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Microbial model communities exhibit
widespread metabolic interdependencies
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Fabian Bergland1, Luis F. Delgado5, Alejandro Rodríguez-Gijón1, Anders F. Andersson 5 &
Sarahi L. Garcia 1,2,3

Microorganisms thrive in complex communities shaped by intricate interactions, yet the extent and
ecological implications of biosynthetic dependencies in natural communities remain underexplored.
Here, we used a dilution approach to cultivate 204 microbial model communities from the Baltic Sea
and recovered 527 metagenome-assembled genomes (MAGs) that dereplicated into 72 species-
clusters (>95% average nucleotide identity, ANI). Of these species, at least 70% represent previously
uncultivated lineages. Combined with 1073 MAGs from Baltic Sea metagenomes, we generated a
genomic catalog of 701 species-clusters. Our results show that cultures with more than three species
includedmicroorganismswith smaller genome sizes, lower biosynthetic potential for amino acids and
B vitamins, and higher prevalence and abundance in the environment. Moreover, the taxa found
together in the same model communities had complementary biosynthetic gene repertoires. Our
results demonstrate that cultivating bacteria in dilution model communities facilitates access to
previously uncultivated but abundant species that likely depend on metabolic partners for survival.
Together, our findings highlight the value of community-based cultivation for unraveling ecological
strategies. Finally, we confirm that metabolic interdependencies and genome streamlining are
widespread features of successful environmental microorganisms.

Microbial communities in diverse environments operate as complex
systems driven by multi-species interactions1. Understanding such
complex interactions is essential because microorganisms play key roles
in the biogeochemical cycles on Earth2. To unravel microbial interac-
tions, we need to investigate microbial communities at various levels of
biological organization3,4, ranging from one-to-one species interactions
to simplified multi-species systems (e.g., model communities5, synthetic
communities6, or microcosms7), and ultimately to naturally occurring
communities.

At the community level,metagenomics has become a powerful tool for
uncovering the genetic potential of microbial communities via shotgun
sequencing8–10. Analyzing metagenomic data reveals not only the vast
diversity of microbial species11 but also their metabolic potential and co-
occurrence networks, which are important for understanding ecosystem
functioning12. To bridge the gap between broad metagenomic insights and
detailed ecological understanding, a few studies have explored genome-

specific traits and potential interactions by inferring auxotrophies. While
auxotrophs have historically been experimentally identified via cultures that
require the addition of specific nutrients to grow13, recent work based on
genomes andmetagenomeshasdeterminedauxotrophies basedonpathway
completeness and found smaller genomes to be more auxotrophic6,14–19. In
all these studies, auxotrophy has been treated as a binary trait, however,
microbial biosynthetic capabilities in nature likely span a spectrum. For
example, many microorganisms can complete the biosynthesis of an
essential metabolite starting from a precursor or intermediate without
needing the essential metabolite itself 20,21. Nevertheless, modeling work has
shown thatmicrobial communities enriched in the so-calledauxotrophs can
exhibit greater robustness under ecological disturbances, suggesting that
these metabolic interdependencies may contribute to overall community
stability22. While metagenomics offers a broad understanding of microbial
communities, interactions cannot easily be inferred from co-occurrences
within natural complex ecosystems.
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Experimental systems are needed to observe microbial interaction
dynamics under controlled conditions. Studies have increasingly turned to
simplified systems23–25, such as co-cultures26–28 and mixed cultures18,29,30 to
identify specific types of interactions. To further contextualize these find-
ings, our literature review in Supplementary Data 1 provides a compre-
hensive overview of publications where microbial interaction patterns were
observed in different experimental settings. Across these studies, cross-
feeding mechanisms and mutualistic interactions are mostly studied in
cultures with two different populations or species27,31,32. To a lesser extent,
more complex metabolic interactions have also been studied by mixing
different isolated species or co-cultivating them in model ecosystems, with
the goal of increasing complexity to more closely resemble natural
environments29,33. However, many of these methods focus on cultured
isolates, and the vastmajority ofmicroorganisms remain uncultivated34. An
alternative, yet underutilized method for establishing model ecosystems
composed of previously uncultivated microorganisms is through dilution
cultivation. Dilution to mixed cultures of naturally co-occurring micro-
organisms has the potential to cultivate previously uncultivated micro-
organisms aswell as to allow observation of naturalmicrobial interactions35.
Such cultures, also known as microbial model communities, represent a
small subset of the many interactions likely occurring in the natural
systems36. By studying a larger number ofmicrobialmodel communities, we
can gain a more comprehensive understanding of microbial interactions
occurring in natural environments.

In our study, we focused on studying potential interdependencies at
two levels of biological organization by using high-throughput dilution
cultivation of model communities together with genome-resolved meta-
genomics to unravel the ecological strategies ofmicroorganisms in theBaltic
Sea. Moreover, we examined the biosynthesis of essential metabolites or
anabolic independence as a continuous spectrum rather than through
conventional binary classifications. For this, we used pathway completeness
metrics rather than assigning genomes as strictly prototrophic or auxo-
trophic. Finally, we identified correlations between genome size, potential
biosynthesis of essential metabolites, relative abundance, and prevalence
using genomes obtained from both microbial model communities and
metagenomic data from Baltic Sea pelagic samples. Our findings demon-
strate that microbial model communities are an effective technique for
cultivating previously uncultivated taxa and for identifying putative
microbial interactions, including metabolic interdependencies between
biosynthetically dependent members.

Results
A Baltic Sea MAG catalog
To generate the microbial model communities, we used the dilution-to-
extinction cultivation technique in two formats.Thefirst type, low inoculum
size, involved inoculating between approximately 2 and 100 cells per well in
1mL 96-well plates used for each of the inoculum sizes. The second type,
high inoculum size, ranged from approximately 200 to 1 × 106 cells inocu-
lated per microbial model community in 100mL volumes. After a 4-week
incubation period, we sent an aliquot of all 801 cultures for lysis and DNA
amplification using multiple displacement amplification (MDA). Based on
amplification success, 315 cultures passed the negative control threshold
and were sent for sequencing. In total, only 204 microbial model commu-
nities together yielded 527MAGs.Moreover, from the original sample used
to establish the microbial model communities, we generated two meta-
genomes (each from a distinct DNA extraction method) that yielded 305
MAGs. To create a comprehensive genomic catalog, we also added 771
MAGs from 110 publicly available Baltic Sea metagenomes (Fig. 1A, Sup-
plementary Data 2)37–39.

