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Abstract

Ocean alkalinity enhancement (OAE) refers to the addition of alkaline material to the surface
ocean, which shifts carbonate chemistry towards more oceanic uptake of atmospheric CO,. This
study compares global OAE with regionally focused deployment in subduction regions of the
Southern Ocean, Northwest Atlantic, and Norwegian-Barents Sea. We conducted ensemble sim-
ulations using an emissions-driven Earth System Model (ESM) under high- (SSP3-7.0) and low-
emissions (SSP1-2.6) scenarios. By 2100, subduction region OAE was nearly as efficient (SSP3-
7.0: 0.71 = 0.03, SSP1-2.6: 0.60 = 0.04) as global deployments (SSP3-7.0: 0.73 £ 0.01, SSP1-2.6:
0.64 £ 0.03). However, the ESM simulations did not reproduce the efficient vertical carbon trans-
port seen in a previous ocean-only study, as strong internal variability and climate feedbacks to
OAE hampered deep ocean carbon storage. The excess ocean CO, uptake and atmospheric CO,
reduction were scenario-dependent (15%-19% and 22%—41% lower under SSP1-2.6 compared
to SSP3-7.0, respectively). The pathways of excess ocean CO, uptake and atmospheric CO, reduc-
tion diverged between the scenarios after the mid-2060s, when atmospheric CO, peaked and then
declined under SSP1-2.6, with a substantially larger relative land carbon loss in SSP1-2.6 than in
SSP3-7.0 for regional OAE deployment. Furthermore, the emissions-driven ensemble simulations
showed that climate feedbacks introduced substantial uncertainty in early decades of regional OAE
efficiency, posing challenges for near-term monitoring, reporting, and verification. Reviewing our
and previous model experiments revealed a strong linear relationship between added alkalinity
and oceanic CO, uptake and atmospheric reduction, highlighting that first-order effects of OAE
on carbonate chemistry are well understood and consistently represented, while the effects of car-
bon and climate feedbacks (13%—-20%) and scenario sensitivity are smaller but non-negligible.
Overall, our study shows that subduction regions can be a viable option for OAE; however, their
efficiency is limited by these feedbacks and scenario sensitivity, which must be accounted for in
future regional OAE interventions.

1. Introduction et al 2007). Naturally, land weathering processes

deposit alkalinity in the surface ocean, shifting car-

The oceans are pivotal in regulating atmospheric CO,
concentrations and have taken up about a quarter
of the anthropogenic CO, emitted since preindus-
trial times (Gruber et al 2019, Friedlingstein et al
2025). One of the main drivers for oceanic carbon
uptake and outgassing is alkalinity, defined as the
excess of proton acceptors over donors in seawa-
ter (Zeebe and Wolf-Gladrow 2001, Wolf-Gladrow

© 2026 The Author(s). Published by IOP Publishing Ltd

bonate equilibria by converting dissolved CO, into
bicarbonate and carbonate ions, which are not dir-
ectly exchangeable with the atmosphere, aiding long-
term carbon sequestration. The chemical shift lowers
the partial pressure of CO, (pCO,) at the ocean
surface, enhancing oceanic CO, uptake (Hartmann
et al 2013, Middelburg et al 2020). However, the cur-
rent rate of oceanic CO, uptake due to natural land
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weathering is almost two orders of magnitude lower
than the anthropogenic CO, emission rates (Archer
2005), and thus cannot mitigate rising atmospheric
CO; levels and global warming. Hence, in order to
achieve the climate goal by the Paris Agreement to
limit the global temperature increase to 2 °C above
pre-industrial levels by 2100, drastic emissions reduc-
tions will likely need to be accompanied by efforts
of various carbon dioxide removal (CDR) meth-
ods (UNFCCC 2015). Ocean alkalinity enhancement
(OAE) is an ocean-based CDR method that can artifi-
cially elevate the rate of oceanic CO; uptake (Kheshgi
1995, Ilyina et al 2013, Keller et al 2014, Hauck et al
2016). This can be achieved by spreading alkaline
powder or solutions from various sources, such as
lime, olivine, basalt, calcium carbonate or hydroxide
over the ocean surface (Caserini et al 2022).

Numerous modeling studies have explored OAE,
yet the approach is still nascent (Babiker et al 2022).
Currently the total CO, sequestration across novel
CDR methods, including OAE, is estimated to be
0.00001-0.0002 MtC yr~! (Friedlingstein et al 2025).
Earth System Models (ESMs) demonstrate that OAE
in high-emissions scenarios strengthens the ocean
carbon sink, while the land carbon sink weakens due
to atmospheric CO, reduction (Keller et al 2014,
Gonzalez and Ilyina 2016, Lenton et al 2018, Jeltsch-
Thommes et al 2024, Palmiéri and Yool 2024). Ocean-
only models have also been used to explore OAE
efficiencies in both global and regional applications,
yielding varying results over the last decade after
75-80 years of deployment. For instance, Burt et al
(2021) revealed region-dependent OAE efficiencies,
with highest efficiencies in the sea-ice-free Southern
Ocean and lowest in the subpolar North Atlantic.
Contrarily, similar efficiencies were found for global
OAE and OAE along ship-tracks (Kohler et al 2013),
as well as for continuous OAE deployed globally and
in the subduction regions of the Southern Ocean
and North Atlantic (Nagwekar et al 2024). Notably,
subduction regions could transfer a ~2 times higher
fraction of total carbon to the deep ocean compared
to OAE in the global ocean (Nagwekar et al 2024).
However, this contrasts with month-long pulsed OAE
studies, which report low efficiencies in subduction
regions due to low residence times of the water masses
at the ocean surface and subsequent alkalinity loss to
the deep ocean (Jones et al 2014, Bach et al 2023, He
and Tyka 2023). Note that ocean-only models estim-
ate the ‘capture efficiency’ of OAE due to prescribed
atmospheric CO, and exclusion of climate feedbacks
and thus tend to overestimate OAE efficiency globally
and regionally compared to ESMs (‘Earth System effi-
ciency, Schwinger et al 2024).

