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Abstract Here, we present the first dedicated in situ measurements of the thickness distributions of fast ice
and the sub-ice platelet layer, formed by supercooled Ice Shelf Water in north Terra Nova Bay, Antarctica. With
the objective of inferring source regions and circulation of Ice Shelf Water, we measured fast ice and sub-ice
platelet layer thickness distributions near the Campbell Ice Tongue in late spring of 2021, using drill hole
surveys and high-resolution ground-based electromagnetic induction soundings. We observed thicker fast ice
and sub-ice platelet layer near the ice tongue with very thick and narrow sub-ice platelet layer maxima indicating
highly channeled outflow of supercooled Ice Shelf Water from beneath the ice tongue directed by ice mélange,
subglacial formations, and grounded regions. We conclude that a significant volume of supercooled Ice Shelf
Water is locally sourced from the Campbell Ice Tongue through basal melting and affirm that the icescape in
north Terra Nova Bay results from a complex interplay of glacial morphology, polynya forcing, and ocean
circulation.

Plain Language Summary Fresh meltwater from glacial ice on the Antarctic continent can influence
coastal sea ice formation. If the meltwater forms deep in the ocean, it can be supercooled and freeze into platelet
ice crystals, which contribute to sea ice formation and form thick layers beneath sea ice called sub-ice platelet
layers (SIPL). Platelet ice, a crystallographic signature of supercooled glacial meltwater provides important
information on difficult to observe interacting processes occurring between the atmosphere, glacial ice, the
ocean, and sea ice along the Antarctic coast. In late spring of 2021, we carried out detailed surveys of glacially
influenced coastal sea ice and SIPL beside the Campbell Ice Tongue in north Terra Nova Bay, Ross Sea,
Antarctica, with high-resolution geophysical surveying. Our objective was to use sea ice and SIPL distributions
to infer where the glacial meltwater was coming from and where it circulates. Our surveys revealed thicker sea
ice and SIPL near the ice tongue with thick bands of SIPL indicating highly channeled outflow of supercooled
glacial meltwater from beneath the Campbell Ice Tongue through glacial formations. We conclude that a
significant volume of supercooled glacial meltwater in north Terra Nova Bay is locally sourced from the
Campbell Ice Tongue through basal melting.

1. Introduction

On the Antarctic coastline, land-fast sea ice (henceforth referred to as fast ice) is an important interface between
land ice and the open ocean (Giles et al., 2008; Massom et al., 2018) that affects ice sheet mass balance by
stabilizing and buttressing ice tongues (Gomez-Fell et al., 2022, 2024; Massom et al., 2010) and ice shelves
(Greene et al., 2018) from ocean swell (Christie et al., 2022; Massom et al., 2018). Land ice, in turn, provides a
margin for fast ice to attach to and affects fast ice formation through melt processes and freshwater input to the
ocean (Fraser et al., 2023). Fast ice, ice shelves, and ice tongues are key features for the formation of coastal
polynyas (Fraser et al., 2019; Nihashi & Ohshima, 2015).

A potentially supercooled water mass called Ice Shelf Water (ISW) is formed from basal melting at the grounding
zones of ice shelves and outlet glaciers (Jacobs et al., 1985) by High Salinity Shelf Water (HSSW) produced in
coastal polynyas (Nakata et al., 2015). As buoyant ISW rises from deep under ice shelves and outlet glaciers, it
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becomes in situ supercooled (Foldvik & Kvinge, 1974; Jenkins & Bombosch, 1995) and precipitates frazil ice
(Holland & Feltham, 2005). ISW promotes sea ice growth by stabilizing the upper water column (Hellmer, 2004),
or if in situ supercooled, through heat loss to the ocean (Gough et al., 2012). Frazil ice grows into larger platelet
ice crystals (Smith et al., 2012), which can be deposited beneath sea ice and incorporated with congelation growth,
augmenting sea ice thickness (Purdie et al., 2006). Once the deposition of platelet ice outpaces congelation
growth, an unconsolidated mass of crystals called a sub-ice platelet layer (SIPL) can form beneath sea ice (Gough
et al., 2012; Wongpan et al., 2015, 2021).

Studies of ISW-influenced fast ice and SIPL have linked late-spring volumes of platelet ice, within fast ice and
SIPL, to supercooled ISW outflow in Atka Bay, Weddell Sea (Hoppmann, Nicolaus, Hunkeler, et al., 2015;
Hoppmann, Nicolaus, Paul, et al., 2015), and McMurdo Sound (Langhorne et al., 2015). The thickness distri-
bution of SIPL reflects the circulation and degree of in situ supercooling of the ocean beneath (Hughes
et al., 2014; Wongpan et al., 2021). Multiple years of ground-based (Brett et al., 2020) and airborne (Haas
et al., 2021) electromagnetic induction (EM) assessments of ISW-influenced fast ice and SIPL thickness dis-
tributions in McMurdo Sound were correlated with supercooled ISW circulation (Hughes et al., 2014; Lewis &
Perkin, 1985; Robinson et al., 2014) from the McMurdo-Ross Ice Shelf Cavity. This relationship allowed
interannual and diurnal variability of SIPL thickness to be linked to polynya activity in the western Ross Sea
(Brett et al., 2020) and the oscillation of the tides (Brett et al., 2024). An extensive airborne electromagnetic
induction (AEM) survey of fast ice along the Victoria Land Coastline identified that marine-terminating outlet
glaciers and ice tongues also contribute to the formation of in situ supercooled ISW and platelet ice in the western
Ross Sea (Langhorne et al., 2023).