Examining this comprehensive MAG catalog allowed us to assess
microbial genomic characteristics of all microorganisms found both in the
environmental samples and our 204 microbial model communities (Sup-
plementary Data 3). Altogether, the 1603MAGs were dereplicated into 701
species-clusters (ANI > 95%), which form the Baltic Sea genomic catalog
(BalticMAG catalog)40 used in this study (Supplementary Data 4). The

average completeness of the 701 species-cluster representative MAGs is
88%, and they were all used to analyze taxonomy, abundance, prevalence,
and estimated genome size (Supplementary Fig. 1). The varying com-
pleteness of theMAGshas a veryminor effect on estimated genome size and
relative abundance, as observed in other studies17,41. However, only 450
species-cluster representative MAGs are of high quality (completeness
>90% and contamination <5%) and were used to investigate anabolic
potential (Supplementary Fig. 1D).

Examining the source of genomes in the BalticMAG catalog, we found
that 33 of the species-clusters included MAGs exclusively from the micro-
bial model communities, 629 included MAGs exclusively from the envir-
onmental metagenomes, and 39 (54% of all cultured species) included
MAGs from both sources (Fig. 1C, Supplementary Data 4, Supplemen-
tary Fig. 2).

To investigate the relative abundance of the BalticMAG catalog, we
mapped all the environmental metagenomic reads against the genome
catalog. We observed that salinity significantly co-varied with the propor-
tion of metagenomic reads that mapped to all species-cluster representative
genomes (Fig. 1B).While on average, 38.63%of themetagenomic reads per
samplemapped to the BalticMAGcatalog, the highestmapping percentages
(63.99% and 62.89%) were observed at salinity concentrations of 11.28‰
and 7.65‰, respectively. Notably, the two metagenomes from this study
(samplewith salinity concentration of 7.12‰) displayed someof the highest
mapping rates at 51.77% and 60.16%, reflecting that the BalticMAG catalog
is most complete for salinities between 6 and 11‰.

Despite salinity differences (Fig. 1D), the average relative abundance of
the 39 species-clusters that included MAGs from both microbial model
communities and environmental metagenomes was significantly higher in
thewhole dataset (Fig. 1E), but alsowhen comparing only themetagenomes
from the location and salinity from which we sampled (Supplementary
Fig. 3). This group of species-clusters (from both sources) shows that our
cultivation method can capture some of the most abundant taxa from the
environment. Altogether, the diverse taxa cultivated inmodel communities
accounted for ~20% of the total relative abundance in the original envir-
onmental sample (Supplementary Fig. 4). Moreover, the 33 species-clusters
with MAGs sourced exclusively from microbial model communities were
detected across environmental metagenomes, albeit at significantly lower
abundances. This indicates that our cultivation approach also enables the
recoveryof species that aremissedby assembly andbinning inmetagenomic
surveys.

Higher inoculum size increases community richness and
uncovers a genome size plateau
In the small inoculum sizemicrobial model communities, themore cells we
inoculated, the higher the number of cultures that yieldedMAGs (Fig. 2A).
In total, 94 low inoculum size model communities yielded only one MAG
each, while 110 model communities resulted in two or more MAGs. In
model communities with more than one MAG, each MAG belonged to a
different species-cluster in our analysis. Therefore, for clarity, we refer to
different MAGs within a model community as different species. Starting
from an inoculum size of approximately 30 cells, microbial model com-
munities withmore than two species appearmore often (Fig. 2B, C). Nearly
82% (n = 433) of the microbial model community MAGs were obtained
frommulti-species cultures, and the highest number of co-occurring species
were found in the high inoculum size microbial model communities
inoculatedwith 5000 cells (Fig. 2C).Despite using a complex inoculum from
the Baltic Sea, observing a maximum of 13 co-occurring species suggests
that our cultivation conditionsmay impose a threshold on the complexityof
model communities.Alternatively, since sequencing followedMDA, there is
also the possibility that some model communities included more species
that were not amplified, assembled, or binned. Nevertheless, the increased
growth success with increasing inoculum size likely reflects a greater
probability of including cells that can grow in isolationor in thepresenceof a
specific required community partner.
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Fig. 1 | The BalticMAG catalog. A Map of the Baltic Sea showing the geographic
location of all the metagenomes analyzed in this study, including our sampling site
(n = 112). Sampling sites are color-coded according to their salinity gradient,
measured in‰ (parts per thousand, equivalent to PSU). The shapes correspond to
the different reference sources. B Boxplot showing the percentage of mapped reads
from all metagenomes to our species-cluster collection, categorized by salinity
concentration (Kruskal–Wallis test). C Venn diagram showing the overlap of
species-clusters presence among cultures (red), the environment (blue), and found
in both (purple). D Relative abundance of species-clusters across the collection of

metagenomes, ordered by salinity gradient from left to right (corresponding to the
order in B). E Boxplot comparing the relative abundance of species-clusters cate-
gorized by their presence in cultures, the environment, or both (Kruskal–Wallis
test). Kruskal–Wallis tests were followed by Dunn’s post hoc test for pairwise
comparisons. Groups sharing at least one letter (e.g., a and ab) are not significantly
different from each other, while groups with different letters (e.g., a vs. b) are
significantly different (p < 0.05). Boxplots show the median and the interquartile
range (IQR), with whiskers extending to 1.5× IQR. Publicly available Baltic Sea
metagenomes were included in the analysis37–39.
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We found that as the number of retrievedMAGs permicrobial model
community increased, more microorganisms with smaller genomes
emerged, as indicated by a slight but significant correlation between esti-
mated genome size and the number of MAGs per microbial model com-
munity (Fig. 2D). In general, the estimatedgenome sizes ranged from0.88 to
6.27Mbp for MAGs from cultures and from 0.61 to 12.32Mbp for MAGs
from the environment (Fig. 2D, F).While therewas no significant difference
between the average estimated genome sizes of species-clusters from
microbial model communities and Baltic Sea metagenomes (around
3.00Mbp), we found that species-clusters exclusively composedof genomes
from microbial model communities had significantly larger genome sizes
than species-clusters including genomes from both sources, and no statis-
tically different genome completeness or contamination (Supplementary
Fig. 5). Further analysis reinforced the observation that genomes from high
inoculum sizemicrobialmodel communities and frommodel communities
with more than 3 species had on average, smaller genome sizes (2.89 and
2.92Mbp, respectively; Supplementary Figs. 6 and 7). Genomes from large
inoculum size microbial model communities were also, on average, more
prevalent and had higher average relative abundance in the investigated
Baltic Sea metagenomes. Finally, the average genome size per microbial
model community stabilized at around 3Mbp in cultures containing more
than three species (Fig. 2E).

