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A B S T R A C T

Geological time is punctuated by events that define biostrata and the Geological Time Scale’s (GTS) hierarchy of 
eons, eras, periods, epochs, ages. Paleotemperatures and macroevolution rates, have already indicated that the 
range ≈ 1 Myr to (at least) several hundred Myrs is a scaling (hence hierarchical) “megaclimate” regime. We 
apply analysis techniques including Haar fluctuations, structure functions, trace moment and extended self- 
similarity to the temporal density of the boundary events (ρ(t)) of two global and four zonal series. We show 
that ρ(t) itself is a new paleoindicator and we determine the fundamental multifractal exponents characterizing 
the mean fluctuations, the intermittency and the degree of multifractality. The strong intermittency allows us to 
show that the (largest) megaclimate scale is at least ≈ 0.5 Gyr.

We find that the tail of the probability distribution of the intervals (“gaps”) between boundaries is also scaling 
with an exponent qD ≈ 3.3 indicating huge variability with occasional very large gaps such that it’s third order 
statistical moment barely converges. The scaling in time implies that record incompleteness increases with its 
resolution (the “Resolution Sadler effect”), while scaling in probability space implies that incompleteness in
creases with sample length (the “Length Sadler effect”).

The density description of event boundaries is only a useful characterization over time intervals long enough 
for there to be typically one or more events. In order to model the full range of scales and densities, we introduce 
a compound multifractal - Poisson process in which the subordinating multifractal process determines the 
probability of a Poisson event and that this new process is close to the observed statistics.

Scaling changes our understanding of life and the planet and it is needed for unbiasing many statistical 
paleobiological and geological analyses, including unbiasing spectral analysis of the bulk of geodata that are 
derived from paleoclimatic and paleoenvironmental archives.

1. Introduction

The structure of time scales influences our understanding of the 
Earth system and biotal evolutionary processes at all time scales. Over 
billions of years, life and the environment have interacted nonlinearly, 
and complex bio-geo-processes have led to the formation of the familiar 
deep-time bio- chemo- litho- and chrono- stratigraphical subdivisions in 
the International Geological Time Scale (GTS), whose geochronologic 
time units are the familiar eons, eras, periods, epochs and ages. Their 
hierarchical nature seems obvious, but how can it be quantified? 

Nonlinear systems with variability over wide scale ranges are typically 
scaling (and hence hierarchical) so that over wide scale ranges, big and 
small, fast and slow processes are related in a power law manner: fluc
tuations are qualitatively the same (for reviews see (Lovejoy and 
Schertzer, 2013), (Lovejoy, 2023)). Scaling analyses of temperature 
timeseries and its proxies define five scaling ranges: the "megaclimate" 
down to ≈ 1 Myr, “macroclimate” down to ≈ several 100 kyrs, the 
“climate” down to several kyrs or centuries (in the industrial epoch, 
decades (Lovejoy, 2013)), “macroweather” down to ≈ 10 days, and 
“weather” down to dissipation scales (≈ milliseconds), (Lovejoy, 2013), 
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(Lovejoy, 2015), (Spiridonov and Lovejoy, 2022).
To date, evidence for the megaclimate comes from marine sediment 

paleoclimatic archives (Lovejoy, 2015), continental fragmentation, 
geographical range dynamics (Spiridonov et al., 2022), genus origina
tion, and extinction rates (Spiridonov and Lovejoy, 2022), (Lovejoy and 
Spiridonov, 2024). These scaling regimes and their transition scales 
include the scaling nonlinear interactions of the (internal) atmosphere, 
hydrosphere, and biosphere processes with (external) astronomical and 
tectonic forcings (Spiridonov and Lovejoy, 2022).

To clarify and quantify the hierarchical nature of bio - geo processes, 
we recognize multidecadal advancements and steady growth of new 
quantitative biostratigraphical approaches, which help synchronize 
proxies of geodynamic, biological, archeological and geochemical pro
cesses across the whole range of records (Crampton et al., 2016; Fan 
et al., 2020; Sadler, 2004; Sadler et al., 2014). Tools such as graphic 
correlation (Edwards, 1984; 1989; Shaw, 1964) or CONOP (CON
strained OPtimization) techniques (Sadler et al., 2003) help to resolve 
local and regional inconsistencies in first and last appearances (FADs 
and LADs) of taxa, and can yield time scales with much higher resolution 
than traditional zonal time scales. Time resolution achieved in such 
ordered, resolved and scaled “absolute” time sequences can approach 
hundreds to even tens of kyrs — thus bringing one to two orders of 
magnitude improvement in resolution and evenness in time binning of 
evolutionary sequences (Crampton et al., 2018; Sadler et al., 2003). 
When the sediment records show relative completeness, the astrochro
nological approaches can also improve both the accuracy and resolution 
of time scales, and achieve stratigraphic correlational resolution up to 
hundreds of kyrs or less, with long eccentricity (≈ 405 kyr) Milankovitch 
cycles ensuring metronomical evenness of correlated time intervals 
(Hinnov, 2018; Hinnov and Ogg, 2007; Lieberman and Melott, 2013; 
Radzevičius et al., 2014; Spiridonov et al., 2020b). Moreover any kind of 
quantitative or categorical ordered data time series can be correlated to 
almost arbitrary resolution using cross-recurrence plots and synchroni
zation techniques applied to them (Marwan et al., 2002; Spiridonov 
et al., 2020a). The commensurability limits the applicability of the 
cross-recurrence synchronization technique for such high resolution 
correlation. For example if the patterns of conodont abundance are used 
for the correlation, all sections should have sufficient conodont fossil 
record spanning through their depth/height/length (Spiridonov, 2017; 
Spiridonov et al., 2016).

Despite all such advances in high-resolution correlation, a significant 
portion of studies, especially generalizing heterogenous multitaxic, 
multiproxy records across environments and geographic regions or at 
the global scale, use more conservative time binning schemes, such as 
GTS2020, or PaleoDB stages (which are related to the international 
stages), or regional or global zonal scales (Bapst et al., 2012; Daumantas 
and Spirido, 2024; Fenton et al., 2016; Foote, 2023). The use of inter
national geochronological units is often born out of necessity of the use 
of the most consistent and most compatible between-studies time bins. 
When large and heterogenous data sources are aggregated, some data 
may lack the same time markers (geochemical time series or zonal taxa) 
and other data (such as mammalian fossils collected in pits) often lack 
superpositional information (Puolamäki et al., 2006) and so on. There
fore, the GTS and zonal time scales most probably will still be a major 
reference of geological time in studies aggregating global to regional 
data in the foreseeable future.

In this study, we quantify the long timescale (>1 Myrs) hierarchy by 
analyzing the number of stratigraphic boundaries per unit time from two 
global (including the GTS) and four zonal biostratigraphy series of the 
Phanerozoic. The scaling of the number of stratigraphic boundaries per 
unit time - event temporal densities - constitute new paleoindicators 
whose fluctuation statistics we quantify over scales up to hundreds of 
millions of years. Using intermittency analysis and extrapolation, we 
estimate the megaclimate outer scale to be at least of the order of the 
length of the Phanerozoic Eon and we propose a simple compound 
multifractal - Poisson model to explain all the observed statistics. In the 

model, the probability per time of an event boundary is determined by a 
(scaling) multifractal process that itself subordinates a Poisson process 
that then determines the number of boundaries in any interval. Overall, 
these findings quantify both event gaps and (the opposite) event “clus
tering” and unless corrected, will bias our statistical analyses (such as 
spectra and their exponents) and therefore bias our interpretations and 
understanding of deep time bio-geo-processes. The necessary techniques 
for correcting such statistical biases will be discussed elsewhere.

2. Multifractal boundary densities

2.1. The boundaries used in this study

The understanding of the structure of empirical geochronological 
time scales is fundamental in interpreting all patterns measured against 
them. Geological time scales, including GTS2020 are defined by the 
most extreme events, which are usually concentrated at the boundaries 
of subdivisions: e.g. the P-Tr, J-Tr, and K-Pg boundaries coincide with 
three of the “Big Five” mass extinctions (Raup and Sepkoski, 1982). 
Association of biostratigraphy-based geochronological boundaries with 
the most extreme perturbations is implied by the overwhelming support 
for the pulsed turnover model of Phanerozoic extinctions and origina
tions (Foote, 2005). Biostratigraphy-based time scales mark the time 
record of the right tails of geobiological turnovers, thus giving us 
mechanistic insights on the quantitative nature of statistical laws gov
erning boundary-generating dynamics. Therefore, even if new and much 
better approaches for global synchronization of various geological re
cords arrive, the understanding of time-scaling properties of geological 
time scales, gives us direct insights on the saturation of variability, and 
therefore the time scales needed for statistical characterization of geo
biological processes.

