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ABSTRACT
Biobanking (also known as germplasm banking) of genetic material is a well-established concept for preserving plant 
genetic diversity and also contributes to food security, conservation and restoration. Macroalgae currently represent a very 
small percentage of the strains in publicly accessible European germplasm banks, despite the increasing recognition of their 
contribution to achieving several of the United Nations Sustainable Development Goals. There is no strategic coordination 
of existing macroalgal strains, which could have severe ecological and economic implications as species and their genetic 
diversity disappear rapidly due to local and global environmental stressors. In this opinion paper, we stress the importance 
of a coordinated European effort for preserving macroalgal genetic diversity and suggest the development of a three-pillared 
system to safeguard European macroalgal genetic material consisting of (1) a European Board of Macroalgal Genetic 
Resources (EBMGR) to provide supervision, support and coordination, (2) a network of germplasm banks consisting of 
currently existing and newly established infrastructures and (3) an interoperable databank integrating existing databanks. 
While it will be the task of the EBMGR to identify and coordinate priorities, we offer initial recommendations for 
preserving macroalgal genetic material, discuss the risks of inaction, and highlight the challenges that must be overcome.

HIGHLIGHTS
• A coordinated European effort is crucial to preserve macroalgal genetic diversity, addressing rapid species and genetic loss 
due to environmental stressors.
• The initiative should include a European Board of Macroalgal Genetic Resources for oversight, a network of existing and 
new germplasm banks and an interoperable databank integrating current resources.
• The effort supports the United Nations Sustainable Development Goals.
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Introduction

Germplasm banking of genetic material is a well- 
established concept for breeding, maintaining and 
protecting crop varieties for agriculture and 

conserving the gene pool of wild populations (see 
Box 1). Germplasm banks preserving genetic diversity 
are repositories that can be leveraged to secure exist
ing or develop novel varieties, which contribute to
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food security, conservation and restoration. As out
lined in Wade et al. (2020), most germplasm banking 
efforts have focused on preserving biodiversity of 
microscopic unicellular algae and terrestrial plant 
material, the latter for example in botanical gardens, 
museum herbaria or the Spitsbergen seed vault 
(Asdal & Guarino, 2018). Globally, 853 culture col
lections are currently connected in a central network, 
the World Federation for Culture Collections 
(https://wfcc.info/), but most are focused on micro
bial organisms. Among European culture collections, 
only 37 contain algal cultures, and the vast majority 
are microalgal strains. The Culture Collection of 
Algae and Protozoa (CCAP) at the Scottish 
Association for Marine Science (SAMS) is one of 
the few public collections with a large variety of sea
weed strains, including representatives of commonly 
cultivated species from the kelp genera Saccharina 
and Laminaria, the filamentous brown macroalga 
Ectocarpus, bladed Bangiales (Porphyra sensu lato), 
Asparagopsis and the green algal genus Ulva. 
Macroalgal strains in Europe are also maintained in 
other public repositories, the Culture Collection of 
Algae at the University of Göttingen (SAG), at the 
Norwegian Institute for Water Research (NIVA) 
Culture Collection of Algae, The Spanish Bank of 
Algae (BEA) and the Roscoff Culture Collection 
(RCC). Nevertheless, macroalgae represent a very 
small percentage of strain holdings maintained within 
publicly accessible algal culture collections. 
Furthermore, these macroalgal collections as well as 
the nonpublicly accessible collections located at 
diverse European research institutions lack 
a coordinated European strategy for tackling predict
able future challenges, such as the need for climate 
change adaptation and for providing food to the 
growing global population. In addition to the public 
collections, macroalgal strains originating from all 
over the globe are maintained separately by indivi
dual researchers, research groups or commercial 
companies in Europe. Often, these individual germ
plasm collections are small and lack standardized 
conditions and information regarding provenance, 
connectivity and long-term maintenance. In recent 
years, new national initiatives, such as the 
Portuguese Blue Biobank (https://www.ciimar.up.pt/ 
platforms/bluebiobank/) and the European Blue 
Biobank (EBB: https://www.bluebiobank.eu/project/), 
have started securing the seaweed diversity in local 
biodiversity hotspots as well as building a network of 
national marine germplasm banks in order to facil
itate sustainable and regulated access to marine bio
diversity for science and industry.

While the importance of, and need for, macroalgal 
germplasm banks have been stressed by several 
authors in recent years (Barrento et al., 2016; Barbier 
et al., 2019; Wade et al., 2020; Brakel et al., 2021; Yang 
et al., 2021), and the first initiatives have started (e.g. 
technical guidelines developed by the EBB), there is no 
clear road map or strategy for safeguarding seaweed 
genetic diversity in Europe. One of the goals of the 
European Commission’s (EC) ‘Towards a Strong and 
Sustainable EU Algae Sector’ report was to ‘assess the 
options for an EU-wide approach to conserving sea
weed biodiversity by maintaining and documenting 
European seaweed strains in a centralized germplasm 
bank network or databank’. There have been recent 
developments in this direction in the USA, for exam
ple the open access kelp germplasm collection Sugar 
Kelp Base (https://sugarkelpbase.org/) and the 
European GENIALG project (https://genialgproject. 
eu/). These projects focused on a few key species 
important for aquaculture and conservation and gen
erated a large number of new strain accessions from 
various populations throughout the northern Atlantic, 
which have been deposited within existing culture 
collections.

Following the SeaStrains Workshop supported by 
the Global Seaweed Coalition and hosted at the 
Alfred Wegener Institute, Helmholtz Center for 
Polar and Marine Research, in June 2022, representa
tives from research, academia, culture collections and 
industry met to lay the foundations for developing 
a strategy for safeguarding macroalgal genetic diver
sity in Europe. The resulting ‘SeaStrains Network’ 
was the starting point of this opinion paper, which 
addresses the main issues that were raised and 
discussed.

The critical importance of safeguarding macro
algal genetic material in germplasm banks to ensure 
long-term protection of valuable genetic resources 
in Europe is addressed: (1) We highlight the poten
tial impacts of inaction and provide a suggested 
strategy to avoid them. The proposed strategy is 
based on three main pillars, with a foundation in 
germplasm banking. (2) We discuss the necessary 
tasks and services that should be provided by 
a future network of germplasm banks that could 
best serve all interest groups. (3) We discuss the 
importance of basing such a strategy on the suc
cesses that have already been achieved for germ
plasm banks that support agriculture. (4) Finally, 
we discuss the challenges associated with different 
potential strategies and highlight research priorities 
that will be necessary in order for this vision to be 
successfully realized.
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The importance of safeguarding macroalgal 
genetic resources in germplasm banks

The systematic collection, isolation and preservation of 
macroalgal genetic material in germplasm banks provide 
a comprehensive repository for maintaining strains that 
serve as fundamental resources for basic and applied 
research. Below we briefly describe the widespread loss 
of macroalgal biodiversity that has been reported 
throughout Europe and stress the importance of safe
guarding genetic macroalgal resources in germplasm 
banks to conserve and potentially also restore macroalgal 
biodiversity. We argue that the lack of active and coordi
nated preservation of macroalgal genetic diversity in 
sustainable germplasm banks could have severe ecologi
cal and economic implications as species and their intra- 
specific diversity disappear as a consequence of global 
change. If proper action is not taken, irreversible losses of 
inter- and intraspecies diversity may occur and 

restoration and cultivation efforts directed at macroalgal 
species in Europe will be severely hampered. 
Furthermore, macroalgal strains for food production 
and breeding programmes would be limited, resulting 
in failure to provide additional sources of food for the 
growing global population. Finally, we describe how 
germplasm banks not only support basic research and 
biotechnological applications, but also how they will be 
essential to scaling up the macroalgal cultivation industry 
in Europe and simultaneously contributing to the United 
Nations’ Sustainability Goals. Without these activities, 
the loss of strains used as models for basic research 
could negatively impact future research efforts, limit 
experimental reproducibility and hinder bioinnovation.

