Ecological Informatics 91 (2025) 103390

ECOLOGICAL
INFORMATICS

Contents lists available at ScienceDirect

Ecological Informatics

journal homepage: www.elsevier.com/locate/ecolinf

L))

Check for

Unveiling 3D ocean biogeochemical provinces in the North Atlantic: A | e
systematic comparison and validation of clustering methods

Yvonne Jenniges “"2-*, Maike Sonnewald %/ Sebastian Maneth "®-**, Are Olsen ¥,
Boris P. Koch 8

a Ecological Chemistry, Alfred-Wegener Institut Helmholtz-Zentrum fiir Polar- und Meeresforschung, 27570 Bremerhaven, Germany
Y Faculty of Informatics, University of Bremen, 28539 Bremen, Germany

¢ Department of Computer Science, University of California, Davis, CA, USA

dSchool of Oceanography, University of Washington, Seattle, WA, USA

¢ NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, NJ, USA

f Geophysical Institute, University of Bergen, 5020 Bergen, Norway

8 Department of Technology, University of Applied Sciences, 27568 Bremerhaven, Germany

ARTICLE INFO ABSTRACT

Dataset link: Ocean regions dataset, Code, Dash
board, Dashboard code

Defining ocean regions and water masses helps to understand marine processes and can serve downstream
tasks such as defining marine protected areas. However, such definitions often result from subjective decisions
potentially producing misleading, unreproducible outcomes. Here, the aim was to objectively define regions of
the North Atlantic through systematic comparison of clustering methods within the Native Emergent Manifold
Interrogation (NEMI) framework (Sonnewald, 2023). About 300 million measured salinity, temperature, and
oxygen, nitrate, phosphate and silicate concentration values served as input for various clustering methods
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Clustering (k-Means, agglomerative Ward, and Density-Based Spatial Clustering of Applications with Noise (DBSCAN)).
Water masses Uniform Manifold Approximation and Projection (UMAP) emphasised (dis-)similarities in the data while
North Atlantic

reducing dimensionality. Based on systematic validation of clustering methods and their hyperparameters using
internal, external and relative validation techniques, results showed that UMAP-DBSCAN best represented the
data. Strikingly, internal validation metrics proved systematically unreliable for comparing clustering methods.
To address stochastic variability, 100 UMAP-DBSCAN clustering runs were conducted and aggregated following
NEM], yielding a final set of 321 clusters. Reproducibility was evaluated via ensemble overlap (88.81+1.8%)
and mean grid cell-wise uncertainty (15.49+20%). Case studies of the Mediterranean Sea, deep Atlantic waters
and Labrador Sea showed strong agreement with common water mass definitions. This study revealed a more
detailed regionalisation compared to previous concepts such as the Longhurst provinces through systematic
clustering method comparison. The applied method is objective, efficient and reproducible and will support
future research on biogeochemical differences and changes in oceanic regions.

1. Introduction (2007), has provided a foundational framework for investigating large-

scale oceanographic patterns and processes, hotspots of biodiversity
and ecological relationships. For example, the Longhurst regimes
helped quantify primary production (Longhurst et al., 1995), charac-

The definition of ocean regions has offered fundamental advances
in our understanding of marine (eco)systems, biodiversity distribu-

tions and their variability. Since the 19th century, efforts to delineate
biogeographic patterns have evolved from early taxonomic classifica-
tions (Forbes, 1856) to more comprehensive ecological and physical
ocean regionalisations (Ekman, 1935; Hedgpeth, 1957; Briggs, 1974;
Hayden et al., 1984; Briggs, 1995; Bailey, 1998). One of the most
influential partitioning schemes, the ecological provinces by Longhurst

terise tuna movements (Logan et al., 2020) and trophic dynamics and
food web structure (Arnoldi et al., 2023).

Ocean regionalisations have been used in studies addressing fields
such as biogeographic realms (Costello et al., 2017), carbon flux
(Gloege et al., 2017) or patterns of marine viruses (Brum et al., 2015).
They also serve economic decisions in fisheries (Juan Jorda et al.,
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2022) and policy such as the designation of marine protected areas
legislation (Spalding et al., 2007; Sonnewald et al., 2020; Zhao et al.,
2020b; Reisinger et al., 2022).

