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Overview

Application-centric viewpoint of ensemble-based data assimilation

= Example of high-dimensional data assimilation application
= Methods

= Computational challenges

= Software

= Open points
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High-dimensional
Data Assimilation Application
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Model: NEMO-ERGOM

Operational configuration of Copernicus Marine -
Forecasting Center for Baltic Sea (BAL-MFC)

= Model setup

= Ocean model NEMO
Coupled to ecosystem/carbon model ERGOM C
1.8 km resolution, 56 layers 55°N for
Time step 90 sec
192 processes on compute cluster
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NEMO-ERGOM Coupled Data Assimilation

NEMO-NORDIC - Temperature : 2015-01-01
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Ensemble States
= 5 physics variables

= 20 ecosystem variables
= State vector dimension: 704 - 108 con |

65°N

Assimilation setup
= ensemble Kalman filter LESTKF
= ensemble size: 30
= Daily assimilation for 1 year

= Observation data:
surface temperature and chlorophyll concentration

= Localization: 20 km, Gaspari/Cohn function Costly to run, store
= 186 x 30 = 5580 processors on compute cluster and analyze outputs
12 days computing time

Output approx. 900 GB (after compression)
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Observations

Sea Surface Temperature

Level 3 data from Copernicus Marine service (CMEMS)
resolution 0.02°

available daily

No data in cloudy regions

Number of observations: 17,000 — ~150,000

observation error for DA: 0.8 °C
(provided error fields not fully realistic)

Chlorophyll

Level 3 data from CMEMS

separate data products for North Sea and Baltic Sea
resolution 1 km

available daily

No data in cloudy regions

Number of observations: 0 — ~500,000

observation error: relative error of 0.3

Satellite Temperature: 2015-03-08
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Satellite Chlorophyll: 2015-03-08 1
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Methods

Ensemble-based data assimilation

Estimation by joining model and observational data

Nerger — High-dimensional ensemble DA in Geosciences



Uncertainty Estimates

Dynamic ensembles provide uncertainties (and covariances) for each day

Temperature on 2015-04-01 Chlorophyll on 2015-04-01
Standard deviation . Standard deviation X
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Linear and Nonlinear Ensemble Filters

- Represent state and its error by ensemble X of N states
/ —
(use ensemble perturbation matrix X = X — X))

. Forecast: Dimension of correction
* Integrate ensemble size N with numerical model (err?\l})jpace :

* Analysis step:
- update ensemble mean X¢ =% + X'"Tw
- update ensemble perturbations X' = X'TW

(both can be combined in a single step)

«  Ensemble Kalman & nonlinear filters: Different definitions of
- weight vector W (dimension V)

- Transform matrix W (dimension [N X INV)

i
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ETKF (Bishop et al., 2001)

= Ensemble Transform Kalman filter

= Assume Gaussian distributions

=  Transform matrix Algorithm designed
AL = (N—1DI+ (HX/f)TR—lHX/f for maximum
computational efficiency
= Mean update weight vector Excellent lelizati
- TN L — xcellent parallelization
w=AHX")'R (y — HXf) possibility when combined
(depends linearly on observation vector y) with localization
= Transformation of ensemble perturbations : Lipeqr fiIt.er:
1/9 = Gaussian distributions assumed
W=+vN-1A/?A = Linear in effect of y

A : mean-preserving random matrix or identity

Note: W depends only on R, not observation y

*
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NETF (Todter & Ahrens, 2015)

= Nonlinear Ensemble Transform Filter

» Mean update from Particle Filter weights:
for Gaussian observation errors for all particles i

Similar computational

wz‘ ~ exp (_0.5(}, . HX{)TR_l(y o HX{)) efficiency as ETKF

(nonlinear function of observations y) Excellent parallelization

possibility when combined
» Ensemble update with localization
= Transform ensemble to fulfill analysis covariance

(like ETKF, but not assuming Gaussianity) Nonlinear filter:
= No assumption of
Gaussian distributions

W =+/N [diag(vV) _ v},{;{,—T} 1/2 A = Nonlinear in y

(A: mean-preserving random matrix; useful for stability)