Vanishing European macroalgal biodiversity

In temperate regions, such as Europe, brown macroal
gae belonging to the orders Laminariales, Tilopteridales

Fig. 1. Images of macroalgal germplasm banks maintained at the (A) Alfred Wegener Institute, Helmholtz Center for Polar 
and Marine Research (photo: Andreas Wagner) and (B, C) Culture Collection of Algae and Protozoa (photos by Cecilia Rad 
Menéndez).

Box 1. Macroalgal germplasm banking 
We use the term ‘macroalgal germplasm bank’ following terminology used by Barrento et al. (2016) and Wade et al. 
(2020), for example, to describe the ex situ conservation of macroalgal genetic material and associated metadata. 
Synonyms for this term are ‘gene bank’, ‘biobank’, ‘germplasm collection’, ‘genetic resource centre’ or ‘biological 
resource centre’. The term ‘culture collection’ is also frequently used. For land plants, the term ‘seed bank’ is often 
used, referring to the maintenance of the embryo of land plants in its dormant stage. These can be maintained in 
dry, cold conditions with viability and germination ability ranging from a few years to several decades (De Vitis 
et al., 2020). In contrast, macroalgal germplasm banking entails maintenance of meristematic tissue (tissue 
consisting of actively dividing cells forming new tissue) either in the diploid or haploid stage, most often in liquid 
culture medium or on solid medium plates (see Fig. 1 for examples). These are kept under low light and temperature 
conditions (relative to natural conditions) but require regular transfer to new medium. Alternatively, macroalgal 
germplasm can be cryopreserved at ultralow temperatures. For the purpose of clarity, we use the term germplasm 
bank throughout the remaining text.   
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and Fucales play a pivotal role in marine ecosystem 
functioning (Lüning, 1990). Due to their size, three- 
dimensional complexity and the quality of their bio
mass, they are considered foundation species that 
improve environmental conditions for a wide variety 
of organisms (Cheminée et al., 2013; Voerman et al.,  
2013; Bermejo et al., 2016; Schoenrock et al., 2021) and 
promote biodiversity and productivity compared with 
communities where these foundation species are absent 
(Bulleri et al., 2002; Steneck et al., 2002; Cacabelos et al.,  
2010; Thiriet et al., 2016; Teagle et al., 2017). Relatively 
low annual decomposition rates and the resulting stable 
biomass promote ecosystem functions and services 
(Viaroli et al., 2008; Ramus et al., 2017; Cebrian et al.,  
2021). Recent widespread declines in these habitat- 
forming macroalgae and macroalgal species richness 
have been recorded from many regions, including 
Europe, primarily due to the detrimental effects of ris
ing temperature and increasing incidence of marine 
heatwaves or other local anthropogenic stressors 
(Mineur et al., 2015; Wernberg et al., 2016; Rogers- 
Bennett & Catton, 2019; Filbee-Dexter et al., 2020; 
Smale, 2020). Declines are especially pronounced in 
regions where macroalgae are situated close to their 
thermal tolerance limits. In Europe, some fucoids and 
kelp have declined considerably along the Iberian 
Peninsula, and the loss of these range-edge kelp and 
fucoid populations have critical consequences for the 
species gene pools (Díez et al., 2012; Assis et al., 2013; 
Nicastro et al., 2013; Neiva et al., 2014, 2015, 2020; 
Martínez et al., 2015; Casado-Amezúa et al., 2019).

Similarly, several Mediterranean examples of range 
contractions and local change include the Cystoseira, 
Ericaria and Gongolaria (Cystoseira sensu lato; Fucales, 
family Sargassaceae) forests (Thibaut et al., 2005; 
Blanfuné et al., 2016; Rindi et al., 2020), which dominate 
shallow and mesophotic rocky reefs and represent one of 
the most endangered habitats in the Mediterranean Sea 
(Barcelona Convention Annexe II; United Nations 
Environment Programme/Mediterranean Action 
PlanUNEP/MAP; Verlaque et al., 2019). Declines in 
these habitat-forming macroalgae (Guidetti et al., 2004; 
Sala et al., 2012; Strain et al., 2014; Mineur et al., 2015; 
Piñeiro-Corbeira et al., 2016; Bianchi et al., 2018; Christie 
et al., 2019; Orfanidis et al., 2021) result in regime shifts 
towards turf-dominated ecosystems with a less complex 
3D structure, reducing structural habitat for marine 
organisms (Moy & Christie, 2012; Wernberg et al.,  
2016; Filbee-Dexter & Wernberg, 2018; Feehan et al.,  
2019). Besides the risk of regime shifts, genetically unique 
populations have been lost (Coleman et al., 2022), and 
severe effects at local scales on fragmented populations of 
macroalgal species are expected in the future (Verdura 
et al., 2021), which will limit the overall genetic diversity 

of remaining populations. In addition to kelp forests, 
other ecosystem engineers such as rhodolith beds (Tuya 
et al., 2023) and calcifying green algae are threatened by 
climate change, and in some cases have even disappeared 
from their native ranges (Rilov et al., 2020). While in situ 
conservation of macroalgal diversity must be a priority 
given the ecological importance of brown seaweed forests 
in ecosystem functions and services, its observed decline 
and degradation over past decades calls for pressing 
action for ex situ conservation. At the European scale, 
there is a clear and urgent need to establish coordinated 
germplasm banks to preserve macroalgal genetic 
biodiversity.

Conservation and restoration

The conservation of macroalgal forests is crucial to 
obtain and maintain a good ecological or environmental 
status, as required by the Marine Framework Strategy 
Directive (Directive 2000/60/EC) or the Marine 
Framework Strategy (Directive 2008/56/EC). Many 
habitat-forming macroalgae are considered indicators 
of healthy ecosystems when assessing the status of mar
ine ecosystems under these European Directives 
(Orfanidis et al., 2003; Ballesteros et al., 2007; Wells 
et al., 2007; Juanes et al., 2008; Bermejo et al., 2014). 
Measures for protecting macroalgal forests throughout 
Europe currently exist (e.g. Annexe II of the Barcelona 
Convention, COM/2009/0585 FIN; Directive 92/43/ 
EEC; Annexe I; ‘Rocky reefs’) and ‘kelp forests’ have 
been included as threatened habitats within OSPAR (de 
Bettignies et al., 2021; https://www.ospar.org/workareas/ 
bdc/specieshabitats/listofthreateneddecliningspecieshabi 
tats/habitats/kelpforest). Despite a reduction in local 
anthropogenic pressures and the resulting improvement 
in water quality (e.g. sewage treatment management, 
pollutants regulations, limitations on the use of destruc
tive fishing gear, or increases in the number of marine 
protected areas (MPAs)), the natural recovery of brown 
macroalgal forests and other ecologically relevant 
assemblages (e.g. seagrass meadows, oyster reefs) is 
not always observed (Orth & McGlathery, 2012; 
Pinedo et al., 2013; Gran et al., 2022) or can be very 
slow, especially for species with limited dispersal capa
city or recolonization abilities as is the case for many 
Fucales, Tilopteridales and Laminariales (Billot et al.,  
2003; Schiel et al., 2004; Coleman & Brawley, 2005; 
Buonomo et al., 2017). Therefore, restocking or refor
estation actions are a promising strategy (Cebrian et al.,  
2021; Gran et al., 2022). In this context, the United 
Nations declared 2021–2030 the ‘UN Decade on 
Ecosystem Restoration’ in order to promote restoration 
actions to fight the climate crisis, enhance food security, 
provide clean water and protect biodiversity on the
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planet (Waltham et al., 2020). Seaweed restoration, 
however, is dependent on local macroalgal resources 
or seeding material that have survived declines (e.g. 
Marzinelli et al., 2015; De La Fuente et al., 2019; 
Layton et al., 2020) and could be complemented in 
the future by material conserved in germplasm banks. 
Significant efforts have been made by several EU 
institutions to research new tools for marine forest 
restoration and to upscale the process in recent years 
(e.g. MERCES EU project, AFRIMED, ROCPOP 
life, FutureMARES, CLIMAREST, RESTORESEAS, 
FoRESCUE, Green Gravel Action Group). Although 
restoration has been a highlight of the EU BiodivERsA 
programme RESTORESEAS, using both the appropriate 
local genetic lineage and the genetic diversity within the 
species has been overlooked in many restoration efforts.

