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Troubleshooting common errors in 
assemblies of long-read metagenomes
 

Florian Trigodet1,2, Rohan Sachdeva    3, Jillian F. Banfield    3,4,5,6,7   & 
A. Murat Eren    1,2,8,9,10 

Assessing the accuracy of long-read assemblies, especially from complex 
environmental metagenomes that include underrepresented organisms, is 
challenging. Here we benchmark four state-of-the-art long-read assembly 
software programs, HiCanu, hifiasm-meta, metaFlye and metaMDBG, on 21 
PacBio HiFi metagenomes spanning mock communities, gut microbiomes 
and ocean samples. By quantifying read clipping events, in which long 
reads are systematically split during mapping to maximize the agreement 
with assembled contigs, we identify where assemblies diverge from their 
source reads. Our analyses reveal that long-read metagenome assemblies 
can include >40 errors per 100 million base pairs of assembled contigs, 
including multi-domain chimeras, prematurely circularized sequences, 
haplotyping errors, excessive repeats and phantom sequences. We provide 
an open-source tool and a reproducible workflow for rigorous evaluation 
of assembly errors, charting a path toward more reliable genome recovery 
from long-read metagenomes.

Second-generation sequencing technologies have enabled the recon-
struction of microbial genomes directly from environmental ‘metage-
nomes’ without cultivation1, a strategy that substantially enhanced our 
understanding of microbial diversity and function2. Yet, the relatively 
short sequencing reads produced by second-generation sequencing 
posed substantial limitations on assembly3,4, a critical computational 
step in genome recovery workflows in which reads are stitched together 
to rebuild contiguous segments of DNA (contigs) before binning, and 
often led to highly fragmented and sometimes highly contaminated 
genomes from metagenomes5–7. The emergence of third-generation 
sequencing technologies, such as those implemented by Pacific Bio-
sciences (PacBio) and Oxford Nanopore Technologies (ONT), advanced 
genome-resolved metagenomics through ultra-long8, increasingly 
accurate reads that are longer than the length of common repeats in 
many bacterial and archaeal genomes9, providing solutions for complex 

genomic puzzles with unprecedented precision10. These new opportu-
nities rely on improved long-read assembly algorithms, an area of active 
research with multiple successful software packages that can assemble 
long reads into complete chromosomes11–14. However, assessing the 
accuracy of the assembled long reads from metagenomes poses chal-
lenges, especially for complex environments with substantial diversity 
that often include poorly studied organisms.

The benchmarking of assembly algorithms typically relies on a few 
key principles, including the use of mock or simulated datasets, evalu-
ation of contig length distributions, assessment of unassembled read 
fractions, genes, functions and comparisons with other assemblers15,16. 
K-mer-based solutions17 and short-read alignment statistics have been 
effectively used to unveil structural variants as well as misassemblies 
of eukaryotic genomes18–22 including the human genome23–30. While 
the compendium of strategies offers critical tools for algorithm 
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assembled to a similar total size by all assemblers, but not the sur-
face ocean samples (Supplementary Table 2), for which metaMDBG 
produced 610% more assembled sequences compared with HiCanu 
on average. We found high-confidence read clipping events (that is, 
100% clipping at locations with at least 10× coverage) in at least one 
sample from each assembler (Supplementary Table 2). However, the 
frequency of these events normalized by the assembly size showed 
that metaFlye and metaMDBG generated up to 180 times more clipping 
events compared with HiCanu and hifiasm-meta for the same samples 
(Fig. 1b). The number of clipping events was particularly high in the 
surface ocean samples, in which assemblies from metaMDBG had over 
three orders of magnitude more clipping events compared with those 
from hifiasm-meta (Supplementary Table 2). Overall, clipping events 
affected up to 5.6% of contigs longer than 10,000 nucleotides reported 
by metaMDBG with an error rate up to 46 per 100 million base pairs 
(Mb) of assembly. We also computed the number of regions longer 
than 1,000 bp with no apparent coverage by individual long reads and 
found that the occurrence of regions that are not supported by any 
read was as pervasive as clipping events. While this issue also affected 
all assemblers (Fig. 1c and Supplementary Table 2), metaMDBG led the 
pack with up to 5.3% of all contigs longer than 10,000 nucleotides with 
zero-coverage regions.

The reporting of contig circularity was a common feature of all 
assemblers; however, the number of circular contigs in final assemblies 
also varied between algorithms (Fig. 1h and Supplementary Table 2). 
MetaMDBG generated substantially more circular contigs than other 
assemblers, notably from surface ocean metagenomes. Overall, we 
found at least one clipping event for a large proportion of circular 
contigs reported by metaMDBG (Fig. 1h), which, in some cases, repre-
sented up to 77% of the circular contigs in a sample (for example, the 
marine sample HADS 013; Supplementary Table 2).