Model communities withmore than three species reveal distinct
microbial diversity
The 72 species frommicrobialmodel communities spannedfive of themost
abundant phyla (Pseudomonadota, Bacteroidota, Campylobacterota,

Cyanobacteriota, and Verrucomicrobiota) present in the Baltic Sea envir-
onmental metagenomic sample42,43. These species varied substantially in
their observed growth strategies. Four of them were only found in single-
species cultures, 48 exclusively in multi-species cultures, and 20 appeared
growing both alone and in groups (Fig. 3). Of the species growing con-
sistently in groups, nine grew across different levels of community com-
plexity (e.g., 2, 3, ormore than three species per culture), and 39 specieswere
restricted to a single type of community complexity. Specifically, 31 species
were recovered from microbial model communities with more than three
species. Notably, 70% of these cultured species lacked a species-level
assignment in the GTDB taxonomy, suggesting they represent previously
uncultivated lineages with no characterized MAGs.

To evaluate whether culturing bacteria in groups increases the culti-
vability and recovery ofmicrobial diversity, we computed rarefaction curves
for species accumulation across increasing numbers of cultures (Fig. 4).
After 50 cultures of the single-species type,we had, on average, recovered 17
species, and every 12 new cultures would yield only three more species on
average. As we cultivated more species together, the initial steep slope also
increased. In fact, in 25 cultures with more than three species, 49 species
were recovered. This demonstrates that culturing in groups is a powerful
strategy for the recovery of microbial taxa that would normally not grow in
axenic cultures.

Species strictly found growing in groups are more abundant,
prevalent, and have lower biosynthetic capacity
The total number of genomes recovered per species-cluster varied con-
siderably (Fig. 5A), ranging from those detected only once (e.g., sc_576 and

Fig. 2 | Impact of inoculum size on microbial richness and genome size.
A Relationship between the number of inoculated cells (low inoculum size = 0–100
cells/well) and the total number of cultures from which MAGs were assembled and
binned.BNumber ofMAGs per culture for the low inoculum size (yellow) andC the
high inoculum size (pink) microbial model communities.D Estimated genome size
(circles) of MAGs from cultures (n = 527) in relation to the number of species

growing in the same culture, and E average estimated genome size (triangles) of
MAGs growing in the same culture. F Boxplot comparing the average estimated
genome size of species-clusters from cultures (n = 72) and those from the envir-
onment (n = 668). Statistical significance was assessed using theWilcoxon rank-sum
test. Boxplots show the median and the interquartile range (IQR), with whiskers
indicating 1.5× IQR.
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sc_639; taxa of species-clusters can be found in Supplementary Data 4 and
Fig. 3) to those found in over 40 model communities (e.g., sc_011 and
sc_014). Fifteen species (21%) were present in more than 10 model com-
munities, collectively accounting for approximately 63% of the total MAGs
(330 out of 527). We found that most of the frequently retrieved species

showed the flexibility of growing independently or in groups (Fig. 5A, B).
However, our experiment did not systematically test if species foundonly on
their own could also grow in groups, or if species foundonly in groups could
also grow alone. Nevertheless, whenwe examined the relative abundance of
all cultivated species across their source environmental sample, we observed

Fig. 3 | Microbial model communities of increased complexity host distinct sets
of cultured species. Heatmap showing the distribution of the 72 species-clusters
across cultures grouped by community complexity: 1, 2, 3, ormore than 3 species per
culture. Taxonomic affiliations (class, genus, and species) based on GTDB-Tk are
displayed alongside their unique species-cluster IDs. The white-to-black gradient

indicates the number of genomes recovered per species-cluster in each culture
category. Species that exclusively grow alone are highlighted in a light orange box,
while those only found to grow in groups (≥2 genomes) are highlighted in light
green. Rows are clustered based on similarity in genome-count profiles, and the scale
bar indicates the relative distance between clusters.
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a positive correlation with the total number of genomes recovered for
species found in groups (Fig. 5C). On the other hand, the two most abun-
dant species (Pelagibacterales sc_139 andMethylacidiphilales sc_121) were
found exclusively in groups but were cultivated very few times. This might
reflect that while many abundant microorganisms are easier to cultivate
under our model community conditions, finding the right partners or
getting the right conditions might be more challenging for others.

When examining species prevalence across all environmental samples,
a similar significant positive correlation emerged with the number of cul-
tured genomes per species (Fig. 5D), indicating thatmore prevalent taxa are
more frequently retrieved through our cultivation conditions.

Next, we compared estimated genome sizes and biosynthetic potential
for species capable of growing alone (singleton-capable) and those that
strictly grow in groups. While there was no significant difference in esti-
mated genome sizes between these two categories (Fig. 5E), we observed a
significant difference in average pathway completeness of custom bio-
synthesis modules for both amino acids and vitamins, with species found
strictly in groups exhibiting a lower average pathway completeness (Fig. 5F).
These findings suggest that the ability to grow alone ismost likely associated
with greater anabolic independence,whereas species that require growing in
groups may depend biosynthetically on other members of the community.

Lowest anabolic independence and higher interdependencies in
species growing in groups
We next examined the biosynthetic potential of the 305 high-quality gen-
omes (completeness >90%, contamination <5%) recovered from our
microbial model communities, with a focus on how this potential relates to
community complexity. We found that genomes from single-species and
two-species cultures showed consistently higher anabolic independence in
amino acid and vitamin module biosynthesis (Fig. 6 and Supplementary
Fig. 8). In contrast, genomes from three-species cultures showed lower
biosynthesis potential, and cultures with more than three species had the
lowest anabolic independence. This reduction was particularly pronounced
in amino acid biosynthesis pathways when compared to their highest
average completeness value observed in cultures with one or two species.
The nine amino acids with lowest pathway completeness were arginine
(~25% lower), proline (~22%), phenylalanine (~21%), tyrosine (~20%),
threonine (~18%), leucine (~17%), tryptophan (~16%), serine (~14%), and
isoleucine (~12%) (Supplementary Fig. 9). Additionally, although vitamin
B12 showed a relative decrease, both single-species and more than three-

species model communities had low average pathway completeness (~22%
down to ~12%), suggesting generally limited biosynthetic capacity for B12,
regardless of community complexity.