Basic macroalgal biological research

Access to well-characterized and diverse macroalgal 
strains enables scientists to delve into the genetic 
intricacies of these organisms, unravelling key mole
cular mechanisms and pathways and driving 
advances in the field of macroalgal ecology and sys
tems biology. An improved understanding of macro
algal biology, e.g. life cycle and its control, genomes 
and metabolism is a prerequisite for various under
takings such as macroalga cultivation, biotechnologi
cal applications and for future-proofing restoration 
efforts.

One example of the importance of germplasm 
banking is the historical trajectory of strains collected 
by Føyn in 1952, named as Ulva mutabilis (Føyn,  
1958). Remarkably, since Føyn’s initial isolation, the 
U. mutabilis strains have remained in the custodian
ship of individual researchers, leading to an extensive 
body of research spanning decades. The strains have 
been a focal point for numerous investigations into 
macroalgal reproduction, life cycles, cross-kingdom 
interactions, symbiotic effects, molecular and taxo
nomic advancements, and morphogenetic pheno- 
mena (Wichard & Oertel, 2010; Spoerner et al.,  
2012; Oertel et al., 2015; Wichard, 2015; Grueneberg 
et al., 2016; De Clerck et al., 2018; Steinhagen et al.,  
2019a, 2019b; Blomme et al., 2021). These cultures 
have significantly contributed to research on cell dif
ferentiation, growth promoting factors and general 
macroalgal system biology advancements, underlin
ing the importance of long-term storage, curation 
and subsequently equitable access to such valuable 
macroalgal strains (Stratmann et al., 1996; Spoerner 
et al., 2012; Grueneberg et al., 2016; Ghaderiardakani 
et al., 2017).

Biotechnology

Bioinnovation also relies on macroalgal strains pre
served in germplasm banks (Smith, 2009). 
Macroalgal polysaccharides and colloids offer var
ious unique features that allow them to be used in 
cosmetics, tissue engineering, novel biomaterials, 
food and feed systems and biorefinery processes. 
Together with other bioactive molecules extracted 
from marine macroalgae, they show potential for 
a new generation of active ingredients for diverse 
industries (Stiger-Pouvreau & Guerard, 2018). To 
secure the many still unexplored possibilities for 
the utilization of bioactive compounds from algae, 
and to support the sustainable use of these marine 
resources, access to a diverse collection of macro
algal germplasm is needed to support European 
initiatives.

Aquaculture and food security

The European macroalgal industry will need to scale 
up cultivation to produce enough biomass for bio
technological innovations and to provide a source of 
food for the growing world population (Duarte et al.,  
2021). Large-scale seaweed aquaculture has the 
potential to serve as a climate change mitigation 
technology and provide ecosystem services (e.g. pro
visioning food and feed) that contribute directly to 
the United Nations Sustainable Development Goals 
(Duarte et al., 2021; Bermejo et al., 2022; Fricke et al.,  
2024).

Global macroalgal aquaculture production has 
increased from 10.6 million tons in 2000 to 
35.1 million tons wet weight in 2022, representing 
an increase from US$4.5 to 16.5 billion with an aver
age yearly growth rate of 6% (The State of World 
Fisheries and Aquaculture, 2022). Europe currently 
only produces approximately 0.03% of the global 
aquaculture-produced macroalgal biomass, but inter
est in expanding the sustainable macroalgal aquacul
ture market is growing. A recent report from the 
European Commission (EC) providing an overview 
of the industry in Europe showed that there are 
currently 153 macroalgae-producing enterprises 
across 23 European countries (Vazquez & Sanchez,  
2022), and between 2020 and 2022 investment deals 
in the industry doubled from 20 to 41 (https://phyc 
onomy.net/articles/2022seaweedreview/). While we 
acknowledge that there are certainly macroalgal aqua
culture enterprises that have not succeeded, the suc
cessful number continues to grow. Recent projections 
have calculated that European producers could 
increase production from 300 000 tons to 8 million
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tons by 2030, thereby supplying 30% of the projected 
€9.3 billion European market from European suppli
ers (Vincent et al., 2020). Nevertheless, several limita
tions are currently preventing the rapid scale-up of 
macroalgal production in Europe, including technol
ogy, labour costs, competitive pricing and environ
mental risks (Bermejo et al., 2022; Fricke et al., 2024). 
The availability and maintenance of established 
strains and cultivars in germplasm banks and macro
algal nurseries is one fundamental aspect of the 
industry that needs to be addressed.

In order to ensure the sustainability of the macro
algal sector, solutions must be found to avoid its 
dependence upon wild stocks. Several companies 
have started establishing their own germplasm 
banks and nurseries to provide starting material to 
farmers. However, this material will be destined for 
clients and is generally not available to researchers 
or the public in general. In addition, company- 
owned germplasm collections have a stronger focus 
on selecting for profitable traits rather than ecosys
tem-relevant traits, the latter of which are relevant to 
restoration. Nevertheless, recommendations have 
been submitted to the European Parliament for sup
porting the development of local cultivars from local 
strains, not only to select traits of interest, but also 
to preserve the local genetic background (Barbier 
et al., 2019). This strategy should reinforce the pub
lic germplasm banks and involve the private sector 
in the preservation and restoration of the genetic 
diversity.

While the investment in breeding of novel 
macroalgal cultivars will certainly require intellec
tual property protection, it is essential to ensure 
fair and open access to the gene pools of commer
cially and ecologically important species preserved 
in germplasm banks to support the equitable scal
ing up of a sustainable cultivation industry in 
Europe. Open access will foster participatory breed
ing initiatives helping to develop varietal diversity, 
particularly if they are conceptualized in close col
laboration with seaweed farmers. The year-round 
access to strains or populations as cultivation star
ters for biomass production, and access to diverse 
macroalgal species or cultivars are services that 
could be provided by germplasm banks to help 
scale up the cultivation industry. Furthermore, 
transparency and traceability of source material 
may provide better consumer acceptance of macro
algal products. This will be particularly important 
for ensuring future food safety and would help 
facilitate quality control and tracing. Suggestions 
for supporting open access and intellectual 

property protection are provided in the section on 
facilitating access to macroalgal genetic resources.

Risks of inaction and lessons learned

Learning from mistakes made in agriculture will be 
essential in order to support food security and protect 
biodiversity during the scaling up of the macroalgal 
industry. Researchers have estimated that over 90% of 
varieties of several vegetables documented in 
1903 have been lost due to monocultures and impro
per conservation of seed, and this now poses a major 
risk to our food security (Fowler, 2016). A recent 
report found that our global food system is the pri
mary driver of biodiversity loss (Benton et al., 2021). 
Considering that global fisheries and other marine 
uses also contribute to marine biodiversity loss 
(IPBES, 2019), we must place a greater value on 
protecting marine biodiversity as the production of 
macroalgae for food and other industries grows, for 
example by preventing monocultures (Brakel et al.,  
2021), unsustainable harvesting practices (Huanel 
et al., 2022), introductions of non-native species 
(Mineur et al., 2015), and overuse of pesticides and 
other chemicals (Kumar et al., 2023).