In addition to the clipping events, we reported the frequency 
of single-nucleotide variants (SNVs) and insertion–deletion events 
(INDELs) in the assembled contigs that were not fully supported by the 
long reads. We classified such cases into two categories: (1) ‘minority 
variants’, where the final assembly included a nucleotide or an INDEL 
that did not match the most frequent variant in the supporting long 
reads (Fig. 1a,d,f), and (2) ‘unsupported variants’, a more severe case 
in which the final assembly included a nucleotide or an INDEL that did 
not occur in any of the long reads at that position (Fig. 1a,e,f). After nor-
malizing based on the assembly size, HiCanu and hifiasm-meta had the 
most minority variants, while metaFlye and metaMDBG had the most 
unsupported variants. The latter case affected thousands of genes in 
all assemblies (Supplementary Table 2), leading to genes with incorrect 
amino acid sequences owing to the impact of INDELs on open reading 
frames37,38. Our detailed investigation of individual clipping events 
associated their occurrence with a few recurring classes of erroneous 
reporting of contigs, including chimeras, premature circularization, 
haplotyping issues, false duplications and nonexistent sequences, for 
which we offer an incomplete list of examples below.

Chimeric contigs
Our inspection of contigs with a high proportion of read clipping events 
revealed chimeric contigs. In some cases, chimeras brought together 
sequences from taxa that belonged to distinct phyla (Fig. 2). Most chi-
meras brought together sequences from two distinct taxa, but cases that 
merged sequences from more than three organisms were not uncom-
mon (Fig. 2), and they sometimes combined sequences from distinct 
domains of life. In one extreme case, metaMDBG formed a sequence that 
included regions from organisms that originated from Euryarchaeota, 
Pseudomonadota, Bacteroidota and Cyanobacteria (Fig. 2). We acknowl-
edge that the list of contigs we surveyed here for chimerism is far from 
exhaustive; furthermore, relying on clipping events alone may occasion-
ally miss chimeric contigs. For instance, we stumbled upon a suspiciously 
long contig. Even though the frequency of read clipping events did not 

development, the developers of metagenomic assemblers rarely take 
into account how individual reads align to assemblies and quantify 
the rate, origins and impact of mismatches between original reads 
and final contigs. Here we assessed the extent of agreement between 
individual high-fidelity PacBio reads and assembly results reported by 
four state-of-the-art long-read assemblers, and observed a wide range 
of issues, including haplotyping errors, chimerism, premature circu-
larization and regions of contigs that are not supported by any of the 
input sequences. Assemblies of ONT long reads show similar errors31, yet 
here we limit our benchmarks to PacBio given the relatively higher base 
accuracy of PacBio reads (~99.95%, or 5 errors per 10 kilobase pair (kb)) 
compared with the ONT reads (~99%, or 100 errors per 10 kb). Overall, 
our survey offers reproducible means to identify long-read assembly 
errors and insights into their downstream implications for researchers 
who develop or use long-read assembly algorithms to consider.

Results
Our study benchmarks four state-of-the-art long-read assembly 
software programs: (1) HiCanu v2.2 (ref. 14), (2) hifiasm-meta v0.3  
(ref. 11), (3) metaFlye v2.9.5 (ref. 13) and (4) metaMDBG v1 (ref. 12), based  
on their assembly performance of 21 PacBio HiFi metagenomes 
(Supplementary Table 1). We include HiCanu in our analysis despite 
the fact that it was originally developed for genome assembly as it 
has recently been benchmarked against hifiasm-meta and metaFlye11. 
Of the 21 metagenomes we include in our benchmarks, 13 represent 
those that were also used by the authors of at least one assembly algo-
rithm to evaluate performance, and correspond to mock communi-
ties (Zymo-HiFi D6331 and ATCC MSA-1003) and anaerobic digesters 
(AD2W1, ADW20 and ADW40), as well as gut samples from humans 
(Human O1, Human O2, Human V1 and Human V2), chickens and 
sheep (Chicken, SheepA and SheepB). The remaining eight are novel 
HiFi metagenomes from the surface ocean (sample names start with 
HADS)32, a key biome that was not included in previous benchmarks 
and represents a complex ecosystem with relatively little genomic 
representation (Supplementary Table 1).

