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Assessing the accuracy of long-read assemblies, especially from complex
environmental metagenomes that include underrepresented organisms, is
challenging. Here we benchmark four state-of-the-art long-read assembly
software programs, HiCanu, hifiasm-meta, metaFlye and metaMDBG, on 21
PacBio HiFi metagenomes spanning mock communities, gut microbiomes
and ocean samples. By quantifying read clipping events, in which long
reads are systematically split during mapping to maximize the agreement
with assembled contigs, we identify where assemblies diverge from their
source reads. Our analyses reveal that long-read metagenome assemblies

caninclude >40 errors per 100 million base pairs of assembled contigs,
including multi-domain chimeras, prematurely circularized sequences,
haplotypingerrors, excessive repeats and phantom sequences. We provide
anopen-source tool and areproducible workflow for rigorous evaluation
of assembly errors, charting a path toward more reliable genome recovery
fromlong-read metagenomes.

Second-generation sequencing technologies have enabled the recon-
struction of microbial genomes directly from environmental ‘metage-
nomes’ without cultivation', astrategy that substantially enhanced our
understanding of microbial diversity and function”. Yet, the relatively
short sequencing reads produced by second-generation sequencing
posed substantial limitations on assembly**, a critical computational
stepingenomerecovery workflows in which reads are stitched together
torebuild contiguous segments of DNA (contigs) before binning, and
often led to highly fragmented and sometimes highly contaminated
genomes from metagenomes®”. The emergence of third-generation
sequencing technologies, such as those implemented by Pacific Bio-
sciences (PacBio) and Oxford Nanopore Technologies (ONT), advanced
genome-resolved metagenomics through ultra-long®, increasingly
accurate reads that are longer than the length of common repeats in
many bacterial and archaeal genomes’, providing solutions for complex

genomic puzzleswithunprecedented precision'. These new opportu-
nitiesrely onimproved long-read assembly algorithms, anarea of active
researchwithmultiple successful software packages that canassemble
long reads into complete chromosomes”*. However, assessing the
accuracy of the assembled long reads from metagenomes poses chal-
lenges, especially for complex environments with substantial diversity
that ofteninclude poorly studied organisms.

The benchmarking of assembly algorithms typically relies on a few
key principles, including the use of mock or simulated datasets, evalu-
ation of contig length distributions, assessment of unassembled read
fractions, genes, functions and comparisons with other assemblers’'¢,
K-mer-based solutions” and short-read alignment statistics have been
effectively used to unveil structural variants as well as misassemblies
of eukaryotic genomes™? including the human genome*~°, While
the compendium of strategies offers critical tools for algorithm
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development, the developers of metagenomic assemblers rarely take
into account how individual reads align to assemblies and quantify
the rate, origins and impact of mismatches between original reads
and final contigs. Here we assessed the extent of agreement between
individual high-fidelity PacBio reads and assembly results reported by
four state-of-the-artlong-read assemblers, and observed a wide range
of issues, including haplotyping errors, chimerism, premature circu-
larization and regions of contigs that are not supported by any of the
inputsequences. Assemblies of ONT long reads show similar errors®, yet
here welimit our benchmarks to PacBio given the relatively higher base
accuracy of PacBio reads (-99.95%, or S errors per 10 kilobase pair (kb))
compared with the ONT reads (-99%, or 100 errors per 10 kb). Overall,
our survey offers reproducible means to identify long-read assembly
errorsand insights into their downstreamimplications for researchers
who develop or use long-read assembly algorithms to consider.

Results

Our study benchmarks four state-of-the-art long-read assembly
software programs: (1) HiCanu v2.2 (ref. 14), (2) hifiasm-meta v0.3
(ref.11), (3) metaFlye v2.9.5 (ref.13) and (4) metaMDBG v1 (ref. 12), based
on their assembly performance of 21 PacBio HiFi metagenomes
(Supplementary Table 1). We include HiCanu in our analysis despite
the fact that it was originally developed for genome assembly as it
has recently been benchmarked against hifiasm-meta and metaFlye".
Of the 21 metagenomes we include in our benchmarks, 13 represent
those that were also used by the authors of at least one assembly algo-
rithm to evaluate performance, and correspond to mock communi-
ties (Zymo-HiFi D6331 and ATCC MSA-1003) and anaerobic digesters
(AD2W1, ADW20 and ADW40), as well as gut samples from humans
(Human O1, Human 02, Human V1 and Human V2), chickens and
sheep (Chicken, SheepA and SheepB). The remaining eight are novel
HiFi metagenomes from the surface ocean (sample names start with
HADS)?, a key biome that was not included in previous benchmarks
and represents a complex ecosystem with relatively little genomic
representation (Supplementary Table1).