Concentrating on the more fundamental boundaries, we limited our 
study to the Phanerozoic eon and chose the global strata defined by the 
International Commission on Stratigraphy: the global Geological Time 
Scale (GTS2020) whose boundary ages are based on (Gradstein, 2020). 
In addition to the GTS and also at global spatial scales, we analyzed 
Sepkoski’s sub-stage boundaries that define the stratigraphic ranges for 
marine animal genera (Sepkoski, 2002). To extend the study to series at 
higher temporal resolutions (but that are still highly significant), we also 
analyzed four zonal timescales defined by index taxa: Conodonts, Am
monoids, Graptolites and Calcareous nanoplankton. International 
graptolite zones were taken from the “Silurian” and “Ordovician” 
chapters (Goldman et al., 2020; Melchin et al., 2020). Since conodonts 
had time-varying provinciality (as well as some other zonal groups) in 
order to be consistent we chose European-centric zonation schemes 
which are the most developed. In the Ordovician conodont zonal 
compilation was composed of Baltic zones, in the Silurian-Permian – 
global zones, and in the Triassic – Tethyan zones (Aretz et al., 2020; 
Becker et al., 2020; Goldman et al., 2020; Henderson et al., 2020; 
Melchin et al., 2012; Ogg et al., 2020). In the case of Devonian ammo
noids, global zones were employed; during the Carboniferous, European 
zones were used, while Tethyan zones were applied from the Permian to 
the Early Cretaceous, and Western Interior Seaway zones during the Late 
Cretaceous—thus minimizing spatial discrepancies across time periods 
and taxonomic groups in zonation (Aretz et al., 2020; Becker et al., 
2020; Gale et al., 2020; Henderson et al., 2020; Hesselbo et al., 2020; 
Ogg et al., 2020). In the case of nannoplankton zones, in the Jurassic 
Period – Tethyan zones were used, while in the Cretaceous to Neogene 
global zones were compiled (Gale et al., 2020; Hesselbo et al., 2020; 
Raffi et al., 2020; Speijer et al., 2020).

Table 1 gives more information about these series. In particular, we 
may note that the boundary densities (ρ(t)) have means ρ ≈ 0.2 – 0.3 
boundaries/Myr (global) and ≈ 1 boundary/Myr (zonal). However as 
shown in Fig. 1, at 1 Myr resolution, ρ(t) is highly variable so that these 
means are inadequate characterizations. In the figure we see that ρ(t) 
displays strong temporal variability – intermittent “spikes” - (see also 
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Fig. B1 and for simulations, appendix C). In addition, the low ρ(t) regions 
are associated with “gaps” that turn out to have highly non-Gaussian, 
“fat tailed” (power law) probability distributions (Section 3.3).

2.2. Fluctuations and scaling

The GTS2020 and Sepkoski substages (Fig. 1, top row) are still 
mostly binary indicator functions (left) or completely binary (right); if 

scaling, these are of fractal sets cutoff at a small scale. However, at 1 
Myr, the higher-resolution zonal series (bottom rows) already display 
significant variability, with ρ(t) approximating the density of a multi
fractal measure (Fig. B1). The boundary distribution is the temporal 
analog of the spatial distribution of meteorological measuring stations, 
first considered as a geometric fractal set of points (Lovejoy et al., 1986), 
(Korvin et al., 1990; Nicolis, 1993), and later analyzed as the (spatial) 
density of a multifractal measure, ρ(x), (Tessier et al., 1994). The 

Table 1 
Geological timescale characteristics. The resolutions indicated are only nominal. The outer scale (τo) was estimated from the trace moments (Fig. 3) and are near the 
graphical value 103 Myrs = 1 Gyr indicated in Fig. 2 (middle), the multifractal index α converges to the range 1.2 – 1.5 (Fig. 2, bottom), and H ≈ − 0.15 (Fig. 2 top). The 
mean megaclimate start date is the sum of the estimated duration (τo) plus the start date of the series. The overall average is 780±280 Myrs BP. The Sepkoski series is 
obtained from a database of stratigraphic ranges for marine animal genera (Sepkoski, 2002). References for the Geotimescales (GTS) and the last four (zonal) series are 
(Peng et al., 2020).

Series Resolution 
(nominal)

Start date 
(Myrs BP)

Duration Number of boundaries Number/Myrρ Log10τo (Myrs) Megaclimate start 
(Myrs BP)

Geotimescales (GTS2020) 500 kyr 0 541 Myrs 103 0.190 2.99±0.26 980
Sepkoski sub-stages 50 kyr 1 535 Myrs 154 0.287 2.79±0.22 620
Conodont 10 kyr 201 286 Myrs 252 1.13 2.58±0.28 580
Ammonoid 100kyrs 68 351 Myrs 330 1.06 3.07±0.56 1240
Calcareous 10kyr 3 199 Myrs 203 0.98 2.88±0.53 760
Graptolite 10 kyr 421 66 Myrs 64 1.02 1.87±0.22 500

Fig. 1. Temporal boundary densities (ρ(t)). The two global chronostratigraphic boundary datasets (top), and biostratigraphic boundaries of conodont, ammonoid, 
calcareous nanoplankton and graptolite zonal time scales (middle, bottom) in numbers per Myr. Time runs from present to past (see Table B1). Although difficult to 
see, the upper left (“Geotimescales”, GTS2020) has six boundaries in the most recent Myr. “Sepkoski” has more boundaries, but each was separated by at least 1 Myr, 
it is still binary at this resolution (see also Fig. B1). The figures were produced by dividing the time axis into intervals of fixed length equal to the nominal resolutions 
(Table B1) and then filling the resulting grids with 1′s or 0′s depending on whether or not a boundary occurred in the interval. The resulting ρ(t) series was then 
degraded (averaged) to 1 Myr. Compare the top right with the simulations in fig. C1.
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theoretical and empirical connections between the two descriptions are 
discussed in Appendix B (see Fig. B2), and the Compound Multifractal - 
Poisson Process (CMPP) model is discussed in Section 3.4, appendix C.

To determine the limits of the scaling regimes and estimate the 
relevant exponents, we used Haar fluctuation analysis (Lovejoy and 
Schertzer, 2012). The Haar fluctuation of ρ(t) at resolution Δt is simply 
the difference between the average over the first and second half of the 
interval: Δρ(Δt) = ρ[t,t− Δt/2] − ρ[t− Δt/2,t− Δt] (overbars for temporal aver
ages; below we only consider absolute fluctuations). By combining 
averaging with differencing, Haar fluctuations overcome important 
limitations of classical fluctuations that involve only differencing or only 
averaging (Lovejoy and Schertzer, 2012), they can be easily estimated 
from irregular chronologies (Lovejoy, 2015).

In scaling processes, fluctuations can be decomposed as follows: 

Δρ(Δt) = φλΔtH; λ =
τo

Δt
; Δt ≤ τo (1) 

where Δρ(Δt) is the absolute fluctuation at time scale (lag) Δt and φλ is 
an intermittent driving stochastic process at scale ratio λ and το is its 
outer scale (Schertzer and Lovejoy, 1987; Schertzer et al., 1997), (for 
reviews (Lovejoy and Schertzer, 2013; Lovejoy, 2023). We assume that 
φλ has been normalized by its mean, so that 〈φλ〉 = 1 (“< >” indicates 
“average”) and 〈Δρ(Δt)〉 = ΔtH, with H the “fluctuation exponent”, 
which is independent of τo. Because we have a single series/realisation, 
we averaged over all available disjoint intervals at scale Δt (rather than 
over a statistical ensemble). When H > 0, fluctuations tend to grow with 
scale and the process appears to “wander”, whereas when H < 0, suc
cessive fluctuations tend to cancel and the process appears to fluctuate 
around a well-defined value. Familiar examples are Brownian motion (H 
= 1/2) and Gaussian white noise (H = − 1/2).

