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ABSTRACT

Biobanking (also known as germplasm banking) of genetic material is a well-established concept for preserving plant
genetic diversity and also contributes to food security, conservation and restoration. Macroalgae currently represent a very
small percentage of the strains in publicly accessible European germplasm banks, despite the increasing recognition of their
contribution to achieving several of the United Nations Sustainable Development Goals. There is no strategic coordination
of existing macroalgal strains, which could have severe ecological and economic implications as species and their genetic
diversity disappear rapidly due to local and global environmental stressors. In this opinion paper, we stress the importance
of a coordinated European effort for preserving macroalgal genetic diversity and suggest the development of a three-pillared
system to safeguard European macroalgal genetic material consisting of (1) a European Board of Macroalgal Genetic
Resources (EBMGR) to provide supervision, support and coordination, (2) a network of germplasm banks consisting of
currently existing and newly established infrastructures and (3) an interoperable databank integrating existing databanks.
While it will be the task of the EBMGR to identify and coordinate priorities, we offer initial recommendations for
preserving macroalgal genetic material, discuss the risks of inaction, and highlight the challenges that must be overcome.

HIGHLIGHTS

« A coordinated European effort is crucial to preserve macroalgal genetic diversity, addressing rapid species and genetic loss
due to environmental stressors.

« The initiative should include a European Board of Macroalgal Genetic Resources for oversight, a network of existing and
new germplasm banks and an interoperable databank integrating current resources.

o The effort supports the United Nations Sustainable Development Goals.
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KEYWORDS Aquaculture; biobanking; biodiversity; culture collection; ex situ conservation; germplasm bank; macroalgae; marine resources;
seaweed

Introduction conserving the gene pool of wild populations (see

Germplasm banking of genetic material is a well-  Box 1). Germplasm banks preserving genetic diversity
established concept for breeding, maintaining and  are repositories that can be leveraged to secure exist-
protecting crop varieties for agriculture and  ing or develop novel varieties, which contribute to
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food security, conservation and restoration. As out-
lined in Wade et al. (2020), most germplasm banking
efforts have focused on preserving biodiversity of
microscopic unicellular algae and terrestrial plant
material, the latter for example in botanical gardens,
museum herbaria or the Spitsbergen seed vault
(Asdal & Guarino, 2018). Globally, 853 culture col-
lections are currently connected in a central network,
the World Federation for Culture Collections
(https://wfcc.info/), but most are focused on micro-
bial organisms. Among European culture collections,
only 37 contain algal cultures, and the vast majority
are microalgal strains. The Culture Collection of
Algae and Protozoa (CCAP) at the Scottish
Association for Marine Science (SAMS) is one of
the few public collections with a large variety of sea-
weed strains, including representatives of commonly
cultivated species from the kelp genera Saccharina
and Laminaria, the filamentous brown macroalga
Ectocarpus, bladed Bangiales (Porphyra sensu lato),
Asparagopsis and the green algal genus Ulva.
Macroalgal strains in Europe are also maintained in
other public repositories, the Culture Collection of
Algae at the University of Goéttingen (SAG), at the
Norwegian Institute for Water Research (NIVA)
Culture Collection of Algae, The Spanish Bank of
Algae (BEA) and the Roscoff Culture Collection
(RCC). Nevertheless, macroalgae represent a very
small percentage of strain holdings maintained within
publicly accessible algal culture collections.
Furthermore, these macroalgal collections as well as
the nonpublicly accessible collections located at
diverse  European research institutions lack
a coordinated European strategy for tackling predict-
able future challenges, such as the need for climate
change adaptation and for providing food to the
growing global population. In addition to the public
collections, macroalgal strains originating from all
over the globe are maintained separately by indivi-
dual researchers, research groups or commercial
companies in Europe. Often, these individual germ-
plasm collections are small and lack standardized
conditions and information regarding provenance,
connectivity and long-term maintenance. In recent
years, new national initiatives, such as the
Portuguese Blue Biobank (https://www.ciimar.up.pt/
platforms/bluebiobank/) and the European Blue
Biobank (EBB: https://www.bluebiobank.eu/project/),
have started securing the seaweed diversity in local
biodiversity hotspots as well as building a network of
national marine germplasm banks in order to facil-
itate sustainable and regulated access to marine bio-
diversity for science and industry.

While the importance of, and need for, macroalgal
germplasm banks have been stressed by several
authors in recent years (Barrento et al., 2016; Barbier
et al., 2019; Wade et al., 2020; Brakel et al., 2021; Yang
et al., 2021), and the first initiatives have started (e.g.
technical guidelines developed by the EBB), there is no
clear road map or strategy for safeguarding seaweed
genetic diversity in Europe. One of the goals of the
European Commission’s (EC) “Towards a Strong and
Sustainable EU Algae Sector’ report was to ‘assess the
options for an EU-wide approach to conserving sea-
weed biodiversity by maintaining and documenting
European seaweed strains in a centralized germplasm
bank network or databank’. There have been recent
developments in this direction in the USA, for exam-
ple the open access kelp germplasm collection Sugar
Kelp Base (https://sugarkelpbase.org/) and the
European GENIALG project (https://genialgproject.
eu/). These projects focused on a few key species
important for aquaculture and conservation and gen-
erated a large number of new strain accessions from
various populations throughout the northern Atlantic,
which have been deposited within existing culture
collections.

Following the SeaStrains Workshop supported by
the Global Seaweed Coalition and hosted at the
Alfred Wegener Institute, Helmholtz Center for
Polar and Marine Research, in June 2022, representa-
tives from research, academia, culture collections and
industry met to lay the foundations for developing
a strategy for safeguarding macroalgal genetic diver-
sity in Europe. The resulting ‘SeaStrains Network’
was the starting point of this opinion paper, which
addresses the main issues that were raised and
discussed.

The critical importance of safeguarding macro-
algal genetic material in germplasm banks to ensure
long-term protection of valuable genetic resources
in Europe is addressed: (1) We highlight the poten-
tial impacts of inaction and provide a suggested
strategy to avoid them. The proposed strategy is
based on three main pillars, with a foundation in
germplasm banking. (2) We discuss the necessary
tasks and services that should be provided by
a future network of germplasm banks that could
best serve all interest groups. (3) We discuss the
importance of basing such a strategy on the suc-
cesses that have already been achieved for germ-
plasm banks that support agriculture. (4) Finally,
we discuss the challenges associated with different
potential strategies and highlight research priorities
that will be necessary in order for this vision to be
successfully realized.
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Box 1. Macroalgal germplasm banking

bank throughout the remaining text.

We use the term ‘macroalgal germplasm bank’ following terminology used by Barrento et al. (2016) and Wade et al.
(2020), for example, to describe the ex situ conservation of macroalgal genetic material and associated metadata.
Synonyms for this term are ‘gene bank’, ‘biobank’, ‘germplasm collection’, ‘genetic resource centre’ or ‘biological
resource centre’. The term ‘culture collection’ is also frequently used. For land plants, the term ‘seed bank’ is often
used, referring to the maintenance of the embryo of land plants in its dormant stage. These can be maintained in
dry, cold conditions with viability and germination ability ranging from a few years to several decades (De Vitis
et al., 2020). In contrast, macroalgal germplasm banking entails maintenance of meristematic tissue (tissue
consisting of actively dividing cells forming new tissue) either in the diploid or haploid stage, most often in liquid
culture medium or on solid medium plates (see Fig. 1 for examples). These are kept under low light and temperature
conditions (relative to natural conditions) but require regular transfer to new medium. Alternatively, macroalgal
germplasm can be cryopreserved at ultralow temperatures. For the purpose of clarity, we use the term germplasm