While it is assumed thatmetagenome assemblymightwork betterwith
lower diversity inputs, genomes from our more complex cultures (>3 spe-
cies) showed only slight differences in completeness, contamination, and
N50 values (Supplementary Fig. 10). To test whether this small difference in
genome quality could explain the reduced biosynthetic potential in complex
communities, we examined the relationship between genome completeness
and the completeness of each biosynthetic module individually (Supple-
mentary Fig. 11). Across all 27 modules, eight showed a significant positive
correlation and four a significant negative correlation with an average R2

value of 0.03. Together, these results suggest that the lower biosynthetic
capacity inmulti-species cultures is a biological signal driven by community
composition rather than a technical artifact of genome quality.

To evaluate if microbial model communities with more than three
species collectively encode complete biosynthetic pathways, we evaluated
gene content (based on individual module steps) of all 262 genomes
recovered from 37 microbial model communities, regardless of complete-
ness. Even partial genomeswere included because they can provide valuable
evidence for individual metabolic steps. When examining the data at the
community level, we observed that in these cultures, all species collectively
encoded the biosynthetic pathways through a mosaic of partial contribu-
tions from different species (Fig. 7). This community-level stepwise com-
pletion indicates that biosynthetic capacity emerges collectively rather than
within individual genomes, suggesting that anabolic interdependencies
support the idea of facilitated community growth.

Ubiquitous species tend tohavesmaller estimatedgenomesizes
and reduced biosynthetic capacity
For high-quality species from model communities (n = 57), we found a
significant negative correlation between relative abundance and average
pathway completeness for both amino acids and vitamins in species that
exclusively grew in groups and those that exclusively grew alone (Fig. 8A).
This trend persisted for vitamin biosynthesis (Supplementary Fig. 12C),
while amino acids alone showed a weaker association (Supplementary
Fig. 12B). Moreover, we observed a significant positive correlation between
estimated genome size and average pathway completeness for species that
exclusively grew in groups and alone, showing that smaller genomes encode
fewer biosynthetic pathways (Fig. 8B). Notably, the correlation between

Fig. 4 | Culturing in groups enables access to a
greater diversity of microbial species. Rarefaction
curves show the cumulative number of unique spe-
cies recovered from microbial model communities
grouped by community complexity (1, 2, 3, or more
than 3 species), as cultured samples are progressively
added. For each category, species accumulation was
calculated across 100 random permutations (boot-
strap iterations), and shaded ribbons represent
±1 standard deviation from themean. Communities
with a single species (1 genome) are shown in light
orange, while increasingly complex communities
(≥2 genomes) are shaded in progressively darker
greens.
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Fig. 5 | Growth strategy, environmental distribution, and genomic features of
cultured microbial species. A Barplot showing the total number of cultured gen-
omes recovered per species-cluster (n = 72). Bars are colored by the type of culture
from which each genome was obtained: light orange for single-genome cultures and
light green for multi-genome cultures. Species-clusters were further categorized
based on their observed growth behavior: “Single” (light orange) for species that
grew exclusively alone, “Group” (light green) for those that grew exclusively in
groups, and “Both” (orange) for species that could grow alone and in groups.
BBoxplot comparing the number of cultured genomes per species-cluster across the
three growth categories. Kruskal–Wallis tests were followed by Dunn’s post hoc test
for pairwise comparisons. Groups sharing at least one letter (e.g., a and ab) are not
significantly different from each other, while groups with different letters (e.g., a vs.
b) are significantly different (p < 0.05). C The dot plots display the relationship
between the total number of cultured genomes per species-cluster and their relative

abundance in the sample of origin (D), as well as the prevalence of these species-
clusters in all environmental samples. Each data point represents one species-cluster.
Associations were assessed using the Spearman’s rank correlation method (corre-
lation coefficient ρ and p value shown). Trend lines are included in the plots for
visualization purposes only. E Boxplot comparing the estimated genome size of
species-cluster representative genomes (n = 72) growing exclusively in groups
(“Group” = light green) and capable of growing alone (“Singleton-capable” = light
orange). F Boxplot comparing the average pathway completeness of custom amino
acid and vitamin biosynthesis modules between high-quality species-cluster
representatives (n = 57; completeness >90%, contamination <5%) growing exclu-
sively in groups and those capable of growing alone. Statistical significance was
assessed using the Wilcoxon rank-sum test. Boxplots show the median and the
interquartile range (IQR), with whiskers indicating 1.5× IQR.
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vitamin biosynthesis and estimated genome size was particularly strong in
group-only species (Supplementary Fig. 12F).

Scaling the observations from model communities to all high-quality
species from the BalticMAG catalog (n = 450), we found similar trends,
particularly among species detected only in environmental metagenomes.
In this group, we found that higher average relative abundances (Fig. 8C)
and smaller estimated genome sizes (Fig. 8D) were linked to lower average
completeness of biosynthetic pathways for amino acids and vitamins.

Finally,whenwe analyzedall 701 species-clusters,weobserved a strong
negative correlation between estimated genome size and both relative
abundance (Fig. 8E) and prevalence across samples (Fig. 8F). These results
align with prior observations, where the most successful and widespread
taxa have a streamlined genome with low biosynthetic potential17. Collec-
tively, these findings suggest that biosynthetic interdependencies may be a
common ecological strategy in the Baltic Sea.

Anabolic dependencies in the Baltic Sea: different paths to
microbial success
Given that anabolic dependencies seem to be common in the Baltic Sea, an
important question arises: Are these dependencies uniform across different
microorganisms, or do different microorganisms adopt distinct metabolic
strategies to achieve ecological success? To explore variation in biosynthetic
potential across the BalticMAG catalog, we analyzed the genomes of 450
high-quality species. A principal component analysis (PCA) on the bio-
synthetic completeness matrix revealed a clear separation of genomes into

three distinct biosynthetic completeness groups: Low (0–30%), Medium
(30–62.5%), and High (>62.5%) (Fig. 9A, D). Estimated genome size fol-
lowed the trend, increasing from low to high across the biosynthetic com-
pleteness groups (Fig. 9E). In general, among the most frequently
incomplete or partially incomplete amino acid pathways were histidine,
phenylalanine, and tyrosine as well as vitamin B1 and B12 (Supplementary
Fig. 13). The microorganisms in the different biosynthetic groups showed
distinct and clear taxonomic signatures (Fig. 9C). The low biosynthesis
completeness group consisted exclusively of Patescibacteria and a single
Firmicutes genome, both lineages associated with symbiotic or highly host-
dependent lifestyles. The medium biosynthesis completeness group was
dominated by Bacteroidota and Planctomycetota, while the high biosynth-
esis group encompassed a broader diversity of phyla, including Proteo-
bacteria and Actinobacteria as major contributors. Interestingly,
microorganisms with low and high biosynthetic completeness showed no
significant difference in relative abundance, possibly due to the small
number of taxa in the former group (Fig. 9F).