While previous approaches often rely on predefined thresholds and
subjective criteria, emerging data-driven techniques, particularly clus-
tering algorithms, provide a more objective framework for ocean region
delineation (Devred et al., 2007; Hardman-Mountford et al., 2008;
Oliver and Irwin, 2008; Kavanaugh et al., 2014; Sayre et al., 2017;
Sonnewald et al., 2019, 2020). The Native Emergent Manifold Inter-
rogation (NEMI) method (Sonnewald, 2023) addresses key challenges
in analysing complex geophysical data by integrating manifold learn-
ing, clustering, stochastic ensemble methods, uncertainty quantification
and intuitive validation to ensure robust and interpretable clustering
outcomes. This study builds upon and enhances the NEMI method
through systematic comparison of clustering algorithms applied to
biogeochemical data. Fundamentally, clustering results are influenced
by algorithmic biases (Thrun, 2021) and, for some algorithms, the
possibility of variable outcomes raising concerns about suitability, com-
parability and reproducibility. Two main validation strategies exist (Rui
and Wunsch, 2005; Ullmann et al.,, 2022): (i) Internal validation,
which assesses cohesion within clusters and separation between clus-
ters using indices, such as the Calinski-Harabasz index (Calinski and
Harabasz, 1974), Davies-Bouldin index (Davies and Bouldin, 1979)
and Silhouette score (Rousseeuw, 1987) and (ii) external validation,
which utilises knowledge not seen during model training, like com-
paring clustering results to established ecological classifications or
visual analysis in different data spaces. For example, dimensionality
reduction techniques like Uniform Manifold Approximation and Pro-
jection (UMAP, Mclnnes et al. (2018a)) improve the interpretability
of clustering outcomes through enhancing associations between data
structures and visualisation (Allaoui et al., 2020).

A key challenge for clustering is quantifying uncertainty. Some clus-
tering and dimensionality reduction algorithms are non-deterministic
and a globally optimal solution is not guaranteed. For example, UMAP
uses stochasticity (McInnes et al., 2018a), Density-Based Spatial Clus-
tering of Applications with Noise (DBSCAN) results may change with
permuted input data (Schubert et al., 2017) and k-Means is sensitive to
cluster centroid initialisation (Fréanti and Sieranoja, 2019). Quantifying
clustering variability is crucial to assess reproducibility and reliability.
One approach involves multiple runs and single-number similarity
metrics, such as overlap (Manning et al., 2008). The NEMI method,
which combines multiple clustering runs to form a final cluster set, has
been proposed as a novel solution to represent statistical variability and
quantify uncertainty.

Most prior studies on ocean partitioning focus on surface waters
(e.g. Devred et al. (2007), Longhurst (2007), Hardman-Mountford et al.
(2008), Oliver and Irwin (2008), Vichi et al. (2011), Reygondeau
et al. (2013), Fay and Mckinley (2014), Kavanaugh et al. (2014),
Reygondeau et al. (2020), Sonnewald et al. (2020)) despite the fact
that critical processes such as particle export, upwelling or deep-water
formation extend into deeper layers. Also, vertical mixing affects bio-
diversity leading to depth-variable community trends (DeLong et al.,
2006; Horstmann et al.,, 2022). Recent efforts to develop 3D ocean
regionalisations have incorporated clustering approaches such as k-
Means (Sayre et al., 2017) and hybrid methods combining k-Means,
CMeans, agglomerative Ward and agglomerative full linkage (Rey-
gondeau et al., 2017). In physical oceanography, the definition of 3D
water masses, mainly defined by temperature and salinity but also
e.g. oxygen, has always played a central role (e.g. Emery (2001), Tom-
czak and Godfrey (2003)). More recent definitions of water masses are
based either on regional (Liu and Tanhua, 2021) or model data (Zika
et al., 2021).