Dividing Eq. (1) by its mean, we obtain φλ = Δρ(Δt)/〈Δρ(Δt)〉, 
whose statistics can be characterized via the “moment scaling function” 
exponent K(q): 

〈φq
λ〉 = λK(q) (2) 

K(q) is convex and because the mean 〈φλ〉 is independent of scale, K(1) =
0. At the outer time scale Δt = τo , λ = 1, so that 

〈
φq

1
〉
= 1K(q) = 1: at this 

scale φ1 is a non-random “sure” value, and the variability vanishes. 
Scaling Gaussian processes have K(q) = 0; hence, there is no outer scale 
and they are specified only by H. Fractional Gaussian noise has − 1 < H <
0, and fractional Brownian motion has 0 < H < 1. Conversely, K(q) ∕=
0 implies non-Gaussian processes and intermittent variability that sys
tematically builds up as we move from longer to shorter times. K(q) 
provides insights into the nature of the variability of geological 
timescale-defining events, allowing the determination of τo.

While το and H are parameters, K(q) is a convex function that itself 
needs to be characterized. Fortunately, under fairly general circum
stances, K(q) itself can be parameterized by the multifractal index α 
(Appendix A) and its derivative at the mean, the intermittency exponent 
C1 = K’(1). C1 characterizes how spikiness (sharp transitions) varies 
with scale and can be directly determined from the function F(Δt) =
C1log (Δt/το) (Appendix A). More intuitively, C1 can be related to the 
rate at which the ratio of the mean to the root-mean-square fluctuation 
varies with scale (Appendix A). The final parameter is the multifractal 
index 0 ≤ α ≤2 which characterizes the degree of multifractality 
(Schertzer and Lovejoy, 1987). When H = 0, α = 0 corresponds to a 
binary monofractal (“off/on”) “beta model”, and α = 2 to the 
“lognormal” multifractal. Whereas the α = 0 beta model vanishes 
everywhere except on a fractal set, in contrast, the lognormal has much 
stronger variability. The name however is bit of a misnomer; where an 
exact lognormal distribution has logarithms that are normally distrib
uted, a lognormal multifractal has a distribution close to a lognormal 
except for the very large fluctuations that are (more extreme) power 
laws (see (Mandelbrot, 1974), (Schertzer and Lovejoy, 1987)).

3. Analyses

3.1. The multifractal exponents

Using common axes, Fig. 2 provides estimates of 〈Δρ(Δt)〉 (top) and 
F(Δt) (middle) whose slopes respectively yield H, C1, and (bottom), 
α(Δt) which are the three “universal multifractal” parameters that 
specify ρ(t) (see appendix A for a concise summary of the theory). Each 
panel shows the results for zonal boundary densities (collectively rep
resented in red) and individual global boundaries (black and gray). In all 
panels, starting at the left, we note an initial factor ≈ 3 - 5 in the scale 
range over which the statistics transition before converging to scaling 
regimes at larger Δt (see appendix C). This convergence from effectively 
a binary (geometric set) description at small Δt to a multifractal 
description at larger Δt is confirmed in the bottom panel, where at small 
Δt, α ≈ 0 corresponding to the binary beta model limiting case and then 
increases with Δt over the transition range to typical scaling range 
values of α ≈ 1.2 – 1.5. Interestingly, in the structure function (top 
panel), the transition ranges have logarithmic slopes close to the 
Gaussian value H = − 0.5 (dotted). At larger Δt, we see a scaling regime 
with H ≈ − 0.15 (top) that extends to the largest scales available (≈ 300 
Myrs for the longer, global series). H < 0 implies that successive varia
tions in ρ(t) tend to cancel out, displaying converging, “stable” behavior. 
Indeed, and perhaps unsurprisingly, this is close to the (even more sta
ble) value H = − 0.25 found for both genus-level extinction and 

Fig. 2. Scaling and universal multifractal parameters H, C1, α. 
Top: First-order structure function S(Δt) = <Δρ (Δt)> as a function of Δt in 
Myrs; its logarithmic slope is H. The red zone, whose mean is black and width 
(one standard deviation limits, red) represents the four zonal time scales with 
ρ(t) at 100kyr resolution. The thin black and grey lines are the GTS2020 and 
Sepkoski global boundaries, respectively, at a resolution of 1 Myr. The zonal S 
was multiplied by 10 for clarity. The reference slopes are H = − 0.5 (the value 
for Gaussian white noise, dotted, left) and H ≈ − 0.15 (dashed, right). S has 
units of number/Myr. F and α in the middle and bottom panels, respectively, are 
dimensionless. Compare to the simulations, fig. C2. 
Middle: The function F(Δt) = (Δt/τ) C1 (Methods), whose logarithmic slope is 
the intermittency exponent C1. The dashed reference line has a slope of C1 =

0.1, which represents a rough fit. The line crosses the horizontal axis at the 
outer scale το of the scaling regime (≈ 1 Gyr). 
Bottom: The third multifractal parameter, the multifractal index α, estimated at 
each lag (Methods). At small Δt, α ≈ 0 corresponding to a monofractal (the 
indicator function of a fractal set), after a range of factor ≈ 10, ρ(t) has roughly 
converged to a multifractal measure with α roughly in the indicated range. 
Compare this figure with the simulations fig. C2.
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origination rates (Spiridonov and Lovejoy, 2022). At the global scale of 
analysis, geological timescales reflect the scaling symmetries of key 
macroevolutionary variables. This strengthens the argument that there 
is a direct connection between all types of geobiological processes 
forming a single long-timescale (>1 Myr) scaling dynamic regime.

For the intermittency exponent (C1, middle panel), for all series, 
F(Δt) is roughly scaling for Δt ≥ 3 Myrs with slope C1 ≈0.1. Signifi
cantly, the scaling of F(Δt) not only continues to the largest directly 
observable Δt, but when extrapolated (dashed line), provides a direct 
estimate of the outer scale of the variability: τ ≈ 1 Gyr. The dominant 
contribution to the mean of ρ(t) comes from a sparse, fractal set of 
boundaries with fractal dimension 1 - C1 (so that C1 = 0 is the nonfractal, 
uniformly distributed limit). Although C1 may seem small, since it is an 
exponent, the implied intermittency increases as the scale range (λ) in
creases. Here, C1, α are close to those in the turbulent (weather regime) 
wind and temperature fields (e.g. (Lovejoy, 2018)). While in the weather 
regime λ may be as large as one billion (10 days / 1 millisecond), in the 
megaclimate, it might not exceed one thousand (1 Gyr/1 Myr). Inter
mittency is also important for the spectrum, E(ω) ≈ ω− β, with β = 1 + 2H 
- K(2), frequency ω. Using C1 =0.1 and α = 1.5, we obtain K(2) ≈0.17 
(eqs. A3, A4), and using H = − 0.15, we find β ≈ 0.53. Without the K(2) 

“intermittency correction” (e.g. for Gaussian processes), β = 1 + 2H ≈
0.7.

3.2. The megaclimate outer scale

Fig. 3 plots log
〈
φq

λ
〉
= K(q)log(τo /Δt), (Eq. (2)) for q = 0.1, 0.3, … 

1.9, yielding slopes K(q) and the outer scale το (the point of conver
gence). The figure visually displays how the multifractal variability of φλ 
builds up (from right to left) to smaller scales in a multiplicative 
cascading manner (Schertzer and Lovejoy, 1987). Table 1 shows το es
timates; the (logarithmic) mean for all six series is log10το = 2.83±0.44 
(≈ 680 Myrs), in accordance with the F(Δt) analysis (Fig. 2 middle) that 
found log10το ≈ 3 (i.e., 1 Gyr). Because το is estimated by extrapolation, 
the uncertainties (indicated by arrows) are fairly large. το is an estimate 
of the limiting megaclimate time scale, the longest time over which 
variability in ρ(t) builds up. However, it is possible that megaclimate 
bio-geo processes only hold over the more recent ≈ 1 Gyr, and that this 
“start date”, might limit the scaling ranges of the older samples. Some 
evidence for this can be seen in Table 1, where the two oldest series 
(Conodont and Graptolite) also have the smallest το values. It should be 

Fig. 3. Trace moments Mq =
〈
φq

λ
〉
. With λ = το/Δt and Δt in units of Myrs. The variability disappears at the outer scale Δt = το; regressions were forced through this 

common point (Table 1). The blue points with Δt < 1 Myr were excluded from the regressions because they were in the transition zone discussed above. Haar 
fluctuations require at least two data points for their estimation; hence, the smallest Δt values are 2 and 0.2 Myrs). The double-headed arrows indicate the 1 standard 
deviation uncertainty limits. The slopes yield K(q), which is used to estimate C1 = K’(1) (Table B1). Compare this figure with the simulations fig. C3.
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noted that the Graptolite series covering only two periods (Ordovician 
and Silurian) is the shortest, with the fewest (64) boundaries. Adding the 
estimate of το to the start date of the series (Table 1) gives the mega
climate transition scale of 780±280 Myrs. We also note that the CMPP 
model discussed below and in appendix C suggests that we should be 
cautious about extrapolating beyond the actual length of the series, i.e. 
the duration of the Phanerozoic, 0.5 Gyrs.