Motivated by this discrepancy, this study quan-
tifies the OAE efficiency of deep and bottom water
formation regions in the Southern Ocean, Northwest
Atlantic and Norwegian-Barents Sea region using a
fully coupled, emissions-driven ESM for the 21st
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century. We assess whether the high regional effi-
ciency previously identified in an ocean-only model
(Nagwekar et al 2024) holds under a more compre-
hensive ESM setup that represents carbon and cli-
mate feedbacks. In doing so, we also consider how
future emissions pathways influence the effective-
ness of OAE in both regional and global deploy-
ments by simulating OAE under SSP1-2.6 (low-
emissions, peak-and-decline) and SSP3-7.0 (high-
emissions) scenarios. Furthermore, ensemble simu-
lations are used to account for the often neglected
uncertainty arising from internal climate variability
in the ESM, which may pose a significant challenge
for monitoring, reporting, and verification (MRV; Ho
etal 2023) of OAE.

2. Methods

The simulations were carried out using the Alfred
Wegener Institute ESM (AWI-ESM-1-REcoM, Danek
et al 2023), based on the AWI Climate Model (AWI-
CM1; Semmler et al 2020) but includes the ocean
biogeochemistry model REcoM and incorporates
dynamic vegetation (Hauck et al 2013, Schourup-
Kristensen et al 2014; for details see Text S1).
The ocean-circulation and biogeochemical compon-
ents used in this study share the same initial con-
ditions, horizontal resolution, carbonate chemistry
routines, air-sea gas exchange coefficients, and KPP
vertical mixing scheme as the ocean-only setup of
Nagwekar et al (2024). The main difference is that the
ocean-only configuration of Nagwekar et al (2024)
uses FESOM2.1 with finite-volume numerical core
(Koldunov et al 2019), coupled to the biogeochem-
ical model REcoM3 with two phytoplankton and two
zooplankton functional types (Giirses et al 2023). In
contrast, the ESM used here employs FESOM 1.4 with
a finite-element numerical core (Wang et al 2014),
coupled to REcoM2 with two phytoplankton and one
zooplankton functional type. Importantly, the ESM
also uses interactive rather than prescribed atmo-
spheric CO,, thereby allowing ocean—atmosphere
interactions in response to a change in radiative
forcing.

For this study, we start from a 970 year emissions-
driven spinup under preindustrial forcing fol-
lowing the CMIP6 protocol (Eyring et al 2016),
and branched three historical simulations, spaced
25 years apart, covering 1850-2014 following the
C4MIP ‘esm-hist’ protocol (Jones et al 2016). These
three ensemble members represent internal climate
variability arising from distinct initial conditions.
Subsequently, we conducted future scenario sim-
ulations (2015-2100) for each ensemble member
under a high-emission (SSP3-7.0) and a low-emission
(SSP1-2.6) pathway, following the C4MIP scenario
protocol (Jones et al 2016; for details see Text S2),
referred to as control (CTRL) simulations. The OAE
simulations are branched off in 2030 from their
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Figure 1. Red regions represent the alkalinity deposition
mask for the subduction regions in the Southern Ocean,
Northwest Atlantic and the Norwegian-Barents Sea region.

respective CTRL and are computed until the end
of 2100.

We simulate the three ensemble members for
global OAE (GLO-ALK) and subduction regions
OAE (SUB-ALK; figure 1; for details see Text S3)
with continuous and equal alkalinity addition per
area (0.05 mol m? yr~!) from 2030 to 2100. For
GLO-ALK, 0.082 Pmol yr~! of alkalinity is depos-
ited (equivalent to 3 Pg yr~!' olivine deposition;
Kohler et al 2013, Hauck et al 2016), which substan-
tially exceeds the current global olivine production
(0.0078-0.009 Pg yr~! in 2018, Caserini et al 2022).
In SUB-ALK, 0.018 Pmol yr~! alkalinity is deposited
(equivalent to 0.66 Pg yr~! olivine). In both cases,
added alkalinity is scaled with relative sea-ice cover in
each grid cell and time-step, with no alkalinity addi-
tion in fully ice-covered cells. Hence, due to shrink-
ing sea-ice cover towards the end of the century, 2.6%
and 5.9% more alkalinity was added in the 2090s
compared to the 2030s for global and regional OAE
respectively, under SSP3-7.0 (table 1).

The OAE efficiency is calculated as the ratio
of excess volume-integrated dissolved inorganic car-
bon (DIC) to excess volume-integrated alkalinity
(nCO, = ADIC/AAIk; Renforth and Henderson
2017). It accounts for the accumulated increase in
DIC and alkalinity relative to CTRL (Nagwekar et al
2024). In order to also consider carbon uptake and
storage that occurs due to OAE but outside the
regional deployment regions, we report efficiencies
calculated from globally integrated ADIC and AAlk
for GLO-ALK and SUB-ALK (table 1).

3. Results and discussion

3.1. Variability in the oceanic CO, uptake in
response to OAE

Alkalinity perturbation globally and in the subduc-
tion regions enhances oceanic CO, uptake through-
out the century compared to the CTRL simu-
lation (figure 2(a)), although regional differences
arise between ensemble members due to ocean—
atmosphere interactions (figures 3(a)—(c)). In addi-
tion to the expected lower excess CO, uptake in SUB-
ALK compared to GLO-ALK due to the lower amount
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of added alkalinity, we detect a substantial scenario
uncertainty that varies over the course of the simula-
tion and not uniformly across experiments (table 1).
For SUB-ALK, the additional CO, uptake is lower
by 18.8% in SSP1-2.6 than in SSP3-7.0 through-
out the simulation. Notably, for GLO-ALK, the addi-
tional CO, uptake is higher in the 2030s (although
within ensemble uncertainty), but lower in the 2090s
in the low compared to the high-emissions scen-
ario. All experiments, except GLO-ALK (SSP1-2.6),
show increasing additional CO, uptake over time,
driven by delayed ocean—atmosphere equilibration
(Jones et al 2014, Bach et al 2023), elevated ocean
carbonate chemistry sensitivity to enhanced alkalin-
ity at the end of the century in a high-CO, world
(Hauck et al 2016), and the increasing air—sea pCO,
disequilibrium in SSP3-7.0 (Schwinger et al 2024).
The GLO-ALK (SSP1-2.6) shows a slight decline in
additional CO, uptake but remains within ensemble
uncertainty (table 1).