This study aims to develop an objective and reproducible 3D re-
gionalisation of the North Atlantic ocean and its marginal seas using
a data-driven clustering approach. Geographic coordinates and depth
were excluded from the clustering to ensure that the regions are purely
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based on water properties. The analysis is based on a mostly post-
industrialisation time-aggregate representing a long-term observational
baseline, maximising spatial data coverage. A key novelty of this work
is the systematic definition and evaluation of a marine clustering using
both internal and external validation criteria, bridging statistical rigour
with oceanographic knowledge. Furthermore, we increase statistical
representativeness by combining multiple clustering runs within the
NEMI framework that also allows for quantification of uncertainty. To
contextualise the results, clustering outputs are compared to established
definitions of ecological provinces and ocean regions (Longhurst, 2007;
Sayre et al., 2017) in three distinct areas: the deep Atlantic, the
Mediterranean and the Labrador Sea. This work specifically addressed
the following research questions: (i) Which clustering method works
best within the NEMI framework for the given oceanographic data?
(ii) How reproducible are the clustering results? (iii) How do the re-
sults compare to existing definitions of ecological provinces and ocean
regions?

The insights gained from this study have broad potential for ecolog-
ical and environmental research. A thoroughly validated, data-driven
ocean partitioning may refine or challenge existing frameworks, in-
fluencing our understanding of oceanic systems, climate dynamics,
and marine resource management. By integrating ecological informat-
ics methodologies, we contribute to the advancement of reproducible
and objective ocean classifications, ultimately supporting more robust
marine ecosystem assessments and policy applications.

The final gridded 3D set of clusters of the North Atlantic Ocean
is publicly available (https://doi.org/10.5281/zenodo.15201767). It
also contains auxiliary information, like the gridded oceanographic
parameters. For interactive exploration of the clusters, a dashboard is
available (https://ocean-cluster-dashboard.onrender.com, code: https:
//doi.org/10.5281/zenodo.16742244).

2. Material and methods
2.1. Native emergent manifold interrogation (NEMI) framework

This study implements the Native Emergent Manifold Interrogation
(NEMI) framework, developed by Sonnewald (2023), as the method-
ological foundation for objective ocean regionalisation. NEMI inte-
grates manifold learning, systematic clustering comparison, ensemble
methods, and uncertainty quantification to ensure robust clustering
outcomes. Specifically, we used NEMI to 1) aggregate results from
multiple stochastic clustering runs (here UMAP-DBSCAN), reducing
variability to yield robust final clusters, 2) quantify uncertainty by com-
bining ensemble runs, where NEMI directly quantifies the uncertainty
of cluster assignments, enhancing reproducibility and reliability, and
3) utilising a systematic framework for validation through structured
approach to integrate external and relative validation strategies. The
following sections detail our implementation of the NEMI protocol
and systematic algorithm comparison in the context of the COMFORT
dataset, described below.

2.2. Data

The dataset for this study (Korablev and Olsen, 2022) was assem-
bled in the framework of the EU project “Our Common Future Ocean
in the Earth System” (COMFORT) and combines ten observational
datasets, including the World Ocean Database 2018 (WOD18) and Argo
floats (for more information refer to Korablev et al. (2021)). It contains
data on 47 parameters measured globally from the year 1772 to 2020
amounting to 458,724,734 values.

The focus area was the North Atlantic from —77 to 30° longi-
tude, from Oto 70° latitude and from Oto 5,000m depth. From the
COMFORT dataset, the parameters temperature, salinity, as well as
oxygen, nitrate, silicate and phosphate concentration were selected,
which had comparatively good spatial coverage. After quality filtering,
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Fig. 1. The workflow was iterative and comprised (i) pre-processing, (ii) clustering, (iii) external, internal and relative validation that helped refine the selection of pre-processings,
clustering methods and hyperparameter settings, and (iv) interpretation within the respective context leading to (new) knowledge.

Source: Clustering procedure adapted from Rui and Wunsch (2005).

unit conversions and averaging over all times (years 1772 - 2020), the
data was mapped on a grid with a spatial resolution of 1° and 12 water
depth intervals: 0—50 m, 50— 100 m, 100-200 m, 200—300 m, 300 —400 m,
400-500m, 500-1,000 m, 1,000- 1,500 m, 1,500 - 2,000 m, 2,000 -3,000 m,
3,000 -4,000 m, 4,000-5,000 m. Missing values were imputed using the
K-Nearest Neighbours (KNN) algorithm (Python library scikit-learn,
version 1.5; Pedregosa et al. (2011)). Details on data preparation and
parameter distributions can be found in Supplementary Material A.

