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Introduction

Boreal forests are a critical component of the global car-
bon cycle and are valued globally for their ecological ser-
vices (Bonan et al., 1992; Gauthier et al., 2015; Pan
et al., 2011). They form North America’s most extensive

Abstract

Boreal forests are a key component of the global carbon cycle, forming North
America’s most extensive biome. Different successional stages in boreal forests
have varying levels of ecological values and biodiversity, which in turn affect
their functions. A knowledge gap remains concerning the present successional
stages, their geographic patterns and possible successions. This study develops a
novel application of UAV-LiDAR and Red Green Blue (RGB) data and network
analysis to enhance our understanding of boreal forest succession. Between
2022 and 2024, we collected UAV-LIDAR and RGB data from 48 forested sites
in Alaska and Northwest Canada to (i) identify present successional stages and
(ii) deepen our understanding of successional trajectories. We first applied
UAV-derived spectral and structural tree attributes to classify individual trees
into plant functional types representative of boreal forest succession, amely,
evergreen and deciduous. Second, we built a forest-patch network to characterize
successional stages and their interactions and assessed future stage transitions.
Finally, we applied a simplified forward model to predict future dynamics and
highlight different successional trajectories. Our results indicate that tree height
and spectral variables are the most influential predictors of plant functional
type in random forest algorithms, and high overall accuracies were attained.
The network-based community detection algorithm reveals five interconnected
successional stages that could be interpreted as ranging from early to late suc-
cessional and a disturbed stage. We find that disturbed sites are mainly located
in Interior and Southcentral Alaska, while late successional sites are predomi-
nant in the southern Canadian sites. Transitional stages are mainly located near
the tundra-taiga boundary. These findings highlight the critical role of distur-
bances, such as fire or insect outbreaks, in shaping forest succession in Alaska
and Northwest Canada.

biome, covering 30% of its surface north of Mexico and
spanning a vast transcontinental crescent (Barbour &
Christensen, 1993; Weber & Van Cleve, 2005). In Alaska
and Northwest Canada, boreal forests are characterized by
low tree species biodiversity, largely dominated by conif-
erous species mixed with broadleaf deciduous trees (Kayes
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& Mallik, 2020; Van Cleve et al., 1991), with their com-
position changing over time through forest succession.
Knowledge of the state and dynamics of forest succession
is essential for effectively managing boreal forests amid
global change (Kuuluvainen & Gauthier, 2018).

Forest succession is the gradual or abrupt change in
the composition of ecological communities following a
disturbance, most often fire or insect outbreaks in the
Arctic region (Grime, 1979). This process unfolds
through several phases, known as secondary successional
stages (Grime, 1979; Huston & Smith, 1987). In Alaska
and Northwest Canada, deciduous communities typically
dominate earlier, while evergreen communities dominate
late successional stages (Fastie & Ott, 2006; Massey
et al., 2023; Ustin & Xiao, 2001). Old-growth forests
have significantly higher ecological value and biodiversity
than early successional stages (Bergeron & Fenton, 2012;
Kuuluvainen, 2009), offering diverse habitats and essen-
tial ecosystem services, including long-term atmospheric
carbon sequestration (Lafleur et al., 2018; Vedrova
et al., 2018) and regulation of regional and local weather
regimes (Watson et al., 2018). Several studies investigate
the successional trajectories of forests in Alaska and
Canada (Anyomi et al, 2022), yet a knowledge gap
remains in understanding which successional stages are
present, their geographic distribution and possible trajec-
tories. While succession is traditionally studied through
site-specific forest inventories, these methods can be lim-
ited in capturing larger-scale patterns. Advances in struc-
tural data gathered from Unmanned Aerial Vehicles
(UAVs) offer a novel approach to analyzing these
dynamics.

Stand structure is a fundamental attribute of forest eco-
systems, reflecting their development, habitat suitability
and shaping ecological functions (Bergen et al., 2009;
Shugart et al., 2010; Worsham et al., 2025). Over the past
decade, airborne LiDAR (Light Detection And Ranging)
has become a key technology for capturing structural
information at the landscape scale and is increasingly
used coupled with field forest inventories (White
et al., 2016). UAVs offer a cost- and time-effective solu-
tion for acquiring high-resolution imagery, making them
particularly valuable for surveying remote boreal forest
areas (Guimardes et al., 2020). As a result, UAV point
cloud data are increasingly used in forestry for applica-
tions such as forest characterization (Alonzo et al., 2018;
Brede et al., 2021), biomass estimation (Lu et al., 2020;
Maesano et al., 2022), and conservation efforts (Belmonte
et al., 2020; Scheeres et al., 2023), but have yet to be used
to investigate boreal forest successional trajectories.