To better visualize biosynthetic strategies, we projected the data using
Uniform Manifold Approximation and Projection (UMAP) (Fig. 9B),
which further confirmed the biosynthetic groupings, with strong clustering
patterns aligned with biosynthetic capacity. Interestingly, the high biosyn-
thetic group is further separated into two subclusters. One of them, com-
posed of 51 species, was taxonomically diverse yet tightly grouped.We refer
to this subcluster as Cluster A, and the remaining genomes from the High
biosynthetic group as Cluster B. Cluster A genomes had significantly larger

Fig. 6 | Amino acid and vitamin biosynthetic potential across species from
varying community complexity. AHeatmap showing pathway completeness scores
for 18 custom amino acid biosynthesis modules (three-letter abbreviations) across
high-quality genomes (n = 305; >90% completeness, <5% contamination) grouped
by community complexity: 1, 2, 3, or more than 3 species per culture. Each column
represents a genome, and each row a biosynthetic module. Completeness values
range from white (0) to dark orange (1) for genomes from single-genome cultures,
and white to dark green for genomes from multi-genome cultures (≥2 genomes).
B Boxplot summarizing the average amino acid pathway completeness per genome

across the same four community complexity groups.CHeatmap as in (A), but for the
9 custom vitamin biosynthesis modules. Color gradients and grouping are defined
identically.D Boxplot summarizing the average vitamin pathway completeness per
genome across complexity groups. Statistical significance for (B, D) was assessed
using Kruskal–Wallis tests, followed by Dunn’s post hoc test for pairwise compar-
isons. Groups sharing at least one letter (e.g., a and ab) are not significantly different
from each other, while groups with different letters (e.g., a vs. b) are significantly
different (p < 0.05). Boxplots show the median and the interquartile range (IQR),
with whiskers indicating 1.5× IQR.
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genome sizes than those in Cluster B (Fig. 9H) and appeared to be themain
producers of vitamin B12 (Fig. 9G and Supplementary Fig. 14). Cluster B
genomes showed higher completeness for vitamin B3.

Finally, among the 57 high-quality genomes frommodel communities,
we observed that we were unable to cultivate any microorganisms from the
low biosynthetic group. This might suggest that cultivation techniques to
grow them togetherwith their possible hostmight be needed.Whilemost of
the microorganisms we cultivated belonged to the high biosynthetic group
(Fig. 9J), the six microorganisms we cultivated from the medium biosyn-
thetic group grew exclusively in groups. Further, a PCA based on only the
genomes from the microorganisms we cultivated revealed a different set of
clusters with biosynthesis values ranging from 50% to 90% (Fig. 9K, L).
Cluster 1, which had the lowest biosynthesis potential, was again mostly
composed of species that were capable of growing exclusively in groups.
Cultivating a microorganism with lower biosynthetic potential in pure
culture might indicate residual amino acids and vitamins in the filtered-
sterilized ocean water used as media. Nevertheless, our cultivation strategy
still showed that microorganisms with lower anabolic independence prefer
to grow in groups.

Discussion
The field of microbiology has traditionally relied on the isolation of
microorganisms from nature in pure culture44–49. The practice has yielded
foundational insights into microbial physiology50–52, metabolism53–56, and
ecological interactions such as mutualism28,57,58 and competition59–61.
However, this reductionistic approach has limitations, particularly a strong
cultivation bias favoring microorganisms with larger genome sizes41,62,
broader biosynthetic potential63, and greater independence. As a result, a
substantial portion of themost abundantmicrobes in natural environments
remains uncultivated64.

Here, we demonstrate the utility of microbial model communities
established through dilution cultivation from a Baltic Sea pelagic sample for
obtaining a wide range of previously uncultivated, abundant, and bio-
synthetically limited microorganisms. Despite using only one type of ocean
water as the medium (which did not allow us to control the presence of
amino acids or vitamins), our method allowed the cultivation of groups of
microorganisms that showcased important ecological principles that govern
microbial life in nature. Our results suggest that by increasingly using high-
throughput dilution cultivation of microbial model communities, more
diverse microorganisms with medium-to-high biosynthesis potential could

be cultivated. Moreover, by varying cultivation physicochemical para-
meters, such as adding catalase65, changing light regimes66, or temperature67,
and perhaps by leveraging a better understanding of bacterial host
dynamics68,69, we will be able to cultivate a greater proportion of the abun-
dant microorganisms found in nature.

Additionally, we found that species growing in microbial model
communities composed of more than three species exhibited lower bio-
synthetic potential for both amino acids andB vitamins compared to species
found growing in smaller groups or independently. The reduced per-
genome biosynthetic capacity in more complex communities suggests that
microorganisms with low anabolic independence are forming metabolic
networks to support their nutritional requirements70. Interestingly, a pre-
vious study has also found a threshold of microbial diversity at which
competition and complementation saturate30. Specifically, they observed
that beyond approximately 26 taxa, further increases in diversity had little
detectable impact onoverall community function (respiration), suggesting a
saturation of functional capacity. Although our work examines only amino
acid and vitamin biosynthesis, both studies observed a diversity threshold.
These different thresholds observed emphasize that microbial communities
likely achieve a balanced state of interaction complexity beyond certain
diversity levels, thereby optimizing ecological efficiency.

Our findings also align with the BlackQueenHypothesis, which posits
that certain functions, particularly costly biosynthetic pathways, can be lost
by some communitymembers as long as the production of themetabolite at
the community level is sufficient to sustain the individual71. In this context,
the reduced genome sizes observed in the abundant species from themodel
communities and the environment likely reflect a genome streamlining
process72. The findings further align with the hypothesis that obligate co-
existing microbes have evolved to rely on their community for essential
nutrients73, potentially creating social networks that might bring microbial
community stability14,74–76. To support this, our stepwise module analysis
revealed that microbial model communities with more than three species
collectively maintain biosynthetic potential for amino acids and vitamins.
These observations also align with recent findings77 from a study that
examined the potential for metabolic complementarity among auxotrophic
soil bacteria. The study analyzed 746 auxotrophic strains from 27 soil-
derived communities that were grown in groups of 2, 3, 4, and 5 strains, and
described a clear trend: larger groups of bacteria were more capable of
collectively producing all necessary amino acids due to metabolic
complementarity.