Investigating the agreement between individual long reads and 
assemblies they support requires the alignment of reads to resulting 
contigs. For this task, our study uses minimap2, a high-performance 
mapping software designed to align long reads to reference 
sequences33. While short-read alignment software such as Bowtie2 
(ref. 34) or BWA35 is typically used to perform end-to-end alignments, 
minimap2 allows premature ends in read alignments and can map the 
remainder of the read to another reference location. This so-called 
read clipping procedure is a critical tool to identify locations in the 
final assembly that is poorly supported by individual long reads. 
To gain quantitative insights into assembly artifacts, we developed 
‘anvi-script-find-misassemblies’36, a script that comprehensively sum-
marizes locations and frequencies of read clipping events, in which long 
reads are split systematically by the mapping software to maximize 
agreement between reads and assemblies, in addition to regions in 
contigs that are not supported by individual long reads.

Assembly errors are common to all long-read assemblers
Instances in which the vast majority of long reads are clipped at the 
same nucleotide position are strong evidence that the final assem-
bled sequence contains an error. However, quantifying the number 
of errors in a given assembly is not as straightforward as counting the 
clipping events as a single assembly error may result in multiple clipping 
events associated with neighboring nucleotide positions in the refer-
ence sequence (Fig. 1a). To minimize false positives in our results, and 
exclude clipping events due to within-population biological variation, 
our analyses below primarily focus on locations in long-read assemblies 
with a 100% clipping rate.

The assembly metrics differed greatly between sample types and 
assembly algorithms. For instance, all human gut metagenomes were 
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flag this 7.38-Mb contig, anvi’o assigned it a redundancy score of 100% 
because it contained two copies of every bacterial single-copy core gene. 
Our manual inspection showed that the contig metaMDBG reported from 
the sample Human O1 conjoined two sequence-discrete Lachnospiraceae 
populations (Supplementary Fig. 1).

The highly dangerous nature of chimeric contigs for downstream 
analyses is dampened by the straightforward nature of their identi-
fication by anyone who carefully investigates their data: most chi-
meric contigs that erroneously connect genomic regions from two 
or more distinct populations can be easily identified using a series of 
well-understood indicators, such as sudden shifts in GC content, read 
coverage and gene-level taxonomy, or through unexpected inventories 
of single-copy core genes (SCGs). Nevertheless, with the increasing ten-
dency of researchers to generate large metagenome-derived genome 
compendiums39–43, such evaluations are rarely, if ever, conducted. Thus, 
in an ideal world, the burden of resolving chimeras should never fall on 
the shoulders of the end users of assembly algorithms.

Premature circularization
To deliver one of the most sought after promises of long-read sequenc-
ing, most long-read assemblers contain built-in features to circularize 
contigs and report potentially complete microbial and mobile genetic 
element genomes. Premature circularization, the reporting of a contig 
as circular when it omits parts of the genome it originates from, is a 
form of error with dangerous downstream implications. Yet, our analy-
ses showed that the algorithmic features that reconstructed circular 
contigs in long-read assemblers, especially metaMDBG, and to a lesser 
degree hifhasm-meta, were far from reliable.

For instance, an archaeal genome that belongs to the genus Metha-
nothrix recovered from the AD Sludge sample as a circular genome by 
hifiasm-meta represents a clear example of the nature and implica-
tions of premature circularization. Through an analysis with addi-
tional genomes from the RefSeq collection of the US National Center 
for Biotechnology Information (NCBI), we confirmed that the cir-
cular genome was missing a large fraction of the core Methanothrix 

10,000 100,000

100,00010,000

1,000,000

1,000,000

10,000 100,000 1,000,000

1,000 100,00010,000 1,000,0001,000

Length distribution of circular
contigs (bp) Without clippings With clippings

Clipping events (min 10×
coverage) per 100 Mb

Region >1,000 bp with no
coverage per 100 Mb

INDEL

Clipping events 
with 10× coverage

Contig

Absence of continuous
support by long reads

Unsupported single­ 
nucleotide variant and 

insertion–deletion

Single­nucleotide variant and 
insertion–deletion supported 

by a minority of reads

Region with
no coverage

SNV SNV
INDEL

Mapped long reads

INDELs >50% of the
coverage per Mb

Unsupported
INDELs per Mb

Unsupported
SNVs per Mb

SNVs with departure from 
reference >50% per Mb

10

40

30

20

400

200

d e

f g

h

a b c

300

400

200

100

600

400

200

9,000

6,000

3,000

250

500

750
9,000

6,000

3,000

metaMDBGmetaFlye

hi�asm­metaHiCanu

5

10

15

20

2

4

6
150

100

50

HiCanu

hi�a
sm

­m
eta

metaFlye

metaMDBG
HiCanu

hifia
sm

­m
eta

metaFlye

metaMDBG

HiCanu

hifia
sm

­m
eta

metaFlye

metaMDBG
HiCanu

hifia
sm

­m
eta

metaFlye

metaMDBG

HiCanu

hifia
sm

­m
eta

metaFlye

metaMDBG
HiCanu

hifia
sm

­m
eta

metaFlye

metaMDBG

Fig. 1 | Assembly errors across the assemblers. a, A schematic representation 
of long reads mapping to a contig with multiple types of read disagreement 
with the reference, including INDELs and SNVs representing more than half or 
all the coverage, and clipping events spanning the entire coverage. All metrics 
for b–g are normalized by assembly size and exclude the two mock community 
metagenomes (n = 19 assemblies). For all box plots, the box represents the 
interquartile range (IQR), the central line indicates the median and whiskers 