The lack of a European sustainable germplasm 
bank strategy for macroalgae has already led to rele
vant losses of macroalgal strain collections through
out the past that resided in individual collections, e.g. 
from retired researchers or researchers who left 
science, or initiatives who have since folded for 
a number of reasons (e.g. lack of financial support). 
In addition to the associated loss in accessible pre
served genetic resources and biodiversity, the exper
tise of personnel and associated operation costs that 
are needed to obtain macroalgae cultures, such as 
expeditions to remote places and sampling trips, 
need to be incorporated into quantifying the mone
tary and intellectual value of cultures (see Info Box 2). 
Macroalgae species are not uniform and often isola
tion of specific groups needs specific expert know- 
ledge. While it is even more difficult to quantify the 
potential risks and economic losses that may occur if 
macroalgae genetic diversity is not preserved, the 
ecosystem services associated with macroalgae have 
been shown to include high economic value (Bayley 
et al., 2021; Hynes et al., 2021; Hu et al., 2022; Eger 
et al., 2023). Therefore, it is of utmost importance to 
develop a long-term European strategy for safeguard
ing macroalgal genetic material in germplasm banks 
to ensure food security, biosecurity and the conserva
tion of biodiversity.
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A European strategy for safeguarding macroalgal 
genetic resources

Currently existing networks and infrastructures, 
such as the European Marine Biological Resource 
Center (EMBRC), the Microbial Resource Research 
Infrastructure (MIRRI), ELIXIR (European initia
tive to share infrastructure for biological data) and 
the Distributed System of Scientific Collections 

(DiSSCo), serve as excellent examples of how 
diverse stakeholders like germplasm banks, basic 
and applied research and biotechnology can be 
brought together to provide services for all in 
Europe. These can be used as models for the devel
opment of a European concept for safeguarding 
macroalgal genetic material, and we describe 
a proposed strategy below.

Box 2. The monetary value of macroalgal strain collections 
Representatives of the SeaStrains Network maintain >2300 macroalgae strains in both institutional and 
public collections, including a number of small, local collections assembled by individuals. As of 
December 2024 at the Alfred Wegener Institute (AWI), Helmholtz Center for Polar and Marine Research 
(Germany), 860 macroalgae strains collected by several macroalgae researchers and associated technicians 
over the past 50 years exist. The choice of species was driven by the research interests of the scientists. The 
AWI collection has resulted in >100 peer-reviewed publications between 1975–2022, and >50% of these 
formed the basis for an understanding of Polar macroalgal autecology. In addition, strains have been given 
to colleagues worldwide upon request to support general seaweed research. 

The authors performed an exercise to estimate the costs accrued by collection, isolation (Table 1) and 
maintenance (Table 2) of these 860 strains which are preserved in duplicate in separate culture chambers to 
enhance security. Very conservative estimates are based on personnel costs for 2 working days per strain for 
sampling in the field and isolation in the laboratory (excluding preparation and travel time and associated 
expedition costs). For 860 strains, this results in a total of 1720 working days, which extrapolates to 7.8 
working years in total (based on a mean of 220 working days per year, excluding holidays; https://www. 
destatis.de/DE/Presse/Pressemitteilungen/ZahlderWoche/2024/PD24_06_p002.html) and thereby approx. 
1.5 working years per decade. Taking a mean annual German salary of approx. €54 000 (before taxes) 
(https://www.destatis.de/DE/Themen/Arbeit/Verdienste/VerdiensteBrancheBerufe/Tabellen/listebruttomo 
natsverdienste.html) and excluding inflationary salary increases or currency change during the previous 
half-century, the personnel costs for establishing the whole collection required a mean investment of at least 
€8600 per year (Table 1). These annual isolation costs add up to > €400 000 for the whole collection plus the 
costs of at least 20 polar and other expeditions. In general, collection of strains is often an added value of 
running projects and depending on the scope of the biobank, associated travel costs may vary considerably. 

Currently one technician spends approx. one working month per year to maintain the cultures on the basis of 
a media exchange twice per year and including other technical service. Adding glassware, diverse laboratory 
equipment, chemicals and energy consumption of the cultivation cabinets, we calculated approx. €9300 per year 
(Table 2) for current maintenance costs, while the general investment into infrastructure accounts for approx. 
€47 000 (value 2024). This germplasm collection only needs four thermocontrolled and illuminated cabinets 
while other biobanks use walk-in culture rooms, use bigger vessels and change the medium more often, all of 
which raise maintenance costs. In this respect, the maintenance of a germplasm bank such as this is relatively 
cost efficient and saves significant investment that would be required to resample strains that are not preserved 
in germplasm banks. Maintaining seaweed cultures is a sustainable and economical substitute for the significant 
time and money needed to recollect and reisolate unpreserved strains, especially those that maintain uncommon 
or difficult to access genotypes or species from isolated or endangered areas.   

Table 1. Personnel cost calculation for collecting and isolating seaweed strains held in the Alfred Wegener Institute (AWI) 
culture collection (CC). The estimated 2 full working days per strain are a conservative estimate and integrate time in the 
field and the laboratory to establish a clonal isolate (excluding planning and travel time to the sampling location and 
expedition costs). The personnel costs refer to a mean German salary (before taxes) in 2024 and do not take into account 
that actual salaries of scientists are higher than the mean, nor the inflationary salary increase or currency change during the 
previous half-century. 

No. of strains 
in CC

Working days per 
strain

Mean working days y‒1 in 
Germany

Work investment for 
CC (yrs)

Mean German 
annual salary 

(€ yr‒1)
Age of CC 

(yrs)
Personnel cost 

(€yr‒1)
860 2 220 7.8 ̴ 54 000 49 > 8600
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Key tasks and objectives

A European strategy for safeguarding macroalgae 
genetic resources should deliver three key tasks: 
(1) the conservation of macroalgal diversity, (2) 
the development of operational procedures and 
technical expertise and (3) the promotion of public 
awareness of the importance of seaweeds (Fig. 2). 
A diversity of macroalgal stakeholders and their 
interests must be considered while developing the 
concept for preserving European macroalgal genetic 
resources, including producers, breeders, consu
mers, researchers, NGOs for conservation and 
society. The key tasks of the strategy should con
tribute towards (1) ensuring accessibility of macro
algal strains, (2) supporting research, (3) 
commercial production, (4) breeding and restora
tion efforts and (5) improving consumer trust in 
algae products and quality. As with botanical gar
dens and other biological resource centres, macro
algal germplasm banks can initiate and participate 
in outreach activities to promote the understanding, 
appreciation and conservation of macroalgae. 
A more centralized, interconnected European strat
egy could contribute more concretely to education 
and learning and strengthen the European cultural 
connection to macroalgae. Striving for these objec
tives within a European concept for macroalgal 
genetic resources will have broader impacts on eco
nomic growth, nature conservation and scientific 
innovations.

The proposed structure

To address the urgency of counteracting the disap
pearance of macroalgal biodiversity, with macroalgae 
being critically important natural resources for the 
sustainability of basic and applied research, restora
tion and commercialization efforts, we propose 
a European strategy including diverse stakeholders 
(public and private) based on three pillars (Fig. 3): 
(1) establishment of a European Board of Macroalgal 
Genetic Resources (EBMGR) in which public part
ners (scientists and policymakers) and private actors 
provide supervision, support and coordination for the 
preservation of macroalgal genetic material in germ
plasm banks, (2) a network of germplasm banks 
consisting of existing infrastructure and newly estab
lished germplasm banks and (3) an integrated germ
plasm databank for long-term data storage, 
preferentially based on or using currently existing 
databanks.

Following the example used in agricultural 
research, where the International Board for Plant 
Genetic Resources (IBPGR) was established in 1974, 
the proposed EBMGR would lead the network of 
macroalgal genetic resources and provide recommen
dations for the collection, conservation, documenta
tion and use of European macroalgal genetic 
resources. The establishment of the EBMGR could 
be achieved in close collaboration with the 
Federation of European Phycological Societies. 
Under the umbrella of the EBMGR, new initiatives

Table 2. Seaweed culture collection of the Alfred Wegener Institute (AWI, Bremerhaven, Germany). Approximate current 
investment and maintenance costs based on numbers available for Germany in 2024. The infrastructure consists of four 
temperature-controlled cabinets with LED illumination (2 × 130 l, 2 × 260 l volume). Irradiance is set to approx. 1–2 µmol 
photons m‒2 s‒1. 

