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Overview

= Linear and nonlinear ensemble filters
= Hybrid nonlinear-Kalman filter
= Application tests
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Application Examples (different models utilizing PDAF)

PDAFParaIIeI

Data Assimilation

Framework

Coastal coupled
physics/biogeoche-
mistry DA:
CMEMS/BSH -
Improving forecasts
with NEMO-ERGOM/
HBM-ERGOM:

(S. Vliegen, A.
Sathanarayanan)
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RMS error in surface temperature
’ v YA
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Coupled
physics/biogeo-
chemistry DA:
Improving parameters
& carbon flux in
REcoM

(N. Mamnun, F.
Bunsen, A. Broschke)

mmol C day~! m~2

Paleo-climate
DA: improve
simulation of last

deglaciation with
CLIMBER-X
(A. Masoum)

Coupled ocean-

atmosphere DA:

Assimilate ocean
observations into
atmosphere with
AWI-CM

(Q. Tang)
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Mean sea surface change over proxy locations

Observation
= Ensemble mean_DA
= Ensemble mean_Prior
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Motivation

Data Assimilation (DA) into non-linear models (e.g. nonhydrostatic dynamics)
= Nonlinearity in DA — non-Gaussianity of error distributions

= For Gaussian distributions: (Ensemble) Kalman filter is optimal
= For non-Gaussian distributions:

= Kalman filter suboptimal or failing

= Non-linear DA methods (e.g. particle filters): possibly better estimates, but higher
sampling errors than KFs

Non-linear model dynamics lead to different degree of non-Gaussianity
= Aim for DA method that

= adapts to non-Gaussianity
= Allows to utilize optimality of KF for Gaussian distributions

= Utilize hybrid combination of KF and nonlinear filter

53
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Linear and Nonlinear Ensemble Filters
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Linear and Nonlinear Ensemble Filters

- Represent state and its error by ensemble X of N states
/ —
(use ensemble perturbation matrix X = X — X))

* Forecast:
* Integrate ensemble with numerical model

* Analysis step:

- update ensemble mean X =%/ + X'"Tw
« update ensemble perturbations X't = X’fW

(both can be combined in a single step)

«  Ensemble Kalman & nonlinear filters: Different definitions of
- weight vector W (dimension V)

- Transform matrix W (dimension [N X INV)

el
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The Kalman Filter

Assume Gaussian distributions
fully described by

* mean state estimate
e covariance matrix

= Strong simplification of estimation problem

Analysis is combination auf two Gaussian distributions computed as
» Correction of state estimate

« Update of covariance matrix State x@

Observation y

Lars Nerger — hybrid nonlinear-Kalman filter



ETKF (Bishop et al., 2001)

= Ensemble Transform Kalman filter
= Assume Gaussian distributions
= Transform matrix

Al = (N- DI+ HXHTRIHX"

= Mean update weight vector
w = A(HX/)TR™! (y _ fo)

(depends linearly on observation vector y)

= Transformation of ensemble perturbations

W =+VN —1A'2A
A : mean-preserving random matrix or identity

Note: W depends only on R, not observation y

el
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Optimality of the Kalman Filter

Kalman filter was derived to minimize variance

Kalman filter is optimal only if

= Covariance matrices are known
(they are not in high-dimensional systems)

= Errors have normal distribution

With a nonlinear model
= |nitial Gaussianity not preserved by nonlinear transformation
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Particle filters: fully nonlinear

Just multiply probabilities:
p(xly) o p(y|z)p(x)

... and normalize

probabilities are represented
by ensembles and weights

posterior likelihood prior
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Alternative uses of Bayes law

Bayes law: Probability density of x given y

p(yilxi) p (xi)

p(xilyi) =
n p(¥i)
Represent P(X; ) by ensemble: p(X;) = Z o(x X,Ej))
N (J)
X p(yilx;"")
p(x;]yi) d(x
s Z )* p(yi)
Kalman fllter. Particle Filter:
assume normal distributions keep ensemble states
compute new ensemble states but assign weights
. (4)
20 j =1, N @) = PP
p(yi)

=3
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NETF (Todter & Ahrens, 2015)

