

High-Dimensional Applications of Ensemble-Based Data Assimilation in Geosciences

Lars Nerger

Alfred Wegener Institute, Bremerhaven, Germany

Thanks to Yuchen Sun, Sophie Vliegen

SIAM UQ24, Trieste, Italy, Feb. 27 – March 1, 2024

Overview

Application-centric viewpoint of ensemble-based data assimilation

- Example of high-dimensional data assimilation application
- Methods
- Computational challenges
- Software
- Open points

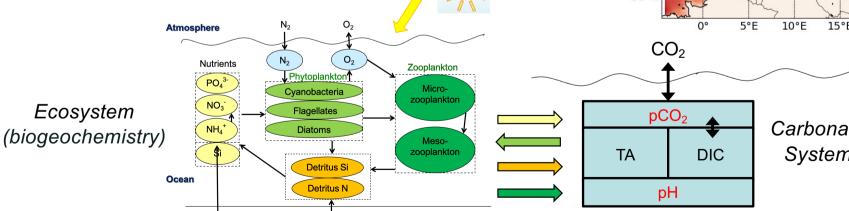
High-dimensional Data Assimilation Application

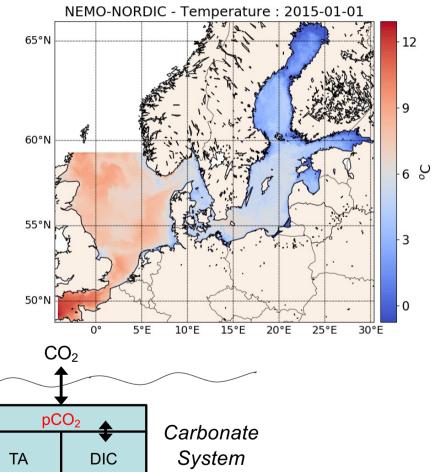
Model: NEMO-ERGOM

Operational configuration of Copernicus Marine Forecasting Center for Baltic Sea (BAL-MFC)

- Model setup
 - Ocean model NEMO
 - Coupled to ecosystem/carbon model ERGOM
 - 1.8 km resolution, 56 layers
 - Time step 90 sec

192 processes on compute cluster/





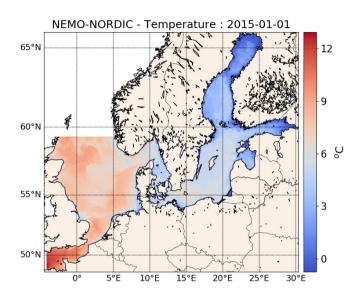
NEMO-ERGOM Coupled Data Assimilation

Ensemble States

- 5 physics variables
- 20 ecosystem variables
- State vector dimension: 704 · 10⁶

Assimilation setup

- ensemble Kalman filter LESTKF
- ensemble size: 30
- Daily assimilation for 1 year
 - Observation data: surface temperature and chlorophyll concentration
- Localization: 20 km, Gaspari/Cohn function
- 186 x 30 = 5580 processors on compute cluster
- 12 days computing time
- Output approx. 900 GB (after compression)



Costly to run, store and analyze outputs

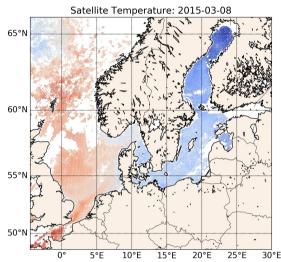
Observations

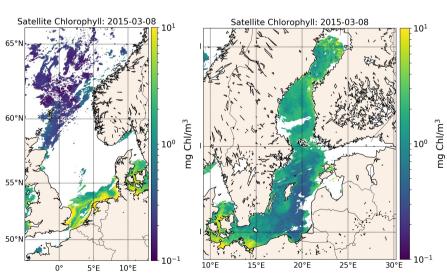
Sea Surface Temperature

- Level 3 data from Copernicus Marine service (CMEMS)
- resolution 0.02°
- available daily
- No data in cloudy regions
- Number of observations: 17,000 ~150,000
- observation error for DA: 0.8 °C (provided error fields not fully realistic)