Several studies have demonstrated the effectiveness of
LiDAR-derived metrics in characterizing structurally
diverse mixed-species forests (Falkowski et al., 2009) and
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differentiating distinct successional stages in a mixed
mature forest (Van Ewijk et al., 2011). More recently,
UAV-borne LiDAR has been utilized to detect succes-
sional stage changes through canopy structural attributes
(Almeida et al., 2020) and to distinguish forest types
(Scheeres et al., 2023), though these applications focused
on tropical landscapes. Despite these advancements, the
potential for UAV-LIiDAR and Red Green Blue (RGB)
data to identify boreal forest successional stages remains
largely unexplored. One approach to addressing this gap
is network analysis, which provides a framework for
examining connections between successional stages.

In ecological studies, network analysis models and seeks
to understand the connections and interactions (i.e.
edges) between individual elements (i.e. nodes) within an
ecological system (Lau et al., 2017). In forest ecosystems,
a network can be constructed to represent the relation-
ships between successional stages, where the edges show
the direction from one node to another by some process
like succession. For example, Aquilué et al. (2020) evalu-
ated the ecological resilience of forest patches for alterna-
tive management strategies based on network properties
such as connectivity. Fuller et al. (2008) used network
analysis to characterize tropical forest structure. Further,
Zhang et al. (2023) explored the connection between for-
est patches and carbon stock distribution using a forest
ecospatial network. Community detection algorithms
applied to such networks enable the identification of clus-
ters of forest patches with similar characteristics and pro-
vide insights into how different patches are related
(Fortunato & Newman, 2022). While traditional cluster-
ing methods identify groups of similar forest patches, net-
work analysis enables examination of the structure and
dynamics of transitions between stages, offering insights
into connectivity, succession pathways and system resil-
ience that clustering approaches cannot capture. Yet
despite its strengths, network analysis has not been used
to identify successional stages based on structural remote
sensing data.

This study leverages UAV-LiDAR coupled with RGB
data and network analyses to (i) identify present succes-
sional stages in boreal forests and (ii) deepen our under-
standing of successional trajectories. Spanning 48 mapped
areas across Alaska and Northwest Canada, this study
covers a wide range of boreal forest landscapes where
fieldwork was conducted between 2022 and 2024. We aim
to answer the following questions: How are the forest
patches we covered organized in a community network,
and can we identify ecologically meaningful communities
that represent successional stages and their potential tra-
jectories? Specifically, we seek to determine which stages
are present at the sites and if we can predict their devel-
opment over time. First, we used UAV-based LiDAR to
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segment and classify individual trees into plant functional
types. Next, we built a forest-patch network to identify
successional stages and their interactions. Finally, we
mapped the identified stages and assessed future stage
transitions. We hypothesize that UAV-LiDAR-derived
metrics are essential for accurately classifying plant func-
tional types (PFTs) and that network analysis can effec-
tively identify distinct forest successional stages.

Materials and Methods

Study area and data acquisition

This study focuses on boreal forests in Northwest America,
specifically Alaska and Northwest Canada. In the summers
of 2022 to 2024, we collected data to explore boreal forest
structure across 48 sites located between latitudes 60° N
and 68.5° N and longitudes 127.5° W and 163.5° W (Fig. 1).
This area spans from arctic treelines to dense forests in the
subarctic south and portrays a mosaic of forest stands dom-
inated by white spruce (Picea glauca), black spruce (Picea
mariana), birch (Betula neoalaskana), aspen (Populus tre-
muloides) and poplar (Populus balsamifera). It covers a wide
range of ecoregions, such as the Interior Alaska-Yukon low-
land and alpine taiga and tundra regions in Alaska and
Canada and the Northwest Territories taiga transgressing
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northward to the treeline into the Canadian Low Arctic
tundra (Fig. 1). A forest plot (circular area with a 30 m
diameter) was established at each site. There, we inventor-
ied tree species, recorded metrics (height, diameter at breast
height, crown diameter) and individual trees’ GPS coordi-
nates and sampled tree cores (Kruse et al., 2025a, 2025b,
2025¢). UAV-based data was acquired for the forest plots
(Kruse et al., 2025¢, 2025d, 2025f), covering a minimum of
a 500m x 50m transect using a YellowScan Mapper+
LiDAR sensor with a high-resolution Red Green Blue
(RGB) camera (Appendix S1). The forest plot was set in the
center of the UAV path and located using the GPS points.
Survey paths were flown at a speed of 5m/s along parallel
lines spaced 20 m apart with a 75% overlap at an altitude of
70 m above ground. With this configuration, the LiDAR
data have a ground resolution of a minimum of 400 points/

2
m-.

Data processing and analyses

From UAV-LIDAR point cloud data to forest
patches

Figure 2 summarizes the study’s workflow, from acquiring
UAV data to identifying successional stages of forest
patches.