= Nonlinear Ensemble Transform Filter

» Mean update from Particle Filter weights:
for Gaussian observation errors for all particles i

@ ~ exp (—0.5(y ~Hx TR (y - Hx{))
(nonlinear function of observations y)

» Ensemble update

= Transform ensemble to fulfill analysis covariance
(like ETKF, but not assuming Gaussianity)

= Derivation gives
. ~ ~ ~ 1/2
W = /N [diag(w) — ww | /2 A
(A mean-preserving random matrix; useful for stability)

NETF is a second-order exact particle filter

Todter, J. and Ahrens, B. (2015) Mon. Wea. Rev. 143,1347-1367
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ETKF & NETF

= Analogous update schemes
= Both filters can be localized (LETKF and LNETF)

= But
= ETKF
= very stable, even in nonlinear cases
= Optimal for Gaussian / sub-optimal for nonlinear cases
= NETF
= accounts for nonlinearity (non-Gaussianity)
= higher sampling errors than LETKF
= needs very small localization radii

el
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Test with Lorenz-96 model

less

0.95

forgetting factor p
o
oo

inflation

0.7

more

RMSE: LETKF

12 3 456 7 89 10 12
localization radius
(grid points)

RMSE min=1.606

14

16

RMSE: LNETF

inflation threshold «

1 2 3 4 5 6 7 8 9 10

localization radius
(grid points)

RMSE min=1.754
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2.6

2.4

2.2

State dimension 40
Ensemble size N,,;=15

Forecast: 8 time steps
(strongly nonlinear DA case)

20 observations,
obs. error 1.0

LETKF better than LNETF
at this N,
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Stabilizing LNETF — Lorenz-96 model

State dimension 40

RMSE: LNETF - standard Ve RMSE: LNETF - stabilized . Epnsemble size 15
1 0.5
24 045 .« " Forecast: 8 time steps
0.95 . 0.4 .
09 22 2035 22 = 20 observations

e
o
w

0.25

o
o™

0.2

e ® Standard LNETF needs
very small localization
radius (‘curse of

14 dimensionality’ also holds

forgetting factor p
%
(&)

inflation thr

0.15
0.756

1.6 0.1

0.7 0.05

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

min=1.806 localization radius r,__ min=1.754 localization radius r Wlth |OCa|ization)
Inflation: Inflation:
= forgetting factor = fixed inflation (p=0.85)
=  Minimum effective sample size
1
Neff:Z(wz’)2 > §
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Hybrid — LETKF-LNETF

Combine the stability of LETKF with nonlinear features of LNETF

Lars Nerger — hybrid nonlinear-Kalman filter
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ETKF-NETF — Hybrid Filter Variants

Factorize the likelihood:  p(y|x) = p(y|x) p(y|x)*

(‘tempering’)
1-step update (HSync)
a ~/
Hoyne = X + (1 =) AXNprF + YAXETKF

- AX: assimilation increment of a filter
* y: hybrid weight (between 0 and 1; 1 for fully ETKF)
2-step updates
Variant 1 (HNK): NETF followed by ETKF
X v = X&prrX/, (1-7)R™]
v = XbrerXbng, YR
« Both steps computed with increased R according to y

Variant 2 (HKN): ETKF followed by NETF

el
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Choosing hybrid weight y

= Hybrid weight shifts filter behavior

Some possibilities:
= Fixed value
= Adaptive - According to which condition?

= Frei & Kunsch (2013) suggested

1
using effective sample size N¢fr = Z

(w?)?
= Yo : Choose y so that N.y¢ is as small as possible but
above minimum limit a (done iteratively)

(Usual choice for 'tempering’)

Issue: Using Ve s

= Adaptive alternative Neff = only ensures
Yiin = 1 — N non-collapsing ensemble
(& [

: o , does not ensure good
(close to 1 if Ny small; no iterations) analysis result

el
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Effect of hybrid weight y

= Lorenz-96 model, size 80
= Examine single analysis step

Absolute errors
T

T T T

forecast

1. Run 33 analysis steps with y=1 (LETKF)
2. Run analysis step 34 with one of

a) y=1
b) y=0.8

3. Examine N and analysis errors

Additional experiment:
c) Adjust y at each grid point to get
minimum error

No obvious relation
between N+ and y!