Chlorophyll

- Level 3 data from CMEMS
- separate data products for North Sea and Baltic Sea
- resolution 1 km
- available daily
- No data in cloudy regions
- Number of observations: 0 − ~500,000
- observation error: relative error of 0.3



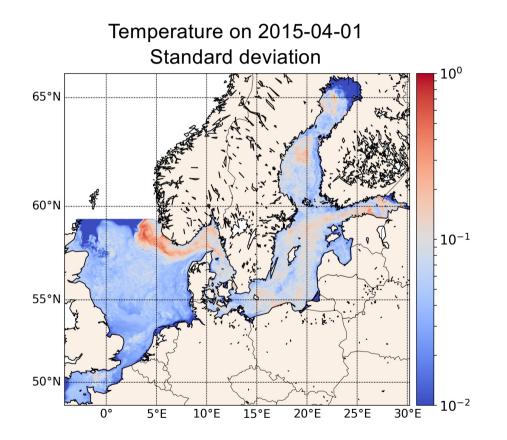


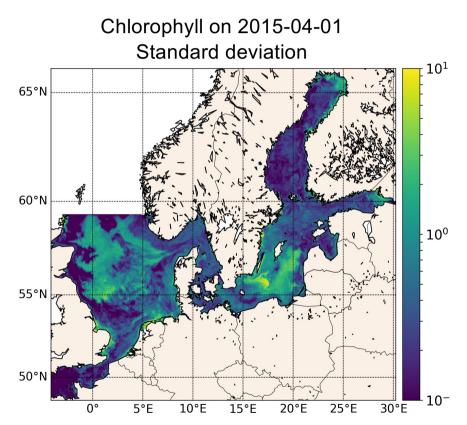
Methods

Ensemble-based data assimilation Estimation by joining model and observational data

Uncertainty Estimates

Dynamic ensembles provide uncertainties (and covariances) for each day





Linear and Nonlinear Ensemble Filters

- Represent state and its error by ensemble ${f X}$ of N states (use ensemble perturbation matrix ${f X}^{'}={f X}-{f X}$)
- Forecast:
 - Integrate ensemble size N with numerical model

Dimension of correction (error) space : N-1

- Analysis step:
 - update ensemble mean

$$\overline{\mathbf{x}}^a = \overline{\mathbf{x}}^f + \mathbf{X}'^f \widetilde{\mathbf{w}}$$

• update ensemble perturbations

$$\mathbf{X}^{\prime a} = \mathbf{X}^{\prime f} \mathbf{W}$$

(both can be combined in a single step)

- Ensemble Kalman & nonlinear filters: Different definitions of
 - weight vector $ilde{\mathbf{w}}$ (dimension N)
 - f V Transform matrix f W (dimension N imes N)

ETKF (Bishop et al., 2001)

- Ensemble Transform Kalman filter
 - Assume Gaussian distributions
 - Transform matrix

$$\mathbf{A}^{-1} = (N-1)\mathbf{I} + (\mathbf{H}\mathbf{X}'^f)^T \mathbf{R}^{-1} \mathbf{H}\mathbf{X}'^f$$

Mean update weight vector

$$\tilde{\mathbf{w}} = \mathbf{A} (\mathbf{H} \mathbf{X}'^f)^T \mathbf{R}^{-1} \left(\mathbf{y} - \mathbf{H} \overline{\mathbf{x}^f} \right)$$

(depends linearly on observation vector y)

Transformation of ensemble perturbations

$$\mathbf{W} = \sqrt{N-1} \; \mathbf{A}^{1/2} \mathbf{\Lambda}$$

 $oldsymbol{\Lambda}$: mean-preserving random matrix or identity

Note: W depends only on R, not observation y

Algorithm designed for maximum computational efficiency

Excellent parallelization possibility when combined with localization

Linear filter:

- Gaussian distributions assumed
 - Linear in effect of y

NETF (Tödter & Ahrens, 2015)

- Nonlinear Ensemble Transform Filter
 - Mean update from Particle Filter weights: for Gaussian observation errors for all particles i

$$\tilde{w}^i \sim \exp\left(-0.5(\mathbf{y} - \mathbf{H}\mathbf{x}_i^f)^T \mathbf{R}^{-1}(\mathbf{y} - \mathbf{H}\mathbf{x}_i^f)\right)$$