Investment infrastructure Price per unit in 2024
Investment costs 

(€)
Cultivation cabinets with LED illumination (130 and 260 l 

volume)
0/5/10/10°C €10–12 000  

(once per 10–20 years)
45 000

Glassware plus holding boxes ̴ 2000 × 20 ml glass tubes with 
lid

1600

Access to seawater and sterilizationa

Maintenance Annual costs 
(€ yr–1)

Glassware 1000 × 20 ml glass tubes with lid 700
Chemicalsb Addition of nutrients <400
Diverse laboratory ware 500
Energy consumption of 260 l cultivation cabinet set to 5°C Hourly consumption 

(0.25 kWh/cabinet) × 4 = 1.0 
kWh 

Daily consumption 
1.0 kWh × 24 h = 24.0 

kWh d‒1 

Annual consumption 
24 × 365 days = 8760 kWh y‒1

mean price of kWh: €0.36 3154

Energy consumption LED irradiance low
Personnel days for maintenance of collection 1 working month y‒1 mean German salary: 

€54 000 y‒1
̴ 4500

Total running costs ~9300
aAs access to seawater and facilities to sterilize seawater is extremely dependent on the general logistics of the germplasm bank facility, we cannot 

provide a meaningful price calculation. 
bAs macroalgal germplasm banks may use a diversity of media for maintenance of cultures and the purchase also is dependent on general logistics 

of the work environment, exact values are difficult to calculate. The current collection uses 400 ml Provasoli enrichment per year (half- 
concentration) (Provasoli, 1968). The given price is an estimate over time. 
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to foster targeted collections (e.g. Fucales, 
Cystoseirales), preservation (e.g. infrastructure for 
cryopreservation) and breeding programmes should 
be promoted. Breeding programmes could be estab
lished in close cooperation with industry stake
holders, research institutes and universities, which 
could provide further infrastructure required for 
new cultivar development. Building upon the avail
able infrastructure of existing algal germplasm 
banks and private collections, the EBMGR could 
support further developments such as 
a centralized digital platform with transparent pro
cedures and clear acceptance criteria for the 
deposition of strains following the guidelines from 
the OECD Best Practice Guidelines for Biological 

Resource Centres (OECD, 2007). Additional activ
ities would include securing sources of funding and 
building new and extending existing infrastructure. 
Building private-public partnerships could provide 
a potential solution, but such partnerships must be 
framed with regulatory tools that clearly define the 
rights and duties of each partner in order to facil
itate the preservation of genetic diversity while 
simultaneously providing opportunities for new 
product development (through selection pro
grammes). Existing standard practices, e.g. from 
the CCAP, for providing patent or confidential 
depositions to their holdings against fees, can 
serve as a model to generate income to support 
the logistics of the germplasm banks.

Fig. 2. The tasks and objectives that should be met by a European structure for macroalgal genetic resources.
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Ensuring the sustainability of the germplasm bank 
infrastructure is one of the major challenges for safe
guarding European macroalgal genetic material. The 
development of novel European infrastructure that 
uniquely houses macroalgal genetic resources is our 
long-term vision but would require an immense level 
of investment and time. As existing germplasm banks 
for macroalgae in Europe are few and the interest in 
macroalgae is growing, there are also arguments sup
porting the need for a novel macroalgae-focused 
European infrastructure. This could support existing 
germplasm banks with back-up copies of strains 
maintained in other banks and provide specialized 

expertise and infrastructure for certain taxa, technical 
practices (e.g. cryopreservation) and breeding 
programmes. Such a long-term vision could also 
include the transition of macroalgal germplasm 
banks into European research infrastructures that 
are eventually linked to form a European Research 
Infrastructure Consortium (ERIC) for macroalgae.

An additional step towards expanding and 
improving the preservation of macroalgal genetic 
diversity in existing germplasm banks would be to 
specialize in certain areas of expertise. In Fig. 4, we 
provide examples of potential areas of specialization 
for macroalgal germplasm banks, and their

Fig. 3. Proposed European strategy for safeguarding macroalgal genetic material. Currently existing European macroalgal 
strains are being centralized into a European database by a macroalgal germplasm network (the SeaStrains Network). The 
next step would be to establish a three-pillar system consisting of a European Board of Macroalgal Genetic Resources, 
which would provide recommendations to macroalgal germplasm banks for the prioritization, use and conservation of 
European macroalgal genetic resources, a connected system of germplasm banks consisting of currently existing infra
structure and newly established germplasm banks and a centralized, digital databank for long-term data storage.
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associated pros and cons. Some germplasm banks 
could focus on taxa of interest, for example the 
Fucales, Laminariales, Porphyra/Pyropia/Neopyropia 
or macroalgae that are particularly difficult to main
tain in culture. The benefits of this model are that 
experience and know-how would be centralized and 
the infrastructure would be optimized for the taxa of 
interest. Alternatively, existing germplasm banks 
could focus on marine ecoregions (e.g. sensu 
Spalding et al., 2007) in an effort to preserve the 

inter- and intraspecific diversity within a particular 
European region (e.g. the Baltic, the North Sea, the 
Mediterranean Sea). We also present the option of 
national germplasm banks, in which the genetic 
material within each country is preserved. The ben
efit of this model is that international exchange and 
the associated restrictions implemented in the 
Nagoya protocol of Access and Benefit Sharing 
(https://www.cbd.int/abs/default.shtml) would not 
be necessary. Nevertheless, this may not be the

Fig. 4. A comparison of different strategies for the specialization of germplasm banks: by country (national level), taxa or 
eco-regions (above) or centrally organized via a European germplasm bank. Many of the benefits of a centralized 
germplasm bank could also be achieved by a decentralized infrastructure network of germplasm banks organized by 
a centralized governing body (e.g. the suggested European Board for Macroalgal Genetic Resources). Furthermore, it may 
also be possible for decentralized structures to be supported at the European level or to be part of a European structure 
located at several sites but under one organizational roof, for example the establishment of a European Research 
Infrastructure Consortium (ERIC). The degree of shading in the dots represents the relevance of each topic to each of 
the strategies (dark = high relevance, light = low relevance, absent = no relevance).
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best option. Ideally, a combination of these models 
integrated into a European-wide network overseen 
by the EMGBR would yield the most benefit. Such 
a strategy could provide the workforce necessary to 
set in place material transfer agreements (MTAs) 
and compliance forms dealing with the Nagoya pro
tocol and to establish common rules that facilitate 
exchange between European countries, particularly 
as new cultivars are developed.

A vital issue is the ability of potential users to 
identify holdings of germplasm banks with specimen 
availability for various types of use through informa
tion systems. However, the rapid accumulation of 
data from different research areas, such as functional 
genomics, physiology, ecology and taxonomy, pre
sents a challenge in transforming them into knowl
edge. In this age of information overload, a problem 
we frequently encounter is not the need for more 
data, but the difficulty of integrating complex and 
rapidly accumulating data in a meaningful way. For 
this reason, an integrated, interoperable cyber-infra
structure based on currently existing databases (e.g. 
EMBL/GenBank/DDBJ, GBIF, WoRMs, PubMed, 
Algaebase) is needed to address the increasing need 
for informatics support in managing and utilizing 
stored data. Providing a platform for users to interact 
and share this information could further help in 
fostering a collaborative macroalgal research 
community.