%
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Other works using hybrid filters

Frei & Kiinsch, 2013 (FK13)

« Derived combined KF with resampling PF; KF before PF (with covariance localization)

* Hybrid weight from NN, > a

Chustagulprom/Reich/Reinhardt, 2016

* Ensemble square-root filter (ESRF) + ensemble transform PF solving linear transport problem
« KF before PF, PF before KF (better results if PF before KF); hybrid weight from FK713
Robert/Leuenberger/Kinsch, 2018

* Update of FK13 using ETKF; application to convective-scale setup of COSMO

« KF before PF; hybrid weight from FK13

Grooms & Robinson, 2021

« EnSRF + SIR-PF without localization; PF before KF; hybrid weight from FK13
Poterjoy, 2022; Kurosawa & Poterjoy, 2023

* Multi-step (tempered) Local PF + final EnKF step

« Poterjoy(2022): Hybrid weight using FK13; Kurosawa/Poterjoy(2023): Shapiro-Wilk test

=3
Lars Nerger — hybrid nonlinear-Kalman filter @ AN/



Account for non-Gaussianity: Skewness and Kurtosis

0.4

= Mean — 1st moment

0.35F

= Variance — 2nd moment

0.3F

= Skewness — 3rd moment 5 025t
1 Ne ) — 02}
N, D iz (X - X)

0.15F

skew =

0.1F

N. ‘ 9 3/2
[ﬁ D im1 (X —X) ] oos|

= Kurtosis — 4th moment

N, i —\4
N% iz (X - X)
2
Ne /i =2
[(1\176) 2 i (X' —X) ]

= Skewness and kurtosis

kurt = — 3

= generally not bounded
= but limits depend on ensemble size

=3
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Finding bounds: Asymptotic properties of skewness and kurtosis

= Bounds of skewness and kurtosis depend on ensemble size
= Assess extreme cases

Case Values skew limit  kurt limit
max.skew xM =a-d xD =3 i=2,...,N, VN Ne
max.kurt xM=a-d, x@ =a+d, xD=a i=3,...,N, 0 —2
min. kurt xD =a—-d, i=1,...No/2; xY) =a+d, j=Ns/2+1,...,N, 0 Ng/2

in

- : . CANV
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Using skewness and kurtosis to define hybrid weight y

=  Sampling errors are larger in NETF than ETKF
- Always use ETKF for Gaussian (linear) cases
=  Skewness and kurtosis describe deviation from Gaussianity

= mean absolute skewness (7.a.5) and kurtosis (11.ak ) of observed ensemble
(with localization: use locally assimilated observations)

= Use normalized means: _
1 1 standard value:

nmas = —mas nmak = —mak k = N,

VK K

Now define

stronger influence of
nmas and nmak
Vsk,lin = max [min(1 — nmak, 1 —nmas), Yiin] limited by N f 1

Vsk,oo = max [min(1 — nmak, 1 —nmas), ]

Note: There are sampling errors, e.g. for skewness Oskew ™~ 6/Ne
= For N=25: ~10% error in 7y

e
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Numerical Experiments
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PDAFParaIIeI

PDAF - Parallel Data Assimilation Framework Data Assimilation

Framework

A unified tool for interdisciplinary data assimilation ...

provide support for parallel ensemble forecasts

provide DA methods (EnKFs, smoothers, PFs, 3D-Var) - fully-implemented & parallelized
provide tools for observation handling and for diagnostics

easy implementation with (probably) any numerical model (<1 month)

a program library (PDAF-core) plus additional functions & templates

run from notebooks to supercomputers (Fortran, MP| & OpenMP — model compatibility)
ensure separation of concerns (model — DA method — observations — covariances)

first release in year 2004; continuous further development

Open source:
Code, documentation, and tutorial available at

https://pdaf.awi.de

https.//github.com/PDAF/PDAF

L. Nerger, W. Hiller, Computers & Geosciences 55 (2013) 110-118




Assimilation with Lorenz-63 model

Observe full state

Time step size 0.05 TTl- - NETF o]
--—-Hybrid ~ e

sk,lin -,

Vary forecast duration At to vary nonlinearity
Ensemble size N, =25

HNK filter variant (nonlinear before Kalman)
Implemented with PDAF

Error of NETF > ETKF due to sampling errors

Effect of hybrid filter grows with nonlinearity of
assimilation problem (forecast length)