The importance of safeguarding macroalgal
genetic resources in germplasm banks

The systematic collection, isolation and preservation of
macroalgal genetic material in germplasm banks provide
a comprehensive repository for maintaining strains that
serve as fundamental resources for basic and applied
research. Below we briefly describe the widespread loss
of macroalgal biodiversity that has been reported
throughout Europe and stress the importance of safe-
guarding genetic macroalgal resources in germplasm
banks to conserve and potentially also restore macroalgal
biodiversity. We argue that the lack of active and coordi-
nated preservation of macroalgal genetic diversity in
sustainable germplasm banks could have severe ecologi-
cal and economic implications as species and their intra-
specific diversity disappear as a consequence of global
change. If proper action is not taken, irreversible losses of
inter- and intraspecies diversity may occur and

restoration and cultivation efforts directed at macroalgal
species in Europe will be severely hampered.
Furthermore, macroalgal strains for food production
and breeding programmes would be limited, resulting
in failure to provide additional sources of food for the
growing global population. Finally, we describe how
germplasm banks not only support basic research and
biotechnological applications, but also how they will be
essential to scaling up the macroalgal cultivation industry
in Europe and simultaneously contributing to the United
Nations’ Sustainability Goals. Without these activities,
the loss of strains used as models for basic research
could negatively impact future research efforts, limit
experimental reproducibility and hinder bioinnovation.

Vanishing European macroalgal biodiversity

In temperate regions, such as Europe, brown macroal-
gae belonging to the orders Laminariales, Tilopteridales

Fig. 1. Images of macroalgal germplasm banks maintained at the (A) Alfred Wegener Institute, Helmholtz Center for Polar
and Marine Research (photo: Andreas Wagner) and (B, C) Culture Collection of Algae and Protozoa (photos by Cecilia Rad

Menéndez).
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and Fucales play a pivotal role in marine ecosystem
functioning (Liining, 1990). Due to their size, three-
dimensional complexity and the quality of their bio-
mass, they are considered foundation species that
improve environmental conditions for a wide variety
of organisms (Cheminée et al, 2013; Voerman et al.,
2013; Bermejo et al., 2016; Schoenrock et al., 2021) and
promote biodiversity and productivity compared with
communities where these foundation species are absent
(Bulleri et al., 2002; Steneck et al., 2002; Cacabelos et al.,
2010; Thiriet et al., 2016; Teagle et al., 2017). Relatively
low annual decomposition rates and the resulting stable
biomass promote ecosystem functions and services
(Viaroli et al., 2008; Ramus et al., 2017; Cebrian et al.,
2021). Recent widespread declines in these habitat-
forming macroalgae and macroalgal species richness
have been recorded from many regions, including
Europe, primarily due to the detrimental effects of ris-
ing temperature and increasing incidence of marine
heatwaves or other local anthropogenic stressors
(Mineur et al., 2015; Wernberg et al., 2016; Rogers-
Bennett & Catton, 2019; Filbee-Dexter et al, 2020;
Smale, 2020). Declines are especially pronounced in
regions where macroalgae are situated close to their
thermal tolerance limits. In Europe, some fucoids and
kelp have declined considerably along the Iberian
Peninsula, and the loss of these range-edge kelp and
fucoid populations have critical consequences for the
species gene pools (Diez et al., 2012; Assis et al., 2013;
Nicastro et al., 2013; Neiva et al., 2014, 2015, 2020;
Martinez et al., 2015; Casado-Amezua et al., 2019).
Similarly, several Mediterranean examples of range
contractions and local change include the Cystoseira,
Ericaria and Gongolaria (Cystoseira sensu lato; Fucales,
family Sargassaceae) forests (Thibaut et al, 2005;
Blanfuné et al., 2016; Rindi et al., 2020), which dominate
shallow and mesophotic rocky reefs and represent one of
the most endangered habitats in the Mediterranean Sea
(Barcelona Convention Annexe II; United Nations
Environment  Programme/Mediterranean  Action
PlanUNEP/MAP; Verlaque et al., 2019). Declines in
these habitat-forming macroalgae (Guidetti et al., 2004;
Sala et al., 2012; Strain et al., 2014; Mineur et al., 2015;
Pifeiro-Corbeira et al., 2016; Bianchi et al., 2018; Christie
et al., 2019; Orfanidis et al., 2021) result in regime shifts
towards turf-dominated ecosystems with a less complex
3D structure, reducing structural habitat for marine
organisms (Moy & Christie, 2012; Wernberg et al,
2016; Filbee-Dexter & Wernberg, 2018; Feehan et al.,
2019). Besides the risk of regime shifts, genetically unique
populations have been lost (Coleman et al., 2022), and
severe effects at local scales on fragmented populations of
macroalgal species are expected in the future (Verdura
et al., 2021), which will limit the overall genetic diversity

of remaining populations. In addition to kelp forests,
other ecosystem engineers such as rhodolith beds (Tuya
et al., 2023) and calcifying green algae are threatened by
climate change, and in some cases have even disappeared
from their native ranges (Rilov et al., 2020). While in situ
conservation of macroalgal diversity must be a priority
given the ecological importance of brown seaweed forests
in ecosystem functions and services, its observed decline
and degradation over past decades calls for pressing
action for ex situ conservation. At the European scale,
there is a clear and urgent need to establish coordinated
germplasm banks to preserve macroalgal genetic
biodiversity.

Conservation and restoration

The conservation of macroalgal forests is crucial to
obtain and maintain a good ecological or environmental
status, as required by the Marine Framework Strategy
Directive (Directive 2000/60/EC) or the Marine
Framework Strategy (Directive 2008/56/EC). Many
habitat-forming macroalgae are considered indicators
of healthy ecosystems when assessing the status of mar-
ine ecosystems under these European Directives
(Orfanidis et al, 2003; Ballesteros et al., 2007; Wells
et al., 2007; Juanes et al., 2008; Bermejo et al., 2014).
Measures for protecting macroalgal forests throughout
Europe currently exist (e.g. Annexe II of the Barcelona
Convention, COM/2009/0585 FIN; Directive 92/43/
EEC; Annexe I; ‘Rocky reefs’) and ‘kelp forests’ have
been included as threatened habitats within OSPAR (de
Bettignies et al., 2021; https://www.ospar.org/workareas/
bdc/specieshabitats/listofthreateneddecliningspecieshabi
tats/habitats/kelpforest). Despite a reduction in local
anthropogenic pressures and the resulting improvement
in water quality (e.g. sewage treatment management,
pollutants regulations, limitations on the use of destruc-
tive fishing gear, or increases in the number of marine
protected areas (MPAs)), the natural recovery of brown
macroalgal forests and other ecologically relevant
assemblages (e.g. seagrass meadows, oyster reefs) is
not always observed (Orth & McGlathery, 2012;
Pinedo et al., 2013; Gran et al., 2022) or can be very
slow, especially for species with limited dispersal capa-
city or recolonization abilities as is the case for many
Fucales, Tilopteridales and Laminariales (Billot et al.,
2003; Schiel et al., 2004; Coleman & Brawley, 2005;
Buonomo et al., 2017). Therefore, restocking or refor-
estation actions are a promising strategy (Cebrian et al.,
2021; Gran et al, 2022). In this context, the United
Nations declared 2021-2030 the ‘UN Decade on
Ecosystem Restoration’ in order to promote restoration
actions to fight the climate crisis, enhance food security,
provide clean water and protect biodiversity on the


https://www.ospar.org/workareas/bdc/specieshabitats/listofthreateneddecliningspecieshabitats/habitats/kelpforest
https://www.ospar.org/workareas/bdc/specieshabitats/listofthreateneddecliningspecieshabitats/habitats/kelpforest
https://www.ospar.org/workareas/bdc/specieshabitats/listofthreateneddecliningspecieshabitats/habitats/kelpforest

planet (Waltham et al, 2020). Seaweed restoration,
however, is dependent on local macroalgal resources
or seeding material that have survived declines (e.g.
Marzinelli et al, 2015; De La Fuente et al, 2019;
Layton et al, 2020) and could be complemented in
the future by material conserved in germplasm banks.
Significant efforts have been made by several EU
institutions to research new tools for marine forest
restoration and to upscale the process in recent years
(e.g. MERCES EU project, AFRIMED, ROCPOP
life, FutureMARES, CLIMAREST, RESTORESEAS,
FoRESCUE, Green Gravel Action Group). Although
restoration has been a highlight of the EU BiodivERsA
programme RESTORESEAS, using both the appropriate
local genetic lineage and the genetic diversity within the
species has been overlooked in many restoration efforts.