(nonlinear function of observations y)

- Ensemble update
 - Transform ensemble to fulfill analysis covariance (like ETKF, but not assuming Gaussianity)
 - **Derivation gives**

$$\mathbf{W} = \sqrt{N} \left[\operatorname{diag}(\tilde{\mathbf{w}}) - \tilde{\mathbf{w}} \tilde{\mathbf{w}}^T \right]^{1/2} \Lambda$$

 (Λ) : mean-preserving random matrix; useful for stability)

Similar computational efficiency as ETKF

Excellent parallelization possibility when combined with localization

Nonlinear filter:

- No assumption of Gaussian distributions
 - Nonlinear in y

NETF is a second-order exact particle filter

ETKF-NETF – Hybrid Filter Variants

Factorize the likelihood: $p(\mathbf{y}|\mathbf{x}) = p(\mathbf{y}|\mathbf{x})^{\gamma} p(\mathbf{y}|\mathbf{x})^{(1-\gamma)}$ ('tempering')

 γ: hybrid weight (between 0 and 1; 1 for fully ETKF)

2-step updates

Variant 1 (HNK): NETF followed by ETKF

$$\tilde{\mathbf{X}}_{HNK}^{a} = \mathbf{X}_{NETF}^{a} [\mathbf{X}^{f}, (1 - \gamma)\mathbf{R}^{-1}]$$

$$\mathbf{X}_{HNK}^{a} = \mathbf{X}_{ETKF}^{a} [\tilde{\mathbf{X}}_{HNK}^{a}, \gamma \mathbf{R}^{-1}]$$

Both steps computed with increased R according to γ

Variant 2 (HKN): ETKF followed by NETF

Related methods: Frei/Kuensch (2013) Chustagulprom et al. (2016) Robert et al. (2018) Grooms/Robinson (2021)

Choosing hybrid weight γ

Hybrid weight shifts filter behavior

Some possibilities:

- Fixed value
- Adaptive According to which condition?
 - Frei & Kuensch (2013) suggested using effective sample size $N_{eff} = \sum \frac{1}{(w^i)^2}$

Issue: Using N_{eff}

- only ensures non-collapsing ensemble
- does not ensure good analysis result
- Experimentally no obvious relation between N_{eff} and γ

(Usual choice for 'tempering')

- γ_{α} : Choose γ so that N_{eff} is as small as possible but above minimum limit α (done iteratively)
- Adaptive alternative $\gamma_{lin} = 1 \frac{N_{eff}}{N_e}$

(close to 1 if N_{eff} small; no iterations)

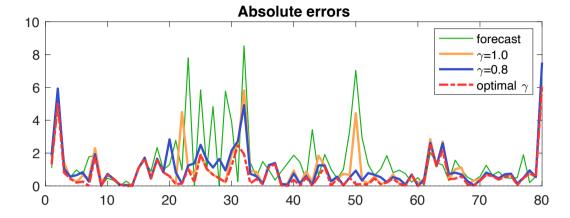
Effect of hybrid weight γ

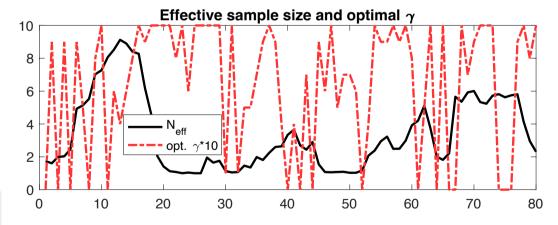
- Lorenz-96 model, size 80
- Examine single analysis step
- 1. Run 33 analysis steps with γ =1 (LETKF)
- 2. Run analysis step 34 with one of
 - a) $\gamma=1$
 - b) $\gamma = 0.8$
- 3. Examine N_{eff} and analysis errors

Additional experiment:

c) Adjust γ at each grid point to get minimum error

No obvious relation between N_{eff} and γ !