Crystallographic signatures of in situ supercooled ISW in the form of marine, frazil, and platelet ice have been
observed in Terra Nova Bay, western Ross Sea, beneath ice shelves, ice tongues, and fast ice (refer to Figure la
for locations). ISW is abundant in the region (Budillon & Spezie, 2000; Yoon et al., 2020) but so far its sources
have not been definitively constrained. In north Terra Nova Bay, marine ice (Souchez et al., 1995) and basal
freezing (Han & Lee, 2015) occur beneath the Campbell Ice Tongue (Figure 1). Beneath adjoining fast ice, a SIPL
was detected in biological studies in late spring of 2002, 2005, and 2006 (Vacchi et al., 2004, 2012) and in AEM
surveys in late spring of 2017 (Langhorne et al., 2023). The presence of marine ice and SIPL signals that in situ
supercooled ISW is circulating in the region, which the AEM surveys indicated could be locally sourced from the
ice tongue (Langhorne et al., 2023). However, no dedicated in situ investigation of the influence of ISW on fast
ice, the SIPL, and the Campbell Ice Tongue in north Terra Nova Bay has been carried out. This information is
important given that the ice tongue is thinning (Han & Lee, 2015) and decreasing in area (Han et al., 2022) with
major effects expected for adjoining fast ice and local ecosystems.

Here, we assess spatial distributions of ISW-influenced fast ice and SIPL near the Campbell Ice Tongue to infer
the pattern of supercooled ISW circulation in north Terra Nova Bay and the effects of local geomorphological
features including subglacial morphology and grounded regions of the ice tongue. To investigate the processes
influencing fast ice in north Terra Nova Bay, we used satellite imagery to observe fast ice, ice tongue, and polynya
interactions during the winter of 2021. In the following late spring of 2021, we assessed thickness distributions of
ISW-influenced fast ice and SIPL with drill hole and single-frequency electromagnetic induction (EM) sounding
surveys. As observed in McMurdo Sound, the spatial distributions of thicker ISW-influenced fast ice and SIPL in
Terra Nova Bay should reflect supercooled ISW circulation. We describe the study area in Section 2, methods in
Section 3, and results in Section 4. In Section 5, we discuss our findings in a regional context considering prior
oceanographic observations in Terra Nova Bay.

2. Study Area
2.1. Terra Nova Bay

Terra Nova Bay is bound by the Drygalski Ice Tongue in the south, the Nansen Ice Shelf in the west, and a large
embayment in the north (Figure 1a). The Terra Nova Bay Polynya (Figure 1a) occurs in the region, producing 10%
of sea ice (Kurtz & Bromwich, 1985), and 33% of HSSW (Fusco et al., 2009; Rusciano et al., 2013) in the Ross
Sea (Rusciano et al., 2013). HSSW formed within the polynya (Thompson et al., 2020) is thought to drive basal
melting at depth in the grounding zones of the Nansen Ice Shelf and larger outlet glaciers in the region forming
ISW (Budillon & Spezie, 2000; Yoon et al., 2020). Cyclonic circulation transports ISW to the northeast
(Figure 1a) (Cappelletti et al., 2010; Yoon et al., 2020) with ISW observed extensively in Terra Nova Bay at
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Figure 1. (a) Prior observations of SIPL and marine ice (red triangles) near ice shelves and ice tongues in Terra Nova Bay, located on the Victoria Land Coastline in the
northwestern Ross Sea (see inset (Gerrish et al., 2022)). The Terra Nova Bay (TNB) Polynya, evident in this MODIS image from 4 November 2021, is shown with
cyclonic circulation of ISW (blue lines) conjectured from Budillon and Spezie (2000). The red box shows the location of (b) the study area with outlines of the Campbell
Ice Tongue area on 10 October 2020 (orange) and 11 October 2021 (dark gray). Fast ice sections are shown with drill sites (white circles), EM survey tracks (black line),
and the Italian “Mario Zucchelli” and Korean “Jang Bogo” research stations (red crossed circles) on a Landsat-8 panchromatic image (5 November 2021).

depths of 30-600 m, being deepest and most abundant near the Nansen Ice Shelf (Budillon & Spezie, 2000; Yoon
et al., 2020). In the northeast, a narrow tongue of ISW at shallower depths, located southeast of Gerlache Inlet,
was consistently observed in multiple years of oceanographic profiling (Budillon & Spezie, 2000).

2.2. Campbell Ice Tongue Embayment

The Campbell Glacier flows from the Transantarctic Mountains into an embayment in north Terra Nova Bay
where it forms the Campbell Ice Tongue (Figure 1). The ice tongue consists of a fast flowing “main flow” stream
(~14 km long, ~5 km wide) and a smaller “branch stream” to the west (8 km long, 2.5 km wide) (Figure 1b) made
up of ice mélange (Han & Lee, 2014). It has a ~14-km long U-shaped grounding line (Figure 1b) (Han &
Lee, 2014). The main flow stream is grounded in the southwest near the ice tongue terminus (Figure 2) (Han &
Lee, 2014) and forms an ice rumple (Han et al., 2022). The branch stream is grounded in the east and west
(Figure 2) (Han & Lee, 2014) on bedrock (Souchez et al., 1995). Radio Echo Sounding of the ice tongue in 1999
showed a rippled undersurface and thicknesses of 200-300 m for most of its length, increasing to 700 m in the
grounding zone (Bianchi et al., 2001).