70°N

65°N

60°N

55°N

Canada

Ecoregion
Alaska-St. Elias Range tundra
Brooks-British Range tundra
Canadian Low Arctic tundra
Cook Inlet taiga
Interior Alaska-Yukon lowland taiga
Interior Yukon-Alaska alpine tundra
Northwest Territories taiga
Ogilvie-MacKenzie alpine tundra
Pacific Coastal Mountain icefields and tundra
Watson Highlands taiga

Year of survey
@ 2022
@ 2023
@ 2024

160°W 150°W 140°W

Figure 1. Sites of UAV-based acquisitions (N =48) and forest plots established in the boreal forest during the summers of 2022 in Canada and
2023 and 2024 in Alaska. Different colors represent different expeditions (green, 2022 in Canada; red, 2023 in Alaska; blue, 2024 in Alaska), and
the background represents the ecoregions present at sites from the RESOLVE Ecoregions and Biomes dataset (Dinerstein et al., 2017).
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i UAV-LiDAR Transect
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Height Normalization
Ground Classification

Individual Tree Segmentation
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Abundance per Tree Height
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Community Detection

Figure 2. Workflow of the study: from UAV-LIDAR point clouds to forest successional stages. The black arrows represent the next step in the
workflow. We start by collecting UAV-LIDAR and go through every single step visually described here. This figure shows one example site, with

the red box zooming into an area of the site.

Preprocessing point clouds and individual tree
segmentation

We applied a series of processing steps to ensure
high-quality point cloud data for analysis. For accurate
georeferencing of the point cloud, we first postprocessed
the base station location of an EMLID Reach RS2+ Global
Navigation Satellite Systems (GNSS) receiver, to further use
the observations together with the UAV’s GNSS and Iner-
tial Measurement Unit (IMU) observations for precise
point positioning (Zumberge et al., 1997) in POSPac UAV
software v8.8 (Trimble, Australia). The EMLID Reach was
always placed no more than 500 m from the flight loca-
tions. Likewise, we georeferenced the RGB images using
YellowScan CloudStation, allowing the colorization of the
point clouds with three bands: Red, Green and Blue.

We generated digital terrain models (DTM) from the
LiDAR data by means of triangulation with the lidR pack-
age v4.1.1 (Roussel et al., 2020; Roussel & Auty, 2024).
The DTMs were used to normalize the point clouds. We
cropped the outer edges of the point clouds to remove
low-point cloud density. We classified the points into
ground and aboveground using a cloth simulation filter
(Zhang et al., 2016) and applied a statistical outlier
removal in the CloudCompare software v2.13.beta. We
used the 3-D graph—based algorithm Treeiso (Xi & Hop-
kinson, 2022) in Matlab (The MathWorks Inc, 2024) to
segment each site’s aboveground point clouds into indi-
vidual trees. Based on an empirical approach, we opti-
mized the individual tree segmentation with the given
parameters for each site, with &y, max and proving
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Table 1. Values of Treelso parameters used to segment individual trees.

K4 M Kz A2 Decimated resolution 1 and 2 (m) €max (M) Prnax ®
3 20 10 10 0.05 and 0.1 1.0 2 1
3 20 10 10 0.05 and 0.1 3.0 0.5 0.5

K1, Ky: Number of nearest neighbors, controlling the unit size of a cluster; A4, A;: A regularizing parameter, a greater number producing more
edge cuts; ema: Maximally allowed threshold distance to consider an edge; pmax: Ratio of elevation difference from neighbors to segment length;

®: Importance of the horizontal overlapping ratio over the vertical.

particularly effective in differentiating sparsely from
densely forested sites. We achieved the best segmentation
results with one or the other set of parameters (Table 1).

Tree structural and spectral metrics

Once individual trees were segmented from the above-
ground point cloud data, we derived their structural and
spectral attributes (Table 2). Tree height and crown area
were computed with the crown_metrics function of the
lidR package (Roussel et al., 2020; Roussel & Auty, 2024)
using R v4.3.2 (R Core Team, 2023) and normalized
crown point density (i.e. the number of points in a tree/
crown area) with a custom function. Tree height is esti-
mated as the maximum height (Z) value among all
LiDAR returns within each crown segment. Crown area is
computed by applying a 2D convex hull to the XY coor-
dinates of all points in each crown segment. The convex
hull is the smallest convex polygon enclosing all points in
the horizontal plane.

Two spectral indices were derived from the colorized
point clouds’ RGB data: Normalized Green-Red Differ-
ence Index (NGRDI) (Tucker, 1979) and the Visible
Atmospherically Resistant Index (VARI) (Gitelson
et al., 2002). NGRDI and VARI have been found in previ-
ous studies to enhance the vegetation signal using visible
wavelengths (Ercole et al., 2024; Komarkova et al., 2020;
Luo et al., 2022). VARI and NGRDI (Table 2) enhance
the visibility of vegetation while minimizing the influence
of illumination effects by normalization. Finally, we
applied an empirical filter (tree  height/crown

diameter <0.4) and removed trees smaller than 1 m and
crown diameters smaller than 0.5m. This filtering step
removes all eventual remaining shrubs or trees out of
interest for this study. Additionally, we estimated the age
of each tree present in the point clouds using the tree
cores collected during our forest inventories and regres-
sion models (Appendix S2).