The OAE efficiencies of GLO-ALK and SUB-ALK
under the SSP3-7.0 scenario converge in the 2090s
(0.71-0.73), which is in line with other OAE stud-
ies under a high emissions scenario using an ESM
(e.g. 0.72-0.78; Feng et al 2017, Palmiéri and Yool
2024). We show that, in contrast to the high emis-
sions scenario, the efficiencies under the SSP1-2.6
scenario are 12%-15% lower, ranging from 0.60 to
0.64 over the 2090s. This reduction is primarily due to
the decreasing atmospheric CO, concentration under
SSP1-2.6, which reduces the air—sea pCO, disequilib-
rium, along with a higher buffer capacity under SSP1-
2.6, which decreases the sensitivity to alkalinity addi-
tion (Schwinger et al 2024).

Furthermore, regional OAE efficiency shows sub-
stantially higher uncertainty across its ensemble
members in the first 20 years (SSP1-2.6: 38.4%; SSP3-
7.0: 55.5%) than the global OAE experiments (SSP1-
2.6: 5.9%; SSP3-7.0: 8.5%; figure 2(b)). This pro-
nounced uncertainty in SUB-ALK is driven by differ-
ences in physical conditions across ensemble mem-
bers. Variations in ocean temperature, circulation,
and atmospheric forcing, particularly in parameters
such as mixed layer depth (MLD), wind speed, and
sea surface temperature (SST), which strongly regu-
late the air-sea CO, exchange, can lead to substan-
tial fluctuations in regional carbon uptake (figure 3).
Additionally, differences in sea-ice cover can influence
the spatial extent of ice-free ocean available for alka-
linity addition, altering both the magnitude and dis-
tribution of the perturbation. While similar physical
variability occurs in the GLO-ALK ensemble mem-
bers, the global distribution of alkalinity addition
smooths out regional anomalies. In SUB-ALK, by
contrast, the same physical variabilities among the
ensemble members have a more pronounced impact
because they are imposed on a smaller baseline
flux. However, as the alkalinity anomaly is gradually
redistributed by ocean circulation beyond the initial



Table 1. Amount of alkalinity added and response of the Earth System to the ocean alkalinity enhancement under the SSP3-7.0 and SSP1-2.6 emission scenarios. We report added alkalinity after scaling with sea-ice cover, excess of

oceanic CO; uptake (AFCO,), the efficiency metric nCO, that is calculated as the volume-integrated excess dissolved inorganic carbon (DIC) over volume-integrated excess alkalinity over the global ocean, the cumulative changes
in air-sea (AFCO; ocean cumulative) and air-land CO, flux (Aland CO; flux cumulative). We further list the increase in the DIC concentration in the top 1 km, below 1 km of the global ocean and percent of carbon stored below
1 km, changes in the atmospheric CO, mixing ratio and the surface air temperature (SAT; 2 m). The numbers are calculated as OAE experiment minus CTRL and are reported as an average over the 2030s, 2090s and the year 2100.
Alkalinity added in the year 2100 represents the cumulative value.