extend to 1.5× the IQR. b, Number of clipping events supported by at least  
10 reads. c, Number of regions over 1,000 bp with no apparent coverage. 
 d,e, Number of SNVs representing >50% (d) or all (e) of the coverage at a given 
locus. f,g, Distribution of INDELs >50% of the coverage (f) or all of the coverage 
(g). h, Length distribution of circular contigs by each assembler. The darker color 
represents the distribution of circular contigs with at least one clipping event.
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pangenome (Fig. 3b, light blue), including key metabolic modules 
for methanogenesis that were common to all Methanothrix genomes 
(Fig. 3c). In this case, early circularization seemed to have occurred 
near a transposase (Fig. 3d and Supplementary Fig. 2). Nearly all the 
reads clipping on either side of the transposase had supplementary 
mapping to another contig in the assembly output (Fig. 3b,c, medium 
blue) encoding the missing metabolic module. The combination of the 
circular genome and the additional contig matched the other genomes 
in the genus-level pangenome (Fig. 3b,c, dark blue), suggesting that 
both contigs belonged to the same population, and neither of them 
were circular by themselves.

Comparing the overall accuracy of circularization across assem-
blers is difficult. For instance, low completion estimates based on 

single-copy core genes can serve as a quick filter, but not all prema-
turely circularized genomes will have low completion estimates as miss-
ing genomic content will not always contain single-copy core genes. 
Length comparisons between circular contigs and known genomes 
in public databases could offer another means of scrutiny, but this 
strategy will not be effective against poorly studied clades, or those 
that have no representation in genome repositories. Nevertheless, 
here we conservatively assumed that circular contigs that were under 
500 kb and contained at least 3 ribosomal proteins were most likely 
circularized erroneously. While this criterion is useful as a proxy for 
identifying potential assembly artifacts, we note that some naturally 
occurring small genomes may also meet these criteria44,45. Despite 
this caveat, we reasoned that the frequency with which such contigs 
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Fig. 2 | Multi-domain and multi-phylum contigs. Six contigs from metaMDBG, 
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of these reads indicates that the following portion of the read mapped to another 
contig and similar colors indicate that multiple reads continue to map on the 
same contig. The blue markers indicate large INDELs (>150 bp).
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appear across assemblers could provide a useful approximation of each 
assembler’s tendency toward premature circularization. Within this 
framework, metaMDBG reported about twice as many circular contigs 
than hifiasm-meta, and about four times more circular contigs than 
HiCanu and metaFlye (Fig. 3a). Assuming that easily identifiable events 
of premature circularization errors are reasonable proxies for the rate 
of all premature circularization errors, this result suggests that meta-
MDBG and hifiasm-meta are more prone to premature circularization 
errors compared to other assemblers, such as HiCanu and metaFlye. 
Our estimates of the rate of false circularization come very close to the 
benchmarking results shared by the authors in the original metaMDBG 

publication12, in which they report two times more circular contigs 
than hifiasm-meta and four times more circular contigs than metaFlye 
from the human gut. While the high rate of circularization is presented 
as a strength of metaMDBG in comparison to other assemblers12, our 
observations suggest that the higher rate of circularization may be a 
result of a higher tendency to report noncircular elements as circular 
(Figs. 1 and 3, Supplementary Fig. 2 and Supplementary Table 2).

Given the vast difference in quality and perception between 
a draft genome and a circular genome, it is essential for assembly 
algorithms that promise circular genomes to be conservative in their 
decision-making. The identification of prematurely circularized 
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Fig. 3 | Premature circularization of a Methanothrix genome. a, Frequency of 
circular contigs under 500 kb with a minimum of 3 ribosomal proteins for each 
assembly, excluding the two mock communities (n = 19). The box represents the 
IQR, the central line indicates the median and the whiskers extend to 1.5× the IQR. 
b, A pangenomicanalysis of all publicly available Methanothrix genomes from 
the RefSeq database of NCBI completed with the so-called circular genome of 
Methanothrix assembled from the sample AD Sludge by hifiasm-meta (light blue), 
as well as a contig from the same assembly that corresponds to the rest of the 