If the outer scale of megaclimate variability extends beyond the 
Phanerozoic Eon it would suggest that the current eon-style geo
biological time variability not only started somewhat before the Phan
erozoic proper, but also that it hasn’t yet reached its limit, that we 
haven’t “seen” the saturation in a range of possible biogeological and 
megaclimatic states and that our eon’s variability will continue to grow. 
The outer scale of the Phanerozoic style Earth system dynamics - the 
“megaclimate” - is suspiciously similar to time scales of “finished” 
Archaean and Hadean eons, each ≈ 1.5 and 2.0 Gyrs in duration. 
Essentially, this is the time scale where we can see a full range of coupled 
Earth-Life dynamics unfold. The study of scaling characteristics of other 
eons are currently limited by the number of globally recognized 
boundaries, with the Proterozoic being subdivided only into period time 
scales (tens of Myrs), and the Archean being subdivided only into eras. 
As the Precambrian stratigraphy matures, these grand subdivisions of 
geological time will have increased resolution and will provide insights 
into early Earth scaling regimes that may differ from the Phanerozoic 
Eon megaclimate. For example, “the Boring Billion” was characterized 

by quiescence of the evolution of life, climate, and tectonics (Stern, 
2023), which could imply much shorter outer scales of middle Prote
rozoic biogeological variability.

3.3. Low ρ(t): incompleteness and the length and resolution Sadler effects

On the time axis, the biostratigraphic boundaries form geometric sets 
of points and because they are scaling, they are fractal sets. The precise 
relationship between fractal dimensions of the geometric set of bound
ary points and the multifractal density exponent K(q) is discussed in 
Appendix B. When ρ(t) is large, there are sufficient points to estimate it 
reliably; however, when ρ(t) is low, it is poorly estimated. In addition, 
because the time interval between boundaries is ≈ 1/ρ(t), long intervals 
(big “gaps”) occur when ρ(t) is low. Therefore, to study gaps, it is better 
to return to the set description. Interestingly, as shown by the theory and 
numerics (appendix C), both high and low ρ(t) regions are realistically 
modelled in the CMPP and the model exhibits both Sadler effects, but the 
full theory has yet to be developed.

An alternative analysis method that clearly demonstrates the scaling 
of the low density intervals is to directly study the scaling of the prob
ability distribution of intervals between successive boundaries: (τ(n), 
Fig. 4). Fig. 5 shows the probability Pr(τʹ> τ) of a randomly chosen 
interval τ’ exceeding a fixed interval τ (i.e. 1 minus the (usual) Cumu
lative Distribution Function, CDF). Plotted on a log-log plot, we see that 
the extreme probability “tails” are “fat” i.e. they decay algebraically in a 

Fig. 4. The nth time intervals between successive boundaries (τ(n)) in Myrs. The intervals are highly variable – indeed very far from Gaussian. This is quantitatively 
established in the probability analysis given in Fig. 5. Compare this figure with the simulations fig. C4.
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power law manner: scaling in probability space: Pr(τ́ > τ) ≈ τ− qD . To 
increase the sample size (to better characterize the low probabilities), 
data were pooled from the two global (right), and the four zonal (left), 
series yielding regression exponents qD ≈ 3.3 and 3.4 respectively. In the 
figure, the distributions are compared to the best fitting Gaussians (that 
have qD = ∞). It is obvious that the distributions are very far from 
Gaussian with extreme points corresponding to Gaussian probabilities of 
≈ 10–6, 10–9 and this, even though the number of points is <1000. Note 
that statistical moments of order q ≥ qD diverge with sample size so, that 
for example, qD<2 implies that the variance is not well defined and qD 
<1, that the mean interval is likewise ill-defined (in practice, this im
plies that they are sample size dependent). We may note that although 
the exact distribution of intervals depends on the temporal resolution 
(see Table 1 for the nominal resolutions), due to the scaling, the expo
nent qD will not depend of the resolution (at least for resolutions cor
responding the scaling regime of the interval probabilities).

Due to the normalization of the probabilities, probability distribu
tions cannot be power laws over the entire range of intervals, yet it is 
nevertheless notable that even at small intervals (high probabilities) that 
the distribution is not Gaussian. This is in contrast with typical 
geochronology interval distributions, that often display fairly clear 
transitions from roughly Gaussian distributions (frequent, small in
tervals) to power law tails for the (rare) large intervals. Such abrupt 
transitions allow for an objective separation of short intervals whose 
(short, roughly Gaussian intervals) are associated with varying sedi
mentation rates, from the much longer “gaps” that may be associated 
with missing strata (incomplete records). Such gaps can arise in several 
ways: lack of host rock strata of the right age, failures of fossil preser
vation in those strata, or inadequate collection and identification of 
fossils from those strata.

The (original) Sadler effect refers to the observation (Sadler, 1981) 
that as one increases the temporal resolution of a series of measure
ments, that its incompleteness tends to increase, it is a resolution 
dependent effect. If the measurements form a fractal set on the time axis 
(see Appendix B and Figs. B1 and B2), then using disjoint boxes of 
duration L, the number required to “cover” the set of boundaries will be 
≈ L- Dbox with box dimension Dbox < Dtime, (Dtime = 1, it is the dimension of 
the time axis). Box counting may be viewed as a way of representing/ 

approximating the set at finite resolution, here defined by segments of 
duration L on the time axis. If the measurements were dense on the time 
axis (i.e. if they were complete at resolution L), then the number of boxes 
covering the unit interval would be L- Dtime = L-1 so that the fraction of 
boundaries covered by boxes (i.e. the fraction of the record that is 
complete at resolution L) would be L- Dbox / L-1 = LCbox where Cbox = 1- 
Dbox > 0 is the box codimension. Cbox is also an incompleteness exponent 
since it quantifies that the rate at which the incompleteness increases as 
the resolution is decreased. See Table B1 for codimensions and Fig. B2 
for the box-number scaling for the strata studied here (also shown In Fig. 
B2 are plots yielding the slightly different correlation fractal codi
mensions). Alternatively, we can consider the effect of resolution 
dependence on the boundary density. When H < 0 (as it is here), it 
governs the resolution dependence of anomaly fluctuations ρ́ τ. where 
the overbar indicates temporal averaging, the subscript the averaging 
duration. The prime is the anomaly with respect to the long term 
average ρ́ = ρ − ρ. When H < 0, ρ́ τ ≈ τH so that H is the exponent that 
determines the rate at which density anomalies tend to approach the 
long term average as they are averaged over longer and longer 
durations.

This basic resolution - dependent Sadler effect thus depends on the 
underlying temporal scaling. There is however another related scaling 
effect on measurement incompleteness: the tendency of longer and 
longer records to be more and more incomplete (if only because longer 
stratigraphic records are needed to straddle longer gaps). This effect is 
also a consequence of scaling, but rather in probability space, the power 
scaling of the tail of the probability distribution of the intervals extreme 
gaps, (Fig. 5). As shown in (Lovejoy et al., 2025), these power law tails 
imply that (at fixed temporal resolutions), longer series will tend to have 
larger gaps and hence to be more incomplete. qD is thus the length 
incompleteness exponent, determining how increasing the series length 
increases its incompleteness. To distinguish this length effect from the 
resolution effect, we will refer to the former as the “Length Sadler effect” 
and to the latter (the original Sadler effect) as the “Resolution Sadler 
effect”, quantified by qD and Cbox respectively.

A further aspect based on the first principles of sedimentation, 
erosion and rock cycling, is that all else being equal, older records should 
be proportionately (exponentially) less complete. This generic feature 
can induce different kinds of biases in the analysis of the fossil record of 
past events and trends (e.g. Raup, 1972). This profound question wasn’t 
explicitly studied here and certainly deserves separate attention.