The southward protruding ice tongue splits north Terra Nova Bay into Gerlache Inlet in the west and Silverfish
Bay in the east (Figure 1b). Gerlache Inlet is 10-12 km from east to west and 13 km from north to south and
includes Tethys Bay. Silverfish Bay is 25 km from east to west and 12 km from north to south. Multibeam
bathymetry (Figure 2a) collected in Gerlache Inlet (Jung et al., 2021; Lee et al., 2022) revealed complex seafloor
morphology with deep troughs, ridges, and a seabed rise near the ice tongue. Numerous smaller deep (~500 m)
channels run from beneath the main flow stream of the ice tongue.

We were unable to source any detailed oceanographic assessments in the study region. In the winter of 2000, near
supercooled ocean temperatures were observed to the south of Tethys Bay (Cappelletti et al., 2010). Tides in the
region are diurnal with a maximum range of 0.60 m (Han & Lee, 2014) with strong tidal currents expected for the
coastal morphology and bathymetry in Gerlache Inlet (Han & Lee, 2018). The Terra Nova Bay Polynya can occur
within the study region when open water dominates in early winter. Once fast ice is established, the polynya
occurs along the fast ice edge and should influence ocean circulation in the region.
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Figure 2. (a) Multibeam bathymetry and depth measurements (Jung et al., 2021; Lee et al., 2022) with the North and NS- EM
transects shown in Figures 4-6, (b) EM consolidated ice thickness, (c) EM SIPL thickness, and (d) snow depth interpolated
from drill sites displayed on a Landsat-8 panchromatic image (5 November 2021). Grounded regions of the ice tongue (Han
et al., 2022) are shown as white lines and conjectured ISW outflow from the ice tongue illustrated as black arrows in (a) and
(c). Black solid (dashed) line denotes the edge of fast ice in place for 6.5 (7) months.
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2.3. Fast Ice and Sub-Ice Platelet Layer in North Terra Nova Bay

Fast ice consistently forms in Gerlache Inlet and Silverfish Bay with a SIPL first observed in biological studies
(Vacchi et al., 2004, 2012). In late spring of 2005 and 2006, extensive surveys of Antarctic silverfish egg dis-
tribution with respect to the occurrence of platelet ice were carried out (Vacchi et al., 2012), which revealed high
abundance near the ice tongue in both bays where the fast ice was thick (~2.5 m). In November 2017, AEM
surveys detected thicker fast ice and SIPL near the ice tongue and northern coastline in both bays with more
abundant SIPL observed east of the ice tongue in Silverfish Bay (Langhorne et al., 2023). Maximum AEM-
measured SIPL thicknesses near the coast were 2.1 and 1.6 m, east and west of the ice tongue, respectively.
Point observations in the region recorded fast ice thicknesses of 2.4-2.5 m near the coast in Gerlache Inlet
(Guglielmo et al., 2007; Vacchi et al., 2004). Near Tethys Bay, fast ice and SIPL thickness were, respectively,
1.4 m and 0.8-1.2 m in spring of 1997 (Guglielmo et al., 2007) and 2.4 m and 0-2 m in spring of 1999 (Lazzara
et al., 2007).

3. Methods

To characterize the late-spring fast ice conditions, we monitored fast ice formation in Gerlache Inlet and Silverfish
Bay during winter and spring (March-November) of 2021 with synthetic aperture radar (SAR) (Sentinel-1) and
optical (Landsat-8 and Moderate Resolution Imaging Spectroradiometer (MODIS)) images, when available. In
late spring of 2021 (3—7 November), the thickness distributions of snow, fast ice, and the SIPL were then surveyed
with drill hole and single-frequency electromagnetic induction (EM) measurements (Brett et al., 2025a, 2025b)
over ~60 km? of fast ice in Gerlache Inlet as shown in Figure 1b.

At drill sites, two 30 m cross-profiles were laid out in north-south and east-west directions. Sea ice and SIPL
thicknesses were measured in five drill holes, made at the center and end points of each line, using a tape measure
with weighted bar, and applying the resistance method (Price et al., 2014). Mean values and standard deviations
were calculated for each drill site. At the drill site furthest to the southwest, only three drill hole measurements
were made due to weather conditions. Snow depth was measured at 0.5 m intervals along each cross-profile using
aruler (cm accuracy). The ~120 snow depth measurements were averaged to provide a mean value at each drill
site and then spline interpolated using first-derivative minimum-curvature (no smoothing) to approximate snow
distribution in the region (Figure 2d).

EM surveys of fast ice and SIPL thickness distributions were carried out using a single-frequency (9.8 kHz and
3.66 m coil-spacing) Geonics Ltd. EM31-MK?2 instrument mounted on a sledge and towed by a vehicle. We
configured the EM31 to sample at 1 Hz resulting in a geo-located measurement every ~5 m at typical travel
speeds. EM measurements were made for 20 s over each of the 28 drill holes. A total distance of 39 km was
surveyed with EM. We used the processing method from Irvin (2018) applied in McMurdo Sound (Brett
et al., 2020, 2024) to obtain sea ice and SIPL thicknesses from the in-phase and quadrature components of single-
frequency EM.