Plant functional types identification

Identifying a forest stand’s communities is essential to
characterize its successional stage. We distinguished two
PFT categories, evergreen and deciduous, based on the
communities of tree species found in the forest surveys.
This grouping was made to reduce errors associated with
uncertain species classification but still captures the domi-
nant ecological strategies and structural contrasts relevant
to boreal forest succession (Alexander et al., 2012;
Herzschuh, 2020). Evergreen corresponds to the commu-
nity of trees with evergreen needleleaf species such as
white spruce and black spruce and is the dominating PFT
in our study region. Deciduous corresponds to broadleaf
trees: birch, aspen and poplar. These two categories reflect
the secondary successional stages of a boreal forest stand,
with a high abundance of deciduous trees being an indica-
tor of early to middle stages of development or distur-
bance stages and a high abundance of evergreen needleleaf
trees as an indicator of late-stage forest (Brassard &
Chen, 2006; Chapin et al., 2006).

For each site, we created a training and validation data-
set (70/30% ratio) by manually labeling 10-15 trees each

Table 2. Structural and spectral variables used for the plant functional type classification.

Variable name Formula Unit Type Derived from
Tree height Max (tree height) m Structural LiIDAR data
Crown area Convex hull area: crown_metrics lidR package m3 Structural LiDAR data
. . : Number of points in a t : .
Normalized crown point density T Unitless Structural LIDAR data
Red (R) Median per tree Unitless Spectral RGB Camera
Green (G) Median per tree Unitless Spectral RGB Camera
Blue (B) Median per tree Unitless Spectral RGB Camera
NGRDI NGRDI = green—fed Unitless Spectral RGB Camera
VARI VARI = g Sreen—fed Unitless Spectral RGB Camera
© 2025 The Author(s). Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London. 5
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as evergreen or deciduous, in total 20-30 trees per UAV
transect, proportional to the number of trees detected per
transect. We wused geolocalized trees from the forest
inventory and the RGB colorized point clouds to facilitate
the PFT identification. We trained a random forest classi-
fier (Breiman, 2001) for each site to identify each tree as
evergreen or deciduous using the R package randomPForest
v4.7.1.1 (Liaw & Wiener, 2002). We tuned the classifiers
by adjusting the number of trees (ntrees = 100) while all
other hyperparameters were kept at their default values.
The variables used as input to the classifier were tree
height, normalized crown point density, crown area, the
individual tree median value of the red, green and blue
bands and spectral indexes NGRDI and VARI. The variety
of metrics allows the capture of PFT traits based on struc-
tural and spectral characteristics. Accuracies were com-
puted based on the validation datasets, and a variable
importance analysis was performed using the latter pack-
age’s importance() function.

Aggregation to forest patches

For each of the 48 sites, we split the processed LiDAR
transects into 20 m x 20 m forest patches, an area large
enough to balance spatial resolution and ecological het-
erogeneity. We computed the abundance of evergreen and
deciduous trees at each forest patch for three height cate-
gories representative of successional stages based on our
field observations and other studies (Gutsell & John-
son, 2002): below 5m (early stage), between 5 and 12 m
and above 12m (mature trees). The abundance corre-
sponds to the ratio between the number of trees in one
category and the total number of trees for one specific
patch. To provide additional ecological context in the
network analysis, we estimated the age of each forest
patch by deriving the maximum and mean tree age per
category per patch.

Network analysis

We used a directed network to identify successional stages
present among all forest patches. The network analysis
groups patches of similar characteristics together and
highlights their interactions with a direction.

Network construction

We built a directed network with the forest patches (here-
after called forest-patch network) to extract communities
and identify their interactions. Directed networks repre-
sent interactions between nodes with a source and target
direction, modeling the development from one node to
another (Leicht & Newman, 2008). Communities are
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connected groups of nodes with high probabilities of
sharing similarities (Fortunato & Hric, 2016). Here, we
defined each forest patch as the network’s nodes with
abundance variables as the node attributes. We refer to
successional stages as communities, where each identified
successional stage corresponds to a group of intercon-
nected forest patches.

The six abundance variables (evergreen and deciduous in
three height categories) were selected to calculate a
Euclidean distance matrix using the R package igraph
(Csérdi et al., 2025; Csardi & Nepusz, 2006), measuring
the similarity between all nodes (forest patches). A simi-
larity threshold, set at the 15% percentile of the distance
distribution, was applied to generate an adjacency matrix.
This empirically chosen threshold prioritizes connectivity
with similar nodes while keeping the network sparse
enough to avoid excessive connections (Fornito et al.,
2010). Directed edges were established so that edges flo-
wed from source nodes with lower age values to targets
with higher evergreen age values. The network was
assigned weights to the edges based on the similarity
scores. Figure 3 describes the network construction
process.

Network community detection

We extracted the network’s community structure and
modularity (Girvan & Newman, 2002; Newman, 2006)
using the Louvain modularity optimization algorithm
(Blondel et al., 2008), allowing identification of large
communities. A ‘giant component’ filter (i.e. Core of the
network) was applied to the network, removing isolated
nodes and reducing noise. The network’s analysis and
visualization were performed with Gephi v0.10.1. Based
on the community of a node, the corresponding forest
patches were manually assigned a successional stage
related to the abundance of evergreen and deciduous trees
and tree height, supported by our field knowledge and
successional theories. The existence of a disturbed stage
was supported by the United States Department of Agri-
culture (USDA) disturbance dataset (Appendix S3).