3.4. Improving the scaling using extended self similarity

Scaling is a scale invariance symmetry that is only exact on a sta
tistical ensemble, it is almost surely broken on any individual realization 
(indeed on any finite number of realizations). Therefore, random de
viations are almost surely present and it may require a large data set to 
yield convincing scaling regimes and exponent statistics. In addition, in 
any physical system, scaling only holds over a finite range of scales and 
here this range may be as small as a factor of 1000 with - as is the case 
here - the available data spanning an even smaller range. On the other 
hand, modern scientific methodology assumes that the simplest (and 
hence a priori) assumption about a physical system: i.e. that symmetries 
hold unless specific symmetry breaking processes/ mechanisms can be 
identified (recall that due to Noether’s theorem, symmetries imply 
conservation laws, here, various exponents are conserved under scale 
changes).

To support the above interpretation of the small Δt scaling break—as 
resulting from the relatively small number of boundaries and various 
finite-resolution effects—and to obtain broader scaling regimes and 
more accurate exponent estimates, one can leverage the fact that Eq. (2)
relates moments of different orders. The simplest way to exploit this is to 
use the structure functions (Eq. 3) to express the time interval Δt in 
terms of the mean (q = 1) fluctuation: Δt = 〈Δρ(Δt)〉1/H so that 

Fig. 5. Probability distributions Pr(τ’>τ) for the duration of a randomly chosen 
inter-boundary interval τ’> exceeding a fixed threshold τ. The upper right 
curve is from the pooled GTS and Sepkoski intervals, the left curve is from 
pooled intervals from the four zonal series. The brown regression lines show 
absolute slopes (qD) of 3.3, 3.4 respectively (fit to the extreme 20 points in both 
cases). The dashed curved lines are the best fitting Gaussians. The extreme 
points correspond to 4.02 and 6.06 standard deviations respectively, hence 
Gaussian probabilities of ≈ 6 × 10–5 and 1.3 × 10–9 respectively. In compari
son, the lowest probability levels available from the data are 3.8 × 10–3 and 1.1 
× 10–3 respectively. Even for short intervals, the Gaussian seems to be a poor 
fit. 
Compare this figure with the simulations fig. C5.
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expressing the qth moment in terms of the first, we obtain: log〈Δρ(Δt)q
〉

= (1 − K(q)/H)log〈Δρ(Δt)〉 + const (“Extended Self-Similarity”, ESS 
(Benzi et al., 1993), Fig. 6). The red points in Fig. 6 (used in the re
gressions) are from lags Δt ≥ 1 Myr and show that the scaling (the 
linearity on a log-log plot) starts roughly at 1 Myr (the black points are 
for Δt < 1 Myr. We see that the transition regime has been largely 
eliminated, so that the scaling is somewhat better than it appears in 
Figs. 2 and 3.

3.5. The compound multifractal - Poisson process

In the previous section, we noted that even if the underlying pro
cesses that generate boundary events are scaling over the whole 
observed range, empirical statistics will show various finite size effects 
for time scales shorter than the average inter- event time i.e. below ρ. In 
Section 3.4, we tried to extend the empirical range of the scaling by 
using the ESS analysis technique. However, an ultimately more 
compelling justification of scaling is possible by the construction of a 
pure scaling model that generates realizations that are statistically 
indistinguishable from the empirical series of event boundaries. In ap
pendix C we discuss in detail such a model, the Compound Multifractal - 

Poisson Model (CMPP) in which a (pure scaling) multifractal process 
does not determine the event directly but rather the probability of an 
event. Once the probability has been specified, a (“subordinated”) 
Poisson process determines the actual occurrence (or nonoccurrence) of 
an event in any resolution element. Readers are invited to view the 
figures in appendix C that reproduce the empirical Figs. 1–6 both 
qualitatively and quantitatively.

4. Conclusions

Human life, the rise of civilization, and the evolution of the Earth are 
punctuated by hierarchically structured events that color our notions of 
time and its passage. In the Phanerozoic Eon, there are notable strati
graphic boundaries - marked by “golden spikes” - that separate major 
portions of time and define the Geological Time Scale. Hierarchical 
processes that act over wide ranges of scales are typically scaling and 
their variability builds up from large to small and from slow to fast in a 
multiplicative manner.

Multifractal processes provide a natural framework (Lovejoy and 
Schertzer, 2013), (Lovejoy, 2023) for studying variability over a wide 
scale range, and five wide scaling regimes have been identified with the 

Fig. 6. The extended self-similarity (ESS) plots. The scaling of the qth order moments (Sq = log〈Δρ(Δt)q
〉) as functions of the first order moments (M1) for moments 

order q = 0.1, 0.3, …1.9 (top to bottom). The regression slopes (= 1 - K(q)/H) are shown indicating the excellent scaling from Δt ≥ 1 Myr (red points). The fits are 
over the red points that correspond to lags (Δt) ≥ 1 Myr (the black are for Δt < 1 Myr). Compare this figure with the simulations Fig. C6.
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megaclimate at the lowest frequencies (Lovejoy, 2015). So far, evidence 
for a megaclimate spanning ~ 1 Myr to (at least) several hundred Myrs 
has been based on paleotemperatures (Lovejoy, 2015), paleo-sea levels 
(Lovejoy et al., 2025), continental fragmentation (Spiridonov et al., 
2022), geographical range dynamics (Spiridonov et al., 2022) and 
extinction and origination rates (from the Paleobiology Data base of 
taxonomic occurrences (Spiridonov and Lovejoy, 2022), (Lovejoy and 
Spiridonov, 2024). The megaclimate is the expression of complex 
nonlinear interactions between life and geology, and these determine 
the events in Earth’s history that define stratigraphic boundaries, the 
hierarchy of eons/eras/periods/epochs/ages. Up until now, the upper 
limit of the megaclimate variability has not been etimated. By using a 
new paleoindicator – the boundary density - and intermittency (F(Δt), 
Fig. 2) and trace moment analysis (Fig. 3), we have presented evidence 
that the event density variability in the current Phanerozoic Eon Earth 
systems dynamics may saturate at time scales τo ≈ 0.5 - 1 Ga.

The stratigraphic boundary horizons are fractal sets when they are 
represented as geometric sets of points on the time axis delimiting global 
GTS2020 stages or Sepkoski substages boundaries, as well as taxon 
specific (zonal) boundaries, (Appendix B). If we represent the boundary 
set on the time axis, then the set at resolution L is defined by the number 
N(L) of disjoint boxes duration L needed to cover it. Due to the scaling, N 
(L) ≈ L-Dbox where Dbox is fractal box dimension that we estimated (Table 
B1). In section 2.5, we showed how it implies and quantifies the reso
lution Sadler effect.

However, fractal sets generally define an infinite hierarchy of ex
ponents and Dbox is only one of the family. It is generally more fruitful to 
consider their densities as the fundamental quantities, here the temporal 
densities of the boundaries (ρ(t), boundaries/Myr). These densities are 
multifractal functions (more precisely, densities of singular multifractal 
measures, “generalized functions”). We used Haar fluctuation analysis 
to analyse ρ(t) from the global and zonal boundaries, confirming their 
scaling nature, and quantifying the entire hierarchy with more funda
mental exponents α, C1, H. At small lags (Δt), there were transition re
gimes, but for Δt >≈ 3 - 5 Myrs, the fluctuations (Δρ(Δt)) displayed 
multifractal scaling to their largest scales (for note that for the shortest 
scales, Figs. 2 and 6 extends the scaling down to Δt ≈ 1 Myr). The three 
basic multifractal exponents were estimated as: H ≈ − 0.15, (mean 
fluctuations), C1 ≈ 0.1 (intermittency) and α ≈ 1.2 - 1.5 (multifractal 
index).

By showing that geological time scales (including the inter-boundary 
time intervals with their occasional "gaps”, Fig. 5 that is the basis for the 
Length Sadler effect) are scaling, we have quantified the long-held idea 
that biogeological processes are hierarchical, and we have provided 
further support for the hypothesis of a single megaclimate scaling 
regime with outer scale at least as long as the records that we examined 
(0.5 Gyr). Indeed, the boundary density itself has been shown to be a 
new paleoindicator with implications for geochronologies (Lovejoy 
et al., 2025).

Finally, we note that the (multifractal) event density description does 
not represent the short time scales below the average inter-event time ρ. 
Rather than viewing this a break in the scaling of the underlying bio-geo 
processes, we developed a Compound Multifractal - Poisson Process 
model (CMPP) in which a pure scaling process determines the proba
bility of an event – not the direct occurrence (or absence) of an event. 