An electromagnetic forward model was run to compute the EM response over a layered subsurface. The model
included three horizontal conductive layers with a range of thicknesses and conductivities: (1) consolidated ice
thickness (i.e., sea ice plus the snow layer) (0.5-6 m; 0 mS m™Y), (2) SIPL (015 m; 100-1,500 mS m™Y), and (3)
seawater (2,400-3,000 mS m™"). A “brute force” inversion was applied, which compared EM in-phase and
quadrature readings at drill holes with theoretical forward modeled values to obtain the best-matching bulk SIPL
conductivity model, as determined by root mean square error (RMSE) between drill hole and inverted thick-
nesses. EM inverted sea ice (Figure 2b) and SIPL thicknesses (Figure 2c) were then linearly interpolated.

Given that seawater conductivity in the region was unconstrained, we ran multiple inversions with fixed seawater
conductivities and looped through a range of SIPL conductivities from 100 to 1,500 mS m™' in 50 mS m™"
increments. We did this individually for each seawater conductivity from 2,400 to 3,000 mS m™" in 100 mS m™"
increments. An optimum SIPL bulk conductivity of 600 mS m™' was consistently returned. We then ran in-
versions with a fixed SIPL bulk conductivity of 600 mS m™" for the same range of seawater conductivities,
resulting in an optimum value of 2,700 mS m™' determined from the RMSE for the entire study region

(Figure 3a).

In this study, snow measurements covered a smaller area than EM surveys, and we could not account for the
contribution of the snow layer to EM consolidated ice thickness. However, snow measured at drill sites and
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Figure 3. (a) RMSE values from EM inversions showing an optimal seawater conductivity of 2,700 mS m™" for a fixed SIPL
bulk conductivity of 600 mS m~" and a range of seawater conductivities (2,400-3,000 mS m~"). Comparison of coincident
inverted EM (at drill holes) and drill hole measurements of (b) consolidated ice (sea ice plus snow) and (c) SIPL thickness
with R? values from linear fits.

sighted along EM tracks was generally thin and loosely packed. The mean snow depth of the 28 drill holes was
0.08 + 0.05, 3.7% of the mean drill hole-measured consolidated ice thickness (2.17 + 0.25 m). We thus expect the
addition of snow to be <0.10 m or <5% of EM consolidated ice thickness and negligible.

The combined thicknesses of consolidated ice and SIPL affect the error of the inversion to a mean relative value of
~10%, for thicknesses of either layer over 2 m (Irvin, 2018). When consolidated ice and SIPL are very thin or
thick, they occupy a sensitive region of the forward model where a small change in the EM response can produce
large changes in inverted thicknesses. This limitation and its implications for the inversion of consolidated ice
when a thin SIPL is present are described in further detail in Section 3.1 and Figure 2c of Brett et al. (2024).

Figures 3b and 3c show a 1:1 comparison of drill hole-measured consolidated ice and SIPL thicknesses with
spatially coincident EM thicknesses inverted from the model. R? values for linear fits of EM versus drill hole
thicknesses were 0.83 for consolidated ice and 0.90 for SIPL, the latter having a wider range. The mean drill hole
(EM) measured thicknesses at drill holes were 2.17 = 0.25 m (2.09 + 0.27 m) for consolidated ice and
1.77 £ 0.53 m (2.04 £ 1.22 m) for SIPL. Most of the drill hole data plotted near the 1:1 lines (Figures 3b and 3c)
with deviations that demonstrated that the inverted seawater (2,700 mS m~') and SIPL (600 mS m~') conduc-
tivities were representative of conditions in the study region. A mean deviation of —3.7% for consolidated ice and
+10.7% for SIPL was observed with EM relative to drill hole thickness.

However, five EM SIPL thicknesses (circled in Figure 3c) measured at a drill site nearest the ice tongue in the
northeast (Figure 1b) were 1.4-2 m greater than the coincident drill hole measurements. In contrast, consolidated
ice thicknesses at this site matched closely with a small mean deviation of +0.04 m for EM versus drill hole
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measurements. The relatively large difference between EM and drill hole-measured SIPL thicknesses suggested a
shift in the subsurface conductivity near the ice tongue, potentially caused by a change in seawater conductivity.

We queried this by running multiple forward models, with seawater conductivities ranging from 1,000 to
2,400 mS m~! and SIPL conductivities from 100 to 1,000 mS m_], for the five drill holes made at this site. The
optimum SIPL bulk conductivity was consistently 600 mS m™" for this seawater range. We then ran multiple
forward models for a fixed SIPL bulk conductivity of 600 mS m™" and a seawater conductivity range of 1,000—
2,400 mS m~'. An optimum seawater conductivity of 1,300 mS m~' was inverted, which corresponded to a
salinity of 15.5 (for a temperature —1.9°C and pressure of 15 dbar) (McDougall & Barker, 2011).

We thus interpreted absolute magnitudes of EM SIPL thickness in the northeast region near the ice tongue with
caution because they could be overestimated. However, the main objective of this study was to constrain and
quantify the late-spring distributions of ISW-influenced fast ice and SIPL thickness and we were confident from
previous experience that the EM method did this well.