To identify dominant inter-community interactions, we
aggregated the network at the community level into a ‘-
super-network’ (Stanley et al.,, 2018) by grouping nodes
and summing all edges, directions and weights between
communities.

Network analyses

The betweenness centrality (BC) measures a node’s signif-
icance within a network, determining the extent to which
it lies on the shortest paths between other pairs of nodes
(Freeman, 1977). It reflects the node’s role as a bridge or

6 © 2025 The Author(s). Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London.
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Source node
Edges
Site 1

G Site 2

1 - Forest patches at 48 UAV-

transects with PFT abundances  ©n similarity threshold

Figure 3. Schematic of the network construction process.

intermediary in facilitating interaction across the network.
BC was computed for each node and averaged for each
UAV transect, containing multiple forest patches.

Forward modeling approach

We modeled the forest patches’ trajectories in the future
using a simple growth function. This approach gives us a
first idea of the trajectories, simplifying the true processes
considered in more sophisticated, complex models like
LAVESI (Kruse et al., 2016, 2018). Specifically, using tree
growth rates derived from the tree height-age regression,
we predicted new tree heights and the corresponding for-
est patches’ successional stage membership at a decadal
step for the next 120 years with a simple forward growth
model. The prediction is based on the existing tree’s age
at breast height; no recruitment or death is taken into
account.

Results

Characteristics and classification of plant
functional types

The dataset analyses reveal distinct structural characteris-
tics for the evergreen and deciduous classes (Fig. 4), with
deciduous trees and evergreen trees having higher median
heights of 11 and 7 m, respectively. Random Forest (RF)
classification accuracies vary across sites, yielding a
median overall accuracy of 0.73 with a standard deviation
of 0.18 based on the validation datasets. Higher accuracies
are observed in homogeneous evergreen sites, whereas
lower accuracies are more frequently found in mixed for-
est stands.

Feature importance analyses of the RF classifiers for all
sites show that tree height is the most significant variable
in differentiating evergreen from deciduous classes (Fig. 5).

Target node

2 - Patches connect based
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4 - Louvain community
detection algorithm
- Successional stages

3 - Forest-patch network

The LiDAR normalized crown point density, the crown
area, the NGRDI and VARI, and the RGB camera bands
demonstrate a similar level of importance. The spectral
variables exhibit the most difference between the class-
specific scores. Notably, they play a greater role in pre-
dicting evergreen over deciduous classes.

Successional stages as inferred by network
community detection

Forest-patch network characteristics

The resulting forest-patch network comprises over three
million (3,907,929) directed edges connecting 7,566
nodes. The community detection revealed eleven commu-
nities and a modularity of 0.402. The ‘giant component’
filter identified five major communities (successional
stages) with distinct features (Fig. 6A,B). Each stage pre-
sents varying abundances of evergreen and deciduous trees
of different heights following a growth succession.

An early development stage was identified, with a high
abundance of trees below 5m, predominantly deciduous
species. The second stage is the most diverse, with a sub-
stantial deciduous population greater than 5m, accompa-
nied by a smaller number of evergreen trees of similar
height. Moreover, this stage includes shorter deciduous
and evergreen trees and a few notably old evergreen trees.
We investigated the Insect and Disease Detection Survey
by the Forest Service U.S. Department of Agriculture
(USDA), which reports forest damage and mortality due
to different disturbances (insects, diseases and wind)
yearly since 1997 (USDA, 2023). We find that sites with
forest patches in this second stage in Alaska were consis-
tently reported as disturbed by defoliation or mortality in
the past decade (Appendix S3). These indications suggest
it may represent a disturbance stage.

The third stage is marked by a high abundance of ever-
green below 5m, with some reaching 12 m. Similarly, the
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Figure 4. Characteristics of the evergreen and deciduous plant functional types in the datasets used for training the random forest classifiers.
RGB values are in 16-bit digital numbers (DN) representing raw sensor readings ranging from 0 (black pixel) to 65,535 (white pixel). Deciduous

trees have a higher median height than evergreen trees.

fourth stage is dominated by evergreen, with more ever-
green between 5 and 12 m and slightly less evergreen below
5m. These two stages (3 and 4) are characteristics of
transitional stages, bridging early and late succession with
a gradual increase in evergreen abundance and height. The
final stage shows the highest abundance of tall evergreen
trees, ranging from 5 to 12m and above, along with a
subsequent abundance of smaller evergreen and deciduous
trees. This fifth stage represents a late succession stage,
such as an old-growth evergreen forest stand.