The multifractal “subordinator” subordinates a Poisson process. We 
show with some theory and numerics (appendix C) that the CMPP re
produces both the low and high density statistics, supporting the hy
pothesis that the underlying processes are indeed scaling over the scale 
range observed here.

Not long ago, paleorecords were limited to scores or hundreds of 
points, enough to identify notable (intermittent) events, but not suffi
cient to reliably characterize the “background” variability that was 
(mistakenly) thought to be an uninteresting white noise. Modern, “big” 
paleorecords have hundreds or thousands of times more points allowing 
characterization of the background that in fact contains most of the 
variability and that demands systematic statistical - including spectral – 
analysis. Yet due to the scaling of geological time, paleorecord geo
chronologies also turn out to be multifractal with scaling “gaps”, and the 
biases (particularly in spectral and other scalng exponents) that they 
introduce must be corrected (this includes Lomb-Scargle and Multi 
Taper spectral techniques (Lovejoy and Spiridonov, 2024), which could 
have considerable implications in characterizing possible regularity of 
mass extinctions and other globally significant events.
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Appendix A. Multifractal processes

A1. Discussion

The zonal and other chronostratigraphic boundaries studied here (see Table 1) can be represented as points on the time axis that separate geostrata. 
A geometric set of points that is scaling is a fractal set, and it is notably characterized by its fractal dimension. However, a single fractal dimension is 
generally a rather partial description of its statistics and in addition, many definitions of fractal dimension are possible (see Appendix B). For full 
statistical characterization, it is best to consider the density of the points on the set. Mathematically, this density is a function (here of time), and if 
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scaling, it is the density of a singular multifractal measure and requires an exponent for each q, (K(q) in eq. 2), equivalent to an infinite hierarchy of 
exponents [Hentschel and Procaccia, 1983, Grassberger, 1983, Schertzer and Lovejoy, 1983]. This connection is discussed at length in Appendix B, 
that includes direct estimates of fractal box dimensions (often used as a surrogate for the Hausdorff dimension) as well of fractal correlation di
mensions (Fig. B2, Table B1).

If we take the qth moments of eq. 1 and use the definition in eq. 2 we can define the qth order structure function: 

Sq(Δt) = 〈Δρ(Δt)q
〉 = 〈φq

λ〉ΔtqH = τK(q)Δtξ(q); ξ(q) = qH − K(q). (3) 

Sq(Δt) is the mean qth order moment of the (absolute) fluctuations, it is characterized by its exponent ξ(q) and because K(1) = 0, we have ξ(1) =H. 
Equivalently, the statistics of ρ can be characterized by the probability distributions of fluctuations that are also scaling, and whose exponents – the 
codimension function - may be retrieved from ξ(q) via Legendre transformation [Parisi and Frisch, 1985].

From eq. 3, we see that in addition to the fluctuation exponent H, we also need to parameterize K(q). Due to the existence of stable, attractive 
“universal” multifractal processes [Schertzer and Lovejoy, 1987], K(q) is often taken to be of the universal multifractal form: 

K(q) =
C1

α − 1
(qα − q); 0 ≤ α ≤ 2; C1 ≥ 0 (4) 

K(q) is thus determined by two fundamental parameters: the codimension of the mean C1, often called the “intermittency exponent”, and the mul
tifractal index 0≤α≤2. From this, we can verify that K(1) = 0, K’(1) = C1, and α = K’’(1)/K’(1). A full characterization of the statistics of ρ(t) over a 
given scaling regime is then determined by the triplet H, C1, α.

A2. The fluctuation exponent H

As outlined above, H characterizes the scaling of the mean (q = 1). When H >0, fluctuations tend to grow with lag Δt so that the series tends to 
“wander”, and when H <0, fluctuations decrease with lag, they tend to cancel each other out. When 0≤H≤1, fluctuations may be estimated by 
differences, but here with H<0, differences are too restrictive, and we use Haar fluctuations (based on the Haar wavelet) useful when -1<H<1, which 
is an adequate range for the vast majority of geoprocesses [Lovejoy and Schertzer, 2012] corresponding roughly to a range of spectral exponents 
-1<β<3.

A3. The intermittency exponent C1

The role of C1 is less intuitive; for quasi-Gaussian processes, C1 = 0; hence, K(q) = 0, and only H is important. In this special case, when 0≤H ≤1, the 
process is a fractional Brownian motion (with H = 1/2 it is classical Brownian motion), and when -1<H < 0, the process is fractional Gaussian noise 
with the special case H = -1/2 corresponding to (usual) Gaussian white noise. C1 >0 characterizes the tendency of the series to make jumps and 
transitions: to be intermittent. For ρ(t) this implies that there are occasional high density “spikes” that are significantly larger than the mean. The 
spikes exceeding the mean form a fractal set with codimension C1 (hence on the d = 1 time axis, a fractal dimension 1-C1). A more intuitive inter
pretation of C1 is that it characterizes the rate of divergence of the ratio of the mean to the root mean square (RMS) fluctuation: 

〈Δρ(Δt)〉
〈Δρ(Δt)2

〉
1/2 =

(Δt
τ

)aC1

(5) 

where (from eq. 4), we find a =
(
2α− 1 − 1

)
/(α − 1) . Since 0≤α≤2, the constant ½≤ a ≤1 and it depends only weakly on α (in the above, with, α ≈1.2 - 

1.5 we find a ≈ 0.74 - 0.83).

A4. Estimating C1, F(Δt)

We define the function F(Δt) as: 

logF(Δt) = log〈Δρ(Δt)〉 −
〈Δρ(Δt)logΔρ(Δt)〉

〈Δρ(Δt)〉
(6) 

F can be obtained either directly from the corresponding moments or by finite differences from the moments of φλ [Lovejoy and Schertzer, 2013].
In a scaling regime: 

F(Δt) =
(

Δt
τo

)C1

(7) 

Plotting log(F(Δt)) against log(Δt) therefore yields an estimate of C1 as the slope as well as an estimate of τo as the intercept with the horizontal axis 
(Fig. 2 middle).

A5. The multifractal index α

α is variously called “the multifractal index”, “Levy index of the generator”, “degree of multifractality” [Schertzer and Lovejoy, 1987, Schertzer 
et al., 1997] and its interpretation is more subtle. When H = 0, α = 0, and C1 >0, the process is the turbulent on/off “beta model” and the process is 
non-zero over a fractal set with codimension C1. When α = 2 (the maximum), it is a “log-normal” multifractal with fluctuations following log-normal 
distributions (except for the extremes that have power-law probabilities).
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Appendix B. From fractal sets to multifractal densities: Box, information and correlation fractal dimensions

Strata boundaries define a geometric set of points on the time axis for example, Fig. B1, top. The strongly inhomogeneous nature of the distribution 
of points is highlighted in Fig. 4 that shows the time intervals τ(n) between consecutive (nth to n+1th) boundaries. This was quantified in Fig. 5 that 
shows probability distribution of τ(n) whose “tails” are power laws - scaling in probability space (see below). Other direct demonstrations of the 
scaling (fractality) of the set of boundary points is given in Fig. B2.

Yet it turns out that rather than the set description that focuses on the relative positions of individual points on the time axis, a more powerful 
framework is to consider the density ρ(t) of the points (here, the number per Myr) as the fundamental quantity. ρ(t) has a value at each point in time, 
mathematically it is a function, if it is scaling, then in general it is the density of a singular multifractal measure (a “generalized function”, like a Dirac 
function). To go from set to density, we can take the Sepkoski example: Fig. B1 (top) shows the set representation, that was already converted from a 
set to an indicator function at 1 Myr resolution in Fig. 1 (upper right). From this 1 Myr indicator function, Fig. B1 (second row and below) shows the 
density representations at various lower resolutions obtained by successively averaging ρ(t) over factors of four.

The relationship between the fractal set and multifractal density description was clarified in the context of (fractal) strange attractors in deter
ministic chaos [Grassberger, 1983, Hentschel and Procaccia, 1983]. At the time, several distinct definitions of fractal dimension were in common use; 
in particular the “box”, “information” and “correlation” dimensions (Dbox, Dinf, Dcor respectively). These were shown to be simply part of an infinite 
(and decreasing) hierarchy of fractal dimensions D(q) with Dbox =D(0), Dinf =D(1), Dcor = D(2). This hierarchy is determined by the qth order statistical 
moments of ρ(t); theoretically, D(q) = d −

K(q)
q− 1 (see eq. 2, 3) where d is the dimension of the embedding space (here, the time axis, d = 1). Note that 

although mathematically defined fractal sets do have unique Hausdorff dimensions, Dbox is often used as a surrogate for real world (finite) sets (yet 
their mathematical definitions are different).