In existing databanks, reference cultures ideally 
are linked to phenotypic and genetic data as this 
facilitates macroalgal identification and monitoring. 
Knowledge of the genetic (DNA barcodes and gen
omes) and phenotypic variation of macroalgal 
strains is essential for effectively managing and pro
moting species’ health (Theissinger et al., 2023) and 
providing correct identifications for regulatory 
compliance or attribution for cultivation purposes. 
This is relevant in the context of developing 
a resilient European industry where researchers 
and breeders have access to a wide range of infor
mation which will contribute to their efforts. 
Furthermore, such information will be of relevance 
in the context of conservation as it can be harnessed 
for informed conservation management strategies 
and restoration efforts, avoiding inbreeding depres
sion (see section ‘Prioritizing intraspecific diversity’ 
below).

Future tasks and challenges

The major challenges for a European germplasm 
bank strategy are: (1) the lack of financial support 
for existing and future collections, (2) a decline in 
well-trained and experienced curatorial staff with 
expertise across various taxonomic groups, (3) lim
ited infrastructure and resources for germplasm 

banks to continue to grow and accept new strain 
deposits unreservedly and (4) a community-wide 
lack of awareness and understanding of the need 
for, structure and function of germplasm banks. 
Below we suggest a strategy for overcoming some of 
these challenges through targeted prioritization (for 
both conservation and commercialization) and high
light some of the most pressing issues to be 
addressed.

Prioritizing macroalgal genetic material for growth 
of the aquaculture and biotech industries

The GENIALG, Phycomorph, EBB and SeaWheat 
projects have already made great strides in boosting 
Europe’s macroalgal cultivation and biorefining 
industries and promoting sustainable farming. 
Related deliverables from these projects included 
establishing cultivation and cryopreservation proto
cols for commercially promising macroalgae, germ
plasm banking of Ulva (Simon et al., 2024) and 
Saccharina strains at the University of Galway and 
the CCAP (UK), respectively, and the establishment 
of genomic data for future breeding initiatives. 
Nevertheless, further prioritization will be necessary 
to preserve macroalgal biodiversity for targeted 
commercialization.

Ecosystem services and economic value

Prioritizing species that provide the most signifi
cant ecosystem services should be a high priority. 
A recent report estimating ecosystem services pro
vided by seaweed cultivation found that kelp culti
vation provides the highest number of ecosystem 
services, followed by the agar-producing Gracilaria 
spp., the carrageenan-producing eucheumatoids, 
and Porphyra/Pyropia/Neopyropia spp. (Bermejo 
et al., 2022; Fricke et al., 2024). In terms of quan
tity, the kelp Saccharina latissima is the most com
monly cultivated species in Europe, followed by 
Alaria esculenta, Ulva spp., Laminaria spp., 
Palmaria palmata and Fucus spp. (Araújo et al.,  
2021; Vazquez & Sanchez, 2022, Fig. 5). Similarly, 
Saccharina, Laminaria, Alaria, Fucus, Palmaria and 
Ulva are among the most commonly wild-har
vested genera in Europe (Fig. 5). On the other 
hand, Chondrus crispus, Ascophyllum nodosum 
and bladed Bangiales (=Porphyra sensu lato) are 
commonly harvested in Europe, but there are cur
rently no enterprises cultivating these genera on 
a large scale. Only two cultivation enterprises are 
conducting trials for Porphyra culture in Europe 
(Fig. 5), even though it is the fifth biggest macro
algal market in the world, with 2.2 million tons of 
biomass representing 6% of global production (The 
State of World Fisheries and Aquaculture, 2022).
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Furthermore, while cultivation of C. crispus has 
been well established as a niche market for Japan 
and marketed as Hana Tsunomata by Acadian 

Seaplants (https://www.acadianseaplants.com/), 
this species is only cultivated by two European 
companies (Fig. 5). Considering the global interest 
in these two taxa and the little cultivation activity 
in Europe, they should be considered high priority 
for germplasm banks in terms of potential com
mercial interest.

Another high priority candidate for preservation is 
Ascophyllum nodosum, which is valued for its bioac
tive compounds, but any attempt to keep this species 
as a clonal culture collection has failed so far and 
would need the development of new strategies via 
vegetative propagation of tissue. This highlights 
again why more resources and a coordinated 
European strategy are needed: to support research 
areas that are essential but too expensive, too long 
or challenging for single culture collections to pursue. 
Non-commercial species that provide ecosystem ser
vices as ecosystem engineers (as described in 
Section 2.1), such as L. hyperborea and rhodolith 
beds, should also be prioritized for preservation.

Adaptation to new markets

The economic interest and the associated prioritiza
tion of species can change rapidly as new discoveries, 
applications and compounds of interest are made. 
A prime example is the genus Asparagopsis, which 
is invasive in the Mediterranean Sea and considered 
a major threat to biodiversity in Europe (Streftaris & 
Zenetos, 2006), but there is currently strong interest 
in the establishment of its large-scale cultivation in 
Europe due to its ability to reduce methane produc
tion in cattle when introduced into their feed (Kinley 
et al., 2016, 2020; Roque et al., 2019). Other examples 
are Chondracanthus teedei and Laurencia spp., the 
latter used as a model for discovering new bioactive 
compounds (Monteiro et al., 2023). A European 
strategy thus needs to adapt to emerging markets, 
which is only possible through an integrated network 
such as the proposed EBMGR.

Prioritizing intraspecific genetic diversity

Prioritization and strategic sampling of intraspecific 
diversity are required to maximize ex situ conserva
tion efforts. For restoration purposes, a significant 
challenge is to preserve local genetic lineages and 
sufficiently high genetic diversity to facilitate adapta
tion to rapidly changing conditions and to avoid 
inbreeding depression (Camus et al., 2021) and sub
sequent genetic erosion. This becomes even more 
challenging as the combination of biological inva
sions and local anthropogenic pressures (Thibaut 
et al., 2005; Araújo et al., 2011) cause biotic and 
abiotic stress and reduce the likelihood of recoloni
zation. A major challenge in the conservation of

Fig. 5. Overview of cultivated (land- and sea-based; dark 
blue) and harvested (light blue) macroalgae species in 
Europe, divided into the categories red seaweeds, green 
seaweeds and brown seaweeds (data source: https://data. 
jrc.ec.europa.eu/dataset/fa59f544-bf77-4812-8869- 
f34d9b096638).
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gene pools is knowing the geographical ranges of 
genetically distinct lineages, because these are usually 
not visible in the phenotypes. Defining these geogra
phical ranges requires population genotyping 
throughout the entire biogeographical species distri
butions, which for a few kelp species of the EU was 
achieved in the MARFOR project (e.g. Liesner et al.,  
2020). Advanced techniques of whole genome ana
lysis (Bringloe et al., 2022), ddRAD analysis 
(Guzinski et al., 2018; Huanel et al., 2022; Reynes 
et al., 2024) or analysis of species-specific microsa
tellite markers (Valero et al., 2001) are all currently 
available to reveal genetic differences between popu
lations on a different resolution and cost level. This 
knowledge is of particular importance in Europe, 
where due to the glacial extinction of macroalgal 
populations in northern Europe, the richest and 
most diverse gene pools for most investigated species 
are located near their southernmost ranges, i.e. the 
trailing edges of populations. This is the case for 
Saccorhiza polyschides (Assis et al., 2016), 
Laminaria ochroleuca (Assis et al., 2018), 
Laminaria digitata (Neiva et al., 2020) and 
Laminaria hyperborea (Barreto 2024). Interestingly, 
for the trans-Arctic species Saccharina latissima, 
besides the ancient locally differentiated lineages, 
novel genome recombinations have recently been 
formed in the Arctic as Pacific lineages have 
migrated and contacted the Canadian maritimes 
(Neiva et al., 2018). For the European kelps, any 
restoration efforts should account for these mapped 
genetic lineages. The same applies to fucoids of 
Europe, as most lineages contain richer and/or 
unique southern genetic types (Neiva et al., 2010,  
2012, 2014, 2015; Nicastro et al., 2013; Almeida 
et al., 2022). Populations at the trailing edges often 
exhibit better performance under thermal stress 
caused by climate change, probably because they 
have genetically adapted to more extreme and 
stressful conditions (Saada et al., 2016; Martins 
et al., 2020; Strasser et al., 2022) and may therefore 
play a crucial role in species survival (Hampe & 
Petit, 2005). On the other hand, small, fragmented 
populations already impacted by high rates of 
genetic drift may not be able to survive climate 
change due to depauperate genetic diversity 
(Reynes et al., 2024). Consequently, adaptation 
along the latitudinal gradient is not uniform (e.g. 
depending on life-cycle stage, drift and selection 
pressures) as has been shown in L. digitata 
(Schimpf et al., 2022), pointing to the challenge of 
considering which genotypes are more or less 
important for conservation. Careful consideration 
of all of these factors must be made for future 
prioritization of intraspecific genetic diversity in 
macroalgal germplasm banks, and the conservation 
of a broad intraspecific genotypic diversity will be 

crucial for future restoration efforts along European 
coastlines.