Fig. 7 | Community-level stepwise module framework analysis of amino acid and
B vitamin biosynthetic pathways in complex model communities. Heatmap
shows the average presence of biosynthetic module steps across 37 microbial model
communities containing more than three species growing together, including all
genomes regardless of genome completeness (n = 262). Each column represents a
specific KEGG module step (e.g., M000020_01) grouped by compound. Each row

corresponds to an individual model community. Values represent the proportion of
genomes in each community that encode the respectivemodule step, ranging from 0
to 1 (white to dark green). The stepwise framework uses canonical KEGG modules
(non-customized), capturing the presence of standard and alternative steps within
pathways.
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Importantly, our findings also complement large-scale studies inves-
tigating the ecological distribution of auxotrophies. A recent analysis of over
26,000 representative bacterial genomes across diverse environments found
that amino acid auxotrophy is more common in host-associated environ-
ments while relatively rare in aquatic and soil ecosystems. However, this
analysis draws a robust but strict boundary on how to categorize

microorganisms in a binary model of prototrophs and auxotrophs (more
than 40% genes missing per pathway to classify as auxotroph)16. While this
categorization has been widely used, it might also be hiding potential
interdependencies. In our study, we draw no boundary for defining auxo-
trophy. Instead, we studied the amino acid and B vitamin pathways by
observing their completeness and comparing them across the different
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species in the dataset. We believe this has the potential to reveal a wide
spectrumof possibilities wheremicroorganismsmight just need a precursor
to complete biosynthesis21. Moreover, we found further support for the idea
that metabolic interdependencies go beyond the simple exchange of end
products in a recent study20. The authors used 25engineered strains ofE. coli
that were auxotrophic for specific amino acids (arginine, histidine, iso-
leucine, proline, and tryptophan) and performed pairwise co-cultures of
strains auxotrophic for the same amino acid. Strikingly, they found that
growth complementation was often achieved by sharing the intermediates
within the biosynthetic pathway. For this reason, we believe that moving
away from binary categorization of auxotrophies might bring more nuance
to the study of anabolic dependencies.

Nevertheless, it is important to acknowledge the limitations inherent to
any metagenomic study, including ours. (i) The best-characterized path-
ways for amino acid and vitamin biosynthesis are based on a few hundred
physiologically tested strains. Unknown enzymes and alternative routes
likely still exist, even for core amino acids. Taxon-specific variants and
incomplete descriptions of alternative steps mean that single gaps in path-
ways may reflect gaps in knowledge rather than true anabolic
dependencies78. (ii) Public databases contain significant rates of functional
misannotation, mainly because most protein databases are usually anno-
tated automatically using computational approaches79. (iii)Despite rigorous
quality screening, MAGs remain incomplete; thus, missing steps could
represent false negatives. While these limitations apply to our study, the
large number of high-quality genomes across diverse taxa that we analyzed,
together with the consistency of the observed patterns, gives us confidence
that our main conclusions remain robust. Abundant bacteria appear
interdependent through essential metabolites, and their cultivation success
increases when incubated in groups rather than alone.

In summary, our study highlights the larger potential of microbial
model communities in bridging the gap between laboratory cultivation and
the environment. By cultivating naturally assembled groups of micro-
organisms, we recovered ecologically dominant taxa with limited biosyn-
thetic capacity that are often overlooked by traditional isolation techniques.
These findings demonstrate that increasing community complexity is
associated with different forms of reduced metabolic autonomy. Moreover,
we observed that biosynthetic interdependencies can be common among
planktonic bacterial taxa and are likely widespread in nature. In combina-
tion with recent experimental evidence showing the exchange of biosyn-
thetic intermediates among bacteria, our results reinforce the idea that
anabolic dependencies, rather than complete autonomy, are a successful
ecological strategy. Cultivating groups rather than individuals can offer a
more ecologically relevant understanding of howmicrobes survive, interact,
and evolve in nature.

Methods
Sampling and sample processing
We collected an environmental sample from the surface layer of the Baltic
Sea close to Askö in the Trosa archipelago (Lat 58°48.20′N, Lon 17°37.42′E)
in October 2021 (Fig. 1A). For details on the chemical composition of the
water at sampling time, please visit https://shark.smhi.se/hamta-data/. The
sample for our experiments was subsequently processed in the laboratory
forDNAextraction andmetagenomic sequencing. Briefly, thewater sample
was filtered through a 0.1 µmmembrane and used to extract environmental

DNAusing either the FastDNA® SPINKit for Soil (MPBio) and theDneasy
PowerWater kit (Qiagen). Additionally, we filtered water through a 0.1 µm
hollow fiber cartridge (Cytiva) and used the filtrate as media to establish
cultures with different starting inoculum sizes.

Flow cytometry
We used a CytoFLEX instrument manufactured by Beckman Coulter to
process the environmental sample and to calculate the cell count as the
number of events/mL. Briefly, we stained 50 µL of each sample with Syto13
at afinal concentration of 0.025mM.During theflow cytometer acquisition
process, we set the followingparameters: FSC2500, SSC2500, andFITC800
with a flow rate of 60 µl/min.

Establishment of microbial model communities
We used the dilution-to-extinction technique, considering the cell count
information from the sample and diluting the cells in the filtered, sterilized
water, to achieve approximately the desired starting number of cells in our
microbial model communities. The model communities were designed in
twoways: low inoculum size and high inoculum size. The low inoculum size
model communities included hundreds of individual cultures in 96-well
plateswith a startingnumberof cells of 0 (control), 2, 6, 10, 15, 20, 30, 50, and
100 cells/well. The high inoculum sizemodel communitieswere prepared in
bottles with starting numbers of cells of 0 (control), 200, 600, 1000, 1500,
2000, 3000, 5000, 10,000, 100,000, and 1,000,000 cells/bottle. Filtered water
from the original environmental sample, without any additional nutrients,
was used as the medium, resulting in an undefined medium closely
reflecting in situ conditions. All cultures were incubated with light/dark
cycles (light 6:42 h, dark 18:32 h each day) and 12.2 °C at light and 11.8 °C at
dark for 4 weeks before further processing. This regime was designed to
emulate as best as possible the naturalfluctuations in time, temperature, and
light that cells experience in their environment.

MDA, library preparation, and sequencing
Before sending our samples for metagenomic sequencing, we performed
MDA on all cultures to increase the concentration of DNA. The MDA
reaction consisted of 0.6 µL of culture and 4.4 µL of reaction mix using the
Repli-g SingleCell kit (Qiagen).AfterDNAamplification,we found that 315
of the culturespassed the amplification threshold of the negative controls set
in theMDAreaction. These cultureswere deemedpositive andwere sent for
sequencing. We extracted DNA from the selected cultures and our envir-
onmental samplewith twodifferentDNAextractionmethods and subjected
them to library preparation using the TruSeq PCR-Free DNA library pre-
paration kit (Illumina Inc.), followed by metagenomic Illumina sequencing
at the SNP&SEQ Platform at Uppsala University. This sequencing tech-
nology utilized cluster generation and 150 cycles of paired-end sequencing
on an SP flow cell, employing the NovaSeq 6000 system with
v1.5 sequencing chemistry (Illumina Inc).