Basic macroalgal biological research

Access to well-characterized and diverse macroalgal
strains enables scientists to delve into the genetic
intricacies of these organisms, unravelling key mole-
cular mechanisms and pathways and driving
advances in the field of macroalgal ecology and sys-
tems biology. An improved understanding of macro-
algal biology, e.g. life cycle and its control, genomes
and metabolism is a prerequisite for various under-
takings such as macroalga cultivation, biotechnologi-
cal applications and for future-proofing restoration
efforts.

One example of the importance of germplasm
banking is the historical trajectory of strains collected
by Feyn in 1952, named as Ulva mutabilis (Foyn,
1958). Remarkably, since Foyn’s initial isolation, the
U. mutabilis strains have remained in the custodian-
ship of individual researchers, leading to an extensive
body of research spanning decades. The strains have
been a focal point for numerous investigations into
macroalgal reproduction, life cycles, cross-kingdom
interactions, symbiotic effects, molecular and taxo-
nomic advancements, and morphogenetic pheno-
mena (Wichard & Oertel, 2010; Spoerner et al.,
2012; Oertel et al., 2015; Wichard, 2015; Grueneberg
et al., 2016; De Clerck et al., 2018; Steinhagen et al.,
2019a, 2019b; Blomme et al.,, 2021). These cultures
have significantly contributed to research on cell dif-
ferentiation, growth promoting factors and general
macroalgal system biology advancements, underlin-
ing the importance of long-term storage, curation
and subsequently equitable access to such valuable
macroalgal strains (Stratmann et al., 1996; Spoerner
et al., 2012; Grueneberg et al., 2016; Ghaderiardakani
et al., 2017).
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Biotechnology

Bioinnovation also relies on macroalgal strains pre-
served in germplasm banks (Smith, 2009).
Macroalgal polysaccharides and colloids offer var-
ious unique features that allow them to be used in
cosmetics, tissue engineering, novel biomaterials,
food and feed systems and biorefinery processes.
Together with other bioactive molecules extracted
from marine macroalgae, they show potential for
a new generation of active ingredients for diverse
industries (Stiger-Pouvreau & Guerard, 2018). To
secure the many still unexplored possibilities for
the utilization of bioactive compounds from algae,
and to support the sustainable use of these marine
resources, access to a diverse collection of macro-
algal germplasm is needed to support European
initiatives.

Aquaculture and food security

The European macroalgal industry will need to scale
up cultivation to produce enough biomass for bio-
technological innovations and to provide a source of
food for the growing world population (Duarte et al.,
2021). Large-scale seaweed aquaculture has the
potential to serve as a climate change mitigation
technology and provide ecosystem services (e.g. pro-
visioning food and feed) that contribute directly to
the United Nations Sustainable Development Goals
(Duarte et al., 2021; Bermejo et al., 2022; Fricke et al.,
2024).

Global macroalgal aquaculture production has
increased from 10.6 million tons in 2000 to
35.1 million tons wet weight in 2022, representing
an increase from US$4.5 to 16.5 billion with an aver-
age yearly growth rate of 6% (The State of World
Fisheries and Aquaculture, 2022). Europe currently
only produces approximately 0.03% of the global
aquaculture-produced macroalgal biomass, but inter-
est in expanding the sustainable macroalgal aquacul-
ture market is growing. A recent report from the
European Commission (EC) providing an overview
of the industry in Europe showed that there are
currently 153 macroalgae-producing enterprises
across 23 European countries (Vazquez & Sanchez,
2022), and between 2020 and 2022 investment deals
in the industry doubled from 20 to 41 (https://phyc
onomy.net/articles/2022seaweedreview/). While we
acknowledge that there are certainly macroalgal aqua-
culture enterprises that have not succeeded, the suc-
cessful number continues to grow. Recent projections
have calculated that European producers could
increase production from 300 000 tons to 8 million
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tons by 2030, thereby supplying 30% of the projected
€9.3 billion European market from European suppli-
ers (Vincent et al., 2020). Nevertheless, several limita-
tions are currently preventing the rapid scale-up of
macroalgal production in Europe, including technol-
ogy, labour costs, competitive pricing and environ-
mental risks (Bermejo et al., 2022; Fricke et al., 2024).
The availability and maintenance of established
strains and cultivars in germplasm banks and macro-
algal nurseries is one fundamental aspect of the
industry that needs to be addressed.

In order to ensure the sustainability of the macro-
algal sector, solutions must be found to avoid its
dependence upon wild stocks. Several companies
have started establishing their own germplasm
banks and nurseries to provide starting material to
farmers. However, this material will be destined for
clients and is generally not available to researchers
or the public in general. In addition, company-
owned germplasm collections have a stronger focus
on selecting for profitable traits rather than ecosys-
tem-relevant traits, the latter of which are relevant to
restoration. Nevertheless, recommendations have
been submitted to the European Parliament for sup-
porting the development of local cultivars from local
strains, not only to select traits of interest, but also
to preserve the local genetic background (Barbier
et al., 2019). This strategy should reinforce the pub-
lic germplasm banks and involve the private sector
in the preservation and restoration of the genetic
diversity.

While the investment in breeding of novel
macroalgal cultivars will certainly require intellec-
tual property protection, it is essential to ensure
fair and open access to the gene pools of commer-
cially and ecologically important species preserved
in germplasm banks to support the equitable scal-
ing up of a sustainable cultivation industry in
Europe. Open access will foster participatory breed-
ing initiatives helping to develop varietal diversity,
particularly if they are conceptualized in close col-
laboration with seaweed farmers. The year-round
access to strains or populations as cultivation star-
ters for biomass production, and access to diverse
macroalgal species or cultivars are services that
could be provided by germplasm banks to help
scale up the cultivation industry. Furthermore,
transparency and traceability of source material
may provide better consumer acceptance of macro-
algal products. This will be particularly important
for ensuring future food safety and would help
facilitate quality control and tracing. Suggestions
for supporting open access and intellectual

property protection are provided in the section on
facilitating access to macroalgal genetic resources.

Risks of inaction and lessons learned

Learning from mistakes made in agriculture will be
essential in order to support food security and protect
biodiversity during the scaling up of the macroalgal
industry. Researchers have estimated that over 90% of
varieties of several vegetables documented in
1903 have been lost due to monocultures and impro-
per conservation of seed, and this now poses a major
risk to our food security (Fowler, 2016). A recent
report found that our global food system is the pri-
mary driver of biodiversity loss (Benton et al., 2021).
Considering that global fisheries and other marine
uses also contribute to marine biodiversity loss
(IPBES, 2019), we must place a greater value on
protecting marine biodiversity as the production of
macroalgae for food and other industries grows, for
example by preventing monocultures (Brakel et al.,
2021), unsustainable harvesting practices (Huanel
et al., 2022), introductions of non-native species
(Mineur et al., 2015), and overuse of pesticides and
other chemicals (Kumar et al., 2023).