In terms of the set description, Dbox, Dcor are particularly simple to calculate from point pair statistics; specifically, by considering the average 
number of points n(L) within a distance L of a given point. For a uniform (nonfractal) distribution in a space of dimension d, the average number nu of 
other points within a distance L from any given point is: nu(L) ≈ Ld. Since for a uniformly distributed set of points on the time axis, the number in an 
interval 2L, would be twice as large as in an interval size L, we have: nu(2L) = 2nu(L)) i.e. d = 1 as expected. In comparison, fractal sets have n(L) ≈ LD 

with exponents D<d, but the way the point pairs are chosen is important. One way of choosing point pairs is to take the first point of each pair 
uniformly at random i.e. not on the fractal set, only the second point is taken on the fractal set. In this case, we obtain the “box dimension” Dbox: 
nbox(L) ≈ LDbox . Alternatively, we may choose both points in the pair to be from the fractal set itself so that now, the exponent is the correlation 
dimension: ncor(L) ≈ LDcor . In high dimensional (large d) spaces (e.g. for strange attractors), the set of points on the fractal set may be extremely sparse 
(D≪d) so that random uniformly chosen points are almost surely far from points on the fractal set, consequently, in high dimensional spaces, the box 
dimension is numerically inefficient to compute. However, since points on fractal sets are highly clustered, the correlation dimension is not only 
different (Dcor≤Dbox), but it is easy to calculate, for example it is commonly used for studying strange attractors. The correlation dimension was also 
calculated for the set of meteorological measuring stations on the (d = 2) Earth’s surface [Lovejoy et al., 1986], where Dcor = 1.75.

In Fig. B2, we applied both box and correlation pair counting methods to the set of boundary points on the time axis (d = 1). Whereas n(L) 
characterizes the frequency of occurrence of the pairs, for the statistics, we are instead interested in the relative frequency, i.e. probabilities. Relative 
probabilities are obtained from the ratio n(L)/nu(L) ≈ LD− d = L− C where C = d - D is the codimension and is independent of the embedding space 
dimension d. Here, the normalization using the uniform number, nu(L), is particularly important because the overall number of points is small, and the 
dimension (d = 1) is low. These combine to imply significant “finite size” effects that are partially cancelled out by using the same algorithm with the 
same number of points uniformly distributed over the same overall interval to estimate nu(L) (here, nu(L) was estimated by using a set of points with 
Gaussian distributed intervals between them). Fig. B2 shows the results for both box counting and correlation analyses where for convenience, the 
figure displays the inverse ratio nu(L)/n(L) ≈ LCwith positive exponent C. With the possible exception of the very small (64 point) Graptolite 
boundaries, the figure shows clear scaling regimes although still with some deviations at both small and large scales. The (rough) codimension es
timates are given in Table B1. From the figure and the table, we see that while the box codimensions are roughly zero for the global (GTS, Sepkoski) 
boundaries, they are nonzero for the zonal ones, and the correlation dimensions are nonzero for all of them.

We can now check that these fractal set descriptions agree with the multifractal density description. This can be done using the above theoretical 
relation for the density codimension C(q) = d - D(q) = K(q)/(q-1). First, consider the correlation dimension with Ccor = C(2) = K(2). Table B1 shows 
that these are close to the density estimates from the q =2 trace moments (Fig. 3). It turns out that the q = 1 information codimension is not easy to 
calculate from point pairs and theoretically (since K(1) = 0), C(1) must be calculated by taking the limit q→1 that yields C(1) = K’(1) = C1, (Table B1
gives the estimates of C1 from trace moments). Finally, taking q = 0 yields the box codimension: Cbox = C(0) = -K(0)); which for the universal mul
tifractal model (eq. 2) has Cbox = C(0) = 0. The exception is the “beta model” (α = 0) special case where the limit q→0 yields C(0) = C1. In any event, in 
the limit q→0, the statistical moment <ρq> is very poorly estimated empirically (the best way is through the box dimension applied to the set directly 
as in Fig. B2). Given these theoretical considerations and empirical limitations, we conclude that the set and density based estimates given here are 
compatible. 
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Fig. B1. A comparison of the set and density descriptions of the boundaries. An example using the Sepkoski boundaries at 1 Myr resolution. The top represents 
the boundaries as a fractal set of points on the time axis. At this scale the density of points is the indicator function of the set (shown in Fig. 1 upper right). The lower 
series shows the boundary densities at lower resolutions, successively degraded by factors of four with the overall mean shown at the bottom in red.

Fig. B2. Box and correlation dimension analyses. The ratio of the average number of boundaries within a time interval Δt (in Myrs) for a uniformly distributed set 
of boundaries (nu(Δt)) to the actual distribution (n(Δt)). The logarithmic slope is the codimension, the lines show regressions for Δt > 4 Myrs; the corresponding 
fractal dimension is D = 1 – C so that flat (zero slope) lines are nonfractal (D = 1). The black points and lines are nu/ncor whose logarithmic slopes are the correlation 
codimensions and the red points and lines are nu/nbox whose logarithmic slopes are box codimensions. The values from the slopes are given in Table B1 that also 
compare these direct correlation dimension estimates with those from the q = 2 trace moment K(2) (= Ccor), they show generally good agreement. At small and large 
lags there will be deviations due respectively to chronology errors and to the finite length of the series.
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Table B1 
A comparison of various codimensions. The parameters C1, C(2) = K(2) estimated from the (multifractal) density analysis (trace 
moments, Fig. 3) compared with fractal set analyses (Cbox, Ccor,), Fig. B2. Theoretically, the scaling exponent of the second moment of the 
point density, K(2) (column 3) should equal the pointwise correlation dimension Ccor, (column 4), a relationship that is reasonably 
respected (the exception is the Graptolite series that has very few boundaries – 64 - and hence poor statistics). The correlation and box 
dimensions were estimated as described in the text, from point pairs statistics (Fig. B2). Recall that the fractal dimension D of these sets 
(embedded on the time axis) is equal to 1- C. Note that for the two global series without missing strata, Cbox ≈ 0 so that they would be 
nonfractal (or only marginally fractal) if the box dimension was used, yet the correlation dimension shows convincingly that Ccor>0 and 
hence that they are fractal.

Series C1 = (Cinf) C(2) = K(2) Ccor Cbox

Geotimescales (GTS2020) (1 Myr) 0.11 0.12 0.11 0.00
Sepkoski sub-stages (1 Myr) 0.12 0.12 0.12 0.03
Conodont 0.12 0.15 0.16 0.14
Ammonoid 0.09 0.12 0.15 0.15
Calcareous 0.09 0.11 0.07 0.03
Graptolite 0.15 0.18 0.44 0.24

Appendix C. Compound Multifractal - Poisson Processes (CMPP)

We discussed the fact that the geological time is based on a series of events that may be considered either as a geometrical set of points on the time 
axis or alternatively as a temporal density of points. In scaling systems these alternatives correspond respectively to fractal sets or to multifractal 
measures; in appendix B, we provided quantitative links between the two. In all cases, systematic scaling analyses were applied over as wide a range of 
scales as possible, yet unsurprisingly, to obtain robust statistics of event densities, we saw that the time scales must be long enough so that the granular 
(black/white) nature of set is no longer important. Indeed, dimensional analysis gives a characteristic time of 1/ρ (≈ 1Myr for the zonal and ≈ 3 Myrs 
for the global series, see Table 1), with shorter time intervals typically having either 0 or 1 events and longer times typically having several events. 
While this does indeed lead to a small scale/large scale break at around Δtc = 1/ρ (see e.g. fig. 2), this does not necessarily imply the existence of a 
corresponding underlying physical time scale. Indeed, if the processes generating the events are scaling, then as the resolution is increased, more and 
events will be observed. This is because there may be more than a unique event in a single resolution element so that as the resolution increases, Δtc 
will be shorter and shorter. Δtc is therefore not a characteristic of the process, but rather of the resolution at which is observed.