Simulations Alkalinity added [Pmol yr‘l] AFCO; [PgC yr‘l] 1nCO, (ADIC/AAIkK) AFCO; ocean cumulative [PgC]
SSP3-7.0
2030s 2090s 2100 [Pmol] 2030s 2090s 2030s 2090s 2030s 2090s 2100
GLO-ALK 0.078 0.080 5.57 0.53 + 0.09 0.75 + 0.16 0.46 £ 0.05 0.73 £0.01 2.67 £0.21 45.28 £0.76 49.54 £ 0.74
SUB-ALK 0.017 0.018 1.28 0.13 +0.10 0.20 + 0.15 0.38 +0.23 0.71 £ 0.03 0.59 + 0.22 10.10 £ 0.51 11.21 £0.54
SSP1-2.6
GLO-ALK 0.078 0.078 5.51 0.62 + 0.10 0.59 + 0.09 0.52 £ 0.03 0.64 £ 0.03 3.10 = 0.14 38.93 £+ 1.56 41.76 £ 1.57
SUB-ALK 0.018 0.018 1.27 0.10 £ 0.10 0.19 + 0.15 0.51 £0.24 0.60 £ 0.04 0.62 +£0.21 8.42 + 0.56 9.13 £ 0.62
Simulations ADIC in top 1 km [PgC] ADIC below 1 km [PgC] ADIC below 1 km [%]
SSP3-7.0
2030s 2090s 2100 2030s 2090s 2100 2030s 2090s 2100
GLO-ALK 2.08 £ 0.45 41.27 £0.77 45.32 £ 1.29 0.11 + 0.55 1.32 £0.50 1.16 £0.72 5.02 4 35.8 310+ 1.4 2.50 + 1.9
SUB-ALK 0.26 £+ 0.32 9.50 + 1.00 10.23 £ 1.49 0.19 + 0.25 —0.084 4+ 0.93 0.27 £1.79 42.22 +43.9 —0.89 £ 12.0 2.57 +20.3
SSP1-2.6
GLO-ALK 2.58 £+ 0.25 34.90 + 1.34 37.06 £ 1.46 0.17 £ 0.24 1.51 £0.48 2.20 £0.82 6.18 +13.4 415+ 1.5 5.60 + 2.5
SUB-ALK 0.81 £ 0.23 8.04 £ 0.53 8.64 4+ 0.33 —0.13£0.20 —0.21 £1.20 0.065 £ 0.85 —19.1 +47.9 —2.68 £20.4 0.75 + 12.8
Simulations AlLand carbon cumulative [PgC] AAtmospheric CO; [ppm] ASAT [°C]
SSP3-7.0
2030s 2090s 2100 2030s 2090s 2100 2030s 2090s 2100
GLO-ALK —0.14 £ 2.10 —4.17 £ 2.66 —3.56 + 3.39 —0.77 £ 0.64 —18.57 £ 0.99 —20.43 +0.59 0.005 £ 0.066 —0.053 £+ 0.092 —0.043 +0.18
SUB-ALK —1.44 £ 3.11 —0.73 £ 2.64 —1.99 £+ 3.0 0.28 + 0.95 —4.35 £+ 0.89 —3.6+1.12 0.01 £ 0.088 —0.016 £ 0.076 —0.054 £+ 0.053
SSP1-2.6
GLO-ALK —332+ 1.1 —11.2 +4.70 —9.29+5.1 0.19 4+ 0.35 —12.43 £ 1.57 —14.67 +2.08 0.027 £ 0.057 —0.13 £0.10 —0.062 £ 0.022
SUB-ALK —0.64 £+ 1.30 —4.58 £+ 2.31 —3.45+1.74 0.17 + 0.38 —1.83 £ 1.06 —2.25+1.21 0.011 £ 0.071 —0.027 £ 0.11 0.069 £ 0.11
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Figure 2. Globally integrated a) ocean CO, uptake and b) OAE efficiency nCO, (volume-integrated increase in dissolved inor-
ganic carbon divided by the volume-integrated increase in alkalinity relative to CTRL) in global (GLO-ALK; dashed lines) and
subduction region (SUB-ALK; solid lines) OAE experiments for SSP3-7.0 (green) and SSP1-2.6 (purple) scenarios. Shading
shows standard deviation over ensemble members. Bars show mean differences over 2090-2099 relative to CTRL for SUB-ALK
(plain bars) and GLO-ALK (hatched bars). ¢) Increase in oceanic CO; uptake relative to CTRL versus added alkalinity averaged
over 2090-2099. Solid gray (black) line shows linear fit over previous study results using ocean-only and ESMs in high- and low-
emissions scenarios including (excluding) Gonzélez and Ilyina (2016). For SUB-ALK, the markers for the SSP1-2.6 and SSP3-7.0
simulations differ only slightly and therefore overlap entirely (for both ocean-only model (Nagwekar et al 2024): crosses, and the

ESM used here: dots).

regions of addition, the influence of local variabil-
ity diminishes, leading to a reduction in ensemble
spread over time for SUB-ALK. Given that the early
decades are critical for real-world deployment, such
high variability in regional OAE efficiency during
this period can pose a substantial challenge for MRV.
In comparison, ocean-only model studies that do
not include coupled feedbacks have reported higher
efficiencies, ranging from 0.85-0.95 for both global
and regional OAE following the larger OAE-induced
ocean CO, uptake (Kohler 2020, Burt et al 2021,
He and Tyka 2023, Wang et al 2023, Nagwekar et al
2024). When comparing our simulations with ocean-
only simulations from Nagwekar et al (2024), carbon
feedbacks reduced the efficiency by 14% and 16.5%
under SSP3-7.0, with stronger reductions of 19% and
24% under SSP1-2.6 for global and regional OAE,
respectively. Moreover, the scenario sensitivity is lar-
ger in our ESM simulations where the efficiency is
reduced by 12%-15% under SSP1-2.6 as compared
to SSP3-7.0. In contrast, the ocean-only simulations
have a smaller reduction of 7.1% due to the absence of
an interactive carbon cycle. Despite the higher com-
putational costs, the ESM explicitly represents car-
bon and carbon—climate feedbacks, thereby helping

5

to elucidate the effect of these feedbacks on OAE
outcomes.

The CO, uptake change scales linearly with the
amount of added alkalinity, as also seen in other ESMs
and ocean-only models (figure 2(c)). This mirrors the
fact that the effect of OAE on ocean carbonate chem-
istry is well understood and uniformly represented
across ESMs and ocean-only models. For instance,
when adding as much alkalinity as in our GLO-ALK
experiment to coastlines globally, the OAE-induced
excess CO, uptake is comparable to our SSP3-7.0
emission scenario simulation (0.8 PgC yr~—!, Palmiéri
and Yool 2024). Acknowledging existing gaps in the
representation of abiotic feedbacks to alkalinity addi-
tion, this implies that the regional differences, car-
bon and climate feedbacks, and scenario sensitivity
are dwarfed relative to the scaling of the oceanic CO,
uptake change by the added amount of alkalinity.
Accordingly, higher alkalinity deposition globally or
regionally (0.25 and 1.4 Pmol yr™!) results in pro-
portionally higher excess CO, uptake (Ilyina et al
2013, Keller et al 2014, Gonzélez and Ilyina 2016,
Sonntag et al 2018). The comparison further confirms
that the ocean-only models show higher excess CO,
uptake than ESMs for the same alkalinity addition
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Figure 3. Spatial patterns for changes in the air—sea CO; flux relative to CTRL (AFCO;) for each ensemble member averaged
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(figure 2(c)). For example, under both high- and
low-emissions scenarios, depositing 0.078 Pmol yr—!
of alkalinity globally using an ocean-only setup
increased the CO, uptake by 0.8-1.0 PgC yr—!
(Hauck et al 2016, Nagwekar et al 2024), which
is 0.1-0.2 PgC yr~! higher than in the emissions-
driven ESM simulation GLO-ALK. Similarly, Burt
et al (2021), using an ocean-only model with the
same alkalinity addition (0.25 Pmol yr~!;2020-2100)
as in the ESM studies of Keller et al (2014) and
Lenton et al (2018), reported a slightly higher CO,
uptake by 0.1 PgC yr—! compared to the ESM stud-
ies. This difference is attributed to carbon and cli-
mate feedbacks in the ESMs and thus confirms that
ocean-only studies provide an upper limit estimate
of the increase in excess CO, uptake (Schwinger et al
2024).