4. Results
4.1. Fast Ice Formation

Satellite observations revealed that the fast ice from the previous year broke out from Gerlache Inlet and Silverfish
Bay. This was immediately followed by the calving of the ice tongue from the terminus and eastern flank as
shown in Figure 1b by the difference in the ice tongue area in October 2020 and 2021. In early March 2021, sea ice
began to form in the study region and polynya activity increased. During calm periods, thermodynamic sea ice
growth was observed with fast ice forming attached to the coastline, ice tongue, and Cape Washington. Newly
formed fast ice was frequently broken up and circulated eastward by the polynya where it coalesced along the
western margins of the ice tongue and Cape Washington.

In early November 2021, the fast ice in north Terra Nova Bay was extensive and entirely first-year in composition.
In Gerlache Inlet, the fast ice was made up of three sections (ages) as shown in Figure 1b: Tethys Bay and
northeast section (7-month), coastal fringe (6.5-month), and southern section (4.5-month). Fast ice in Gerlache
Inlet first persisted from 28 March 2021 in Tethys Bay and in the northeast between the branch and main flow
streams (i.e., north of the 7-month line). In mid-April, fast ice reached as far south as the ice tongue terminus in
both bays. In mid-June, polynya forcing caused an extensive breakout of 2-month old fast ice in Gerlache Inlet.
The remaining fast ice consisted of a 3—6 km wide fringe attached to the coastline and ice tongue (i.e., north of the
6.5-month line in Figure 1b) over shallower bathymetry (0—300 m) (Figure 2a). Fast ice to the south of this coastal
fringe persisted from late-June and had been established for 4.5-month when surveyed in early November.

4.2. Thickness Distributions of Fast Ice and Sub-Ice Platelet Layer

Figure 2 shows the thickness distributions of EM measured consolidated ice and SIPL and snow depth (measured
at drill sites) in early November 2021. The EM surveys (~5 m sample spacing) detected the thickest consolidated
ice (Figure 2b) and SIPL (Figure 2c) in the northeast near the ice tongue, with thicknesses decreasing to the south
and west. EM consolidated ice (Figure 2b) was also thick in the far west where the ice was bare of snow. We
observed the thinnest consolidated ice on the 4.5-month fast ice in the southeast and the thinnest SIPL in west
Gerlache Inlet. Mean EM consolidated ice and SIPL thicknesses from all EM surveys were, respectively,
2.14 £ 0.31 m and 2.17 £ 1.52 m. Differences in thickness with respect to ice age were apparent, with thinner
mean EM consolidated ice (1.82 m) and EM SIPL (1.39 m) measured on the younger 4.5-month fast ice versus the
older 6.5-month section, with respective mean thicknesses of 2.35 and 2.72 m.

The lower resolution drill hole point measurements captured the same pattern in fast ice and SIPL thickness
distributions. Mean drill hole-measured fast ice thickness was 2.09 + 0.27 m for the entire survey region, ranging
from 2.40 m at the drill site in the northeast near the ice tongue (i.e., 6.5-month old fast ice), 2.25 m in the west
where the ice was bare of snow, to 1.76 m in the center and south. Mean drill hole-measured SIPL thickness was
1.70 £ 0.54 m, varying from 2.67 m in the northwest to 1.30 m in the west.

Snow coverage in Gerlache Inlet (Figure 2d) was thin, wind-distributed, and had a flat surface. Mean snow depth
at drill sites was 0.08 £ 0.05 m and ranged from bare ice in the west, deeper snow in the center (0.16 m), and
thinner coverage (0.09 m) in the east and northeast.
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Figure 4. Parallel north-south EM transects (spaced from west to east at 3.5 km distance) of consolidated ice (positive y-axis)
and SIPL thickness (negative y-axis) with maxima mentioned in the text demarcated with corresponding maximum,
minimum, and mean drill hole measurements (illustrated by horizontal dashes), on (a) NS-7, (b) NS-2, and (c) NS-3. The
vertical stippled lines show the transition between the 4.5 (south) and 6.5-month (north) old fast ice sections.

The EM transects in Figures 4 and 5 show that SIPL thickness increased from west to east across Gerlache Inlet,
toward the ice tongue, on both the 6.5 and 4.5-month sections. Toward the ice tongue in the north, consolidated ice
and SIPL thicknesses displayed the same increasing trend on the NS-2, NS-3 (Figure 4), and NS-CIT (Figure 5)
transects. On the same transects, sharp decreases in consolidated ice and SIPL thickness were observed on the
transition from the 6.5 to 4.5-month fast ice. The North transect (Figure 6) revealed substantial thicknesses of both
consolidated ice and SIPL adjacent to the ice tongue in the east.