Account for non-Gaussianity: Skewness and Kurtosis

- Mean 1st moment
- Variance 2nd moment
- Skewness 3rd moment

$$skew = \frac{\frac{1}{N_e} \sum_{i=1}^{N_e} (\mathbf{x}^i - \overline{\mathbf{x}})^3}{\left[\frac{1}{(N_e - 1)} \sum_{i=1}^{N_e} (\mathbf{x}^i - \overline{\mathbf{x}})^2\right]^{3/2}}$$

Kurtosis – 4th moment

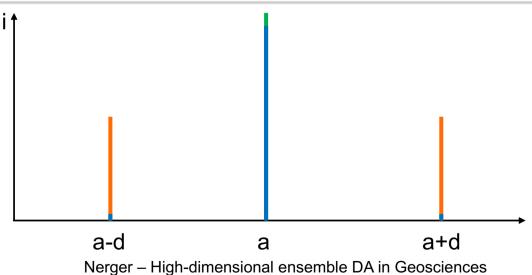
$$kurt = \frac{\frac{1}{N_e} \sum_{i=1}^{N_e} (\mathbf{x}^i - \overline{\mathbf{x}})^4}{\left[\frac{1}{(N_e)} \sum_{i=1}^{N_e} (\mathbf{x}^i - \overline{\mathbf{x}})^2\right]^2} - 3$$

- Skewness and kurtosis
 - generally not bounded
 - → but limits depend on ensemble size

Asymptotic properties of skewness and kurtosis

- Bounds of skewness and kurtosis depend on ensemble size
- Assess extreme cases

Case	Values	skew limit	kurt limit
max. skew	$x^{(1)} = a - d, x^{(i)} = a, i = 2,, N_e$	$\sqrt{N_e}$	N _e
max. kurt	$x^{(1)} = a - d, x^{(2)} = a + d, x^{(i)} = a, i = 3,, N_e$	0	-2
min. kurt	$x^{(i)} = a - d, i = 1,, N_e/2; x^{(j)} = a + d, j = N_e/2 + 1,, N_e$	0	$N_e/2$



Using skewness and kurtosis to define hybrid weight γ

- Sampling errors are larger in NETF than ETKF
 - → Always use ETKF for Gaussian (linear) cases
- Skewness and kurtosis describe deviation from Gaussianity
- mean absolute skewness (mas) and kurtosis (mak) of observed ensemble (with localization: use locally assimilated observations)
- Use normalized means:

ized means:
$$nmas = \frac{1}{\sqrt{\kappa}}mas \qquad nmak = \frac{1}{\kappa}mak$$

standard value:

$$\kappa = N_e$$

Now define

$$\gamma_{sk,\alpha} = \max \left[\min(1 - nmak, 1 - nmas), \gamma_{\alpha} \right]$$
$$\gamma_{sk,lin} = \max \left[\min(1 - nmak, 1 - nmas), \gamma_{lin} \right]$$

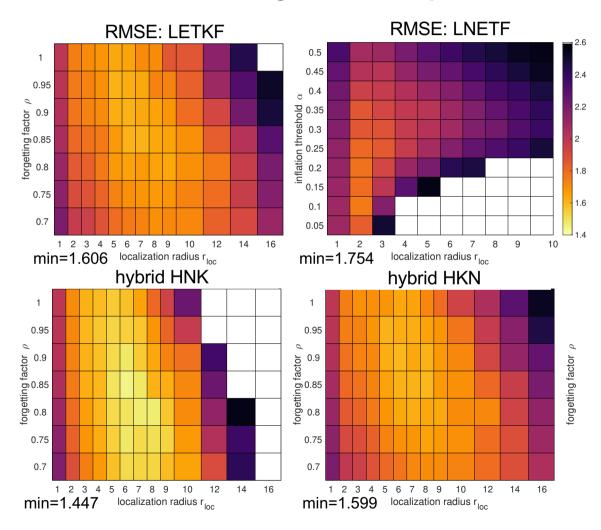
stronger influence of $nmas \ \ {\rm and} \ \ nmak \\ {\rm limited \ by} \ N_{eff}$