missing Methanothrix genome (medium blue) and the combination of these two 
contigs (dark blue). c, KEGG metabolic module completion of all genomes and 
contigs in b. d, A schematic representation of the reads mapping over a transposase 
gene in the prematurely circularized contigs (light blue in b and c) showing the lack 
of read support around the gene; the full figure is available in Supplementary Fig. 
2. MAG, metagenome-assembled genome; Comp, completion; Red, redundancy of 
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contigs in assembly results will be a notoriously difficult task for end 
users, especially when the missing genomic context is relatively short, 
or circular contigs represent plasmids or viruses. Thus, it would be ideal 
if the circular sequences are validated more rigorously by the assembler 
before the final reporting.

Haplotyping errors, false duplications and nonexistent 
sequences
Accurate reconstruction of genomic variation is essential to associate 
within-population structural differences to ecological or evolutionary 
phenotypes. However, resolving genomic regions that differ between 
otherwise very closely related subpopulations is a major challenge for 
de novo assemblers46. Assemblers may resolve such structural com-
plexity through three approaches: (1) by reporting separate contigs 
for variable sequences and conserved regions that flank them, (2) by 
reporting the most prevalent variable region along with the flanking 
conserved regions in a single contig and alternative regions in shorter 
contigs or (3) by duplicating conserved flanking regions in multiple 
contigs that describe each of the variable regions and their surround-
ings as separate contigs in a haplotype-aware fashion. Our survey of 

long-read assembly results revealed unexpected haplotyping decisions 
in multiple recurrent forms. In some cases, assemblers concatenated 
subpopulation-specific variable regions flanked by conserved loci, 
rather than reporting only one of them accurately (Fig. 4a). As a result, 
long reads that map to these regions are clipped at the end of their 
respective subpopulation sequence, a phenomenon that is also known 
as haplotypic duplication27,29. In other cases, the final contig repre-
sented a variable region found in a minor subpopulation supported 
by a small number of long reads or a single one (Fig. 4b), violating the 
logical expectation to recover a consensus sequence that represents 
the most abundant subpopulation.

We also identified cases in which assemblers reported false 
genomic duplications in assembled contigs that were not sup-
ported by any long read. Such false repeats were often manifested 
by high-frequency read clipping events and appeared as long direct 
repeats that had low likelihood to be present in the target genomic 
context owing to the sudden decrease in read coverage and/or mas-
sive inserts in mapped reads (Fig. 4c). Yet another anomaly was the 
reporting of sequences that did not exist. Searching for zero-coverage 
regions from contigs that are longer than 500 bp against the database 
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in a chimeric construct. b, Another example of a variable genomic site, but 
in this example, the contig sequence contains the sequence of a very minor 
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of raw long reads using the NCBI’s Basic Local Alignment Search Tool 
(BLAST) with the flag ‘-dust no’ to include sequences of low com-
plexity (Supplementary Table 3), we confirmed that the assembly 
outputs by metaMDBG and metaFlye occasionally included up to 
over-5,000-bp-long regions that have no homology to any of the input 
long reads (Fig. 4d). We further confirmed this observation by compar-
ing the k-mer (k = 21) content between these regions and long reads, 
and found that over 90% of the k-mers in zero-coverage regions were 
absent in the long reads (Supplementary Table 3). False duplications 
and reporting of nonexistent sequences in assembly results are unex-
pected behaviors from any assembler and can lead to spurious open 
reading frames or the omission of genuine ones.

Excessive repeats
A recurrent and puzzling observation throughout our manual inspec-
tions of assembly results was the astonishing number of repeats that 
occasionally made up the entirety of some contigs. Yet, these repeats 
were not caught by our survey of read clipping event frequencies to 
mark regions of concern as repeats rarely resulted in 100% read clipping 
events to pass our filter. Thus, we characterized repeats without any 
read mapping data but by aligning each contig to itself. We marked any 
region of a contig as a ‘repeat’ if it was longer than 200 bp and occurred 
multiple times in the same contig with at least 80% identity, based 
on observed similarity in naturally occurring repeats47. Our survey 
of the frequency and distribution of such repeats across all contigs 
showed that each assembler reported contigs with repeats. As repeats 
are common in nature, and the improved ability to resolve repeats is 
one of the strengths of long-read sequencing, this finding alone is not 
concerning. However, the nature of repeats in assemblies revealed by 
dot plots often showed unexpectedly intricate patterns, suggesting a 
high likelihood that they were assembly artefacts, rather than natural 

genomic organizations (Fig. 5a). While naturally occurring tandem 
repeats, inversions or palindromes could lead to similar dot plots, 
our manual inspection of individual cases revealed a variety of errors 
that spanned from duplicated reporting of known circular plasmids to 
contigs with multiple repeats that are not supported by any long read.