2.3. Clustering

Following a systematic clustering procedure (Fig. 1), three cluster-
ing methods were selected (Python library scikit-learn, version 1.5; Pe-
dregosa et al. (2011)) for comparison: k-Means (the baseline), ag-
glomerative Ward clustering (a hierarchical method) and DBSCAN (a
density-based algorithm). All six parameters were scaled to a range
from zero to one (MinMaxScaler, Python library scikit-learn, version
1.5) making the values comparable and usable with distance-variant
methods like k-Means clustering.

To assess the influence of pre-processing, each algorithm was ap-
plied to the scaled data and to a dimensionality-reduced version of
the scaled data. For the projection from six parameters (6D) to 3D,
the non-linear method UMAP (Python library umap-learn, version
0.5.5; McInnes et al. (2018b)) was applied. The resulting 3D space will
be called embedding in the following. This study focused on clustering
methods that map a data point to exactly one cluster/label and assumed
that the number of clusters must be K > 1. The terms cluster and
label will be used interchangeably. For methodological details see
Supplementary Material B.

To analyse the importance of each input parameter, cluster assign-
ments were replicated with a more interpretable, predictive model
by using the six scaled parameters as input and the cluster labels as
output. The idea is similar to translating the clustering function into
a neural network (Kauffmann et al., 2024), though without explicitly
transferring the formulas. For cluster assignment replication, a random
forest classifier (RandomForestClassifier, Python library scikit-learn,
1.4) was trained for each clustering model and its inherent feature
importance was leveraged. The hyperparameters were configured as
follows: The number of trees was set to 1,000, weights were balanced
and the random state was fixed.

2.4. Validation

Validation can generally be categorised into internal and external
approaches. Sometimes relative validation is listed as a third option
referring to the comparison of different models (Rui and Wunsch,
2005). Internal validation exploits information available during the
modelling process. In particular for clustering, Cluster Validity Indices
(CVIs) or “scores” provide information on how cohesive a cluster is
within itself and how separate it is to other clusters. Here, distance,
density, and neighbourhood based CVIs were used. The applied dis-
tance based CVIs are the Calinski-Harabasz (CH, Califiski and Harabasz
(1974)), Davies-Bouldin (DB, Davies and Bouldin (1979)) and Silhou-
ette (SH, Rousseeuw (1987)) scores (Python library scikit-learn, version
1.5). The applied density and neighbourhood based CVIs are k-Density-
Based Cluster Validation (k-DBCV, (Hammer et al.); adaption of Python
library kdbev, version 1.0.0; a more efficient implementation of DBCV,
(Moulavi et al., 2014)), Clustering Validation Index based on Nearest
Neighbours by (Halkidi et al., 2015) (CVNNH, Python library ascvi,
version 0.1.0, (Schlake and Beecks, 2024); an adaption of CVNN, (Liu
et al., 2013)) and Contiguous Density Region (CDR, (Rojas-Thomas and
Santos, 2021); Python library ascvi, version 0.1.0). The CVIs were com-
puted to determine hyperparameters and compare performance and
are described in detail in Supplementary Material B.3. Desirable high
within-cluster cohesiveness and between-cluster separation is indicated
by low DB, CDR and CVNNH and by high SH and k-DBCV as well as
by a local or global maximum of CH.

External validation is achieved by additional knowledge, such as
ground truth labels or domain expertise. For biogeochemical and phys-
ical clustering, basic principles can be used to evaluate the cluster sets
in their 3D geographic space as well as in their temperature-salinity
(TS) space. Visual cluster examination can also be conducted in a
dimensionality-reduced feature space to assess compliance with feature
topology.

For dimensionality reduction methods like UMAP that enhance
associations between data structures, several internal validation metrics
have been proposed to e.g. assess embedding quality and guide hyper-
parameter tuning, including reconstruction error (Zhang et al., 2021).
Trustworthiness and continuity evaluate how well local neighbour-
hoods are preserved during the projection (Venna and Kaski, 2006).
Trustworthiness measures the extent to which neighbours in the em-
bedding were also neighbours in the original space, while continuity
measures whether neighbours in the original space remain close in
the embedding. Qlocal and Qglobal provide an alternative approach
to quantifying neighbourhood preservation at different scales (Lee and
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Verleysen, 2010). Unlike trustworthiness and continuity, which are
based on binary neighbour relationships, these metrics consider relative
ranking of all pairwise distances. Trustworthiness, continuity, Qglobal
and Qlocal range between zero and one, with higher values indicating
better structure preservation. They were computed using the Python
library pydrmetrics, version 0.0.7 (Zhang et al., 2021) on a random
subset of 2,000 data points for computational efficiency.