For reasons discussed in Sections 3 and 5.1, we interpreted absolute magnitudes of EM SIPL thicknesses in the
northeast near the ice tongue with caution. Additionally, on all EM transects, the effect of the inversion over thin
SIPL (<0.5 m) (as described in Section 3) was evident and manifested as sharp spikes in consolidated ice
thickness and covariance with SIPL thickness. From previous experience of this effect in McMurdo Sound (refer
to Brett et al., 2024), we interpreted the spikes in EM consolidated ice thickness as an unwanted effect and EM
SIPL thickness variability as a real observed effect. True EM consolidated ice thicknesses thus generally
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Figure 5. The north-south NS-CIT EM transect (upper panel) of consolidated ice (positive y-axis) and SIPL thickness
(negative y-axis) with maxima mentioned in the text demarcated and bathymetric depth (lower panel) extracted from Jung
et al. (2021). Dashed vertical lines show the transition between the 4.5 and 6.5-month old fast ice sections with the estimated
extent of the adjacent grounded region of the main flow stream to the east from Han et al. (2022).

corresponded to smaller magnitude EM thickness measurements as shown by comparison with the range of
coincident drill hole-measured thickness at sites (Figures 4 and 6).

The NS-1 transect in Figure 4a revealed thick fast ice (2.3 m) and thin SIPL (0-1.9 m) in the west. The thickest
SIPL on this transect was observed near the northern coastline with isolated pockets of SIPL (1.4—1.9 m) along the
profile.

The NS-2 transect (Figure 4b) showed thick consolidated ice of ~2-2.2 m and consistently thick SIPL (2—4 m)
under the 6.5-month fast ice section. A 5-6 m SIPL maxima centered at latitude —74.636° (Figure 4b) was
observed east of the branch stream (Figure 2¢). On the 4.5-month fast ice, consolidated ice was ~1.7 m and SIPL
thicknesses varied from 0 to 1.5 m.

On the NS-3 transect (Figure 4c), a thick SIPL maxima (centered at —74.643°) with thicker overlying consolidated
ice (2.6-2.8 m) was observed. In the far north (toward latitude —74.63°), SIPL increased in thickness between the
branch and main flow streams (Figure 2c). On the younger ice, consolidated ice and SIPL thicknesses were
thinner with several SIPL maxima of 2.2-2.4 m thickness and 100-130 m width observed.
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Figure 6. The North alongshore EM transect (upper panel) of consolidated ice (positive y-axis) and SIPL thickness (negative
y-axis) with maxima mentioned in the text demarcated and bathymetric depth (lower panel) extracted from Jung et al. (2021).
The dashed vertical arrow shows the western extent of the branch stream and horizontal gray lines, the estimated locations of
grounded regions of the ice tongue to the north from Han et al. (2022).
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The NS-CIT transect in Figure 5 was carried out ~0.5-1 km from the ice tongue and partially adjacent to the NS-3
transect in the north (Figure 2a). On the 6.5-month fast ice, consolidated ice thickness was ~2.5 m in the north and
up to 3 m over narrow SIPL maxima. Over deeper bathymetry (300-400 m), the SIPL was thicker with 3 maxima
of ~50 m width (centered at latitude —74.65°) observed over a short distance (~200 m). The transition to the
4.5-month old fast ice occurred north of where the ice tongue was grounded (location indicated on Figure 5). The
younger fast ice had consolidated ice thickness of ~1.7 m and SIPL thickness of ~2 m with prominent SIPL
maxima with thicker overlying fast ice (2.3-2.4 m) observed in narrow bands of ~100-150 m width.

The 6.5 km long North EM transect in Figure 6 detected SIPL along the entire northern coast with several very
thick and narrow accumulations in front of the branch stream of the ice tongue. On the western side of this
transect, mean consolidated ice thickness was 2.2 m and SIPL varied from 2 to 3 m. In the center, SIPL was
thicker with a very narrow (~15 m wide) and potentially thick SIPL. maxima (4-12 m) observed over shallow
depths (<25 m) east of the branch stream. In the east, the SIPL was significantly thicker than the west with four
SIPL maxima with thicker overlying consolidated ice observed due south of the branch stream. We estimated the
widths of the SIPL maxima to be 100-500 m. To the south of the 0.5-km grounded region in the east (location
indicated on Figure 6), the SIPL was substantially thinner.

5. Discussion
5.1. EM Inverted Consolidated Ice and SIPL Thicknesses

The mean deviations of coincident EM and drill hole-measured consolidated (—3.7%) and SIPL (+10.7%)
thicknesses (Figures 3c and 3b) were within the expected error of the inversion (Irvin, 2018). Given that the mean
snow depth at drill sites was <5% of the mean drill hole consolidated ice thickness, we considered EM measured
consolidated ice thickness as a good approximation of true fast ice thickness, except where the SIPL was less than
0.5 m in thickness. The close agreement of most EM and drill hole measurements provided confidence that the
conductivities of the SIPL (600 mS m™') and seawater (2,700 mS m™~') were mostly representative of conditions
in Gerlache Inlet.

The large deviation of drill hole-measured and EM SIPL thicknesses and low seawater conductivity of
2,700 mS m ™~ inverted at the drill site in the northeast suggested abundant fresh water in the upper surface ocean
in this region near the ice tongue, corroborating high basal melt rates of the ice tongue deduced from SAR
interferometry (Han & Lee, 2015). However, the low seawater conductivity was inverted from only five coin-
cident drill hole and EM measurements and would require oceanographic assessment to be conclusive.