Repeats differed in their length, identity and frequency across 
algorithms. The per-sample average length and sequence identity 
of repeats varied between 600 bp and over 1,450 bp, and 88% and 
92%, respectively. MetaMDBG generated more repeats than any other 
assembler (Fig. 5b), up to over 300,000 repeats in a single assembly 
(Supplementary Table 2), exceeding the number of repeats reported by 
HiCanu for the same sample 235 times. The average length of repeats 
was relatively short, yet we found repeats that were up to 225,520 
nucleotides long, and repeats occurred as much as over 990 times in 
a single contig (Supplementary Table 2). To summarize the number 
and proportion of contigs reported by each assembler with an exces-
sive number of repeats, we conservatively searched for assembled 
sequences in which at least 70% of the sequence was composed of 
repeats. This search revealed that metaMDBG generated on average 2% 
of contigs with a high number of repeats, a rate that was over 14 times 
higher than its runner up, hifiasm-meta (Fig. 5b). When we limited our 
survey to circular contigs under 50 kb, which represented over 90% 
of all circular contigs, the proportion of repeat-rich contigs skyrock-
eted across all sample types for all assemblers, with the exception of 
hifiasm-meta (Fig. 5c and Supplementary Table 2). For instance, 87% 
of all circular contigs under 50 kb reported by metaMDBG were largely 
composed of repeats, and in some samples, such as chicken, this num-
ber reached 100%, suggesting that artifactual repeats represent at least 
one of the factors that lead to false circularization (Fig. 5c). Marine 
metagenomes were particularly difficult for all assemblers. In this sam-
ple type, metaMDBG reported the highest number of circular contigs 
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(Supplementary Table 2); however, 92% of them under 50,000 bp 
were composed of repeats (Supplementary Table 2). While metaFlye 
performed as well as hifiasm-meta in most other sample types, up to 
55% of circular contigs metaFlye generated from marine metagenomes 
were largely composed of repeats (Supplementary Table 2).

These results show that the exciting prospects of recovering com-
plete and circular plasmid and virus genomes from long-read sequenc-
ing of complex metagenomes are still far from being realized, and that 
the state-of-the-art long-read assemblers often fall short when handling 
short circular elements.

Mock datasets are useful but can yield misleading insights into 
the accuracy of algorithms in real-world applications
Popular mock datasets such as Zymo-HiFi D6331 and ATCC MSA-1003 
are commonly used for benchmarking long-read assemblers. While 
their known composition constitutes a reasonable starting point, 
the mock datasets do not represent the complexity of the natural 
samples, as also noted by the authors of metaFlye13. Their utility to 
test assemblers is further reduced when benchmarks that use mock 
communities simply align contigs that emerge from the assemblies to 
reference genomes without comprehensive reporting of other assem-
bly metrics11–13. For instance, while hifiasm-meta reports favorable 
outcomes given the reference genomes in mock datasets11, in our tests, 
the algorithm generated massive assemblies for each mock dataset, 
in which the final assembly was 270 Mb instead of the expected size 
of 93 Mb for the Zymo-HiFi D6331, and it was 948 Mb instead of the 
expected size of 66.44 Mb for the ATCC MSA-1003, resulting in the 
lowest N50 values and the highest number of clipping events across 
all assemblers. Given its performance with the mock datasets, one may 
expect hifiasm-meta to perform poorly in its applications to complex 
metagenomes. Yet, in marine samples, hifiasm-meta was first in N50, 
and second to metaMDBG in assembly size with two orders of mag-
nitude fewer clipping errors, suggesting that the performance of an 
assembler with mock communities may not predict its performance 
with real-world datasets.

While mock communities do not represent the diversity and com-
plexity found in real-world samples, they shine in one fundamental 
way: the known genomic makeup of input organisms to identify glar-
ing issues post-assembly. The Zymo-HiFi D6331 includes five different 
strains of Escherichia coli, which yields sequencing data with com-
plex cases for assemblers owing to the presence of highly conserved 
and divergent genomic regions. HiCanu and hifiasm-meta were both 
successful at reconstructing at least one of the five E. coli genomes 
(Supplementary Fig. 3), while metaMDBG reported a circular contig that 
corresponded to a chimeric genome (Fig. 6). On the basis of pairwise 
average nucleotide identity (ANI) comparisons, this genome appeared 
to be most similar to B1109, one of the E. coli strains in the Zymo-HiFi 
D6331 mock dataset (Fig. 6b and Supplementary Table 4). However, the 
pangenome of the five E. coli genomes and the metaMDBG circular con-
tig showed that it was not only missing a portion of the B1109 genome, 
but also including genomic regions exclusive to other E. coli strains and 
absent in B1109 (Fig. 6a). Clipping events also captured chimeric regions 
and revealed ~10-kb locus with no coverage (Fig. 6c,d). That region 
without coverage was duplicated in two other contigs, suggesting that 
long reads were preferentially recruited there (Supplementary Table 5). 
Using ANI values calculated from local alignments of assembled contigs 
to reference genomes can mask critical assembly errors, such as phan-
tom sequences, chimeras and unexpectedly large assembly outputs, 
and invalidate perhaps the only useful aspect of mock datasets while 
inflating the reported accuracy of assembly algorithms.