Each stage contains about the same number of nodes
(between 1,306 and 1,898), though some stages are more
sparse than others (Fig. 6A). Stages 3 and 4 are clustered
at the top of the visualized network, showing distinct fea-
tures and less similarity with other stages but rather

strong internal connections. Stages 1 and 5 are positioned
on opposite sides of the network, demonstrating some
clustering but being more dispersed than stages 3 and 4,
and therefore sharing more similarities with other stages.
Stage 2 is scattered across the network, indicating more
heterogeneous patches with less cohesion compared to
the other communities. We observe an overlap between
stages 1, 2 and 5 at the center of the network, suggesting
that similar nodes are shared across these communities.
These nodes may serve dual functions as bridges, connect-
ing distant parts of the network with shared similarities.
The super-network allows better identification of inter-
actions between successional stages — here represented as
supernodes. Figure 7 shows that all dominant edges origi-
nate from the early stage (1), with stronger edges

8 © 2025 The Author(s). Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London.
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detected stage. The black arrow above increasing numbers in panel (B) shows the general succession direction, indicating turns into the next
stage, except for the disturbed stage, which is an intermediate stage.

converging into the late stage (5), either passing through  weaker connections with other stages, suggesting that it is
the transition stages (3—4) or bypassing them. Stage 2 more likely to be bypassed than the other stages. The edge
appears to function predominantly as a sink but has percentages connecting supernodes signify that while the
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Figure 7. Super-network derived from the forest-patch network. Each supernode represents a successional stage, as indicated in the legend. The
arrows show the dominant direction of edges between two supernodes, with the percentage of edges between two supernodes going in the
dominant direction. The darker the edges, the stronger the connection. The year associated with each edge (e.g. 40 yrs. between stages 1 and 2)
shows the age difference between the mean of the oldest tree’s age per patch of both stages.

edges show the dominant direction, movement of nodes
in the opposite trajectory also occurs.

Network connectivity

To understand the network’s connectivity across sites,
we analyzed the BC of each node. We selected sites with
the lowest, median and highest mean BC and visualized
them in the network (Fig. 8A). The density plot shows
that the majority of sites are within a normal distribu-
tion pattern with comparable BC values close to the
median, except for a few sites with higher BC (Fig. 8B).
Site EN22055, (a mixed spruce and poplar forest with
tall individuals partly disturbed by a recent forest fire in
2021) in Northwest Canada has the highest BC and is
located at the center of the network within the dis-
turbed and late stages. This indicates that these nodes
(Fig. 8B, red) play a key role in maintaining overall net-
work connectivity. The site with the minimum BC
(Fig. 8A, purple) is located at one network’s edge, seem-
ingly at terminal positions, and consequently has fewer
connections. The median (Fig. 8A, green) serves as a

benchmark for comparison, where nodes tend to be
more spread out across the network.

Mapped successional stages

By characterizing forest patches with a successional stage,
we can effectively map the forest conditions across our
study sites. Early stages are predominantly found in the
treeline regions, such as Northwest Canada and western
Alaska (respectively northern and western tundra-taiga
transition) (Fig. 9). Transitional stages (3 and 4) are pri-
marily located in the northern to central parts of the
study area, while late stage’s sites are concentrated in the
southern part of our study region in Canada. Disturbed
sites (stage 2) are more widely distributed across Alaska
and Northwest Canada, with a notable cluster in interior
and southern Alaska.

Potential successional stage transition

Using a forward growth model to predict the transition
of forest patches to different successional stages provides

10 © 2025 The Author(s). Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London.
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Figure 10. Sankey diagram representing the evolution of forest patches’ successional stage with a 10-year increment. The y-axis is the number of
forest patches in the successional stage, and the x-axis is the years elapsed.

valuable insights into the trajectories of these sites. The
Sankey flow diagram visualizes these trajectories over time
(Fig. 10). Stages 1, 3 and 4 decrease rapidly after 10 years
and shift into the late and disturbed stages (5 and 2).
Stages 2 and 5 gradually increase until being co-dominant
at 30 years. After that, stage 5 declines, allowing stage 2 to
dominate all patches.

Discussion

Leveraging UAV-LiDAR coupled with RGB data and
network analyses, we identified successional stages in
boreal forests across sites in Alaska and Northwest Can-
ada, providing insights into their trajectories and inter-
actions. Our findings reveal the presence of five
interconnected successional stages, each characterized by
varying abundances of evergreen and deciduous plant
functional types (PFT). Notably, the most diverse stage
— corresponding to a disturbed state — is predominantly
found in central and south Alaska, whereas old-growth
evergreen stands are more common in our southern
sites in Canada. By analyzing the development of forest
patches, we observed that they all ultimately lead to a
disturbed stage within approximately 100 years. These
results support our initial hypothesis that UAV-LiDAR-
derived metrics are effective for the classification of
PFTs and that network analysis can identify distinct for-
est successional stages.