Hybrid weight 7Ysk,lin yield smallest errors
without any tuning

mild medium strong

= Errors are reduced up to 28% nonlinearity

Note: Hybrid weight Vsk,« is suboptimal unless optimally tuned

e
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EKTF & NETF with Lorenz-63 model

Dependence on ensemble size

= NETF yields smaller errors than ETKF if
ensemble size large enough

- Size limit decreases for larger nonlinearity

= Improvement by NETF stronger for higher
nonlinearity

Lorenz-63: CRPS [«
' ' ——NETF
1.4¢ -+-weak nonlin
—+ medium nonlin
12} ——strong nonlin
1t
wn
(a
%S o.st
0.6
‘\- R .
0.4 Fo -9
'*.\.
o---o—+--o—-—\-'$'—-~—r¢.—_-,—_-.-g_—_-.—_--o—-—--g—-—--g—-—-—o
b e !
0.2 . . : *
20 40 60 80 100

ensemble size Ne

ETKF and NETF for
3 different nonlinearities

(weak At=0.1, medium At=0.4, strong At=0.7)
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Assimilation with Lorenz-63 model

Hybrid filter HNK ' L?ren2-63='CRPS T ETKE
. —+—NETF
= particular strong effect for small N, 1.4} e HNK
= CRPS from NETF and HNK converge for % PF
1.2¢ —+-weak nonlin
Iarge Ne —+— medium nonlin
= errors reduced up to 28% w ' * ——strong noniin
. . o
Particle Filter % 0.8}
- comparable CRPS for large N,
0.6}
*  PF expected to be superior if N, N TR,
sufficiently large (the full nonlinear filter) 0.4F e [
O Nt 1L GUUED SR SRR S S
I B
20 40 60 80 100

ensemble size Ne
Note: Easy to use large ensemble for Lorenz-63,

difficult for higher dimensional models

=3
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Test with Lorenz-96 model

forgetting factor p

Ensemble size 15; Forecast length: 8 time steps; 20 observations

o
oo

0.75

0.7

—

0.95

o
©

forgetting factor p
o o
o &

0.75

0.7

RMSE: LETKF

123456789 10 12

min=1.606 localization radius Moo

hybrid HNK

123456 789 10
min=1.447 localizationradiusr

0.95

o
©

forgetting factor p
o o
o &

o
~
(6]

0.7

12 14 16

14

16

0.05

min=11 V4
hybrid HKN

min=1.599

123456 789 10
localization radius r

RMSE: LNETF

4 5 6 7 8
localization radius Moo

forgetting factor p
o o o o
© ® © ©

I
3
a

0.7

14 16

min=1.549

10

Show RMS errors as function

of inflation (forgetting factor
or a) and localization radius

Smallest errors: Hybrid HNK
(10% error reduction)

= hybrid filter able to utlize
non-Gaussian information

Other hybrid variants also
improve the state estimate

hybrid HSync

123456789 10 12

localization radius Moc
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Lorenz-96: Influence of ¥y — using skewness and kurtosis

1.05

o
©
(5}

RN
o

min. CRPS relative to LETKF
o
[(e]

CRPS relative to LETKF

—_HNK o
Sk,n
0.85 ——HKN~g
—HSyne v,
- - HNK .
0.8F sk, lin
~ _ HKN~_ .
sk,lin
0.75 ) . . - - HSync g i
70 0.2 0.4 0.6 0.8 1

a

1.05

«—LETKF—1.0}

0.95

0.9}
—HNK ,\"Sk,u
0.85 } ——HKNg .
________________________ ——HSync Vek.a
- = HNK~y_ .
0.8+ sk,lin
~ _~ HKN~_ .
0 . sk,lin
0.75 22% reduction - - HSyne 1 4y
0 0.2 0.4 0.6 0.8 1

a

« When accounting for skewness/kurtosis filter is more stable

« 7Vsk,lin yields smallest (N,=15) or nearly smallest (N,=40) errors
- smallest errors with "Vsk,c for optimal tuning
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Lorenz-96: Influence of y — cases y, and y;;, (account only for N )