The lack of a European sustainable germplasm
bank strategy for macroalgae has already led to rele-
vant losses of macroalgal strain collections through-
out the past that resided in individual collections, e.g.
from retired researchers or researchers who left
science, or initiatives who have since folded for
a number of reasons (e.g. lack of financial support).
In addition to the associated loss in accessible pre-
served genetic resources and biodiversity, the exper-
tise of personnel and associated operation costs that
are needed to obtain macroalgae cultures, such as
expeditions to remote places and sampling trips,
need to be incorporated into quantifying the mone-
tary and intellectual value of cultures (see Info Box 2).
Macroalgae species are not uniform and often isola-
tion of specific groups needs specific expert know-
ledge. While it is even more difficult to quantify the
potential risks and economic losses that may occur if
macroalgae genetic diversity is not preserved, the
ecosystem services associated with macroalgae have
been shown to include high economic value (Bayley
et al., 2021; Hynes et al., 2021; Hu et al., 2022; Eger
et al., 2023). Therefore, it is of utmost importance to
develop a long-term European strategy for safeguard-
ing macroalgal genetic material in germplasm banks
to ensure food security, biosecurity and the conserva-
tion of biodiversity.
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Box 2. The monetary value of macroalgal strain collections

Representatives of the SeaStrains Network maintain >2300 macroalgae strains in both institutional and
public collections, including a number of small, local collections assembled by individuals. As of
December 2024 at the Alfred Wegener Institute (AWI), Helmholtz Center for Polar and Marine Research
(Germany), 860 macroalgae strains collected by several macroalgae researchers and associated technicians
over the past 50 years exist. The choice of species was driven by the research interests of the scientists. The
AWT collection has resulted in >100 peer-reviewed publications between 1975-2022, and >50% of these
formed the basis for an understanding of Polar macroalgal autecology. In addition, strains have been given
to colleagues worldwide upon request to support general seaweed research.

The authors performed an exercise to estimate the costs accrued by collection, isolation (Table 1) and
maintenance (Table 2) of these 860 strains which are preserved in duplicate in separate culture chambers to
enhance security. Very conservative estimates are based on personnel costs for 2 working days per strain for
sampling in the field and isolation in the laboratory (excluding preparation and travel time and associated
expedition costs). For 860 strains, this results in a total of 1720 working days, which extrapolates to 7.8
working years in total (based on a mean of 220 working days per year, excluding holidays; https://www.
destatis.de/DE/Presse/Pressemitteilungen/ZahlderWoche/2024/PD24_06_p002.html) and thereby approx.
1.5 working years per decade. Taking a mean annual German salary of approx. €54 000 (before taxes)
(https://www.destatis.de/DE/Themen/Arbeit/Verdienste/VerdiensteBrancheBerufe/Tabellen/listebruttomo
natsverdienste.html) and excluding inflationary salary increases or currency change during the previous
half-century, the personnel costs for establishing the whole collection required a mean investment of at least
€8600 per year (Table 1). These annual isolation costs add up to > €400 000 for the whole collection plus the
costs of at least 20 polar and other expeditions. In general, collection of strains is often an added value of
running projects and depending on the scope of the biobank, associated travel costs may vary considerably.

Currently one technician spends approx. one working month per year to maintain the cultures on the basis of
a media exchange twice per year and including other technical service. Adding glassware, diverse laboratory
equipment, chemicals and energy consumption of the cultivation cabinets, we calculated approx. €9300 per year
(Table 2) for current maintenance costs, while the general investment into infrastructure accounts for approx.
€47 000 (value 2024). This germplasm collection only needs four thermocontrolled and illuminated cabinets
while other biobanks use walk-in culture rooms, use bigger vessels and change the medium more often, all of
which raise maintenance costs. In this respect, the maintenance of a germplasm bank such as this is relatively
cost efficient and saves significant investment that would be required to resample strains that are not preserved
in germplasm banks. Maintaining seaweed cultures is a sustainable and economical substitute for the significant
time and money needed to recollect and reisolate unpreserved strains, especially those that maintain uncommon
or difficult to access genotypes or species from isolated or endangered areas.

A European strategy for safeguarding macroalgal
genetic resources

Currently existing networks and infrastructures,
such as the European Marine Biological Resource
Center (EMBRC), the Microbial Resource Research
Infrastructure (MIRRI), ELIXIR (European initia-
tive to share infrastructure for biological data) and
the Distributed System of Scientific Collections

(DiSSCo), serve as excellent examples of how
diverse stakeholders like germplasm banks, basic
and applied research and biotechnology can be
brought together to provide services for all in
Europe. These can be used as models for the devel-
opment of a European concept for safeguarding
macroalgal genetic material, and we describe
a proposed strategy below.

Table 1. Personnel cost calculation for collecting and isolating seaweed strains held in the Alfred Wegener Institute (AWTI)
culture collection (CC). The estimated 2 full working days per strain are a conservative estimate and integrate time in the
field and the laboratory to establish a clonal isolate (excluding planning and travel time to the sampling location and
expedition costs). The personnel costs refer to a mean German salary (before taxes) in 2024 and do not take into account
that actual salaries of scientists are higher than the mean, nor the inflationary salary increase or currency change during the

previous half-century.

No. of strains Working days per Mean working days y' in
in CC strain Germany

Work investment for
CC (yrs)

Mean German
annual salary

Age of CC  Personnel cost
€y (yrs)

(yr™)

860 2 220

7.8 ~54 000 49 > 8600
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Table 2. Seaweed culture collection of the Alfred Wegener Institute (AWI, Bremerhaven, Germany). Approximate current
investment and maintenance costs based on numbers available for Germany in 2024. The infrastructure consists of four
temperature-controlled cabinets with LED illumination (2 x 130 1, 2 x 260 1 volume). Irradiance is set to approx. 1-2 pmol

photons m™2 s\,

Investment infrastructure

Investment costs
Price per unit in 2024 €)

Cultivation cabinets with LED illumination (130 and 260 1
volume)

0/5/10/10°C

€10-12 000 45 000
(once per 10-20 years)

Glassware plus holding boxes ~2000 x 20 ml glass tubes with 1600
lid
Access to seawater and sterilization®
Maintenance Annual costs
(eyrh
Glassware 1000 x 20 ml glass tubes with lid 700
Chemicals® Addition of nutrients <400
Diverse laboratory ware 500
Energy consumption of 260 1 cultivation cabinet set to 5°C Hourly consumption mean price of kWh: €0.36 3154
(0.25 kWh/cabinet) x 4 = 1.0
kWh
Daily consumption
1.0 kWh x 24 h = 24.0
kWh d!
Annual consumption
24 x 365 days = 8760 kWh y™'
Energy consumption LED irradiance low
Personnel days for maintenance of collection 1 working month y™! mean German salary: ~4500
€54 000 y'
Total running costs ~9300

“As access to seawater and facilities to sterilize seawater is extremely dependent on the general logistics of the germplasm bank facility, we cannot

provide a meaningful price calculation.

"As macroalgal germplasm banks may use a diversity of media for maintenance of cultures and the purchase also is dependent on general logistics
of the work environment, exact values are difficult to calculate. The current collection uses 400 ml Provasoli enrichment per year (half-
concentration) (Provasoli, 1968). The given price is an estimate over time.