Plant functional type classification based on
UAV structural and spectral data

We used high-resolution UAV-derived structural and
spectral metrics to classify individual trees into the two
plant functional types building random forest classifiers.
Consistent with previous studies (Cho et al., 2012; Nai-
doo et al., 2012) and supporting our initial hypothesis,
our findings highlight LIDAR-derived tree height as a key
predictor variable. Considering the broad spatial extent,
variations in bioclimatic gradients and the heterogeneity
of the study sites, we suggest that PFT characteristics also
reflect site-specific environmental factors rather than gen-
eral species characteristics. While our approach of cou-
pling LiDAR and RGB data effectively captured PFTs,
species-level tree classification would further refine the
definition of successional stages, particularly by differenti-
ating black spruce from white spruce, which indicates dif-
ferent site productivity (Fastie & Ott, 2006). However,
achieving this would require a more detailed and
species-balanced training and validation dataset, which
was not available for this study — despite the considerable
dataset size, due to the logistical challenges of data acqui-
sition. Research shows that coupling multispectral or
hyperspectral data with LiDAR-derived variables might
allow better tree species classification (Dalponte
et al, 2008; Ghosh et al., 2014; Zhong et al., 2022), at
least for mixed temperate forests. Extended boreal forest
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species-level reference datasets from LiDAR point cloud
and spectral data are needed for such applications and are
currently under development by our research team.

Successional stages as inferred from
community detection in a forest-patch
network

Using a community detection in the forest-patch network,
we identified five successional stages from early to late
development, characterized by varying abundances of
evergreen and deciduous PFTs. These findings correspond
to observations of species communities and forest succes-
sion in the boreal forests (Fastie & Ott, 2006; Viereck
et al., 1986). While our analysis establishes these stages, it
does not imply that only five discrete stages exist but
rather a continuum of interconnected stages, where forest
patches dynamically transition in response to environ-
mental conditions and disturbances. We built the network
using similarity alone, without restricting connections by
geographic distance. To assess potential spatial autocorre-
lation, we tested additional networks where nodes were
only connected if they exceeded distance thresholds of
40 m, 160 m, 300 m or 1,000 m. These constraints slightly
modified the network’s modularity but did not affect
community detection, indicating spatial dependence had
a negligible impact on network structure. Unlike tradi-
tional clustering methods classifying forest patches solely
based on similarity, network-based approaches offer addi-
tional insights by revealing the structural connectivity and
interactions between patches using edges (Bloomfield
et al., 2018), highlighting the dynamic nature of succes-
sion. We applied a high similarity threshold to construct
a very connected network and employed a community
detection method favoring larger communities. This rea-
soning stems from our objective of identifying broad suc-
cessional stages rather than smaller communities.
Additionally, the network approach enables the identifica-
tion of key nodes, such as sites with high betweenness
centrality serving as critical areas linking multiple succes-
sional stages. The strong interactions between the early,
transitional and late stages suggest that this trajectory is a
dominant one, consistent with established succession the-
ories and observations referring to deciduous stands as
early and evergreen stands as late stages (Anyomi
et al., 2022; Fastie & Ott, 2006). However, stage 2 (dis-
turbed) stands apart with weaker connections converging
from the other stages. This pattern suggests that stage 2
represents an intermediate stage where a subset of forest
patches accumulate, corresponding to disturbance events
altering forest structure and composition. These findings
support our hypothesis that network analysis can effec-
tively identify forest successional stages.

Investigating Boreal Forest Successional Stages

An intermediate disturbed
successional stage

The second stage identified in our study comprises old,
young and mixed forests, suggesting it represents a phase
of disturbance recovery. In the western North American
boreal forest, disturbances such as stand-replacing fires
occur regularly, at intervals ranging from 50 to 150 years
(Larsen, 1997; Payette, 1992), playing a key role in shap-
ing successional trajectories (Johnstone et al., 2011). Our
finding is further supported by the high frequency of dis-
turbed sites overlapping with mapped disturbance areas
identified by the USDA (2023) and our field observations
on site. In this stage, forest stands are regenerating follow-
ing structural and compositional changes induced by dis-
turbances such as wildfires or insect outbreaks. In this
scenario, some old-growth evergreen trees may persist if
they survived the disturbance, while others perished. The
subsequent regeneration process favors the establishment
of deciduous species in the early stages, explaining the
presence of deciduous trees alongside the remaining ever-
greens (Anyomi et al., 2022).

Geographical distribution of successional
stages

Our study shows the geographical distribution of succes-
sional stages across Alaska and western Canada, revealing
distinct regional patterns. We identified clusters of dis-
turbed sites in interior and southern Alaska, which are
warmer and more fire-influenced regions than other parts
of the boreal forests (Beck et al., 2011). Consistent with
our findings, Roland et al. (2019) report significantly
higher occupancy and abundance of both conifer and
broadleaf species in interior Alaska due to disturbances.

We find that the transitional stages are mainly located
in northern Canada and Alaska. These regions are charac-
teristic of the biome boundary between boreal forest and
tundra, known as the Tundra-Taiga Ecotone (TTE),
where trees are shorter and border tundra landscapes
(Montesano et al., 2020). Early stages are mainly found
on the western Seward Peninsula, a region marked by the
longitudinal tundra-taiga boundary (Viereck & Lit-
tle, 1972). In contrast, our findings indicate that older
evergreen stands are primarily located in the southern part
of the study region in Canada. A comparison with forest
age maps (Besnard et al., 2021) further supports this
observation, as this region contains older forests relative
to our other study sites.