Investigating the agreement between individual long reads and
assemblies they support requires the alignment of reads to resulting
contigs. For this task, our study uses minimap2, a high-performance
mapping software designed to align long reads to reference
sequences™®. While short-read alignment software such as Bowtie2
(ref.34) or BWA® is typically used to perform end-to-end alignments,
minimap2 allows premature ends in read alignments and can map the
remainder of the read to another reference location. This so-called
read clipping procedure is a critical tool to identify locations in the
final assembly that is poorly supported by individual long reads.
To gain quantitative insights into assembly artifacts, we developed
‘anvi-script-find-misassemblies™®, a script that comprehensively sum-
marizeslocations and frequencies of read clipping events, inwhich long
reads are split systematically by the mapping software to maximize
agreement between reads and assemblies, in addition to regions in
contigs that are not supported by individual long reads.

Assembly errors are common to all long-read assemblers
Instances in which the vast majority of long reads are clipped at the
same nucleotide position are strong evidence that the final assem-
bled sequence contains an error. However, quantifying the number
of errorsinagiven assembly is not as straightforward as counting the
clipping events as asingle assembly error may resultin multiple clipping
events associated with neighboring nucleotide positionsin the refer-
encesequence (Fig. 1a). To minimize false positives in our results, and
exclude clipping events due to within-population biological variation,
our analyses below primarily focus onlocationsinlong-read assemblies
with a100% clipping rate.

The assembly metrics differed greatly between sample types and
assembly algorithms. For instance, all human gut metagenomes were

assembled to a similar total size by all assemblers, but not the sur-
face ocean samples (Supplementary Table 2), for which metaMDBG
produced 610% more assembled sequences compared with HiCanu
on average. We found high-confidence read clipping events (that is,
100% clipping at locations with at least 10x coverage) in at least one
sample from each assembler (Supplementary Table 2). However, the
frequency of these events normalized by the assembly size showed
that metaFlye and metaMDBG generated up to 180 times more clipping
events compared with HiCanu and hifiasm-metafor the same samples
(Fig. 1b). The number of clipping events was particularly high in the
surface ocean samples, in which assemblies from metaMDBG had over
three orders of magnitude more clipping events compared with those
from hifiasm-meta (Supplementary Table 2). Overall, clipping events
affected up to 5.6% of contigs longer than 10,000 nucleotides reported
by metaMDBG with an error rate up to 46 per 100 million base pairs
(Mb) of assembly. We also computed the number of regions longer
than1,000 bp with no apparent coverage by individual long reads and
found that the occurrence of regions that are not supported by any
read was as pervasive as clipping events. While this issue also affected
allassemblers (Fig. 1cand Supplementary Table 2), metaMDBG led the
packwithup to5.3% of all contigs longer than 10,000 nucleotides with
zero-coverage regions.

The reporting of contig circularity was a common feature of all
assemblers; however, the number of circular contigsin final assemblies
also varied between algorithms (Fig. 1h and Supplementary Table 2).
MetaMDBG generated substantially more circular contigs than other
assemblers, notably from surface ocean metagenomes. Overall, we
found at least one clipping event for a large proportion of circular
contigs reported by metaMDBG (Fig. 1h), which, in some cases, repre-
sented up to 77% of the circular contigs in a sample (for example, the
marine sample HADS 013; Supplementary Table 2).

In addition to the clipping events, we reported the frequency
of single-nucleotide variants (SNVs) and insertion-deletion events
(INDELs) in the assembled contigs that were not fully supported by the
long reads. We classified such cases into two categories: (1) ‘minority
variants’, where the final assembly included a nucleotide or an INDEL
that did not match the most frequent variant in the supporting long
reads (Fig. 1a,d,f), and (2) ‘unsupported variants’, a more severe case
inwhich the finalassembly included anucleotide or an INDEL that did
notoccurinany of the long reads at that position (Fig. 1a,e,f). After nor-
malizing based onthe assembly size, HiCanu and hifiasm-meta had the
most minority variants, while metaFlye and metaMDBG had the most
unsupported variants. The latter case affected thousands of genes in
allassemblies (Supplementary Table 2), leading to genes with incorrect
amino acid sequences owing to theimpact of INDELs on openreading
frames®”%. Our detailed investigation of individual clipping events
associated their occurrence with afew recurring classes of erroneous
reporting of contigs, including chimeras, premature circularization,
haplotypingissues, false duplications and nonexistent sequences, for
which we offer anincomplete list of examples below.