Key tasks and objectives

A European strategy for safeguarding macroalgae
genetic resources should deliver three key tasks:
(1) the conservation of macroalgal diversity, (2)
the development of operational procedures and
technical expertise and (3) the promotion of public
awareness of the importance of seaweeds (Fig. 2).
A diversity of macroalgal stakeholders and their
interests must be considered while developing the
concept for preserving European macroalgal genetic
resources, including producers, breeders, consu-
mers, researchers, NGOs for conservation and
society. The key tasks of the strategy should con-
tribute towards (1) ensuring accessibility of macro-
algal strains, (2) supporting research, (3)
commercial production, (4) breeding and restora-
tion efforts and (5) improving consumer trust in
algae products and quality. As with botanical gar-
dens and other biological resource centres, macro-
algal germplasm banks can initiate and participate
in outreach activities to promote the understanding,
appreciation and conservation of macroalgae.
A more centralized, interconnected European strat-
egy could contribute more concretely to education
and learning and strengthen the European cultural
connection to macroalgae. Striving for these objec-
tives within a European concept for macroalgal
genetic resources will have broader impacts on eco-
nomic growth, nature conservation and scientific
innovations.

The proposed structure

To address the urgency of counteracting the disap-
pearance of macroalgal biodiversity, with macroalgae
being critically important natural resources for the
sustainability of basic and applied research, restora-
tion and commercialization efforts, we propose
a European strategy including diverse stakeholders
(public and private) based on three pillars (Fig. 3):
(1) establishment of a European Board of Macroalgal
Genetic Resources (EBMGR) in which public part-
ners (scientists and policymakers) and private actors
provide supervision, support and coordination for the
preservation of macroalgal genetic material in germ-
plasm banks, (2) a network of germplasm banks
consisting of existing infrastructure and newly estab-
lished germplasm banks and (3) an integrated germ-
plasm databank for long-term data storage,
preferentially based on or using currently existing
databanks.

Following the example used in agricultural
research, where the International Board for Plant
Genetic Resources (IBPGR) was established in 1974,
the proposed EBMGR would lead the network of
macroalgal genetic resources and provide recommen-
dations for the collection, conservation, documenta-
tion and use of European macroalgal genetic
resources. The establishment of the EBMGR could
be achieved in close collaboration with the
Federation of European Phycological Societies.
Under the umbrella of the EBMGR, new initiatives
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Fig. 2. The tasks and objectives that should be met by a European structure for macroalgal genetic resources.

to foster targeted collections (e.g. Fucales,
Cystoseirales), preservation (e.g. infrastructure for
cryopreservation) and breeding programmes should
be promoted. Breeding programmes could be estab-
lished in close cooperation with industry stake-
holders, research institutes and universities, which
could provide further infrastructure required for
new cultivar development. Building upon the avail-
able infrastructure of existing algal germplasm
banks and private collections, the EBMGR could
support  further  developments  such  as
a centralized digital platform with transparent pro-
cedures and clear acceptance criteria for the
deposition of strains following the guidelines from
the OECD Best Practice Guidelines for Biological

Resource Centres (OECD, 2007). Additional activ-
ities would include securing sources of funding and
building new and extending existing infrastructure.
Building private-public partnerships could provide
a potential solution, but such partnerships must be
framed with regulatory tools that clearly define the
rights and duties of each partner in order to facil-
itate the preservation of genetic diversity while
simultaneously providing opportunities for new
product development (through selection pro-
grammes). Existing standard practices, e.g. from
the CCAP, for providing patent or confidential
depositions to their holdings against fees, can
serve as a model to generate income to support
the logistics of the germplasm banks.
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Proposed strategy for conserving European seaweed strains

The problem:

What we are currently doing:

European macroalgae culture o o The existing strains are

collections are small, ‘9 documented in a database and
[}

scattered and not a> . -—a visible on an interactive map.

representative of natural " ®

° e} Q
We connect stakeholders and Q
) A

biodiversity. often just a side
product of a smaller scientific
research project. Their
conservation is uncertain.

centralize data on European
macroalgae culture collections.

European Structure for
MACROALGAL genetic resources

i Supervision, European Long-term
K European y support, germplasm databank
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Fig. 3. Proposed European strategy for safeguarding macroalgal genetic material. Currently existing European macroalgal
strains are being centralized into a European database by a macroalgal germplasm network (the SeaStrains Network). The
next step would be to establish a three-pillar system consisting of a European Board of Macroalgal Genetic Resources,
which would provide recommendations to macroalgal germplasm banks for the prioritization, use and conservation of
European macroalgal genetic resources, a connected system of germplasm banks consisting of currently existing infra-
structure and newly established germplasm banks and a centralized, digital databank for long-term data storage.

Ensuring the sustainability of the germplasm bank
infrastructure is one of the major challenges for safe-
guarding European macroalgal genetic material. The
development of novel European infrastructure that
uniquely houses macroalgal genetic resources is our
long-term vision but would require an immense level
of investment and time. As existing germplasm banks
for macroalgae in Europe are few and the interest in
macroalgae is growing, there are also arguments sup-
porting the need for a novel macroalgae-focused
European infrastructure. This could support existing
germplasm banks with back-up copies of strains
maintained in other banks and provide specialized

expertise and infrastructure for certain taxa, technical
practices (e.g. cryopreservation) and breeding
programmes. Such a long-term vision could also
include the transition of macroalgal germplasm
banks into European research infrastructures that
are eventually linked to form a European Research
Infrastructure Consortium (ERIC) for macroalgae.
An additional step towards expanding and
improving the preservation of macroalgal genetic
diversity in existing germplasm banks would be to
specialize in certain areas of expertise. In Fig. 4, we
provide examples of potential areas of specialization
for macroalgal germplasm banks, and their
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How can we secure macroalgal genetic material for the Future?
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Fig. 4. A comparison of different strategies for the specialization of germplasm banks: by country (national level), taxa or
eco-regions (above) or centrally organized via a European germplasm bank. Many of the benefits of a centralized
germplasm bank could also be achieved by a decentralized infrastructure network of germplasm banks organized by
a centralized governing body (e.g. the suggested European Board for Macroalgal Genetic Resources). Furthermore, it may
also be possible for decentralized structures to be supported at the European level or to be part of a European structure
located at several sites but under one organizational roof, for example the establishment of a European Research
Infrastructure Consortium (ERIC). The degree of shading in the dots represents the relevance of each topic to each of
the strategies (dark = high relevance, light = low relevance, absent = no relevance).

associated pros and cons. Some germplasm banks
could focus on taxa of interest, for example the
Fucales, Laminariales, Porphyra/Pyropia/Neopyropia
or macroalgae that are particularly difficult to main-
tain in culture. The benefits of this model are that
experience and know-how would be centralized and
the infrastructure would be optimized for the taxa of
interest. Alternatively, existing germplasm banks
could focus on marine ecoregions (e.g. sensu
Spalding et al., 2007) in an effort to preserve the

inter- and intraspecific diversity within a particular
European region (e.g. the Baltic, the North Sea, the
Mediterranean Sea). We also present the option of
national germplasm banks, in which the genetic
material within each country is preserved. The ben-
efit of this model is that international exchange and
the associated restrictions implemented in the
Nagoya protocol of Access and Benefit Sharing
(https://www.cbd.int/abs/default.shtml) would not
be necessary. Nevertheless, this may not be the
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best option. Ideally, a combination of these models
integrated into a European-wide network overseen
by the EMGBR would yield the most benefit. Such
a strategy could provide the workforce necessary to
set in place material transfer agreements (MTAs)
and compliance forms dealing with the Nagoya pro-
tocol and to establish common rules that facilitate
exchange between European countries, particularly
as new cultivars are developed.

A vital issue is the ability of potential users to
identify holdings of germplasm banks with specimen
availability for various types of use through informa-
tion systems. However, the rapid accumulation of
data from different research areas, such as functional
genomics, physiology, ecology and taxonomy, pre-
sents a challenge in transforming them into knowl-
edge. In this age of information overload, a problem
we frequently encounter is not the need for more
data, but the difficulty of integrating complex and
rapidly accumulating data in a meaningful way. For
this reason, an integrated, interoperable cyber-infra-
structure based on currently existing databases (e.g.
EMBL/GenBank/DDBJ, GBIF, WoRMs, PubMed,
Algaebase) is needed to address the increasing need
for informatics support in managing and utilizing
stored data. Providing a platform for users to interact
and share this information could further help in
fostering a collaborative macroalgal research
community.