The spatial patterns in successional stages have impor-
tant ecological implications. Early and transitional succes-
sional stages provide open, resource-rich habitats that
support high biodiversity, enhance nutrient cycling and
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promote landscape connectivity (Alexander et al., 2012;
Anyomi et al, 2022). Old, evergreen-dominated stands
create cold, moist understories, leading to permafrost
development and reduced nutrient availability. These con-
ditions limit productivity and standing biomass but con-
tribute to long-term soil carbon storage (Alexander
et al, 2012; Flanagan & Cleve, 1983; Van Cleve, Oliver,
et al, 1983). They also serve as important habitat for
fur-bearers and are key sites for berry production (Nelson
et al., 2008). In contrast, deciduous-dominated stages
(e.g., Disturbed) promote rapid litter decomposition, sup-
porting higher aboveground biomass and productivity
(Van Cleve, Dyrness, et al., 1983; Van Cleve, Oliver,
et al., 1983). Maintaining a mosaic of successional stages
is crucial for sustaining biodiversity and supporting a
range of ecosystem functions (Porter et al., 2023).

Since our results are based on subsets of the landscape
rather than the entire region, some observed patterns may
not fully represent broader trends. While the identified
successional stages may reflect a biogeographic or envi-
ronmental gradient to some extent, our analysis of biocli-
matic variables (Fick & Hijmans, 2017) found no
evidence of such a gradient in the distribution of succes-
sional stages (Appendix S5). Moreover, we acknowledge
the uncertainties related to the space for time substitution
in our analysis. We captured one-time snapshots of mul-
tiple sites for comparison, which may not entirely reflect
the true successional change over time that would be
observed at a fixed location, where varying trajectories
could emerge. However, this approach still provides cru-
cial information about the current patterns found at sites
across the boreal forest.

Implications for future boreal forest
succession

The prediction provides insights into the future dynamics
of the investigated forest patches, revealing they tend to
shift between the late and disturbed stages over 20 years
before wultimately reaching a disturbed state after
100 years. This time frame corresponds to the disturbance
intervals encountered in the boreal forests, and the
approximate time it takes to reach a mature evergreen
stand (Fastie & Ott, 2006; Van Cleve & Viereck, 1981).
Once a forested area reaches a disturbed state, the distur-
bance may either be stand-replacing or leave some surviv-
ing trees, after which it may gradually move through
successional trajectories into different stages. Additionally,
with the fire season becoming longer (Flannigan
et al., 2013), the interval for vegetation regeneration
shortens (Coogan et al., 2019), which in turn leads to
more forested areas becoming part of this disturbed stage.
However, this prediction is solely based on tree growth

L. Enguehard et al.

estimations, assuming no tree decay, new growth, envi-
ronmental changes or other disturbances. Considering
these factors in a dynamic vegetation model, such as the
individual-based and spatially explicit model LAVESI
(Kruse et al., 2016, 2018) would allow a more realistic
prediction of the dynamics and potentially show a delay
of the transition to a disturbed state. While we do not
suggest that all boreal forests will become disturbed, our
findings reinforce that disturbances significantly shape
boreal forest succession in Alaska and Northwestern Can-
ada (Foster et al., 2022).

Conclusions

In this study, we investigated structural and spectral data
to assess boreal forest successional stages across sites in
Alaska and Northwest Canada. We merged UAV-borne
spectral and structural data to classify plant functional
types with random forest algorithms, achieving high accu-
racy in distinguishing coniferous from broadleaf tree spe-
cies. Based on these results, we built a forest-patch
network and detected forest successional stages based on
a community detection algorithm.

Our findings revealed five successional stages, ranging
from the early stage to the late stage, including a dis-
turbed state. We assessed the geographical distribution of
the successional stages, with disturbed sites in interior
and southern Alaska and older forests in Canada. Finally,
we predicted future dynamics with a forward model and
highlighted different successional trajectories.

This study presents a novel application of UAV-LiDAR
and RGB data and network analysis, advancing our
understanding of successional trajectories across sites in
Northwest America up to the northern treeline. Future
research could further refine these methods by integrating
long-term monitoring and exploring the impacts of cli-
mate change on boreal forest succession or upscaling the
results with satellite data.
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piaq), Hén, Lingit Aani (Tlingit), Kaska Dena Kayeh, Tag-
ish First Nation (Yukon), Tagish, Na-cho Nyak Dun,
Selkirk, Tr'ondék Hwéch’in, Ta’an Kwich’in, Kwanlin
Diin, Denendeh (Acho Dene Koe), Michif Piyii (Métis),
Inuvialuit, Inuit Nunangat, Vuntut Gwich’in and Tetlit
Gwich’in. We are grateful for the opportunity to work in
these territories and recognize the deep cultural, ecologi-
cal and historical connections Indigenous Peoples have
with boreal forests. Open Access funding enabled and
organized by Projekt DEAL.
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