Prioritizing genetic material adapted to climate 
change

The ex situ conservation strategy of intraspecific 
diversity only provides a snapshot at any given time, 
but does not take into account environmental change 
and strains that will adapt to the future environment. 
In plant agronomy, in situ management of crop 
genetic resources, called ‘dynamic management’ 
(DM) was proposed in order to integrate the 
dynamics of genetic diversity in response to environ
mental changes (Henry et al., 1991). The principle of 
DM is to maintain natural processes responsible for 
the diversification and conservation of genetic diver
sity in subdivided populations grown in different 
environments. This in situ DM was conducted on 
wheat populations in collaboration with a farmers’ 
network in France, and researchers have shown posi
tive effects of on-farm DM on diversity and adapta
tion (Enjalbert et al., 2011). Such a DM strategy could 
be developed in macroalgae in collaboration with 
local farmers for selected species of interest in 
Europe to complement the ex situ strategy.

Macroalgal material that can genetically tolerate 
impacts of climate change will be an important 
resource for successful restoration actions (Wood 
et al., 2019; Coleman et al., 2020) and for promoting 
the emerging European aquaculture sector in an ever- 
changing marine environment (Kim et al., 2017). 
Different tools can be employed to develop strains 
resilient to climate change, e.g. by strain selection, 
selective breeding, genome modification (e.g. emer
ging CRISPR-Cas9 methodology for macroalgae 
(Badis et al., 2021) or stress priming (Jueterbock 
et al., 2021; Gauci et al., 2024)). Selective breeding 
(i.e. the selection and breeding of tolerant strains to 
produce offspring with several desirable traits) has 
been implemented with success for improving toler
ance to high irradiance and seawater temperature in 
Saccharina spp. in China (Zhang et al., 2011; Li et al.,  
2016) and the US (Umanzor et al., 2021). However, 
care is needed to prevent the impoverishment of 
genetic diversity by growing those cultivars in large 
areas as a monoculture. Genome-wide association 
studies can link DNA regions and traits of interest, 
such as thermal tolerance, disease resistance or lipid 
profiles (e.g. see Demirjian et al., 2023), allowing 
marker-assisted breeding paired with controlled 
back crosses to maintain high levels of genetic diver
sity, but it is a very challenging process requiring a lot 
of resources and is only possible in large consortia. 
Stress priming is a common non-genetic tool to 
develop stress-tolerant crops in which stress memory 
enables plants to become more resilient to a second
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more severe stress exposure (Liu et al., 2022), and 
such studies are starting to emerge in macroalgae 
(Jueterbock et al., 2021). Prior exposure to high or 
low temperatures has enhanced tolerance in macro
algae when exposed to thermal stress (Li & Brawley,  
2004; Kishimoto et al., 2019; Gauci et al., 2022, 2024). 
Furthermore, associated bacteria, which are co-pre
served with the macroalgae in culture collections, can 
enhance macroalgal resistance under thermal stress 
(Ghaderiardakani et al., 2024). While the traits of 
interest are different for macroalgal cultivation and 
restoration efforts, germplasm banking and the asso
ciated infrastructures and methodologies would be 
the same (see also Filbee-Dexter et al., 2022) so 
synergies should be sought where possible to achieve 
resilient and healthy macroalgal ecosystems.

Facilitating access to macroalgal genetic resources

To access and share genetic material of macroalgal 
species or their derivatives (e.g. DNA), the legal fra
mework of the Nagoya protocol of Access and Benefit 
Sharing applies (https://www.cbd.int/abs/default. 
shtml). In the future, digital sequencing information 
may also fall under this scope. Despite the existence 
of bilateral agreements (‘prior informed consent’ 
(PIC) and ‘mutually agreed terms’ (MAT)), which 
are often arranged following the Microbial Resource 
Research Infrastructure (MIRRI) best practices for 
germplasm banks, the implementation of this process 
resulting in material transfer agreements is time- and 
cost-intensive. Even between member states of the 
European Union, the exchange of genetic material 
between partners can be complex and bureaucratic, 
regardless of the intended use (scientific or commer
cial). Using the management of plant genetic 
resources as an example, the International Treaty of 
Plant Genetic Resources for Food and Agriculture 
(https://www.fao.org/plant-treaty/en/) regulates 
access for selected crop species. The treaty is 
a multilateral legal framework that aims to facilitate 
access to and protect the privatization of genetic 
material to support breeding efforts and to safeguard 
food security. We suggest finding universal rules that 
facilitate macroalgal genetic material exchange 
between European countries, particularly as new cul
tivars are developed.

Plant varieties (i.e. cultivars) can be registered 
under the framework of Plant Variety Protection 
(PVP) to strengthen breeders’ rights and to encou
rage breeding activities in many countries. This has 
only been demonstrated in a few cases for macroal
gae. For example, South Korea started to apply 
a varietal protection system for macroalgae in 2012 
under the umbrella of UPOV (International Union 
for the Protection Of New Varieties of Plants). Since 
then, 19 macroalgal varieties have been registered 

(Hwang & Park, 2020), which are held at the 
Aquatic Plant Variety Centre under the umbrella of 
the National Institute of Fisheries Science. The 
European germplasm network under the EBMGR 
could take similar steps for new macroalgal varieties.

Technical challenges

Species difficult to maintain in culture
The current collections of macroalgae are heavily 
skewed towards species that are manageable for cul
tivation. Besides life cycle control, characteristics that 
enhance the potential for cultivation encompass the 
presence of a heteromorphic life cycle with 
a microscopic or filamentous phase, the general fea
sibility of vegetative propagation and good survival in 
small vessels and low light, which are often used in 
germplasm banks. In general, cultivating filamentous 
life-cycle stages is more straightforward than for 
(pseudo-) parenchymatous species. Thus, even if 
only one phase of the life cycle is filamentous, this 
significantly simplifies the cultivation process. 
Examples include kelp species which have filamen
tous gametophytes or bladed Bangiales (Porphyra, 
Pyropia, Neopyropia) with a conchocelis phase. 
Many ecologically important macroalgae unfortu
nately do not have a filamentous phase which either 
means one cannot cultivate them or their cultivation 
requires significantly more effort. For brown macro
algae these include many habitat-forming species 
such as fucoids which dominate rocky intertidal habi
tats in cold temperate regions or the shallow subtidal 
habitats of southern Europe. While there has been 
some cultivation success at the laboratory scale for 
Mediterranean Cystoseira species (Falace et al., 2018), 
effective cultivation of such species will require sig
nificant research and potential adoption of novel 
cultivation techniques, including learning from the 
agriculture sector, e.g. from tropical fruit plants that 
do not form preservable seeds (Normah et al., 2013). 
Cultivation of several red algal species as micro- 
plantlet suspension cultures has proven successful 
(e.g. Rorrer et al., 1998; Rorrer & Cheney, 2004).