In existing databanks, reference cultures ideally
are linked to phenotypic and genetic data as this
facilitates macroalgal identification and monitoring.
Knowledge of the genetic (DNA barcodes and gen-
omes) and phenotypic variation of macroalgal
strains is essential for effectively managing and pro-
moting species’ health (Theissinger et al., 2023) and
providing correct identifications for regulatory
compliance or attribution for cultivation purposes.
This is relevant in the context of developing
a resilient European industry where researchers
and breeders have access to a wide range of infor-
mation which will contribute to their efforts.
Furthermore, such information will be of relevance
in the context of conservation as it can be harnessed
for informed conservation management strategies
and restoration efforts, avoiding inbreeding depres-
sion (see section ‘Prioritizing intraspecific diversity’
below).

Future tasks and challenges

The major challenges for a European germplasm
bank strategy are: (1) the lack of financial support
for existing and future collections, (2) a decline in
well-trained and experienced curatorial staff with
expertise across various taxonomic groups, (3) lim-
ited infrastructure and resources for germplasm

banks to continue to grow and accept new strain
deposits unreservedly and (4) a community-wide
lack of awareness and understanding of the need
for, structure and function of germplasm banks.
Below we suggest a strategy for overcoming some of
these challenges through targeted prioritization (for
both conservation and commercialization) and high-
light some of the most pressing issues to be
addressed.

Prioritizing macroalgal genetic material for growth
of the aquaculture and biotech industries

The GENIALG, Phycomorph, EBB and SeaWheat
projects have already made great strides in boosting
Europe’s macroalgal cultivation and biorefining
industries and promoting sustainable farming.
Related deliverables from these projects included
establishing cultivation and cryopreservation proto-
cols for commercially promising macroalgae, germ-
plasm banking of Ulva (Simon et al, 2024) and
Saccharina strains at the University of Galway and
the CCAP (UK), respectively, and the establishment
of genomic data for future breeding initiatives.
Nevertheless, further prioritization will be necessary
to preserve macroalgal biodiversity for targeted
commercialization.

Ecosystem services and economic value

Prioritizing species that provide the most signifi-
cant ecosystem services should be a high priority.
A recent report estimating ecosystem services pro-
vided by seaweed cultivation found that kelp culti-
vation provides the highest number of ecosystem
services, followed by the agar-producing Gracilaria
spp., the carrageenan-producing eucheumatoids,
and Porphyra/Pyropia/Neopyropia spp. (Bermejo
et al., 2022; Fricke et al., 2024). In terms of quan-
tity, the kelp Saccharina latissima is the most com-
monly cultivated species in Europe, followed by
Alaria esculenta, Ulva spp., Laminaria spp.,
Palmaria palmata and Fucus spp. (Araujo et al.,
2021; Vazquez & Sanchez, 2022, Fig. 5). Similarly,
Saccharina, Laminaria, Alaria, Fucus, Palmaria and
Ulva are among the most commonly wild-har-
vested genera in Europe (Fig. 5). On the other
hand, Chondrus crispus, Ascophyllum nodosum
and bladed Bangiales (=Porphyra sensu lato) are
commonly harvested in Europe, but there are cur-
rently no enterprises cultivating these genera on
a large scale. Only two cultivation enterprises are
conducting trials for Porphyra culture in Europe
(Fig. 5), even though it is the fifth biggest macro-
algal market in the world, with 2.2 million tons of
biomass representing 6% of global production (The
State of World Fisheries and Aquaculture, 2022).
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Fig. 5. Overview of cultivated (land- and sea-based; dark
blue) and harvested (light blue) macroalgae species in
Europe, divided into the categories red seaweeds, green
seaweeds and brown seaweeds (data source: https://data.
jrc.ec.europa.eu/dataset/fa59f544-bf77-4812-8869-
£34d9b096638).

Furthermore, while cultivation of C. crispus has
been well established as a niche market for Japan
and marketed as Hana Tsunomata by Acadian
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Seaplants (https://www.acadianseaplants.com/),
this species is only cultivated by two European
companies (Fig. 5). Considering the global interest
in these two taxa and the little cultivation activity
in Europe, they should be considered high priority
for germplasm banks in terms of potential com-
mercial interest.

Another high priority candidate for preservation is
Ascophyllum nodosum, which is valued for its bioac-
tive compounds, but any attempt to keep this species
as a clonal culture collection has failed so far and
would need the development of new strategies via
vegetative propagation of tissue. This highlights
again why more resources and a coordinated
European strategy are needed: to support research
areas that are essential but too expensive, too long
or challenging for single culture collections to pursue.
Non-commercial species that provide ecosystem ser-
vices as ecosystem engineers (as described in
Section 2.1), such as L. hyperborea and rhodolith
beds, should also be prioritized for preservation.

Adaptation to new markets

The economic interest and the associated prioritiza-
tion of species can change rapidly as new discoveries,
applications and compounds of interest are made.
A prime example is the genus Asparagopsis, which
is invasive in the Mediterranean Sea and considered
a major threat to biodiversity in Europe (Streftaris &
Zenetos, 2006), but there is currently strong interest
in the establishment of its large-scale cultivation in
Europe due to its ability to reduce methane produc-
tion in cattle when introduced into their feed (Kinley
et al., 2016, 2020; Roque et al., 2019). Other examples
are Chondracanthus teedei and Laurencia spp., the
latter used as a model for discovering new bioactive
compounds (Monteiro et al., 2023). A European
strategy thus needs to adapt to emerging markets,
which is only possible through an integrated network
such as the proposed EBMGR.

Prioritizing intraspecific genetic diversity

Prioritization and strategic sampling of intraspecific
diversity are required to maximize ex situ conserva-
tion efforts. For restoration purposes, a significant
challenge is to preserve local genetic lineages and
sufficiently high genetic diversity to facilitate adapta-
tion to rapidly changing conditions and to avoid
inbreeding depression (Camus et al., 2021) and sub-
sequent genetic erosion. This becomes even more
challenging as the combination of biological inva-
sions and local anthropogenic pressures (Thibaut
et al., 2005; Araujo et al., 2011) cause biotic and
abiotic stress and reduce the likelihood of recoloni-
zation. A major challenge in the conservation of
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gene pools is knowing the geographical ranges of
genetically distinct lineages, because these are usually
not visible in the phenotypes. Defining these geogra-
phical ranges requires population genotyping
throughout the entire biogeographical species distri-
butions, which for a few kelp species of the EU was
achieved in the MARFOR project (e.g. Liesner et al.,
2020). Advanced techniques of whole genome ana-
lysis (Bringloe et al, 2022), ddRAD analysis
(Guzinski et al., 2018; Huanel et al., 2022; Reynes
et al., 2024) or analysis of species-specific microsa-
tellite markers (Valero et al., 2001) are all currently
available to reveal genetic differences between popu-
lations on a different resolution and cost level. This
knowledge is of particular importance in Europe,
where due to the glacial extinction of macroalgal
populations in northern Europe, the richest and
most diverse gene pools for most investigated species
are located near their southernmost ranges, i.e. the
trailing edges of populations. This is the case for

Saccorhiza  polyschides (Assis et al, 2016),
Laminaria  ochroleuca (Assis et al, 2018),
Laminaria digitata (Neiva et al., 2020) and