CRPS relative to LETKF

1.15 g ' g ' 1.15
11F 11F
1.06 1.05
1.0 —LETKF—1.0
0.95 | 095k _ o _\_ N e ,[__
——HNK ~
09F ——HKN 5 09F ~——HKN 5
085 —HSyne Ya 0.85 F ——HSync Yy
- = HNK ~, - = HNK ~,
in lin
0.8F - ~ HKN Yin 0.8 F -~ -~ HKN Yiin
0.75 - : - -~ P i 0.75 : : : o O
0 0.2 0.4 a 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

« Stronger effect of hybrid filter for N,.=40
*  Yiin Yields optimal (N=15) or nearly optimal (N=40) errors

* Yo requires tuning; increased errors for small @« compared to 7Vsk
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Lorenz-96, Hybrid HNK, dependence on k

Y, Lorenz-96: Vsk,a? _15 Lorenz-96: Tska? _40

os 1 CRPS
0.98 o relative to
s 0.95 LETKF
0.96 '
0.5
0.9
0.94 304
0.3
0.2
0.9 0.1
0.8
0
0.88

7skl|n
1510 20 30 40 50 60 70 80 90 100 1510 20 30 40 50 60 70 80 90 100
K K

0.8

0.7

0.6

0.5

304

0.3

0.2

0.1

0

'Ysk,lm

k can be chosen dependent on ensemble size
= Limits of skewness and kurtosis depend on N,
= but actual skewness and kurtosis do not depend on system, not on N,
= Standard value =N,, but smaller large large N, &
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Application example PDAF e

Framework

Ocean-biogeochemical model:
Chlorophyll: CMEMS

NEMO-ERGOM
= NEMO + ERGOM

b4
y ) N oot
d \ v'
P i\
"." - (e
3 S
S ~
.
\ .

112

Configuration: NORDIC 2.0

= 1.8km resolution, 56 layers, 90s time step oo Rl I°E
= North Sea & Baltic Sea - 3
= Qperational use in CMEMS for the Baltic Sea -

DA implementation . - |
= augment NEMO-ERGOM with DA functionality by PDAF RS Wi S
(online-coupling in memory)

= State vector:

0

= physics + biogeochemistry ocean.and biogeo_chemical

State vector size ~153 million dynamics are nonlinear and

= Assimilate satellite chlorophyll data distributions non-Gaussian
This project has received funding from the European Union’s Horizon 2020 =

research and innovation programme under grant agreement No 776480 @ AN/



Effect of hybrid filter in high-dimensional application

Assimilation using rule Ysk,« Regional model setup

Only assimilate chlorophyll

RMS deviation for log-Chlorophyll observations
—— Free
- — LETKF Stronger assimilation effect

w -—- LKNETF of LKNETF

0.6 1

We still don’t know optimal
choice of rule for y

0.4

log RMSe

Jo]

0.2 A

0.1

Feb. ' March ' April ' May -
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Summary

Introduced hybrid nonlinear-Kalman ensemble transform filter
= Combine LETKF and LNETF methods
= hybrid weight y shifts filter behavior
= Cost of analysis step ~2x LETKF

Experiments with Lorenz models

= Hybrid filter successfully reduces errors compared to LETKF and LNETF
= Best results for variant HNK: LNETF applied before LETKF
= Can compute y from skewness and kurtosis

= allows to control nonlinearity of filter based on non-Gaussianity
= Improved stability & reduced errors compared to tempering rule on N4

Nerger, Q. J. Meteorol. Soc., 148 (2022) 620-640, doi:10.1002/qj.4221

PDAFParaIIeI

Data Assimilation
Framework




Next steps

Need to PDAFParaIIeI

_ . Data Assimilation
= improve understanding of effect of ¥ Framework

= mathematical basis
= Are skewness & kurtosis good choices?
= s linear dependence of skewness & kurtosis right?

= asses for which nonlinear cases hybrid filter is superior
= only 3% lower errors in test with ocean physics at 0.25° resolution

Nerger, Q. J. Meteorol. Soc., 148 (2022) 620-640, doi:10.1002/qj.4221