In an ocean-only setup, global and subduction
regions OAE revealed nearly uniform spatial pat-
terns of CO, flux changes relative to CTRL (AFCO,),
with consistent positive anomalies (i.e. higher uptake)
under both emission scenarios (Nagwekar et al
2024). In contrast, ESM simulations display more
regional heterogeneity in AFCO,, with negative
anomalies locally (FCO, lower in OAE than in
CTRL, i.e. lower uptake) caused by climate feedbacks
under both scenarios (figures 3(a)—(f); supplement
figure S5). Consequently, each ensemble member

exhibits distinct regional patterns due to specific
land—ocean—atmosphere interactions. For instance,
in SUB-ALK, positive AFCO, (FCO, higher in
OAE than in CTRL) occurs predominantly in the
Southern Ocean, where we deposit alkalinity, but
the Weddell Sea response varies across ensemble
members. The North Atlantic also shows ensemble-
member dependent results, with the first ensemble
member in SUB-ALK exhibiting a negative AFCO,,
while the other two ensemble members show a pos-
itive anomaly (figures 3(d)—(f)). This response is
likely linked to the variable deep mixing in these
regions. In summary, these experiments illustrate
how the spatial CO, flux response to OAE is modi-
fied by internal climate variability and land—ocean—
atmosphere interactions.

The differences of CO, flux anomalies between
ensemble members can be explained through well-
known drivers of air—sea CO, fluxes (Takahashi et al
2009) that seemingly vary between ensemble mem-
bers. Here, we illustrate this through maps of cor-
relations between CO, flux anomalies with MLD
(as a proxy for mixing), wind speed (one of the
major drivers of gas-exchange) and SST anom-
alies (as a proxy for solubility). We find signific-
ant correlations throughout most of the global ocean
(figures 3(g)—(i)) that are robust across ensemble
members (figure S3-S7). Higher CO, uptake in
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response to OAE occurs when the MLD is shallower,
wind speeds are stronger, and SST is lower compared
to the CTRL.

In our comparison, we argue that the crucial dis-
tinction in the models used is not the specific ocean or
biogeochemical model version (FESOM2.1-REcoM3
in Nagwekar et al (2024) versus FESOM1.4—-REcoM2
coupled to ECHAM-JSBACH in the ESM used here),
but the fact that only the ESM includes an interact-
ive atmosphere and land surface with freely evolving
atmospheric CO, and allows for ocean—atmosphere
interactions in response to altered radiative forcing
(Fedorov 2009, Oschlies 2009). Likewise, compar-
ing various different models, model-structural dif-
ferences appear to be of secondary importance for
the metrics analyzed here. To first order and on the
spatiotemporal scales considered here, the simulated
OAE response scales with the amount of alkalinity
addition in both our ocean-only and ESM studies
and other OAE studies (figure 2(c)), and depend-
ence on the specific biogeochemical module is small
because the signal is dominated by carbonate chem-
istry and almost all studies employ near-identical
carbonate-system solvers (Friedlingstein et al 2025).
Differences among ocean circulation models likely
also lead to only modest differences for the predom-
inantly surface-driven OAE response, especially on
large temporal and spatial scales, acknowledging the
potentially important differences in simulated mixed-
layer depth, particularly on smaller temporal and
regional scales. Consequently, the primary cause of
the deviations between ocean-only and ESM OAE
outcomes is the interactive ocean—atmosphere—land
carbon cycle and the physical ocean—atmosphere
interactions in response to changes in radiative for-
cing via OAE: (i) carbon feedbacks lead to lower
globally integrated OAE-induced CO, flux anom-
alies and efficiencies in ESMs compared to models
with prescribed atmospheric CO, (ocean-only mod-
els or atmospheric CO, concentration-driven ESMs,
Oschlies 2009, Schwinger et al 2024); (ii) carbon—
climate feedbacks act through radiatively driven
changes in mixed-layer depth, winds, SST, and the
freshwater cycle and, together with the carbon feed-
back, thus generate the spatially patchy CO, uptake
anomalies and a wide ensemble spread seen in the
ESM simulations.