Chimeric contigs

Ourinspection of contigs with a high proportion of read clipping events
revealed chimeric contigs. In some cases, chimeras brought together
sequences from taxa that belonged to distinct phyla (Fig. 2). Most chi-
meras brought together sequences fromtwo distinct taxa, but cases that
merged sequences from more than three organisms were not uncom-
mon (Fig. 2), and they sometimes combined sequences from distinct
domains of life. In one extreme case, metaMDBG formed a sequence that
included regions from organisms that originated from Euryarchaeota,
Pseudomonadota, Bacteroidota and Cyanobacteria (Fig. 2). We acknowl-
edge that the list of contigs we surveyed here for chimerism s far from
exhaustive; furthermore, relying on clipping events alone may occasion-
ally miss chimeric contigs. For instance, we stumbled upon asuspiciously
long contig. Even though the frequency of read clipping events did not
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Fig.1| Assembly errors across the assemblers. a, A schematic representation
oflong reads mapping to a contig with multiple types of read disagreement
with thereference, including INDELs and SNVs representing more than half or
all the coverage, and clipping events spanning the entire coverage. All metrics
for b-gare normalized by assembly size and exclude the two mock community
metagenomes (n =19 assemblies). For allbox plots, the box represents the
interquartile range (IQR), the central line indicates the median and whiskers

extend to 1.5 the IQR. b, Number of clipping events supported by at least

10 reads. c, Number of regions over 1,000 bp with no apparent coverage.

d,e, Number of SNVs representing >50% (d) or all (e) of the coverage at agiven
locus. f,g, Distribution of INDELs >50% of the coverage (f) or all of the coverage
(g). h, Length distribution of circular contigs by each assembler. The darker color
represents the distribution of circular contigs with at least one clipping event.

flag this 7.38-Mb contig, anvi'o assigned it a redundancy score of 100%
becauseit contained two copies of every bacterial single-copy core gene.
Ourmanualinspection showed that the contig metaMDBG reported from
the sample Human O1 conjoined two sequence-discrete Lachnospiraceae
populations (Supplementary Fig. 1).

The highly dangerous nature of chimeric contigs for downstream
analyses is dampened by the straightforward nature of their identi-
fication by anyone who carefully investigates their data: most chi-
meric contigs that erroneously connect genomic regions from two
or more distinct populations can be easily identified using a series of
well-understood indicators, such as sudden shifts in GC content, read
coverage and gene-level taxonomy, or through unexpected inventories
of single-copy core genes (SCGs). Nevertheless, with the increasing ten-
dency of researchers to generate large metagenome-derived genome
compendiums®~**,such evaluations arerarely, ifever, conducted. Thus,
inanidealworld, the burden of resolving chimeras should never fall on
the shoulders of the end users of assembly algorithms.

Premature circularization

Todeliver one of the most sought after promises of long-read sequenc-
ing, most long-read assemblers contain built-in features to circularize
contigs and report potentially complete microbial and mobile genetic
elementgenomes. Premature circularization, the reporting of a contig
as circular when it omits parts of the genome it originates from, is a
form of error with dangerous downstream implications. Yet, our analy-
ses showed that the algorithmic features that reconstructed circular
contigsinlong-read assemblers, especially metaMDBG, and to alesser
degree hifhasm-meta, were far fromreliable.

Forinstance, anarchaeal genome that belongs to the genus Metha-
nothrixrecovered fromthe AD Sludge sample as a circular genome by
hifiasm-meta represents a clear example of the nature and implica-
tions of premature circularization. Through an analysis with addi-
tional genomes from the RefSeq collection of the US National Center
for Biotechnology Information (NCBI), we confirmed that the cir-
cular genome was missing a large fraction of the core Methanothrix
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Fig. 2| Multi-domain and multi-phylum contigs. Six contigs from metaMDBG,
metaFlye and hifiasm-meta. For each contig, we showed the GC content, coverage
inthe metagenomics reads used for their assembly and gene-level taxonomy
computed with Kaiju and the nr_euk database. For each assembly breakpoint, we
show azoomed-in detail of the read mapping from IGV. In these subplots, the red
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arrows at the end of the mapped read indicate clipping and the coloring at the end
of these reads indicates that the following portion of the read mapped to another
contig and similar colors indicate that multiple reads continue to map on the
same contig. The blue markersindicate large INDELs (>150 bp).

pangenome (Fig. 3b, light blue), including key metabolic modules
for methanogenesis that were common to all Methanothrix genomes
(Fig. 3¢). In this case, early circularization seemed to have occurred
near a transposase (Fig. 3d and Supplementary Fig. 2). Nearly all the
reads clipping on either side of the transposase had supplementary
mapping toanother contigin the assembly output (Fig. 3b,c, medium
blue) encoding the missing metabolic module. The combination of the
circular genome and the additional contig matched the other genomes
in the genus-level pangenome (Fig. 3b,c, dark blue), suggesting that
both contigs belonged to the same population, and neither of them
were circular by themselves.