= Derivation gives

NETF is a second-order exact particle filter .
11 Todter, J. and Ahrens, B. (2015) Mon. Wea. Rev. 143,1347-1367 @ NV/



ETKF-NETF — Hybrid Filter Variants
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Factorize the likelihood:  p(y|x) = p(y|x)"p(y|x)*
(‘tempering’)

* y: hybrid weight (between 0 and 1; 1 for fully ETKF)

2-step updates
Variant 1 (HNK): NETF followed by ETKF

Ynik = X% preX!, (1—7)R™]
Ynvk = Xbrxr Xanvg, "R

« Both steps computed with increased R according to y

Variant 2 (HKN): ETKF followed by NETF

Nerger, L. (2022) Q. J. R. Meteorol. Soc., 148, 620-640 doi:10.1002/qj.4221

Related methods:
Frei/Kuensch (2013)
Chustagulprom et al. (2016)
Robert et al. (2018)
Grooms/Robinson (2021)
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Choosing hybrid weight y
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= Hybrid weight shifts filter behavior

Some possibilities:
= Fixed value

= Adaptive - According to which condition?

= Frei & Kuensch (2013) suggested

: , , 1
using effective sample size N¢fr =

(w?)?

Issue: Using Nerr

= only ensures
non-collapsing ensemble

= does not ensure
good analysis result

= Experimentally no obvious
relation between Ngi; and y

(Usual choice for 'tempering’)

= Yo : Choose y so that N.y¢ is as small as possible but

above minimum limit a (done iteratively)

= Adaptive alternative Ne ff
Yiin = 1 — Ne

(close to 1 if Ny small; no iterations)

Nerger — High-dimensional ensemble DA in Geosciences
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Effect of hybrid weight y

= [ orenz-96 model, size 80

Absolute errors
T

= Examine single analysis step

1. Run 33 analysis steps with y=1 (LETKF)
2. Run analysis step 34 with one of

a) y=1
b) y=0.8

3. Examine N and analysis errors

T

T

forecast

Additional experiment:
c) Adjust y at each grid point to get

minimum error

No obvious relation
between Nt and y!

14 Nerger — High-dimensional ensemble DA in Geosciences




Account for non-Gaussianity: Skewness and Kurtosis

= Mean — 1st moment
= Variance — 2nd moment

= Skewness — 3rd moment N. N
Nie D im (XZ - X)

skew =
N. ' 9 3/2
[ﬁ 2 i—1 (X —X) ]

=  Kurtosis — 4th moment 1 N, i —\4
N im (X —X)
kurt =

1 Ne 7) —22_3
[(Te) 2 i—1 (X' = X) }

= Skewness and kurtosis
= generally not bounded
= but limits depend on ensemble size

15 Nerger — High-dimensional ensemble DA in Geosciences
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Asymptotic properties of skewness and kurtosis

= Bounds of skewness and kurtosis depend on ensemble size
= Assess extreme cases

Case Values
max.skew xM =a-d xD =3 i=2,...,N,
max.kurt xM=a-d x@D =a+d, xD =2 i=3...,N,

min. kurt xD =a—-d, i=1,...No/2; xY) =a+d, j=Ns/2+1,...,N,

in

a-d a a+d
16 Nerger — High-dimensional ensemble DA in Geosciences

skew limit
VN,
0
0

kurt limit
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Using skewness and kurtosis to define hybrid weight y
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=  Sampling errors are larger in NETF than ETKF
- Always use ETKF for Gaussian (linear) cases
=  Skewness and kurtosis describe deviation from Gaussianity

= mean absolute skewness (7.a.5) and kurtosis (11.ak ) of observed ensemble

(with localization: use locally assimilated observations)
= Use normalized means:

1 1
nmas = —1mas nmak = —mak

VK K

Now define
Vsk,oo = max [min(1 — nmak, 1 —nmas), ]

Vsk,lin = max [min(1 — nmak, 1 —nmas), Y]

standard value:

Kk = N,

stronger influence of
nmas and nmak

limited by Neff

Note: There are sampling errors, e.g. for skewness Oskew ™~
= For N=25: ~10% error in 7y

6/N,

Nerger — High-dimensional ensemble DA in Geosciences
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Test with Lorenz-96 model

Ensemble size 15; Forecast length: 8 time steps; 20 observations

RMSE: LETKF RMSE: LNETF
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Effect of hybrid filter in high-dimensional application
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Assimilation using rule Vsk,«

RMS deviation for log-Chlorophyll

0.7 1

0.6 1

log RMSe

0.3 1

0.2 A

0.1

0.4

— Free
— LETKF
w ===: TKNETF

Jan.