3.2. Long-term carbon storage in form of dissolved
inorganic carbon

With regard to changes in the DIC inventory
(ADIC), the additional DIC in the top 1 km
of the ocean scales between the GLO and SUB
experiments with the amount of alkalinity added
(table 1), but is lower in the low (GLO-ALK:
349 4+ 1.34 PgC; SUB-ALK: 8.04 + 0.53 PgC)
than in the high-emission scenario (GLO-ALK:
41.3 £+ 0.8 PgC; SUB-ALK:9.5 £ 1.0 PgC). Carbon
accumulation due to OAE is positive throughout
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the top 1 km, with low interannual variability and
ensemble spread (figure 4(a)). Below 1 km, ADIC
shows high annual fluctuations and variability across
ensemble members, with lower accumulation than
CTRL during certain decades (figure 4(b)). This vari-
ability on a global and regional scale arises from cli-
mate feedbacks to OAE and internal climate vari-
ability in the ESM. The role of climate feedbacks
is evident by SUB-ALK transferring, on average, a
relative 8.4 times more excess carbon below 1 km
than GLO-ALK in the 2030s (SSP3-7.0), but accumu-
lated less excess carbon below 1 km in the 2090s with
large variability across the ensemble. Under SSP1-2.6,
SUB-ALK has negative ADIC below 1 km through-
out most of the simulation period indicating a larger
carbon redistribution than addition through OAE.
In an ocean-only setup without climate feedbacks,
SUB-ALK transferred a ~2 times higher fraction of
the total carbon uptake to the deep ocean than GLO-
ALK (2090s, both emission scenarios, Nagwekar et al
2024). The carbon redistribution in the water column
could, in principle, be sensitive to the choice of ocean
circulation model when comparing the ocean-only
simulations from Nagwekar et al (2024) with the ESM
used here. However, the strongly divergent responses
across the three ESM ensemble members for both
GLO- and SUB-ALK suggest that such structural dif-
ferences are not the dominant factor responsible.
Instead, the contrast with the ocean-only results is
most plausibly linked to carbon—climate feedbacks
and the associated internal variability arising from
ocean—atmosphere interactions (also see section 3.1).
The internal climate variability is depicted by the fact
that for one of the ensemble members under SSP3-
7.0, SUB-ALK accumulates relatively more carbon
than GLO-ALK in the 2090s, whereas the other two
ensemble members show the opposite. This illustrates
that without ensemble simulations, the large impact
of internal climate variability on deep ocean carbon
storage would be overlooked.

Along with temporal variability, ADIC also
exhibits spatial variability (figures 4(c)—(f)). Positive
ADIC occurs in the top 1 km, with maximum accu-
mulation in the sub-tropical gyres and the Arctic,
for both emissions scenarios. Below 1 km, ADIC
increases prominently in the North Atlantic and along
the Antarctic coast (figures 4(d) and (f)). Surprisingly,
some negative ADIC anomalies also occur in the
surface ocean. As this is not found in the ocean-
only simulations, this must be driven by climate
feedbacks that leads to redistribution of DIC within
the water column. Possible processes that may play
a role in these feedbacks are altered ocean circula-
tion, mixing, biological productivity in the euphotic
zone, and shifts of ocean fronts (Doney et al 2009,
Clement and Gruber 2018, Keppler et al 2023). These
confounding effects present a challenge for MRV
if they rely on local measurements of changes in
DIC and alkalinity inventories due to OAE. While
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(SUB-ALK; solid lines). Lines without (with) circle markers represent ESM (ocean-only; Nagwekar et al 2024) simulations.
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model-based approaches inherently account for the
uptake and subsequent redistribution or outgassing
of carbon, point-based observational methods risk
capturing only the localized drawdown signal while
missing compensatory decreases elsewhere in the DIC
inventory.

3.3. Impact of OAE on atmospheric CO, surface
air temperature (SAT) and land carbon fluxes

A crucial outcome of OAE for climate change
mitigation is the atmospheric CO, reduction.
GLO-ALK and SUB-ALK reduce atmospheric CO,
by 20.4 £+ 0.6 ppm and 3.6 £ 1.1 ppm, respectively,

in 2100 under SSP3-7.0 (figure 5(a)). The reduc-
tion in atmospheric CO; is substantially lower under
SSP1-2.6 with a reduction of 14.7 + 2.1 ppm (GLO-
ALK) and 2.3 + 1.2 ppm (SUB-ALK; figure 5(a);
table 1). This is because under the SSP1-2.6 emission
scenario, the background atmospheric CO, concen-
tration peaks in the mid-2060s and decreases there-
after. The effect of OAE depends on the emissions
pathway, with the efficiency reducing after the atmo-
spheric CO, concentration peaks and thus, the air—
sea disequilibrium decreases (Schwinger et al 2024).
Such emissions scenario dependency thus becomes
crucial in order to determine realistic carbon removal
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Figure 5. Time series for the change in (a) atmospheric CO, and (b) surface air temperature relative to the CTRL in global OAE
(GLO-ALK; dashed lines) and subduction region OAE (SUB-ALK; solid lines) under SSP3-7.0 (green) and SSP1-2.6 (purple)
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the relationship between (c) added alkalinity per year and the corresponding reduction in atmospheric CO; concentration in
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efficiency and corresponding considerations for
designing robust monitoring frameworks of OAE
on a century long timescale.

The reduction in atmospheric CO; in 2100 under
both emissions scenarios scales linearly with the
added amount of alkalinity (figure 5(c), R = 1).
This linear relationship persists across various stud-
ies, despite differences in model configuration,
resolution, and underlying assumptions, such as
the region, period, method, and material used for
OAE deployment. For example, Palmiéri and Yool
(2024) simulated a decrease of 20.8 ppm in atmo-
spheric CO, by 2100 from OAE along global coasts
(0.078 Pmol yr—!), which is comparable in terms
of added alkalinity and CO, reduction to our GLO-
ALK experiment under SSP3-7.0. This suggests a
limited sensitivity of atmospheric CO; reduction to
region of OAE deployment, consistent with findings
by Lenton et al (2018), who reported a CO, reduction
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of 82-86 ppm for 0.25 Pmol yr~! alkalinity addition
globally and regionally by the end of the 21st cen-
tury. Unlike the other studies, which apply a con-
tinuous alkalinity deployment method, Seifert et al
(2025) implement a gradually increasing addition of
alkalinity over the deployment period (2040-2100).
They also account for carbonate system effects on
phytoplankton, where elevated alkalinity can enhance
coccolithophore calcification until substrate limita-
tion constrains growth of all phytoplankton groups
and coccolithophore calcification. For comparison
in figure 5(c), we use the time-averaged alkalinity
addition rate over the full deployment period from
Seifert et al (2025). We find that neither the differing
deployment scheme nor the inclusion of biological
feedbacks have any substantial effect on the linear
fit. We note, however, that no studies mentioned
in figure 5(c) consider the secondary mineral pre-
cipitation or mineral dissolution effect of OAE (see
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section 3.4). Further model development is needed to
test if the linearity still holds when considering these
processes.

