents. Although 
none of the processes alone may induce very high bottom flow, a com
bination of processes in peak and phase amplitudes with particularly 
strong Meddy events can act together to produce exceptional non- 
periodic triggers in vulnerable areas of the real ocean, and explain the 
low-frequency, non-periodic, climate-independent turbidite records 
observed in the deep Iberian margin.

It remains to be resolved whether the non-periodic pattern and low 
frequency of turbidites in these three unique deep sea series would 
require an exceptional combination of intermittent physical oceano
graphic processes, including the interaction of concurrent high- 
frequency internal waves (tidal and near inertial), mesoscale eddies 
and currents (Turnewitsch et al., 2013; Löb et al., 2020), megatides 
(Griffiths and Peltier, 2008, 2009) or periods of higher-frequency 
megatides, to trigger extreme turbidity currents.
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