Note: There are sampling errors, e.g. for skewness $\sigma_{skew} \sim \sqrt{6/N_e}$

$$\rightarrow$$
 For N_e =25: ~10% error in γ

Test with Lorenz-96 model

Ensemble size 15; Forecast length: 8 time steps; 20 observations

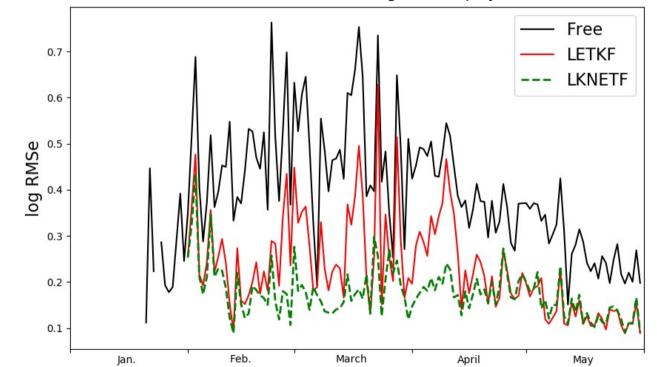


Strongly nonlinear DA setting

- Show RMS errors as function of inflation (forgetting factor or α) and localization radius
- Smallest errors: Hybrid HNK (10% error reduction)
 - → hybrid filter able to utlize non-Gaussian information
- Other hybrid variants also improve the state estimate

Effect of hybrid filter in high-dimensional application

Assimilation using rule $\gamma_{sk,\alpha}$



Nerger – High-dimensional ensemble DA in Geosciences

Only assimilate chlorophyll observations

Stronger assimilation effect of LKNETF

We still don't know optimal choice of rule for γ

Computational challenges

Computing challenges and features

High-dimensional models

- Costly to compute
- Large amount of output data
- Large size of state vectors
 - Containing all relevant model fields
 - Usually distributed due to parallelization

Ensemble-based data assimilation

- Multiply computing cost (parallel or sequential)
- Full ensemble output would multiply amount of output data
 - Usually only write ensemble mean and variance
- Computing time of model dominates over assimilation method

Software

PDAF: Parallel Data Assimilation Framework

A unified tool for interdisciplinary data assimilation ...

- a program library for data assimilation
- provide support for parallel ensemble forecasts
- provide assimilation methods fully-implemented & parallelized
- provide tools for observation handling and for diagnostics
- easily useable with (probably) any numerical model (coupled to with range of models)
- run from laptops to supercomputers (Fortran, MPI & OpenMP)
- Usable for real assimilation applications and to study assimilation methods
- ensure separation of concerns (model DA method observations covariances)

Open source:

Documentation and tutorial at

http://pdaf.awi.de

github.com/PDAF

Python interface: https://github.com/yumengch/pyPDAF

Online-Coupling – Assimilation-enabled Model

Couple a model with PDAF

- Modify model to simulate ensemble of model states
- Insert analysis step/solver to be executed at prescribed interval
- Run model as usual, but with more processors and additional options
- EnOI and 3D-Var also possible:
 - Evolve single model state
 - Prescribe ensemble perturbations or covariance



Open Points

Open points

Characteristics of problem

- merging observations and models in Geosciences
- Observations
 - High count O(10⁵ 10⁷)
 - Only a few of the model variables
 - Incomplete spatial and temporal coverage
 - Significant errors (measurement and representation)
- Models
 - Large state vectors (10⁶ 10⁹)
 - Costly to run
 - 'balances'
 - Limited previous model runs available

Open points – linkage a 'modern' ML methods

Potential for improvements with novel ML methods

Reduce execution time

- Dominated by model!
- Faster DA method of little help

Reduce time to tune method

Tuning required and costly

Surrogates might help, but

- Costly to build
- Unclear if sufficiently representative (need current representation of error)

Do pre-trained neural networks help?

Improve estimates

- Avoid assumptions on distributions (or avoid distributions)
- Avoid sampling errors
- Ensure small state changes to avoid disturbing 'balances'

Summary

- High-dimensional application in geosciences
 - Costly to compute & large amount of outputs
 - Incompletely observed and with significant errors
- Current standard method basing on optimization or estimation
 - suffer from sampling errors and costly tuning
- Potential of new methods
 - reduce computing time
 - Reduce tuning effort
 - Improve estimates