Comparing the overall accuracy of circularization across assem-
blers is difficult. For instance, low completion estimates based on

single-copy core genes can serve as a quick filter, but not all prema-
turely circularized genomes will have low completion estimates as miss-
ing genomic content will not always contain single-copy core genes.
Length comparisons between circular contigs and known genomes
in public databases could offer another means of scrutiny, but this
strategy will not be effective against poorly studied clades, or those
that have no representation in genome repositories. Nevertheless,
here we conservatively assumed that circular contigs that were under
500 kb and contained at least 3 ribosomal proteins were most likely
circularized erroneously. While this criterion is useful as a proxy for
identifying potential assembly artifacts, we note that some naturally
occurring small genomes may also meet these criteria***. Despite
this caveat, we reasoned that the frequency with which such contigs

Nature Biotechnology


http://www.nature.com/naturebiotechnology

Article

https://doi.org/10.1038/s41587-025-02971-8

a Number of circular contigs <500 kb

with at least 3 ribosomal proteins

15 Contig 1: prematurely circularized

KEGG modules for methanogenesis

Length: 1.264 Mb Comp: 22.37% Red: 0%

Length: 1.195 Mb Comp: 72.37% Red: 0%

Contig 1+ Contig 2 = near-complete MAG,
Length: 2.459 Mb Comp: 94.74% Red: 0%

Contig 2: complementary, linear conti/

b Methanothrix core

Methanothrix sp.

Methanothrix soehngenii and
Methanothrix sp.

Methanothrix harundinacea

JULI Gl salt AL 1

Methanothrix thermoacetophilaand gl

Methanothrix sp.

Fig. 3| Premature circularization of a Methanothrix genome. a, Frequency of
circular contigs under 500 kb with aminimum of 3 ribosomal proteins for each
assembly, excluding the two mock communities (n =19). The box represents the
IQR, the central line indicates the median and the whiskers extend to 1.5x the IQR.
b, A pangenomicanalysis of all publicly available Methanothrix genomes from
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aswell as a contig from the same assembly that corresponds to the rest of the
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missing Methanothrix genome (medium blue) and the combination of these two
contigs (dark blue). ¢, KEGG metabolic module completion of allgenomes and
contigsinb.d, Aschematic representation of the reads mapping over a transposase
geneinthe prematurely circularized contigs (light blue in b and ¢) showing the lack
ofread support around the gene; the full figure is available in Supplementary Fig.
2.MAG, metagenome-assembled genome; Comp, completion; Red, redundancy of
genomes based on archaeal single-copy core genes.

appear across assemblers could provide auseful approximation ofeach
assembler’s tendency toward premature circularization. Within this
framework, metaMDBG reported about twice as many circular contigs
than hifiasm-meta, and about four times more circular contigs than
HiCanu and metaFlye (Fig. 3a). Assuming that easily identifiable events
of premature circularization errors are reasonable proxies for the rate
of all premature circularization errors, this result suggests that meta-
MDBG and hifiasm-meta are more prone to premature circularization
errors compared to other assemblers, such as HiCanu and metaFlye.
Our estimates of therate of false circularization come very close to the
benchmarking results shared by the authors in the original metaMDBG

publication'?, in which they report two times more circular contigs
than hifiasm-meta and four times more circular contigs than metaFlye
fromthe humangut. While the high rate of circularizationis presented
as a strength of metaMDBG in comparison to other assemblers™, our
observations suggest that the higher rate of circularization may be a
result of a higher tendency to report noncircular elements as circular
(Figs.1and 3, Supplementary Fig. 2 and Supplementary Table 2).
Given the vast difference in quality and perception between
a draft genome and a circular genome, it is essential for assembly
algorithms that promise circular genomes to be conservative in their
decision-making. The identification of prematurely circularized
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Fig. 4 | Prototypical mapping artifacts and their putative origin. a, A chimeric
sequence assembled from two subpopulations. At a conserved locus, two
subpopulations existed with their own and distinct sequence. The assembled
contig contains all or a part of each subpopulation-specific sequence resulting
inachimeric construct. b, Another example of a variable genomic site, but

in this example, the contig sequence contains the sequence of a very minor
subpopulation, supported by only one read. ¢, Duplicated sequence found only