In order to support this hypothesis, we introduce a simple binary density model, the Compound Multifractal - Poisson Process (CMPP, see [Lovejoy 
and Schertzer, 2006]). In the CMPP, a multifractal process is the subordinator, it only determines the probability density p(t) of the subordinated 
Poisson process. For the multifractal process, we used a pure cascade (hence H = 0), i.e. the process p(t) = f φ, where f is a constant and < φ >= 1, see 
eq. 2). If consider an interval length Δt, then the total probability (the integral of p(t)) over the interval Δt) is 

∏
(Δt), and the (Poisson) probability that 

the (random) number of events N(Δt) in the interval= N is: 

Pr(N(Δt)=N ) =

∏
(Δt)N

N !
e−
∏

(Δt) (8) 

(see e.g. [Feller, 1971]). The average event density is thus: 

ρΔt =
N(Δt)

Δt
(9) 

Certain statistical properties of ρΔt can easily be determined. For example, standard results for the first and second moments of a Poisson processes 
are: 

N(Δt) =
∏

(Δt); N(Δt)2
=

∏
(Δt) +

∏2
(Δt) (10) 

(the overbar indicates Poisson process averaging only). In this compound process, the probability 
∏
(Δt) is determined from realizations of a mul

tifractal process developed over a range from large (outer) time scale τo to small (inner, resolution) time scale τi, with the observing time scale Δt 
satisfying τi ≤ Δt ≤ τo (equivalently, with scale ratio λ = τi / Δt) and with the overall average probability density (i.e. with Δt = τo) pτo = f <1. 
Averaging over the multifractality (indicated by “< >”), we find: 

〈ρΔt〉 =
〈N(Δt)〉

Δt
=

〈
∏
(Δt)〉
Δt

= 〈pΔt〉 = f (11) 

(this follows since 〈
∏
(Δt)〉 = Δt〈pΔt〉 and 〈pΔt〉 = f , recall K(1) = 0, eq. 2, and that multifractal processes are statistically stationary). The time scale 

quoted above corresponds to the critical time scale Δtc at which on average there occurs a single event, i.e. 〈N(Δt)〉 = fΔtc ≈ 1, i.e. Δtc ≈ 1 /f . For 
example, for the zonal series with nominal resolution 100 kyrs, Table B1 indicates that 〈ρΔt〉 ≈ 0.1 per 100 kyr, hence on average, one tenth of the 100 
kyr resolution elements have an event, f = 0.1 and therefore Δtc ≈ 1 Myr. However, the subordinating multifractal process implies a hierarchy of 
clustering; if we are interested in these large ρ, p regions, we must consider higher order statistical moments. Using 〈pΔt〉 = f we have normalized 
second moments: 
〈
ρ2

Δt
〉

〈ρΔt〉
2 = (fΔt)− 1

+

〈
p2

Δt
〉

〈pΔt〉
2 = (fΔt)− 1

+

(
Δt
τo

)− K(2)

(12) 
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(see eq. 10, essentially the same result was derived in [Lovejoy and Schertzer, 2006]). 
〈
ρ2

Δt
〉
/〈ρΔt〉

2 is thus a mixture of power laws. At short intervals, 
this CPMP second moment differs from the subordinating multifractal moment 

〈
p2

Δt
〉
/〈pΔt〉

2. Assuming K(2)<1 the (fΔt)-1 term dominates over the 
(second) multifractal term. Comparing the terms at scale Δtc = 1/f, we find: 
〈
p2

Δt
〉

〈pΔt〉
2 = NK(2)

o ; No = fτo (13) 

where No is the mean number of events over the entire process (up to the outer scale τo). For the parameter ranges of interest No>1. For example, 
taking, No ≈ 100 and K(2) ≈ 0.15 (zonal series, Table B1), we find NK(2)

o ≈ 2 so that at Δtc, 
〈
ρ2

Δt
〉
/〈ρΔt〉

2 is already (somewhat) dominated by the 
multifractal 

〈
p2

Δt
〉
/〈pΔt〉

2 term.
Simple formulae for the integer order moments are possible using the Poisson moment generating function, but for the fractional order moments 

≤2 while no analytic results appear to exist, it is simple enough to produce stochastic realizations with the parameters estimated from the scaling (long 
time) part of the empirical event densities. A full analysis of the CMPP will be made elsewhere. One way of using the model to help interpret the 
empirical ρ(t) statistics, is to use the long-time scaling behaviour of ρ(t) to estimate the parameters of the underlying multifractal process p(t). To 
roughly reproduce the empirical zonal series (chosen for their higher resolution and larger number of realizations), we made 6 CMPP realizations all 
with parameters f = 0.07, C1 = 0.1, α = 1.35, (hence K(2) = 0.156), and τi = 0.1 Myr, τo = 409.6 Myrs, so that we have Δtc ≈ 1.5 Myrs which is roughly 
the transition observed (e.g. in fig. 2). Fig. C1 shows the simulations with p(t) in red, ρ(t) in black, the six simulations are statistically identical, only the 
random seed is different. Note that occasionally there are spikes in p(t) that lead to multiple Poisson events that would be observed as a single event 
(the resolution Sadler effect); the Poisson process was therefore truncated to 1 event at the finest simulated resolution (here corresponding to 100 
kyrs). This truncation affects the higher order multifractal singularities, not the lower order ones of interest here.

In figs. C2 - 6, we see that the CMPP reproduces the observed statistics very well. Even though it has only two basic (C1, α) and three auxiliary 
parameters (τi, τo, f,) it reproduces the Haar fluctuations (compare fig. C2 with fig. 2), the trace moments (fig. C3 with fig. 3), the time intervals 
between events (fig. C4 with fig. 4) and probability gap distributions (fig. C5 with fig. 5, the length Sadler effect) and extended Self-Similarity analysis 
(fig. C6 with fig. 6).

Fig. C1. Six CMPP realizations Temporal boundary event probabilities (ρ(t), red) and event densities (ρ(t), black). The resolution of the simulations was 100 
kyrs with outer scale 212 time longer (409.6 Myrs), the other parameters as indicated in the text. The only difference between the plots is the random seed. The 
number of boundaries are not identical but close: 257 ± 9. Compare this with fig. 1.
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Fig. C2. Scaling and universal multifractal parameters H, C1, α. Compare this with the empirical fig. 2. The same as the empirical (fig. 2) plots but for the 
average of 6 realizations of the compound Poisson multifractal model, with resolution 100 kyrs over 12 octaves in scale so that the largest scale is 409.6 Myrs. The 
mean number of boundaries was 0.5 per Myr, the parameters of the subordinating multifractal process was α = 1.35, C1 = 0.1, H = 0. There were no other parameters. 
The realizations are those shown in fig. C1. The compound multifractal-Poisson process is perfectly scale invariant, but there is an implicit scale equal to the inverse 
of the mean boundary density, and this leads to departures from power law scaling at around 1 - 2 Myr.

Fig. C3. Trace moments Mq =
〈
φq

λ
〉

of the same 6 realizations. With λ = το/Δt and Δt in units of Myrs. Compare this with fig. 3.
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Fig. C4. The nth time intervals between successive boundaries (τ(n)) in Myrs. Compare this with the empirical fig 4.

Fig. C5. Probability distributions Pr(τ’>τ) for the duration of a randomly chosen inter-boundary interval τ’> exceeding a fixed threshold τ. The dashed line 
is the best fitting Gaussian, qD is the absolute slope. Compare this to fig. 5.

Fig. C6. The extended self-similarity (ESS) plots. The scaling of the qth order moments (Sq = log〈Δρ(Δt)q
〉 = Mq) as functions of the first order moments (M1=S1) 

for moments order q = 0.1, 0.3, ...1.9 (top to bottom). The regression slopes (= 1 - K(q)/H) are shown indicating the excellent scaling from Δt ≥ 1 Myr (red points). 
The fits are over the red points that correspond to lags (Δt) ≥ 1 Myr (the black are for Δt <1 Myr). Compare this to fig. 6.
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Data availability

The data are publically available from the references cited in the text.
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Speijer, R.P., Pälike, H., Hollis, C.J., Hooker, J.J., Ogg, J.G., 2020. The paleogene period. 

In: Gradstein, F.M., Ogg, G., Schmitz, M.D., Ogg, G.M. (Eds.), Geologic Time Scale 
2020. Elsevier, pp. 1087–1140.

Spiridonov, A., Lovejoy, S., 2022. Life rather than climate influences diversity at scales 
greater than 40 million years. Nature 607, 307–312. https://doi.org/10.1038/ 
s41586-022-04867-y.
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