Cryopreservation
Long-term maintenance of macroalgal strains 
through serial transfer may cause changes in strain 
performance, e.g. through genetic drift, changes in 
the associated microbiome or other poorly under
stood processes. Continuous handling of strains is 
also cost and time intensive and prone to human 
error, e.g. contamination or loss during cultivation. 
Cryopreservation presents an alternative, where 
strains are immersed in a cryoprotectant buffer 
and are often frozen in a two-step freezing process 
at ultra-low temperatures. Cryopreservation proto
cols have been developed for various, mainly
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commercial, macroalgae with mixed results (Lee & 
Nam, 2016; Day, 2018; Visch et al., 2019; Yang 
et al., 2021; Beniers et al., 2023; Simon et al.,  
2024). Nevertheless, further investigation and 
improvement of the protocols are needed for cer
tain taxa, particularly red macroalgae, that cannot 
be or have poor success when cryopreserved using 
established methods. The development of such 
techniques requires specialist knowledge, substan
tial capital and advanced operational infrastructure. 
It would therefore be expedient to provide 
resources on a European scale to develop needed 
techniques. Also, published studies over the long- 
term viability of cryopreserved macroalgal strains 
and their ability to reproduce after thawing are still 
lacking, although kelp gametophytes of Saccharina 
latissima have been successfully thawed after 
3.5 years of cryopreservation in liquid nitrogen 
(Rad-Menéndez, unpublished data). The fact that 
some microalgae have been shown to recover after 
22 years without loss of viability is promising (Day 
et al., 1997).

Biosecurity and conserving the holobiont
Eukaryotic and prokaryotic microbes form intricate 
associations with macroalgae, e.g. bacteria, fungi, 
oomycetes, other micro- and macroalgae (see e.g. 
Gachon et al., 2010; Vallet et al., 2018; Bernard 
et al., 2019). Considering that macroalgal aquacul
ture in some regions has already been devastated 
by disease (e.g. Ward et al., 2020), the aspect of 
biosecurity in macroalgal germplasm banks is 
essential and must be further supported and devel
oped (Brakel et al., 2021). Taxonomic knowledge 
and a reference database of relevant macroalgae 
pathogens and parasites are crucial (Murúa et al.,  
2023). The establishment of a reference germplasm 
bank of common macroalgal pathogens and pests 
supporting a progressive management pathway for 
improving biosecurity (see Cottier-Cook et al.,  
2022) is critical. Biobanking pathogen and pest 
strains will support highly needed fundamental 
research on disease resistance and breeding. 
A reference germplasm bank would also raise 
awareness about disease and pests and could pro
vide critical information and training for macroal
gal producers (see Strittmatter et al., 2022). Access 
to pathogen and pest germplasm would likewise 
facilitate the development of protocols to monitor 
and manage their occurrence, e.g. within macroal
gae germplasm samples, hatcheries or farms.

The community of bacteria associated with 
macroalgae (the ‘microbiome’) can strongly influ
ence the physiology, acclimation potential, defence 
and reproductive success of the host (Wichard, 2015; 
Dittami et al., 2016; Morris et al., 2016; Arnaud- 
Haond et al., 2017; Li et al., 2023). These natural 

microbial communities could potentially provide 
new sources of biotechnical applications, and the 
formulation and testing of synthetic communities 
(SynComs), a well-established tool in human and 
animal health (Bolsega et al., 2021), could further 
provide new services. Some bacterial strains originat
ing from macroalgal microbiomes (mostly model 
brown and green macroalgal species) are currently 
available in public culture collections (e.g. MIRRI 
and the database from the SIMBA project), but to 
date there has been limited focus on promoting the 
visibility and utilization of macroalgae-associated 
microbial strains. It would undoubtedly be relevant 
for germplasm banks to provide information on 
associated microbiomes of non-axenic strains in 
future, but the erosion of the microbiome with 
increasing cultivation time due to drift effects pre
sents challenges (Califano et al., 2020; van der Loos 
et al., 2021). Cryopreservation of macroalgal strains 
(along with associated microbiomes) could help pre
serve a larger part of the diversity of the collected 
microbiome, albeit probably with some alterations or 
biases.

Recommendations for next steps

The systematic collection and preservation of macro
algal genetic material in germplasm banks provide 
a comprehensive repository for maintaining strains 
that serve as fundamental resources for basic and 
applied research endeavours. Safeguarding macroal
gal genetic resources using a European strategy that 
builds upon currently existing germplasm bank infra
structure should be built upon three main pillars: (1) 
a European Board of Macroalgal Genetic Resources 
(EBMGR), which oversees, supports and coordinates 
a (2) coordinated network of European germplasm 
banks connected via a (3) centralized databank. This 
will be essential for supporting and benefiting con
servation, restoration, bioinnovation and aquaculture 
efforts. The expansion of current and establishment 
of further germplasm banks for macroalgae is neces
sary and should be strategically specialized according 
to ecoregions, taxa or technical expertise identified by 
the future EBMGR to be of high priority. Building 
private-public partnerships could provide a potential 
solution to obtaining financial support, but additional 
support at the national and EU level (e.g. via pro
grammes such as Biodiversa+, Horizon) will also be 
necessary.

Once a network of public and private germplasm 
banks is established under the EBMGR, further 
steps could include interconnecting them as biolo
gical resource centres in a European Research 
Infrastructure Consortium embedded in existing 
infrastructure, such as the EMBRC (https://www. 
embrc.eu/), the European Culture Collection
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Organization (ECCO) or the Distributed System of 
Scientific Collections (DiSSCo), and should be 
inclusive of all European countries. The establish
ment of such a structure will most likely require 
significant financial input to support a central coor
dination office, including data architects, software 
developers, project officers, communications and 
outreach officers, advocacy and engagement offi
cers, and governance affairs specialists. Building 
the macroalgal germplasm banks into these net
works that already exist would save considerable 
time, resources and effort. The aim should be to 
serve all interest groups (conservation, restoration, 
aquaculture, biotechnology, basic research) despite 
conflicting interests.

Due to the high diversity of macroalgal species and 
limited resources for their preservation, prioritization 
will be necessary and will require considering the 
interests of all stakeholders. While we consider it 
the task of a future EBMGR to identify and coordi
nate priorities, we highlight the most pressing issues 
that are of critical importance in a European strategy 
for preserving macroalgal genetic resources based on 
the systematic reasoning provided above. The gov
ernance of European macroalgal genetic resources 
should ensure fair and equal access to genetic mate
rial within the framework of the Nagoya Protocol. 
Species of commercial interest that are currently har
vested in Europe, but not yet cultivated, should be 
prioritized. The establishment of centres of expertise 
for targeted taxa of high commercial interest (e.g. 
Fucales, Laminariales, Porphyra, Palmaria, Ulva, 
Chondrus) should be initiated and supported. 
Furthermore, species that provide the greatest eco
system services should be given highest priority. 
Sampling strategies for collecting and preserving 
wild specimens should be guided by population 
genetics (e.g. favouring the trailing edges of macro
algal populations). To improve the connectivity of 
a European germplasm bank network, the develop
ment of conservation and propagation protocols, 
knowledge transfer, training and capacity building 
should be supported. New infrastructure and train
ing in cryopreservation (potentially centralized) and 
breeding should be developed, and macroalgae 
breeding programmes for developing ‘future proof’ 
gene pools for restoration and aquaculture should be 
initiated as a climate change adaptation strategy. 
Implementing the proposed or similar strategies at 
the European level, including coordinated efforts, 
research prioritization and capacity building, will 
be of critical importance for the long-term stability 
and protection of European macroalgal genetic 
resources and hence ensure food security, biosecur
ity and biodiversity in a rapidly changing climate as 
we strive for more sustainable use of marine 
resources.
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