10 kb

inthe assembly, not supported by any long reads. d, Two contigs assembled from
metaMDBG (left) and metaFlye (right) presenting large regions with no coverage.
We BLASTed these regions back to the long reads and found no hits. Coverage
visualization was exported from the anvi‘o interactive interface (left) or the IGV
software (right) and the read mapping visualization was from IGV as well. INDELs
smaller than 150 bp as well as mismatches are not shown in the mapping. Red
markers at the end of reads indicate read clipping.

contigs in assembly results will be a notoriously difficult task for end
users, especially when the missing genomic contextisrelatively short,
orcircular contigs represent plasmids or viruses. Thus, it would be ideal
ifthe circular sequences are validated more rigorously by the assembler
before the final reporting.

Haplotypingerrors, false duplications and nonexistent
sequences

Accurate reconstruction of genomic variation is essential to associate
within-population structural differences to ecological or evolutionary
phenotypes. However, resolving genomic regions that differ between
otherwise very closely related subpopulations is amajor challenge for
de novo assemblers*®. Assemblers may resolve such structural com-
plexity through three approaches: (1) by reporting separate contigs
for variable sequences and conserved regions that flank them, (2) by
reporting the most prevalent variable region along with the flanking
conservedregionsinasingle contigandalternativeregionsinshorter
contigs or (3) by duplicating conserved flanking regions in multiple
contigs that describe each of the variable regions and their surround-
ings as separate contigs in a haplotype-aware fashion. Our survey of

long-read assembly results revealed unexpected haplotyping decisions
inmultiple recurrent forms. In some cases, assemblers concatenated
subpopulation-specific variable regions flanked by conserved loci,
rather thanreporting only one of themaccurately (Fig. 4a). Asaresult,
long reads that map to these regions are clipped at the end of their
respective subpopulation sequence, a phenomenonthatisalso known
as haplotypic duplication??, In other cases, the final contig repre-
sented a variable region found in a minor subpopulation supported
by asmall number of long reads or a single one (Fig. 4b), violating the
logical expectation to recover a consensus sequence that represents
the most abundant subpopulation.

We also identified cases in which assemblers reported false
genomic duplications in assembled contigs that were not sup-
ported by any long read. Such false repeats were often manifested
by high-frequency read clipping events and appeared as long direct
repeats that had low likelihood to be present in the target genomic
context owing to the sudden decrease in read coverage and/or mas-
sive inserts in mapped reads (Fig. 4c). Yet another anomaly was the
reporting of sequences that did not exist. Searching for zero-coverage
regions from contigs that are longer than 500 bp against the database
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of raw long reads using the NCBI's Basic Local Alignment Search Tool
(BLAST) with the flag ‘-dust no’ to include sequences of low com-
plexity (Supplementary Table 3), we confirmed that the assembly
outputs by metaMDBG and metaFlye occasionally included up to
over-5,000-bp-long regions that have no homology to any of theinput
longreads (Fig.4d). We further confirmed this observation by compar-
ing the k-mer (k =21) content between these regions and long reads,
and found that over 90% of the k-mers in zero-coverage regions were
absent in the long reads (Supplementary Table 3). False duplications
and reporting of nonexistent sequences in assembly results are unex-
pected behaviors from any assembler and can lead to spurious open
reading frames or the omission of genuine ones.

Excessive repeats

Arecurrentand puzzling observation throughout our manual inspec-
tions of assembly results was the astonishing number of repeats that
occasionally made up the entirety of some contigs. Yet, these repeats
were not caught by our survey of read clipping event frequencies to
mark regions of concern as repeatsrarely resultedin100% read clipping
events to pass our filter. Thus, we characterized repeats without any
read mapping databut by aligning each contig to itself. We marked any
region of acontigas a‘repeat’ifit was longer than200 bp and occurred
multiple times in the same contig with at least 80% identity, based
on observed similarity in naturally occurring repeats®. Our survey
of the frequency and distribution of such repeats across all contigs
showed that each assembler reported contigs with repeats. As repeats
are common in nature, and the improved ability to resolve repeats is
one of the strengths of long-read sequencing, this finding aloneis not
concerning. However, the nature of repeats in assemblies revealed by
dot plots often showed unexpectedly intricate patterns, suggesting a
high likelihood that they were assembly artefacts, rather than natural

genomic organizations (Fig. 5a). While naturally occurring tandem
repeats, inversions or palindromes could lead to similar dot plots,
our manual inspection of individual cases revealed a variety of errors
that spanned from duplicated reporting of known circular plasmids to
contigs withmultiple repeats that are not supported by any long read.