Laminaria hyperborea (Barreto 2024). Interestingly,
for the trans-Arctic species Saccharina latissima,
besides the ancient locally differentiated lineages,
novel genome recombinations have recently been
formed in the Arctic as Pacific lineages have
migrated and contacted the Canadian maritimes
(Neiva et al., 2018). For the European kelps, any
restoration efforts should account for these mapped
genetic lineages. The same applies to fucoids of
Europe, as most lineages contain richer and/or
unique southern genetic types (Neiva et al., 2010,
2012, 2014, 2015; Nicastro et al., 2013; Almeida
et al., 2022). Populations at the trailing edges often
exhibit better performance under thermal stress
caused by climate change, probably because they
have genetically adapted to more extreme and
stressful conditions (Saada et al., 2016; Martins
et al., 2020; Strasser et al., 2022) and may therefore
play a crucial role in species survival (Hampe &
Petit, 2005). On the other hand, small, fragmented
populations already impacted by high rates of
genetic drift may not be able to survive climate
change due to depauperate genetic diversity
(Reynes et al., 2024). Consequently, adaptation
along the latitudinal gradient is not uniform (e.g.
depending on life-cycle stage, drift and selection
pressures) as has been shown in L. digitata
(Schimpf et al., 2022), pointing to the challenge of
considering which genotypes are more or less
important for conservation. Careful consideration
of all of these factors must be made for future
prioritization of intraspecific genetic diversity in
macroalgal germplasm banks, and the conservation
of a broad intraspecific genotypic diversity will be

crucial for future restoration efforts along European
coastlines.

Prioritizing genetic material adapted to climate
change

The ex situ conservation strategy of intraspecific
diversity only provides a snapshot at any given time,
but does not take into account environmental change
and strains that will adapt to the future environment.
In plant agronomy, in situ management of crop
genetic resources, called ‘dynamic management’
(DM) was proposed in order to integrate the
dynamics of genetic diversity in response to environ-
mental changes (Henry et al., 1991). The principle of
DM is to maintain natural processes responsible for
the diversification and conservation of genetic diver-
sity in subdivided populations grown in different
environments. This in situ DM was conducted on
wheat populations in collaboration with a farmers’
network in France, and researchers have shown posi-
tive effects of on-farm DM on diversity and adapta-
tion (Enjalbert et al., 2011). Such a DM strategy could
be developed in macroalgae in collaboration with
local farmers for selected species of interest in
Europe to complement the ex situ strategy.
Macroalgal material that can genetically tolerate
impacts of climate change will be an important
resource for successful restoration actions (Wood
et al., 2019; Coleman et al., 2020) and for promoting
the emerging European aquaculture sector in an ever-
changing marine environment (Kim et al., 2017).
Different tools can be employed to develop strains
resilient to climate change, e.g. by strain selection,
selective breeding, genome modification (e.g. emer-
ging CRISPR-Cas9 methodology for macroalgae
(Badis et al., 2021) or stress priming (Jueterbock
et al., 2021; Gauci et al., 2024)). Selective breeding
(i.e. the selection and breeding of tolerant strains to
produce offspring with several desirable traits) has
been implemented with success for improving toler-
ance to high irradiance and seawater temperature in
Saccharina spp. in China (Zhang et al., 2011; Li et al.,
2016) and the US (Umanzor et al., 2021). However,
care is needed to prevent the impoverishment of
genetic diversity by growing those cultivars in large
areas as a monoculture. Genome-wide association
studies can link DNA regions and traits of interest,
such as thermal tolerance, disease resistance or lipid
profiles (e.g. see Demirjian et al., 2023), allowing
marker-assisted breeding paired with controlled
back crosses to maintain high levels of genetic diver-
sity, but it is a very challenging process requiring a lot
of resources and is only possible in large consortia.
Stress priming is a common non-genetic tool to
develop stress-tolerant crops in which stress memory
enables plants to become more resilient to a second



more severe stress exposure (Liu et al., 2022), and
such studies are starting to emerge in macroalgae
(Jueterbock et al., 2021). Prior exposure to high or
low temperatures has enhanced tolerance in macro-
algae when exposed to thermal stress (Li & Brawley,
2004; Kishimoto et al., 2019; Gauci et al., 2022, 2024).
Furthermore, associated bacteria, which are co-pre-
served with the macroalgae in culture collections, can
enhance macroalgal resistance under thermal stress
(Ghaderiardakani et al., 2024). While the traits of
interest are different for macroalgal cultivation and
restoration efforts, germplasm banking and the asso-
ciated infrastructures and methodologies would be
the same (see also Filbee-Dexter et al, 2022) so
synergies should be sought where possible to achieve
resilient and healthy macroalgal ecosystems.

Facilitating access to macroalgal genetic resources

To access and share genetic material of macroalgal
species or their derivatives (e.g. DNA), the legal fra-
mework of the Nagoya protocol of Access and Benefit
Sharing applies (https://www.cbd.int/abs/default.
shtml). In the future, digital sequencing information
may also fall under this scope. Despite the existence
of bilateral agreements (‘prior informed consent’
(PIC) and ‘mutually agreed terms (MAT)), which
are often arranged following the Microbial Resource
Research Infrastructure (MIRRI) best practices for
germplasm banks, the implementation of this process
resulting in material transfer agreements is time- and
cost-intensive. Even between member states of the
European Union, the exchange of genetic material
between partners can be complex and bureaucratic,
regardless of the intended use (scientific or commer-
cial). Using the management of plant genetic
resources as an example, the International Treaty of
Plant Genetic Resources for Food and Agriculture
(https://www.fao.org/plant-treaty/en/) regulates
access for selected crop species. The treaty is
a multilateral legal framework that aims to facilitate
access to and protect the privatization of genetic
material to support breeding efforts and to safeguard
food security. We suggest finding universal rules that
facilitate macroalgal genetic material exchange
between European countries, particularly as new cul-
tivars are developed.

Plant varieties (i.e. cultivars) can be registered
under the framework of Plant Variety Protection
(PVP) to strengthen breeders’ rights and to encou-
rage breeding activities in many countries. This has
only been demonstrated in a few cases for macroal-
gae. For example, South Korea started to apply
a varietal protection system for macroalgae in 2012
under the umbrella of UPOV (International Union
for the Protection Of New Varieties of Plants). Since
then, 19 macroalgal varieties have been registered
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(Hwang & Park, 2020), which are held at the
Aquatic Plant Variety Centre under the umbrella of
the National Institute of Fisheries Science. The
European germplasm network under the EBMGR
could take similar steps for new macroalgal varieties.

Technical challenges

Species difficult to maintain in culture

The current collections of macroalgae are heavily
skewed towards species that are manageable for cul-
tivation. Besides life cycle control, characteristics that
enhance the potential for cultivation encompass the
presence of a heteromorphic life cycle with
a microscopic or filamentous phase, the general fea-
sibility of vegetative propagation and good survival in
small vessels and low light, which are often used in
germplasm banks. In general, cultivating filamentous
life-cycle stages is more straightforward than for
(pseudo-) parenchymatous species. Thus, even if
only one phase of the life cycle is filamentous, this
significantly simplifies the cultivation process.
Examples include kelp species which have filamen-
tous gametophytes or bladed Bangiales (Porphyra,
Pyropia, Neopyropia) with a conchocelis phase.
Many ecologically important macroalgae unfortu-
nately do not have a filamentous phase which either
means one cannot cultivate them or their cultivation
requires significantly more effort. For brown macro-
algae these include many habitat-forming species
such as fucoids which dominate rocky intertidal habi-
tats in cold temperate regions or the shallow subtidal
habitats of southern Europe. While there has been
some cultivation success at the laboratory scale for
Mediterranean Cystoseira species (Falace et al., 2018),
effective cultivation of such species will require sig-
nificant research and potential adoption of novel
cultivation techniques, including learning from the
agriculture sector, e.g. from tropical fruit plants that
do not form preservable seeds (Normah et al., 2013).
Cultivation of several red algal species as micro-
plantlet suspension cultures has proven successful
(e.g. Rorrer et al., 1998; Rorrer & Cheney, 2004).