Further, the atmospheric CO, reduction simu-
lated in our experiments and in other studies is small
compared to the historical atmospheric CO, increase
due to fossil fuel emissions and land-use change.
This re-emphasizes the need for drastic emissions
reductions prior to application of negative emissions
technologies. It is common sense that the human
societies are more likely to achieve the climate targets
and minimize negative impacts on marine ecology
when applying OAE in low-emissions scenarios (Ho
2023). Yet, when only looking at nCO, as the met-
ric of OAE efficiency, OAE is 28.1% and 36.1% less
effective in reducing atmospheric CO, for global and
regional OAE, respectively, under the low-emissions
scenario compared to the high-emissions scenario by
2100. Although most OAE modeling studies using an
ESM are based on high-emissions scenarios, our res-
ults show that the atmospheric CO, reduction is not
directly transferable between scenarios. Therefore,
scenario dependency must be considered in climate
policy decisions and the design of future mitigation
pathways.

The atmospheric CO, reduction stimulated fluc-
tuations in surface air temperature (SAT; 2 m).
Compared to the CTRL simulation, SAT is reduced
by a minor 0.053 + 0.092 °C (GLO-ALK) and
0.016 £+ 0.076 °C (SUB-ALK) in the 2090s under
SSP3-7.0 and by 0.13 £ 0.10 °C (GLO-ALK) and
0.027 4+ 0.11 °C (SUB-ALK) under the SSP1-2.6
emissions scenarios. The largest reduction occurs in
GLO-ALK under SSP1-2.6, but all changes remain
within the internal variability. In addition, the inter-
annual variability is strong and SAT can at times
also become higher than in the CTRL simulation.
A comparison with other studies indicates that the
response of SAT to atmospheric CO, reduction is
highly model dependent (figure 5(d)). In contrast
to the well understood carbon system response to
OAE (figure 5(c)), the SAT signal depends on the
model’s equilibrium climate sensitivity (ECS). For
instance, Palmiéri and Yool (2024) show a higher
SAT reduction for a similar decrease in atmospheric
CO; as our GLO-ALK under the high emissions scen-
ario (figure 5(d)), due to the higher ECS of UK-
ESM (5.4 °C; Sellar et al 2019) compared to AWI-
ESM (3.3 °C; Semmler et al 2021). Further, a lag of
approximately a decade in SAT response following
CO; decline due to OAE has been reported (Jeltsch-
Thommes et al 2024). However, over a 70 years sim-
ulation, this lag probably has only a small effect.
Our simulations under both emissions scenarios as
well as previous studies under a high emissions scen-
ario suggest that the scale of OAE applied (0.018—
0.25 Pmol yr—!) results in a negligible SAT decrease
by 2100 (figure 5(d)). Thus, at this scale, OAE should
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be considered as part of a portfolio of other CDR tech-
niques.

The total atmospheric carbon inventory is
reduced by OAE, though a part of the enhanced ocean
storage is compensated by a reduced land sink. For
example, in GLO-ALK SSP3-7.0, the atmospheric car-
bon inventory in 2100 is reduced by 43.4 &+ 1.3 PgC
relative to CTRL, of which 49.5 £ 0.7 PgC are taken
up by the oceans, but with a compensation of 7.3%
or 3.6 £ 3.4 PgC by reduced land uptake (table 1). In
GLO-ALK (SSP1-2.6), the total atmospheric carbon
inventory is reduced by 31.2 4 4.4 PgC, i.e. 28% less
than in SSP3-7.0, which is due to a 16% weaker addi-
tional ocean carbon storage, but a 158% larger land
carbon loss. Thus, under the low emissions scenario,
the decreasing background atmospheric CO, concen-
tration, after peaking in the 2060s, causes a relatively
lower uptake of additional CO, by the oceans and a
substantially stronger weakening of the land carbon
sink. Together, these effects result in a higher reten-
tion of CO; in the atmosphere in response to global
and regional OAE. In SUB-ALK (SSP1-2.6), up to
38% of the additional ocean carbon uptake is offset
by the land sink (table 1), even though the absolute
decrease in land uptake is similar between SSP1-2.6
and SSP3-7.0 and largely within their uncertainty
ranges (figure 6(b)). This large fractional offset in
SUB-ALK (SSP1-2.6) mainly reflects differences in
additional ocean carbon uptake between SSP1-2.6
and SSP3-7.0 by the end of the century, due to the
decline in background atmospheric CO, after the
mid-2060s. Furthermore, it must be noted that the
absolute decrease in land uptake is stronger in global
than in regional OAE, however, in regional deploy-
ment, fluxes operate on smaller baseline ocean carbon
fluxes, which may translate into a larger relative offset.

The divergences of the land carbon sink between
the scenarios occurs in the mid 2060s, following the
peak in atmospheric CO, in SSP1-2.6 (figure 6(b)),
where the most pronounced absolute weakening of
the land sink occurs in GLO-ALK (SSP1-2.6) and
the largest weakening relative to the enhanced ocean
sink occurs in the SUB-ALK (SSP1-2.6). In SUB-
ALK, changes in the land carbon sink in SSP3-7.0
remain indistinguishable from zero throughout the
21st century, whereas a clear weakening emerges from
2060 for SSP1-2.6. In GLO-ALK, deviations from zero
occur after 2080 in SSP3-7.0, indicating a time of
emergence of around 50 years. Generally, OAE can
affect the land carbon cycle through alterations in the
atmospheric CO,, SAT and precipitation. A reduction
in atmospheric CO, diminishes the CO; fertilization
effect, leading to a lower rate of carbon uptake by
vegetation (Jeltsch-Thommes et al 2024) and changes
in the SAT and precipitation influence the vegeta-
tion dynamics and soil carbon storage (Adloff er al
2018). Previous studies have also reported a weaken-
ing of the land carbon sink in both global and regional
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OAE experiments (Keller et al 2014, Gonzéilez and
Ilyina 2016, Lenton et al 2018, Palmiéri and Yool
2024). Here, we further show that this weakening
is emission-scenario dependent for both global and
regional OAE.