Repeats differed in their length, identity and frequency across
algorithms. The per-sample average length and sequence identity
of repeats varied between 600 bp and over 1,450 bp, and 88% and
92%, respectively. MetaMDBG generated more repeats than any other
assembler (Fig. 5b), up to over 300,000 repeats in a single assembly
(Supplementary Table 2), exceeding the number of repeats reported by
HiCanu for the same sample 235 times. The average length of repeats
was relatively short, yet we found repeats that were up to 225,520
nucleotides long, and repeats occurred as much as over 990 times in
asingle contig (Supplementary Table 2). To summarize the number
and proportion of contigs reported by each assembler with an exces-
sive number of repeats, we conservatively searched for assembled
sequences in which at least 70% of the sequence was composed of
repeats. This search revealed that metaMDBG generated on average 2%
of contigs with a high number of repeats, arate that was over 14 times
higher thanits runner up, hifiasm-meta (Fig. 5b). When we limited our
survey to circular contigs under 50 kb, which represented over 90%
of all circular contigs, the proportion of repeat-rich contigs skyrock-
eted across all sample types for all assemblers, with the exception of
hifiasm-meta (Fig. 5c and Supplementary Table 2). For instance, 87%
ofall circular contigs under 50 kb reported by metaMDBG were largely
composed of repeats, and insome samples, such as chicken, this num-
berreached100%, suggesting that artifactual repeatsrepresent atleast
one of the factors that lead to false circularization (Fig. 5¢). Marine
metagenomes were particularly difficult for allassemblers. In this sam-
ple type, metaMDBG reported the highest number of circular contigs
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metaMDBG. Each layer corresponds to agenome, and the coloring represents
the presence or absence of a gene cluster from each genome. The gene clusters
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(Supplementary Table 2); however, 92% of them under 50,000 bp
were composed of repeats (Supplementary Table 2). While metaFlye
performed as well as hifiasm-meta in most other sample types, up to
55% of circular contigs metaFlye generated from marine metagenomes
were largely composed of repeats (Supplementary Table 2).

Theseresults show that the exciting prospects of recovering com-
pleteand circular plasmid and virus genomes from long-read sequenc-
ing of complex metagenomes are still far from being realized, and that
the state-of-the-artlong-read assemblers often fallshort when handling
shortcircular elements.

Mock datasets are useful but can yield misleading insights into
the accuracy of algorithms in real-world applications

Popular mock datasets such as Zymo-HiFi D6331and ATCC MSA-1003
are commonly used for benchmarking long-read assemblers. While
their known composition constitutes a reasonable starting point,
the mock datasets do not represent the complexity of the natural
samples, as also noted by the authors of metaFlye™. Their utility to
test assemblers is further reduced when benchmarks that use mock
communities simply align contigs that emerge from the assemblies to
reference genomes without comprehensive reporting of other assem-
bly metrics" ™. For instance, while hifiasm-meta reports favorable
outcomes given the reference genomesin mock datasets”, in our tests,
the algorithm generated massive assemblies for each mock dataset,
in which the final assembly was 270 Mb instead of the expected size
of 93 Mb for the Zymo-HiFi D6331, and it was 948 Mb instead of the
expected size of 66.44 Mb for the ATCC MSA-1003, resulting in the
lowest N50 values and the highest number of clipping events across
allassemblers. Givenits performance with the mock datasets, one may
expect hifiasm-metato perform poorlyinits applications to complex
metagenomes. Yet, in marine samples, hifiasm-meta was first in N50,
and second to metaMDBG in assembly size with two orders of mag-
nitude fewer clipping errors, suggesting that the performance of an
assembler with mock communities may not predict its performance
with real-world datasets.

While mock communities do not represent the diversity and com-
plexity found in real-world samples, they shine in one fundamental
way: the known genomic makeup of input organisms to identify glar-
ingissues post-assembly. The Zymo-HiFi D6331includes five different
strains of Escherichia coli, which yields sequencing data with com-
plex cases for assemblers owing to the presence of highly conserved
and divergent genomic regions. HiCanu and hifiasm-meta were both
successful at reconstructing at least one of the five E. coli genomes
(Supplementary Fig.3), while metaMDBG reported a circular contig that
corresponded to a chimeric genome (Fig. 6). On the basis of pairwise
average nucleotide identity (ANI) comparisons, this genome appeared
to be most similar to B1109, one of the E. coli strains in the Zymo-HiFi
D6331 mock dataset (Fig. 6b and Supplementary Table 4). However, the
pangenome of the five £. coligenomes and the metaMDBG circular con-
tig showed that it was not only missing a portion of the B1109 genome,
butalsoincluding genomicregions exclusive to other E. colistrains and
absentinB1109 (Fig. 6a). Clipping events also captured chimericregions
and revealed ~10-kb locus with no coverage (Fig. 6¢,d). That region
without coverage was duplicated in two other contigs, suggesting that
long reads were preferentially recruited there (Supplementary Table 5).
Using ANl values calculated from local alignments of assembled contigs
toreference genomes can mask critical assembly errors, such as phan-
tom sequences, chimeras and unexpectedly large assembly outputs,
and invalidate perhaps the only useful aspect of mock datasets while
inflating the reported accuracy of assembly algorithms.