Applying the same technique in McMurdo Sound, Brett et al. (2020, 2024) also used a seawater conductivity of
2,700 mS m™"' obtained from extensive oceanographic observations in the region (e.g., Robinson et al., 2014). In
Gerlache Inlet, Brogioni et al. (2023) measured seawater salinity of 31.2-32.1 gkg™" in the center and near Tethys
Bay on 18 November 2018, corresponding to a slightly lower conductivity of ~2,500 mS m™" (for a temperature
of —1.91°C and pressure of 15 dbar) (McDougall & Barker, 2011). However, seawater conductivity in Gerlache
Inlet could be variable, and without coincident oceanographic observations, we could only assume a mean
seawater conductivity for the entire study region.

5.2. Fast Ice Formation

Fast ice formation during winter in Gerlache Inlet and Silverfish Bay was influenced by coastal morphology and
the Terra Nova Bay Polynya. Throughout winter, polynya forcing frequently broke up recently formed fast ice
and circulated it eastward where it accumulated along the western boundaries of the Campbell Ice Tongue and
Cape Washington. We mostly observed smooth and level fast ice in Gerlache Inlet, indicating predominantly
thermodynamic growth. However, rougher dynamically formed fast ice is likely present near Cape Washington
and the fast ice edge, as detected with AEM in both bays in 2017 (Langhorne et al., 2023).

The coastline, including the southward protruding ice tongue and Cape Washington, provided anchorage for fast
ice as it formed, and once established, protection from katabatic winds and polynya forcing. This was indicated by
the fast ice extent in mid-April, which extended to the ice tongue terminus. Reciprocally, the presence of fast ice
stabilized the ice tongue as shown by the calving that occurred immediately after the fast ice broke out in January
2021. The coastal fast ice fringe described in Section 4.1 reoccurred over winter in 2021 and was also observed in
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late spring of 2005 (Vacchi et al., 2012) and in winter of 2018 (Brogioni et al., 2023), most likely as a result of
coastline morphology and shallow bathymetry.

We observed the earliest establishment of fast ice in northeast Gerlache Inlet near the ice tongue where the
thickest fast ice and SIPL were measured in late spring (Figures 2b and 2c). Fast ice near the coast likely grows
and strengthens more rapidly from heat loss to supercooled ISW and platelet ice consolidation (Gough
et al., 2012). Thicker consolidated ice on the North, NS-3, and NS-CIT transects over SIPL. maxima near the ice
tongue indicated that ISW outflow played an early and significant role in fast ice formation throughout winter. In
future studies, ice core texture analysis would constrain the timing and influence of in situ supercooling on
consolidated fast ice growth in the region (Dempsey et al., 2010; Langhorne et al., 2015).

5.3. Sub-Ice Platelet Layer Distribution

The distribution of thicker fast ice and SIPL we observed in Gerlache Inlet strongly indicated that in situ
supercooled ISW is outflowing from beneath the Campbell Ice Tongue (conjectured as black arrows in Figures 2a
and 2c). The SIPL was thickest in the north, northeast, and east near the branch and main flow streams of the ice
tongue and decreased in thickness to the west and southwest (Figure 2¢). A similar pattern was observed by the
AEM surveys in November 2017 (Langhorne et al., 2023). However, our higher resolution in situ study detected
multiple narrow (~100 s m) SIPL maxima south of the branch stream (Figure 6) identifying highly channeled
outflow from the ice mélange and grounded regions. Given significant outflow of supercooled ISW, platelet and
marine ice potentially contribute to the integrity of the branch stream mélange. Thicker SIPL. maxima observed
along the main flow stream in transect NS-CIT (Figure 5) also suggest that ripple formations in the base of the ice
tongue, as observed by Bianchi et al., 2001, could channel ISW outflow. Stevens et al. (2017) conjectured that
similar basal channels in the Drygalski Ice Tongue would affect water mass outflow and properties.

Fast ice persistence determines how long platelet ice crystals (once present) can accumulate and grow in situ to
form the SIPL. Two months of additional SIPL growth is apparent on all north-south transects (Figures 4 and 5).
SIPL thickness decreased significantly from the 6.5 to the 4.5-month fast ice, which strongly indicates that the
SIPL was well-established, and of significant thickness in mid-June, prior to the seaward fast ice breaking out.
Our EM observations supported the location of grounded regions of the ice tongue from SAR interferometry (Han
et al., 2022). The fast ice breakout in mid-June occurred north of where the main flow stream is grounded on a
seabed rise (Figures 2 and 5) and the grounded region of the branch stream correlated with thinner SIPL (Figure 6)
suggesting hindrance of ISW outflow.

In comparison to the AEM surveys in November 2017 by Langhorne et al. (2023), the SIPL we measured in
Gerlache Inlet was thicker and more extensive. However, we could not constrain the overestimate in EM inverted
SIPL thickness near the ice tongue or its spatial extent. Additionally, the fast ice was less extensive in November
2017 and had partially broken out from Gerlache Inlet in early September 2017. Considering the previous ob-
servations given in Section 2.3, interannual variability in SIPL in this region is expected and could be driven by a
combination of factors including wind-forcing on fast ice persistence, variability in snow thickness, and ocean
circulation affecting the volumes of in situ supercooled ISW in the region.

5.4. Ice Shelf Water Source Regions and Circulation

Here, we discuss local and regional processes that could contribute to the formation of supercooled ISW and
platelet ice in north Terra Nova Bay. The thick fast ice and SIPL we detected in Gerlache Inlet implied that in situ
supercooled ISW is abundant to the west of the ice tongue. In Silverfish Bay, the AEM surveys detected a
substantially thicker and more extensive SIPL in November 2017 (Langhorne et al., 2023) than Gerlache Inlet
signaling that higher volumes of in situ supercooled ISW are outflowing to the east of the ice tongue. These
observations show that the ice tongue is a significant source of ISW in north Terra Nova Bay.