3.4. Limitations

We conducted idealized OAE experiments assum-
ing instantaneous and complete dissolution of the
added alkaline mineral in the surface ocean, in line
with previous studies (Keller et al 2014, Hauck
et al 2016, Lenton et al 2018, Butenschon et al
2021). An analogous outcome could be expected
when alkalinity is added in aqueous form, as pro-
duced by reactor-based approaches (Eisaman et al
2023). In contrast, if powdered alkaline minerals are
used instead, dissolution dynamics dependent on
ambient seawater temperature, pH, and particle size
becomes relevant. Previous studies show that dis-
solution is most efficient when finely ground min-
erals (~1 pm) are dissolved in warmer and more
acidic waters (Kohler et al 2013, Feng et al 2017,
Palmiéri and Yool 2024). However, observational data
required to develop process-based parameterizations
for dissolution and sinking rates in models remain
scarce. Moreover, assuming that energy production is
not fully decarbonized in the near term, this study
neglects the energy costs associated with mining,
grinding, transport, and distribution of solid miner-
als, which would lower the overall carbon removal
efficiency.

Another unaddressed risk in our study is second-
ary calcium carbonate precipitation at high alkalin-
ity concentrations, that may result in runaway pre-
cipitation and reduced OAE efficiency (Moras et al
2022, Hartmann et al 2023). Suitner et al (2024)
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observed runaway precipitation when aragonite sat-
uration states (£, ) exceeded a threshold of 2.5-5.0. In
another experiment, secondary precipitation drastic-
ally reduced the CDR potential from 0.8 to 0.1 mol
CO; per mol alkalinity above an 2, threshold of ~7
(Moras et al 2022). Our model simulations reached a
maximum €2, value of 2.6-2.8 at individual surface
grid points and months in the 2090s. Acknowledging
that values at smaller time steps could be larger, this
nevertheless suggests that critical levels of €2, are
likely not widely reached in our global and regional
OAE experiments.

While we added pure alkalinity to our model
without accounting for potential biological effects,
the different alkaline minerals used for OAE can differ
considerably in terms of efficiency, and side effects on
marine ecosystems. Reported effects include species-
specific reduction in growth rates of diatoms and
phytoplankton (Ferderer et al 2022, Guo et al 2022)
and disruption of seafloor ecosystem due to sink-
ing of undissolved alkaline mineral grains used for
OAE (Feng et al 2017, Fuhr et al 2022). A model
study that considers interactions between OAE and
phytoplankton growth and calcification shows that
indirect effects of alkalinity addition can decrease net
primary production, and that changes in biological
production and calcification have a small but non-
negligible effect on OAE efficiency (Seifert et al 2025).
While the study presents a first attempt to account
for ecological consequences of OAE in a large-scale
ocean model, field studies remain limited and the
technology is in its infancy, leaving model projec-
tions sensitive to their choice of parameterizations.
Therefore, targeted experiments and process studies
are needed to constrain these parameterizations and
improve model fidelity.
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4, Conclusion

Our study confirms that OAE in subduction regions
can be as efficient as OAE applied globally. However,
the subduction regions are not as effective in
transferring carbon to the deep ocean and the OAE
efficiency in the ESM is lower compared to prior
ocean-only simulations (Nagwekar et al 2024). This
reduction of efficiency and deep carbon transfer is
due to the influence of carbon and climate feedbacks
and internal climate variability, which are represen-
ted in ESMs but absent in ocean-only frameworks.
Ensemble simulations further reveal that this variab-
ility introduces considerable uncertainty in the initial
two decades of regional OAE deployment. Since the
initial phase is critical for real-world application, this
early uncertainty can present challenges for MRV
strategies that rely on model-based estimates or on
only local observations.

The effectiveness of both global and regional
OAE deployments depends on the underlying emis-
sions scenario and the scenario sensitivity is under-
estimated in ocean-only models due to missing feed-
backs. Under the low-emissions pathway SSP1-2.6,
the gradual decline in atmospheric CO, concen-
trations after the mid-2060s reduces the air—sea
pCO, disequilibrium. As this disequilibrium weak-
ens, the ocean’s uptake of additional carbon dimin-
ishes, thereby reducing the overall effectiveness of
OAE. In our simulations, this scenario sensitivity led
to 27.9% and 36.1% lower atmospheric CO, reduc-
tions for global (GLO-ALK) and regional (SUB-ALK)
deployments, respectively, under SSP1-2.6 relative to
SSP3-7.0. Importantly, the land carbon fluxes offset a
relatively larger part of the enhanced oceanic uptake
in the peak-and-decline scenario SSP1-2.6 than in
the steadily increasing high-emission scenario and a
larger part in the regional than in the global OAE
experiment (up to 38%). These findings underline
the importance of accounting for emissions scenario
sensitivity when evaluating the performance of both
global and regional OAE strategies.

A consistent linear relationship was observed
between the amount of added alkalinity and both
the reduction in atmospheric CO, and increase in
oceanic CO, uptake. This linearity appears robust
across models and provides a first-order estimate
of OAE efficiency in the absence of currently unre-
solved processes such as secondary mineral precipita-
tion and mineral dissolution kinetics. While this rela-
tionship is a useful guide for current-generation mod-
els, it also points to critical areas where future mod-
eling efforts must improve by development of pro-
cess parameterizations as observational constraints
become available.

In conclusion, this study shows that while
subduction regions can be viable for OAE, their
efficiency is limited by internal climate variabil-
ity, carbon and climate feedbacks, and sensitivity
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to emissions pathways. These factors must be con-
sidered in future model-based assessments and MRV
strategies to ensure accurate quantification and eval-
uation of smaller scale regional OAE interventions.
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