Discussion
Biotechnology, biomedical and basic research communities rely on 
high-quality assemblies, and trustworthy results are critical for the 
quality of public genome databases. Our findings highlight the need for 

rigorous evaluation of long-read assembly algorithms beyond bench-
marks that typically prioritize runtime, contig length or the number 
of circular contigs. We show that the quantification of read clipping 
events offers effective means to identify the most severe assembly 
errors. Assembly algorithms should use input reads for more aggressive 
post-assembly error correction (rather than offloading this burden onto 
end users who may lack the time, expertise or computational resources 
to perform such refinements themselves), and consider offering addi-
tional options to adjust their heuristics for researchers willing to sac-
rifice faster runtimes for fewer errors in their final assembly output.

While our analyses focus on errors that occur during assembly, 
we note that different assembly errors will differ in their likelihood 
to influence final genome reconstructions. Some error types, such 
as premature circularization of contigs, have a higher probability of 
propagating into high-quality genomes. By contrast, others, such 
as chimeric contigs, will probably be more effectively filtered out 
during the binning process, especially when binning tools leverage 
both sequence composition and differential coverage information. 
Understanding how specific classes of assembly errors affect genome 
recovery represents a critical consideration for those who rely on 
assemblies of long-read metagenomes. Since the initial dissemination 
of our study as a preprint, an updated version of metaMDBG (v1.2) and 
a new long-read assembler, myloasm48, became available. Even though 
these assemblers are not error free, their consideration of diverse 
errors their predecessors have suffered, and their adoption of higher 
scrutiny that includes the characterization of read clipping events 
to detect inconsistencies have led to substantially lower numbers of 
errors in their output (Supplementary Table 2). This paints a positive 
picture of the future of assembly algorithms and genome-resolved 
genomics in the era of long-read sequencing technologies, and shows 
both the practical value of error-aware strategies and the continued 
need for systematic error-detection frameworks to guide algorithm 
development, use and downstream interpretations when long-read 
assemblers meet metagenomes.
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Methods
The URL https://merenlab.org/data/benchmarking-long-read-assem-
blers/ presents our bioinformatics workflow for reproducing our find-
ings or applying the same approaches to evaluate additional assemblers 
or datasets.

Datasets
We downloaded a set of publicly available HiFi PacBio metagenomes 
matching the ones used in long-read assembler publications. To com-
plete and expand the set of biomes, we included eight surface ocean 
metagenomes. Supplementary Table 1 includes a comprehensive 
description of these data and their accession numbers.

Assembly algorithms
For our primary benchmarks, we used four different assemblers: (1) 
HiCanu v2.2 (ref. 14), (2) hifiasm-meta v0.3 (ref. 11), (3) metaFlye v2.9.5 
(ref. 13) and (4) metaMDBG v1 (ref. 12). In the case of HiCanu, we used 
the same parameters11 previously used to assemble metagenomes 
with HiCanu: maxInputCoverage=1000 genomeSize=100 m bat-
Memory=200 and -pacbio-hifi. We used hifiasm-meta with the default 
parameters. For metaFlye, we used the parameters–meta–pacbio-hifi. 
We included a total of four versions of metaMDBG in our analyses: v0.3 
(the original, published version of the software), v1.0 (released on 
GitHub in August 2024), v1.1 (released on GitHub in December 2024) 
and v1.2 (released on GitHub in August 2025). The results for these 
additional versions can be found in Supplementary Information while 
the results from v1 are shown in the Article. For metaMDBG v1 and later 
versions, we used the parameters–in-hifi. In a late revision to this paper, 
we included the results of myloasm v0.2 in Supplementary Table 2. We 
used the metagenomic reads without previous filtration or processing, 
for consistency with previously published assembly benchmarks11–13.