The tongue of ISW previously observed near Gerlache Inlet by Budillon and Spezie (2000) had properties that
indicated that it was formed by HSSW interaction with glacial ice and pointed to the Campbell Ice Tongue as the
source region. Given that the study area is small, and the polynya dominates the fast ice edge in the south, it is
plausible that HSSW formed within the polynya could be causing basal melt of the ice tongue at depth and
forming ISW.
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Bianchi et al. (2001) estimated the grounding line depth of the Campbell Ice Tongue to be ~700 m and com-
parable to the Nansen Ice Shelf (660 m) (Frezzotti et al., 2000), which is posited to be the main source of ISW in
Terra Nova Bay. The ice tongue thins over a short distance (Bianchi et al., 2001), which provides a steep slope for
rapid pressure relief, inducing in situ supercooling, and promoting frazil/platelet ice formation (Jenkins &
Bombosch, 1995; Lewis & Perkin, 1986). Basal freezing by ISW (mean rates of 0.75ma~" and up to 20ma™") on
the ice tongue has been deduced at ~400 m depth from SAR interferometry (Han & Lee, 2015). To be in situ
supercooled at this depth, ISW would thus have to be of deeper origin than 400 m.

HSSW has been observed in Terra Nova Bay from the seafloor to 400-700 m depth in summer (Yoon et al., 2020)
and is more prevalent in winter when sea ice production in the polynya is intense (Ackley et al., 2020). This is
deep enough for HSSW to interact with the Campbell Ice Tongue at the 700-m grounding zone. However, other
unidentified water masses could also cause basal melting and we emphasize that the region critically needs
coincident oceanographic surveying in future studies. We conclude that basal melting of the Campbell Ice Tongue
at depth is a significant contributor to ISW in Terra Nova Bay. Our fine scale in situ observations enhance and
support the finding of Langhorne et al. (2023) that smaller ice bodies along the Victoria Land Coastline are
important contributors to ISW in the western Ross Sea.

5.5. Consequences of Campbell Ice Tongue Degradation

The Campbell Ice Tongue appears to be in a state of change with increased basal melting and decreased ice tongue
area. Without anchorage and protection provided by the ice tongue, fast ice establishment and persistence would
diminish. Reciprocally, less extensive or thinner fast ice would negatively impact the ice tongue by providing less
mechanical reinforcement and increased exposure to winds, ocean swell, and waves as observed by Gomez-Fell
etal. (2022) at the Parker Ice Tongue, ~40 km north of our study region. Collapse of the ice tongue would result in
more glacial ice discharge to the ocean and a single wide bay with increased exposure to winds and ocean cir-
culation. Our study shows that reduced ISW formation as a result of ice tongue disintegration would significantly
impact the formation and stability of fast ice and SIPL. Lower fast ice persistence would reduce SIPL formation as
shown by the thinner SIPL observed beneath the 4.5 versus the 6.5-month fast ice. Platelet ice plays an important
role in Antarctic biology by providing a habitat for algae and microorganisms (Arrigo et al., 1993) and nursery for
the keystone species Antarctic silverfish (Vacchi et al., 2012). A reduction or disappearance of a SIPL in the study
region, the only known nursery for silverfish, would have major implications for the Ross Sea ecosystem.
Complex interactions between the ice tongue and fast ice are clearly important not only for the stability of the
icescape but for reliant ecosystems.

6. Conclusion

In north Terra Nova Bay, a sub-ice platelet layer (SIPL) occurs beneath fast ice beside the Campbell Ice Tongue,
signaling the presence of in situ supercooled ISW in the upper surface ocean. Prior to this study, no dedicated in
situ measurement of the thickness distributions of fast ice and SIPL, formed by supercooled ISW circulation, had
been carried out and the source of ISW and platelet ice in this region was not well constrained. In late spring of
2021, we carried out drill hole and high-resolution ground-based electromagnetic induction surveys of fast ice and
SIPL thickness distributions to infer the pattern of ISW circulation in Gerlache Inlet in north Terra Nova Bay. To
characterize the fast ice composition, we monitored fast ice formation throughout the winter of 2021 with satellite
observations. We observed that the Terra Nova Bay Polynya has a significant effect on fast ice persistence by
breaking it up and circulating it eastward, whereas the western coastline, Campbell Ice Tongue, and Cape
Washington provided stabilization. In late spring, thicker fast ice and SIPL were observed near the ice tongue,
with very thick and narrow SIPL maxima indicating highly channeled outflow of supercooled ISW, from beneath
the ice tongue through ice mélange, subglacial formations, and grounded regions. We conclude that significant
volumes of ISW are locally sourced from basal melt of the Campbell Ice Tongue. We identify the need for
combined in situ fast ice and oceanographic surveying to fully elucidate the processes at play in this important
region. Reciprocal effects observed between the ice tongue, fast ice, and SIPL highlighted the implications of
Campbell Ice Tongue degradation for fast ice and SIPL formation and marine species that are highly specialized
to this region.
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