Discussion

Biotechnology, biomedical and basic research communities rely on
high-quality assemblies, and trustworthy results are critical for the
quality of public genome databases. Our findings highlight the need for

rigorous evaluation of long-read assembly algorithms beyond bench-
marks that typically prioritize runtime, contig length or the number
of circular contigs. We show that the quantification of read clipping
events offers effective means to identify the most severe assembly
errors. Assembly algorithms should use input reads for more aggressive
post-assembly error correction (rather than offloading thisburden onto
end users who may lack the time, expertise or computational resources
to perform suchrefinements themselves), and consider offering addi-
tional options to adjust their heuristics for researchers willing to sac-
rifice faster runtimes for fewer errors in their final assembly output.

While our analyses focus on errors that occur during assembly,
we note that different assembly errors will differ in their likelihood
to influence final genome reconstructions. Some error types, such
as premature circularization of contigs, have a higher probability of
propagating into high-quality genomes. By contrast, others, such
as chimeric contigs, will probably be more effectively filtered out
during the binning process, especially when binning tools leverage
both sequence composition and differential coverage information.
Understanding how specific classes of assembly errors affect genome
recovery represents a critical consideration for those who rely on
assemblies of long-read metagenomes. Since the initial dissemination
of our study as a preprint, anupdated version of metaMDBG (v1.2) and
anew long-read assembler, myloasm*$, became available. Even though
these assemblers are not error free, their consideration of diverse
errors their predecessors have suffered, and their adoption of higher
scrutiny that includes the characterization of read clipping events
to detect inconsistencies have led to substantially lower numbers of
errors in their output (Supplementary Table 2). This paints a positive
picture of the future of assembly algorithms and genome-resolved
genomicsinthe eraoflong-read sequencing technologies, and shows
both the practical value of error-aware strategies and the continued
need for systematic error-detection frameworks to guide algorithm
development, use and downstream interpretations when long-read
assemblers meet metagenomes.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author con-
tributions and competing interests; and statements of data and code
availability areavailable at https://doi.org/10.1038/s41587-025-02971-8.
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Methods
The URL https://merenlab.org/data/benchmarking-long-read-assem-
blers/ presents our bioinformatics workflow for reproducing our find-
ingsorapplyingthe same approachesto evaluate additional assemblers
or datasets.

Datasets

We downloaded a set of publicly available HiFi PacBio metagenomes
matchingthe ones usedinlong-read assembler publications. To com-
plete and expand the set of biomes, we included eight surface ocean
metagenomes. Supplementary Table 1includes a comprehensive
description of these data and their accession numbers.

Assembly algorithms

For our primary benchmarks, we used four different assemblers: (1)
HiCanuv2.2(ref.14), (2) hifiasm-metav0.3 (ref. 11), (3) metaFlye v2.9.5
(ref.13) and (4) metaMDBG v1 (ref. 12). In the case of HiCanu, we used
the same parameters” previously used to assemble metagenomes
with HiCanu: maxInputCoverage=1000 genomeSize=100 m bat-
Memory=200 and -pacbio-hifi. We used hifiasm-meta with the default
parameters. For metaFlye, we used the parameters—-meta-pacbio-hifi.
Weincluded atotal of four versions of metaMDBG in our analyses: v0.3
(the original, published version of the software), v1.0 (released on
GitHub in August 2024), v1.1 (released on GitHub in December 2024)
and v1.2 (released on GitHub in August 2025). The results for these
additional versions canbe found in Supplementary Information while
theresultsfromvlareshowninthe Article. For metaMDBG vland later
versions, we used the parameters-in-hifi. Inalate revisionto this paper,
weincluded theresults of myloasmv0.2in Supplementary Table 2. We
used the metagenomic reads without previousfiltration or processing,
for consistency with previously published assembly benchmarks" ",

Read mapping

We mapped the metagenomics long reads back to their respective
assembly by the four assemblers using minimap2 v2.28 (ref. 33) with
the following parameters: -ax map-hifi-pl-secondary-seq. This set of
parameters allows secondary mapping when the alignment scoreis as
good as the primary mapping score, that is, multi-mapping, as well as
to keep the sequence for secondary mappingin the output files so that
secondary mappingis properly considered in downstream analyses. We
processed the resulting alignment files using samtools v1.17 (ref. 35).

