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Motivation

Data Assimilation (DA) into non-linear models (e.g. nonhydrostatic dynamics)
= Nonlinearity in DA — non-Gaussianity of error distributions
= Non-linear model dynamics lead to different degree of non-Gaussianity
= For Gaussian distributions: (Ensemble) Kalman filter is optimal
= For non-Gaussian distributions:
= Kalman filter suboptimal or failing

- Non-linear DA methods (e.g. Particle filters): possibly better estimates, but higher
sampling errors than KFs

= Aim for DA method that
= adapts to non-Gaussianity
= Allows to utilize optimality of Kalman filter for Gaussian distributions
= Utilize hybrid combination of Kalman and nonlinear filters
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Linear and Nonlinear Ensemble Filters

= Represent state and its error by ensemble X of [V states

= Forecast:
= |ntegrate ensemble with numerical model

= Analysis step:
= update ensemble mean Xt =% + X''w

= update ensemble perturbations X' = X'TW

(both can be combined in a single step)

= Ensemble Kalman & nonlinear filters: Different definitions of
= weight vector w  (dimension [V)

= Transform matrix W (dimension N X IN')
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ETKF (Bishop et al., 2001)

= Ensemble Transform Kalman filter
= Assume Gaussian distributions
= Transform matrix

Al = (N- DI+ HXHTRIHX"

= Mean update weight vector
w = A(HX/)TR™! (y _ fo)

(depends linearly on y)

= Transformation of ensemble perturbations

W =+VN —1AY2A

A : mean-preserving random matrix or identity

(W depends only on R, not y)

Lars Nerger — hybrid nonlinear-Kalman filter

Note: W depends
only on R, notony
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NETF (Todter & Ahrens, 2015)

= Nonlinear Ensemble Transform Filter

» Mean update from Particle Filter weights:
for Gaussian observation errors for all particles i

@ ~ exp (—0.5(y ~Hx TR (y - HX,{))
(nonlinear function of observations y)

» Ensemble update

= Transform ensemble to fulfill analysis covariance
(like ETKF, but not assuming Gaussianity)

= Derivation gives Note: W depends on'y

~ ~ ~ 1/2 : :
W =N [diag(w) — WWT} / A and R (higher sampling
errors than ETKF)
(/A mean-preserving random matrix; useful for stability)

NETF: second-order exact particle filter using transformation rather than resampling ,
Todter, J. and Ahrens, B. (2015) Mon. Wea. Rev. 143,1347-1367 @ AN/



ETKF-NETF — Hybrid Filter Variants

Factorize the likelihood:  p(y|x) = p(y|x)"p(y|x)1 =)
1-step update (HSync)
HSyne = X'+ (1 —v)AXnNerF + YAXETKF

- AX: assimilation increment of a filter
* y: hybrid weight (between 0 and 1; 1 for fully ETKF)

2-step updates
Variant 1 (HNK): NETF followed by ETKF
X v = X&prrX/, (1-7)R™]
v = XbrerXbng, YR
« Both steps computed with increased R according to y

Variant 2 (HKN): ETKF followed by NETF
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Choosing hybrid weight y

= Hybrid weight shifts filter behavior

Some possibilities:
= Fixed value
= Adaptive - According to which condition?

= Frei & Kuensch (2013) suggested

1
using effective sample size N¢fr = Z

(w?)?
= Yo : Choose y so that N.y¢ is as small as possible but
above minimum limit a (done iteratively)

(Usual choice for 'tempering’)

Issue: Using Nt
= only ensures non-collapsing ensemble
= does not ensure good analysis result
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Using skewness and kurtosis to define hybrid weight y

=  Sampling errors are larger in NETF than ETKF
- Always use ETKF for Gaussian (linear) cases
=  Skewness and kurtosis describe deviation from Gaussianity

= mean absolute skewness (7.a.5) and kurtosis (11.ak ) of observed ensemble
(with localization: use locally assimilated observations)

= Use normalized means:

1 1 standard value:
nmas = —mas nmak = —mak k = N,
VK K
Now define stronger influence of
Vsk,a = max [min(1 — nmak, 1 —nmas), ¥4 nmas and nmak
limited by Neff

Note: There are sampling errors, e.g. for skewness Oskew ™~ 6/Ne
= For N=25: ~10% error in 7y

e
Lars Nerger — hybrid nonlinear-Kalman filter @ Ml/




Numerical experiments

= Lorenz-63 and Lorenz-96 models Lorenz-63: CRPS ETKE
= Configurations that ensure high nonlinearity 1.4r ~+weak nonlin
—+ medium nonlin
= |ong forecast times 1.2} —*+—strong nonlin
= Lorenz-96 also incomplete observations 1
= Assimilation implemented using PDAF o
(https://pdaf.awi.de) % o8t
0.6}
= NETF yields smaller errors than ETKF if \ e
ensemble size large enough 04r T, 1
: : : S o Seetriin cvivwivo R SN
- Size decreases for larger nonlinearity 0.2 . . H T
. 20 40 60 80 100
= Improvement by NETF stronger for higher ensemble size N_
nonlinearity ETKF and NETF for
3 different nonlinearities
PDAF:..i (weak At=0.1, medium At=0.4, strong At=0.7)
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Assimilation with Lorenz-63 model

Hybrid filter HNK
= particular strong effect for small N,
= CRPS from NETF and HNK converge for
large N,
= errors reduced up to 28%
Particle Filter %
- comparable CRPS for large N,

*  PF expected to be superior if N,
sufficiently large (the full nonlinear filter)

Note: Easy to get large ensemble for Lorenz-63,
difficult for higher dimensional models

Lorenz-63: CRPS

—o—ETKF
——NETF
—HNK 7,

* PF
—+-weak nonlin
—+ medium nonlin
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Test with Lorenz-96 model

Ensemble size 15; Forecast length: 8 time steps; 20 observations | o, .\ ~\s errors as function
of inflation (forgetting factor
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Summary

Hybrid nonlinear-Kalman ensemble transform filter (LKNETF)
= Combine LETKF and LNETF methods
= hybrid weight y shifts between both methods

Experiments with Lorenz models

= Hybrid filter reduces errors compared to both LETKF and LNETF
= Best results for particle filter applied before LETKF
= Compute y based on skewness and kurtosis

= allows to control nonlinearity of filter based on non-Gaussianity

Ongoing work

= more applications to complex models to understand performance
(Tests: ocean 1/4°: little effect; marine biogeochemistry: large effect;
PM2.5 components modeling: large effect)

= mathematical consistent description for hybrid weight
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