Read mapping
We mapped the metagenomics long reads back to their respective 
assembly by the four assemblers using minimap2 v2.28 (ref. 33) with 
the following parameters: -ax map-hifi -p1–secondary-seq. This set of 
parameters allows secondary mapping when the alignment score is as 
good as the primary mapping score, that is, multi-mapping, as well as 
to keep the sequence for secondary mapping in the output files so that 
secondary mapping is properly considered in downstream analyses. We 
processed the resulting alignment files using samtools v1.17 (ref. 35).

Processing of assembled contigs and read mapping results
We used anvi’o development branch of v8.1 (ref. 49) to gener-
ate contig databases for each assembly with the command 
‘anvi-gen-contigs-database’, which performed gene calls using prodi-
gal v2.6.3 (ref. 50). The anvi’o programs ‘anvi-run-ncbi-cogs’ and 
‘anvi-run-kegg-kofams’ annotated genes with functions using the 
Clusters of Orthologous Genes51 database of NCBI and KOfams52 by the 
Kyoto Encyclopedia of Genes and Genomes (KEGG), respectively, while 
‘anvi-run-hmms’ identified single-copy core genes in these sequences, 
which we associated with taxonomy data from the Genome Taxon-
omy Database (GTDB)53 using ‘anvi-run-scg-taxonomy’. We also used 
Kaiju v1.10.1 (ref. 54) to get gene-level taxonomy with the nr_euk data-
base. We estimated the completeness of KEGG KOfam modules using 
‘anvi-estimate-metabolism’. We finally used ‘anvi-profile’ to process 
the read mapping data to recover coverage values, SNVs and INDELs.

Pangenomic analyses
To compute a pangenome for Methanothrix, we first acquired publicly 
available genomes from the RefSeq database of NCBI using the pro-
gram ‘ncbi-genome-download’ (available at https://github.com/kblin/
ncbi-genome-download) with the parameters ‘–assembly-level all–
genera Methanothrix’. For the E. coli pangenome, we downloaded the  
original genomes used to create the mock dataset (available at  

https://s3.amazonaws.com/zymo-files/BioPool/D6331.refseq.zip). For 
both pangenomics analysis, we used the program ‘anvi-run-workflow’ 
to run the anvi’o pangenomics workflow implemented in Snakemake55, 
which used DIAMOND v2.1.8 (ref. 56) to identify gene clusters as 
described previously57. We used the program ‘anvi-display-pan’ to 
visualize and summarize the pangenomes.

Identification of assembly errors
To identify potential assembly errors based on clipping events, we devel-
oped a program within the anvi’o platform, ‘anvi-script-find-misassembly’36  
(help page: https://anvio.org/m/anvi-script-find-misassemblies), which 
takes a single BAM file of long-read mapping results. The script searches 
for premature end of alignments, that is, clipping events, and reports 
positions in which a proportion of reads that are clipped exceeds a 
user-defined threshold. The script also reports regions in contigs with 
no coverage. We investigated the region with no apparent coverage  
by using BLAST v2.16.0 (ref. 58) to search for assembled sequences  
over 500 bp with no apparent coverage against the long reads directly. 
We used the flag ‘-dust no’ to include regions with low sequence com-
plexity. We compared the k-mer content (k = 21) of these regions with 
the original long read using Meryl v1.3 (ref. 17). In addition, we used 
BLAST v2.16.0 (ref. 58) to identify contigs covered by at least 70% of 
repeated sequences. We BLASTed each contig against itself using 
BLASTN with default parameters, excluded the perfect reciprocal 
hit, transformed the remaining hits into a Browser Extensible Data 
(BED)-formatted file, and used bedtools v2.31.1 (ref. 59) to compute 
the breadth of coverage. We computed additional statistics using a 
Python script available in our reproducible workflow.

Manual inspection of mapping results
We used IGV v2.17.4 (ref. 60) and the anvi’o interactive interface to 
manually inspect genomic regions of interest and generate figures.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
All metagenomes used in our study are publicly available through the 
NCBI, and Supplementary Table 1 lists their accession numbers. DOI URLs 
for intermediate data products are available at https://merenlab.org/
data/benchmarking-long-read-assemblers/. They include the assemblies 
(https://doi.org/10.6084/m9.figshare.29107748.v3 (ref. 61)), the anvi’o con-
tigs and profile databases (https://doi.org/10.6084/m9.figshare.29246210 
(ref. 62)), the outputs of the script anvi-script-find-misassemblies 
(https://doi.org/10.6084/m9.figshare.29279228 (ref. 63)) and the two 
pangenomes of Methanothrix and E. coli (https://doi.org/10.6084/
m9.figshare.29864903 (ref. 64)).

Code availability
The script anvi-script-find-misassemblies used in this study is 
available in anvi’o36 (https://github.com/merenlab/anvio). A fully 
reproducible workflow is available at https://merenlab.org/data/
benchmarking-long-read-assemblers/.
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