Processing of assembled contigs and read mapping results

We used anvi‘o development branch of v8.1 (ref. 49) to gener-
ate contig databases for each assembly with the command
‘anvi-gen-contigs-database’, which performed gene calls using prodi-
gal v2.6.3 (ref. 50). The anvi’o programs ‘anvi-run-ncbi-cogs’ and
‘anvi-run-kegg-kofams’ annotated genes with functions using the
Clusters of Orthologous Genes* database of NCBland KOfams®? by the
Kyoto Encyclopedia of Genes and Genomes (KEGG), respectively, while
‘anvi-run-hmms’ identified single-copy core genesin these sequences,
which we associated with taxonomy data from the Genome Taxon-
omy Database (GTDB)** using ‘anvi-run-scg-taxonomy’. We also used
Kaiju v1.10.1(ref. 54) to get gene-level taxonomy with the nr_euk data-
base. We estimated the completeness of KEGG KOfam modules using
‘anvi-estimate-metabolism’. We finally used ‘anvi-profile’ to process
the read mapping datato recover coverage values, SNVs and INDELSs.

Pangenomic analyses

To compute apangenome for Methanothrix, we first acquired publicly
available genomes from the RefSeq database of NCBI using the pro-
gram ‘ncbi-genome-download’ (available at https://github.com/kblin/
ncbi-genome-download) with the parameters ‘~assembly-level all-
genera Methanothrix’. For the E. coli pangenome, we downloaded the
original genomes used to create the mock dataset (available at

https://s3.amazonaws.com/zymo-files/BioPool/D6331.refseq.zip). For
both pangenomics analysis, we used the program ‘anvi-run-workflow’
to runthe anvi’'o pangenomics workflow implemented in Snakemake™,
which used DIAMOND v2.1.8 (ref. 56) to identify gene clusters as
described previously”. We used the program ‘anvi-display-pan’ to
visualize and summarize the pangenomes.

Identification of assembly errors

Toidentify potential assembly errors based on clipping events, we devel-
opedaprogramwithintheanvi'oplatform, ‘anvi-script-find-misassembly
(help page: https://anvio.org/m/anvi-script-find-misassemblies), which
takes asingle BAMfile of long-read mapping results. The script searches
for premature end of alignments, that is, clipping events, and reports
positions in which a proportion of reads that are clipped exceeds a
user-defined threshold. The script also reports regions in contigs with
no coverage. We investigated the region with no apparent coverage
by using BLAST v2.16.0 (ref. 58) to search for assembled sequences
over 500 bp withno apparent coverage against the long reads directly.
We used the flag ‘-dust no’ to include regions with low sequence com-
plexity. We compared the k-mer content (k = 21) of these regions with
the original long read using Meryl v1.3 (ref. 17). In addition, we used
BLAST v2.16.0 (ref. 58) to identify contigs covered by at least 70% of
repeated sequences. We BLASTed each contig against itself using
BLASTN with default parameters, excluded the perfect reciprocal
hit, transformed the remaining hits into a Browser Extensible Data
(BED)-formatted file, and used bedtools v2.31.1 (ref. 59) to compute
the breadth of coverage. We computed additional statistics using a
Python script available in our reproducible workflow.

Manual inspection of mapping results
We used IGV v2.17.4 (ref. 60) and the anvi’o interactive interface to
manually inspect genomic regions of interest and generate figures.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

All metagenomes used in our study are publicly available through the
NCBI, and Supplementary Table1lists their accessionnumbers. DOIURLs
for intermediate data products are available at https://merenlab.org/
data/benchmarking-long-read-assemblers/. They include the assemblies
(https://doi.org/10.6084/m9.figshare.29107748.v3 (ref. 61)), theanvi'o con-
tigsand profile databases (https://doi.org/10.6084/m9.figshare.29246210
(ref. 62)), the outputs of the script anvi-script-find-misassemblies
(https://doi.org/10.6084/m9.figshare.29279228 (ref. 63)) and the two
pangenomes of Methanothrix and E. coli (https://doi.org/10.6084/
mo.figshare.29864903 (ref. 64)).

Code availability

The script anvi-script-find-misassemblies used in this study is
available in anvi'o® (https://github.com/merenlab/anvio). A fully
reproducible workflow is available at https://merenlab.org/data/
benchmarking-long-read-assemblers/.
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