March ' April ' May

Nerger — High-dimensional ensemble DA in Geosciences

Only assimilate chlorophyll
observations

Stronger assimilation effect
of LKNETF

We still don’t know optimal
choice of rule for y

aAWV/
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Computational challenges
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Computing challenges and features
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High-dimensional models
= Costly to compute
= Large amount of output data
= Large size of state vectors

= Containing all relevant model fields
= Usually distributed due to parallelization

Ensemble-based data assimilation
= Multiply computing cost (parallel or sequential)
= Full ensemble output would multiply amount of output data
= Usually only write ensemble mean and variance
= Computing time of model dominates over assimilation method

Nerger — High-dimensional ensemble DA in Geosciences
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Software
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PDAFParaIIeI
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PDAF: Parallel Data Assimilation Framework Data Assimilation
A unified tool for interdisciplinary data assimilation ... [=] 3% [=]

a program library for data assimilation s Lo
provide support for parallel ensemble forecasts

provide assimilation methods — fully-implemented & parallelized

provide tools for observation handling and for diagnostics

easily useable with (probably) any numerical model
(coupled to with range of models)

run from laptops to supercomputers (Fortran, MP| & OpenMP)
Usable for real assimilation applications and to study assimilation methods
ensure separation of concerns (model — DA method — observations — covariances)

Open source: github.com/PDAF

Documentation and tutorial at

http://pdaf.awi.de

Python interface:
https://github.com/yumengch/pyPDAF

L. Nerger, W. Hiller, Computers & Geosciences 55 (2013) 110-118 @ NV/



Online-Coupling — Assimilation-enabled Model

PDAFParaIIeI

Data Assimilation
Framework
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Couple a model with PDAF

= Modify model to simulate
ensemble of model states

= Insert analysis step/solver to be
executed at prescribed interval

= Run model as usual, but with
more processors and additional
options

= EnOl and 3D-Var also possible:
= Evolve single model state

= Prescribe ensemble
perturbations or covariance

Single program

Forecast 1

Forecast 2

Forecast 40
>/

“§(# Observation

"f@k

Analysis
(EnKF)

Update fields
for next forecast

Initialize Ensemble
ensemble forecast

Analysis step in
between time steps

SWAVAY/j
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Open Points
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Open points
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Characteristics of problem
— merging observations and models in Geosciences

= Observations
= High count — O(10°- 107)
= Only a few of the model variables
= |[ncomplete spatial and temporal coverage
= Significant errors (measurement and representation)

= Models
= Large state vectors — (10° - 10°)
= Costly to run
= ‘balances’
= Limited previous model runs available

Nerger — High-dimensional ensemble DA in Geosciences
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Open points — linkage a ‘modern’ ML methods

27

Potential for improvements with novel ML methods

Reduce execution time Surrogates might help, but
= Costly to build

= Unclear if sufficiently representative
(need current representation of error)

= Dominated by model!
= Faster DA method of little help

Reduce time to tune method

Do pre-trained neural networks help?
= Tuning required and costly P ! N W P

Improve estimates
= Avoid assumptions on distributions (or avoid distributions)
= Avoid sampling errors
= Ensure small state changes to avoid disturbing ‘balances’

i
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S PDAFParaIIeI
ummary Data Assimilation

Framework

= High-dimensional application in geosciences
= Costly to compute & large amount of outputs
= Incompletely observed and with significant errors

= Current standard method basing on optimization or estimation

= suffer from sampling errors and costly tuning

= Potential of new methods
= reduce computing time
= Reduce tuning effort
= |Improve estimates

28 Lars.Nerger@awi.de Nerger — High-dimensional ensemble DA in Geosciences @ NV/