Genome-resolved metagenomics pipeline
We removed low-quality reads from the raw sequences using the software
Trimmomatic (v0.36)80 with the following options: ILLUMINACLIP:-
TruSeq3-PE-2.fa:2:30:10:2:keepBothReads LEADING:3 TRAILING:3 SLI-
DINGWINDOW:4:15 MINLEN:50. We employed the MetaWRAP
pipeline (v1.3.2)81 to process our cleaned metagenomic reads. First, clean

Fig. 8 | Link between pathway completeness, relative abundance, and estimated
genome size of cultured species and the BalticMAG species catalog. ACorrelation
between average biosynthesis pathway completeness of custom amino acids and
vitamin modules and the relative abundance of cultured species (n = 57, com-
pleteness >90%, contamination <5%). B Correlation between the average bio-
synthesis completeness for custom amino acid and vitamin modules and the
estimated genome size of cultured species-clusters. Each data point represents one
species cluster (n = 57, completeness >90%, contamination <5%), which either grew
exclusively on their own (light orange), exclusively in groups (light green), or both on

their own as well as in groups (orange). C, D replicate the analysis from (A, B) but
include all species-clusters (n = 450, completeness >90%, contamination <5%) from
both cultures and environmental samples. ECorrelation between estimated genome
size and average relative abundance and F correlation between estimated genome
size and prevalence of all species-clusters (n = 701). Data points are color-coded to
represent species-clusters from cultures only (red), environments only (blue), and
those found in both (purple). All correlations use Spearman’s rank method, and the
trend line is included only for visualization purposes. Publicly available metagen-
omes were included in the analysis37–39.
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reads were assembled in a single-sample assembly style using the “meta-
WRAP_assembly” module with MegaHit (v1.1.3)82 for the environmental
samples and with SPAdes (v3.15.3)83 for the culture samples. The quality of
the assemblies was assessed withQUAST (v.5.0.2)84. Since the culture DNA
was amplified using MDA, read-coverage information could not be used.
For this reason, we included background metagenomic data from previous

projects in the Baltic Sea (Fig. 1A and Supplementary Data 2) for binning.
Subsequently, we used multiple-sample coverage binning to decrease the
contamination and increase the completeness of bins85. The reads were
mapped against all assemblies using the Input_POGENOM pipeline86,
which uses Bowtie287 with default parameters. Aftermapping and obtaining
the BAM files, the minimum coverage was calculated using samtools
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(v1.9)88. Only coverage values for each assembly in each metagenomic
sample with mean coverage ≥20× and mean breadth ≥40% were retained,
following Input_POGENOM recommendations. These coverage values for
each samplewere combined and processedwith the “metaWRAP_binning”
module, which uses three metagenomic binning tools: metaBAT289,
maxBIN290, and CONCOCT91. We consolidated all the bins generated by
these different tools using the “metaWRAP_bin_refinement”module. We
classified the resulting bins taxonomicallywithGTDB-Tk (v2.1.1)92. Finally,
we assessed the quality of the bins using CheckM (v1.1.3)93. We considered
bins asMAGswhen they had a completeness of >45% and a contamination
of <10%, and these MAGs were included for further analysis.

Complementing with previously published MAGs
The dereplicatedMAGs obtained here were supplemented with 771MAGs
from an earlier study37 that were based on metagenomics data from three
studies37–39. We dereplicated the collection of MAGs to obtain species-
cluster representatives using ANI > 95% with mOTUpan (v0.3.2)94, and
selected the genome with the highest quality as the species-cluster repre-
sentative genome.

Relative abundance analysis
To calculate the relative abundance of our 701 species-clusters in the Bal-
ticMAG catalog, we employed the mapping tool Strobealign (v0.14.0)95,
which aligned the shortmetagenomic reads to our species-cluster collection
using a high-speed indexing method (Supplementary Data 5). Briefly, we
created three different indexes with different lengths (100, 125, and 150) for
our 701 species clusters. We filtered out low-quality reads from our 112
environmental samples with Trimmomatic (v0.36)80 with the following
options: ILLUMINACLIP:TruSeq3-PE-2.fa:2:30:10:2:keepBothReads
LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15 MINLEN:50. After
this, we performed a competitive mapping of all reads against our created
index to obtain the corresponding BAM file for each sample.We sorted the
BAM files with the Anvi’o platform (v7.1)96 using the “anvi-init-bam”
program, and we calculated the coverage of each genome per sample with
the program “anvi-profile-blitz.”We calculated each species-cluster’s rela-
tive abundance with the previously obtained output by dividing each gen-
ome’s mean coverage inner quartiles (i.e., q2q3_cov) by the overall sample
mean coverage.We also computed the prevalence, defined as the frequency
of each species-cluster across samples. Specifically, prevalence represents the
proportion of samples inwhich a species-clusterwas detectedwith a relative
abundance > 0.

Custom functional annotation of KEGG Orthologs (KOs) and
biosynthetic modules
We used the Anvi’o platform (v7.1)97 to perform functional annotation of
KEGG Orthologs (KOs) and to estimate metabolic potential. Initially, for
each genome, we used “anvi-gen-contigs-database” to create a contigs
database, which served as the basis for the subsequent functional annotation
steps. To annotate each genome with KOs from the KEGG KOfam

database98, we ran the “anvi-run-kegg-kofams”program.We thenpredicted
the metabolic capabilities of each genome by running the “anvi-estimate-
metabolism” program99 (Supplementary Data 6).

In addition to the default KEGG modules100,101, we developed and
implemented a custom set of 30 curatedmodules targeting the biosynthesis
of amino acids and B vitamins (Supplementary Data 7–9). Our pathway
curation is focused on the KEGG database to ensure a single, consistent
framework across amino acids and B vitamins, thereby ensuring scalability
and reproducibility within Anvi’o across hundreds of genomes. KOs were
selected directly from the KEGG pathway map for each metabolite, and we
encoded explicit logical rules (OR/AND) to represent alternative branches
within a single, unified route.WhereKEGGprovidesmultiplemodules that
yield the same end-product, we have consolidated them into a single custom
module (e.g., cysteine from serine via KEGGmodule M00021 or M00338).
For metabolites lacking a KEGG module, we defined a completely new
customrouteby selecting the relevantKOsdirectly fromtheKEGGpathway
map for that metabolite and applying the same OR/AND logic. Custom
module IDs use the suffix _00 for consolidated versions of multiple path-
ways for a given metabolite, whereas _01 distinguishes alternative variants
when relevant (e.g., aerobic vs. anaerobic vitamin B12 biosynthesis). Cus-
tom module definitions and implementation files are publicly available in
the accompanying GitHub repository: https://github.com/ivagljiva/
custom_biosynthesis_modules.