Cryopreservation

Long-term maintenance of macroalgal strains
through serial transfer may cause changes in strain
performance, e.g. through genetic drift, changes in
the associated microbiome or other poorly under-
stood processes. Continuous handling of strains is
also cost and time intensive and prone to human
error, e.g. contamination or loss during cultivation.
Cryopreservation presents an alternative, where
strains are immersed in a cryoprotectant buffer
and are often frozen in a two-step freezing process
at ultra-low temperatures. Cryopreservation proto-
cols have been developed for various, mainly
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commercial, macroalgae with mixed results (Lee &
Nam, 2016; Day, 2018; Visch et al, 2019; Yang
et al., 2021; Beniers et al, 2023; Simon et al.,
2024). Nevertheless, further investigation and
improvement of the protocols are needed for cer-
tain taxa, particularly red macroalgae, that cannot
be or have poor success when cryopreserved using
established methods. The development of such
techniques requires specialist knowledge, substan-
tial capital and advanced operational infrastructure.
It would therefore be expedient to provide
resources on a European scale to develop needed
techniques. Also, published studies over the long-
term viability of cryopreserved macroalgal strains
and their ability to reproduce after thawing are still
lacking, although kelp gametophytes of Saccharina
latissima have been successfully thawed after
3.5 years of cryopreservation in liquid nitrogen
(Rad-Menéndez, unpublished data). The fact that
some microalgae have been shown to recover after
22 years without loss of viability is promising (Day
et al., 1997).

Biosecurity and conserving the holobiont

Eukaryotic and prokaryotic microbes form intricate
associations with macroalgae, e.g. bacteria, fungi,
oomycetes, other micro- and macroalgae (see e.g.
Gachon et al., 2010; Vallet et al.,, 2018; Bernard
et al., 2019). Considering that macroalgal aquacul-
ture in some regions has already been devastated
by disease (e.g. Ward et al, 2020), the aspect of
biosecurity in macroalgal germplasm banks is
essential and must be further supported and devel-
oped (Brakel et al, 2021). Taxonomic knowledge
and a reference database of relevant macroalgae
pathogens and parasites are crucial (Muruaa et al.,
2023). The establishment of a reference germplasm
bank of common macroalgal pathogens and pests
supporting a progressive management pathway for
improving biosecurity (see Cottier-Cook et al.,
2022) is critical. Biobanking pathogen and pest
strains will support highly needed fundamental
research on disease resistance and breeding.
A reference germplasm bank would also raise
awareness about disease and pests and could pro-
vide critical information and training for macroal-
gal producers (see Strittmatter et al., 2022). Access
to pathogen and pest germplasm would likewise
facilitate the development of protocols to monitor
and manage their occurrence, e.g. within macroal-
gae germplasm samples, hatcheries or farms.

The community of bacteria associated with
macroalgae (the ‘microbiome’) can strongly influ-
ence the physiology, acclimation potential, defence
and reproductive success of the host (Wichard, 2015;
Dittami et al., 2016; Morris et al., 2016; Arnaud-
Haond et al., 2017; Li et al., 2023). These natural

microbial communities could potentially provide
new sources of biotechnical applications, and the
formulation and testing of synthetic communities
(SynComs), a well-established tool in human and
animal health (Bolsega et al., 2021), could further
provide new services. Some bacterial strains originat-
ing from macroalgal microbiomes (mostly model
brown and green macroalgal species) are currently
available in public culture collections (e.g. MIRRI
and the database from the SIMBA project), but to
date there has been limited focus on promoting the
visibility and utilization of macroalgae-associated
microbial strains. It would undoubtedly be relevant
for germplasm banks to provide information on
associated microbiomes of non-axenic strains in
future, but the erosion of the microbiome with
increasing cultivation time due to drift effects pre-
sents challenges (Califano et al., 2020; van der Loos
et al., 2021). Cryopreservation of macroalgal strains
(along with associated microbiomes) could help pre-
serve a larger part of the diversity of the collected
microbiome, albeit probably with some alterations or
biases.

Recommendations for next steps

The systematic collection and preservation of macro-
algal genetic material in germplasm banks provide
a comprehensive repository for maintaining strains
that serve as fundamental resources for basic and
applied research endeavours. Safeguarding macroal-
gal genetic resources using a European strategy that
builds upon currently existing germplasm bank infra-
structure should be built upon three main pillars: (1)
a European Board of Macroalgal Genetic Resources
(EBMGR), which oversees, supports and coordinates
a (2) coordinated network of European germplasm
banks connected via a (3) centralized databank. This
will be essential for supporting and benefiting con-
servation, restoration, bioinnovation and aquaculture
efforts. The expansion of current and establishment
of further germplasm banks for macroalgae is neces-
sary and should be strategically specialized according
to ecoregions, taxa or technical expertise identified by
the future EBMGR to be of high priority. Building
private-public partnerships could provide a potential
solution to obtaining financial support, but additional
support at the national and EU level (e.g. via pro-
grammes such as Biodiversa+, Horizon) will also be
necessary.

Once a network of public and private germplasm
banks is established under the EBMGR, further
steps could include interconnecting them as biolo-
gical resource centres in a European Research
Infrastructure Consortium embedded in existing
infrastructure, such as the EMBRC (https://www.
embrc.eu/), the European Culture Collection
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Organization (ECCO) or the Distributed System of
Scientific Collections (DiSSCo), and should be
inclusive of all European countries. The establish-
ment of such a structure will most likely require
significant financial input to support a central coor-
dination office, including data architects, software
developers, project officers, communications and
outreach officers, advocacy and engagement offi-
cers, and governance affairs specialists. Building
the macroalgal germplasm banks into these net-
works that already exist would save considerable
time, resources and effort. The aim should be to
serve all interest groups (conservation, restoration,
aquaculture, biotechnology, basic research) despite
conflicting interests.

Due to the high diversity of macroalgal species and
limited resources for their preservation, prioritization
will be necessary and will require considering the
interests of all stakeholders. While we consider it
the task of a future EBMGR to identify and coordi-
nate priorities, we highlight the most pressing issues
that are of critical importance in a European strategy
for preserving macroalgal genetic resources based on
the systematic reasoning provided above. The gov-
ernance of European macroalgal genetic resources
should ensure fair and equal access to genetic mate-
rial within the framework of the Nagoya Protocol.
Species of commercial interest that are currently har-
vested in Europe, but not yet cultivated, should be
prioritized. The establishment of centres of expertise
for targeted taxa of high commercial interest (e.g.
Fucales, Laminariales, Porphyra, Palmaria, Ulva,
Chondrus) should be initiated and supported.
Furthermore, species that provide the greatest eco-
system services should be given highest priority.
Sampling strategies for collecting and preserving
wild specimens should be guided by population
genetics (e.g. favouring the trailing edges of macro-
algal populations). To improve the connectivity of
a European germplasm bank network, the develop-
ment of conservation and propagation protocols,
knowledge transfer, training and capacity building
should be supported. New infrastructure and train-
ing in cryopreservation (potentially centralized) and
breeding should be developed, and macroalgae
breeding programmes for developing ‘future proof
gene pools for restoration and aquaculture should be
initiated as a climate change adaptation strategy.
Implementing the proposed or similar strategies at
the European level, including coordinated efforts,
research prioritization and capacity building, will
be of critical importance for the long-term stability
and protection of European macroalgal genetic
resources and hence ensure food security, biosecur-
ity and biodiversity in a rapidly changing climate as
we strive for more sustainable use of marine
resources.
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