Custommoduleswere integratedusing the “anvi-setup-user-modules”
command. Completeness scores for each genome and custommodule were
calculated using “anvi-estimate-metabolism” with the “--only-user-mod-
ules” flag. Although we initially created custom modules for all 20 protei-
nogenic amino acids (plus the important precursor chorismate), we
subsequently excluded alanine, asparagine, and aspartate modules from
downstream analysis. These three amino acids are commonly produced by
generic transamination reactions with central metabolic intermediates (e.g.,
pyruvate or oxaloacetate), and their biosynthesis often involves multiple
redundant enzymes that are still challenging to annotate accurately102.
Because our custom definitions included only a very limited subset of these
enzymes, we observed artificially low completeness scores for these three
modules. Thus, for accuracy and consistency, we retained only 18 amino
acid modules (plus the 9 B vitamin modules) for downstream statistical
comparisons (Supplementary Data 10).

Statistics and reproducibility
All statistical analyses from this study were performed with R software
(v4.4.0)103 andRStudio104.Weused the Shapiro test to assess thenormality of
our data to be compared; if p < 0.05, we interpret this as not normally
distributed105. Since our data were not normally distributed, we employed a
non-parametric test, such as the Wilcoxon test, to find differences between
pairs of groups (e.g., culture vs. environment)106. To assess statistical dif-
ferences among more than two groups, we first applied a Kruskal–Wallis
rank-sum test to determine if any group differed significantly107. When the
Kruskal–Wallis test was significant (p < 0.05), we performed post hoc

Fig. 9 | Anabolic dependencies and biosynthetic clustering of the BalticMAG
species catalog, including cultivated species. A Principal component analysis
(PCA) of the biosynthetic module completeness, with genomes color-coded by
biosynthetic completeness group: Low = light blue, Medium = light purple, High =
pink. B Uniform Manifold Approximation and Projection (UMAP) of the same
data, confirming the biosynthetic groupings. C Stacked barplot showing the pro-
portion and taxonomic composition of the three biosynthetic completeness groups,
color-coded by phylum. Boxplots comparing D average pathway completeness,
E estimated genome size (Mbp), and F relative abundance of species-clusters
grouped by biosynthetic completeness. Statistical significance was assessed using a
Kruskal–Wallis test (p < 0.05), followed by Dunn’s post hoc test with Bonferroni
correction; groups with different letters are significantly different (p < 0.05).
G Median completeness differences for KEGG custom biosynthesis modules
between Cluster A and Cluster B genomes of the High biosynthetic group. Positive
values indicate modules are more complete in Cluster A, while negative values

indicate modules are more complete in Cluster B. Boxplots comparingH estimated
genome size (Mbp) and I relative abundance of species-clusters fromCluster A (dark
pink) and Cluster B (light pink). Statistical significance was assessed using the
Wilcoxon rank-sum test (p < 0.05). J PCA of biosynthetic completeness color-coded
by species-cluster growth category: Single = light orange, Group = light green,
Both = orange; environmental-only clusters are shown in gray. K PCA of the 57
high-quality genomes from microbial model communities, also color-coded by
growth category. L Boxplot showing the average pathway completeness of the three
biosynthetic clusters derived from cultivated species. Statistical significance was
tested using Kruskal–Wallis with Dunn’s post hoc test for pairwise comparisons.
Groups sharing at least one letter (e.g., a and ab) are not significantly different from
each other, while groups with different letters (e.g., a vs. b) are significantly different
(p < 0.05). Boxplots show the median and the interquartile range (IQR), with
whiskers indicating 1.5× IQR. Publicly available metagenomes were included in the
analysis37–39.
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pairwise comparisons using Dunn’s test with Bonferroni correction for
multiple testing108. To visualize pairwise group differences, we applied a
compact letter display,where groups that donot differ significantly share the
same letter, and groups with different letters are significantly different from
each other. Associations were evaluated using Spearman’s rank correlation
method, a non-parametric statistic suitable for our data, which is not nor-
mally distributed. The correlation coefficient (ρ) and p value are provided. A
trend line is included in the correlation plots for visualization purposes only.

Finally, variation in biosynthetic potential among high-quality gen-
omes was explored using PCA of the biosynthetic completeness matrix. To
visualize overall similarity patterns, we also applied UMAP to the same
matrix. Clustering patterns were further assessed with k-means clustering
(k = 3) based on the first five PCA components.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
The paired-end sequences of both environmental (n = 2) and culture
(n = 204) metagenomic samples from the Baltic Sea collected in this study,
along with the corresponding 827 MAGs (>45% completeness and <10%
contamination), are publicly available in the NCBI under the BioProject ID
PRJNA1134408. The data can be accessed at https://www.ncbi.nlm.nih.gov/
bioproject/PRJNA1134408. All other metagenomes from the Baltic Sea
(n = 110)were downloaded frompublic repositories, and theirmetadata are
included in Supplementary Data 2, along with their publication references.
Source data and categories for salinity concentration (expressed as PSU;
equivalent to‰) used to plot Fig. 1B are provided in SupplementaryData 2.
Data for Fig. 1E are derived from Supplementary Data 5 (relative abun-
dance) in combination with metadata in Supplementary Data 4 (culture,
environment, or both).Data for Fig. 2 are available in SupplementaryData 4
(metadata and genome source information). Data for Fig. 4 are in Supple-
mentaryData4 (culture IDandcommunity complexity categories).Data for
Fig. 5B, E, F are in SupplementaryData 4 (group, single, or both; “singleton-
capable” combines the single and both categories). Data for Fig. 6B, D are in
Supplementary Data 11 (pathway completeness for the high-quality culti-
vated genomes, n = 305, including their community complexity category, 1,
2, 3, or more than 3 species per culture). Data for Fig. 9C–I, L are in
Supplementary Data 12 (cluster assignments 1–3 correspond to groups
shown in Fig. 9K, L).

Code availability
Custommodule definitions and implementation files are publicly accessible
at https://github.com/ivagljiva/custom_biosynthesis_modules and archived
on Zenodo under https://doi.org/10.5281/zenodo.17465601109.
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