2.5. Uncertainty assessment

Uncertainty was systematically examined in four parts of the analy-
sis. First, 100 clustering runs were performed and combined into a final
cluster set following the NEMI framework since the selected cluster-
ing pipeline (UMAP-DBSCAN) contains non-deterministic components.
Variability of the complete process was assessed by the Adjusted Rand
Index (ARI), Normalised Mutual Information (NMI), cluster overlap (see
Section 2.6) and by NEMIs inherent grid-cell-wise uncertainty. Second,
this work addressed uncertainty of the dimensionality reduction alone
by computing the UMAP embedding 100 times and by comparing the
similarity between runs using the root mean-squared error (RMSE).
Third, for hyperparameter tuning, uncertainty was taken into account
by computing each hyperparameter combination ten times for each ex-
periment (see Section 3.2). Fourth, to quantify uncertainty of DBSCAN,
it was applied 100 times to a fixed embedding.

Additional sources of uncertainty of the presented approach were
data quality and coverage, as well as missing value imputation. Data
was filtered using existing quality flags, which is why data quality was
not further investigated in this study. It should be noted though that
the COMFORT dataset comprises data measured at different times and
with different instruments decreasing accuracy and precision. Another
potential source of uncertainty was the imputation of non-existent mea-
surement values in the defined geospatial grid, which was considered
by flagging each imputed data point.

Following the NEMI framework, an ensemble of clustering runs
was performed and aggregated, from which NEMI infers uncertainty
to assess variability. The algorithm requires manual selection of a base
cluster set (base_id), against which all other cluster sets are compared.
The process begins by matching labels across ensemble members. For
this, each cluster set is reassigned new labels sorted by cluster size
(with label zero corresponding to the largest cluster). For every member
cluster set (except the base), the algorithm visits every possible pair of
a base label 4; and a member label b; and determines the overlap as

volume(q; N b )

NEMI overlap(g;, b;) = M

volume(a; U b))

i.e., the volume of geographically shared data points divided by the
joint volume of data points. The original NEMI implementation works
with cell count instead of volume.

The ensemble approach also allows uncertainty quantification per
grid cell, which was computed here as the number of times the cell
was assigned to different clusters:

|same_cluster_assignment]|
|ensemble|

NEMI_uncertainty(grid_cell) = 100 — 2

2.6. Cluster similarity metrics

When clusters are generated, comparisons to other sets of clusters or
regionalisations, i.e. relative validation, is an important step for putting
results into context. Various metrics are available to assess similarity
of cluster sets (cf. e.g. Vinh et al. (2010)) such as overlap (Manning
et al., 2008), Adjusted Rand Index (ARI, Hubert and Arabie (1985))
and Normalised Mutual Information (NMI, Strehl and Ghosh (2002)).

Ecological Informatics 91 (2025) 103390

2.6.1. Adjusted Rand index
The Adjusted Rand Index (ARI, Python library scikit-learn, version
1.5, Hubert and Arabie (1985)) is a symmetric measure to assess
similarity between two cluster sets. It is based on the Rand Index (RI),
which measures the proportion of agreeing pairs of points between two
cluster sets
ath
(3)
where g is the number of pairs of points that are in the same cluster
in both partitions, b is the number of pairs that are in different clusters
in both partitions, and » is the total number of points. The ARI adjusts
this measure for chance agreement
RI - E[RI]
max(RI) — E[RI]
where E[RI] denotes the expected RI of random labellings. The index
is bound between —0.5 and one, where identical cluster sets receive a
score of one, a random label matching a score of zero and complete
disagreement a negative score.

RI = 3

ARI = ()]

2.6.2. Normalised mutual information

Normalised Mutual Information (NMI, Strehl and Ghosh (2002))
quantifies the amount of shared information between two cluster sets.
In this study, the normalisation proposed by Kvalseth (1987) was
applied yielding

21(A, B) 2(H(A) + H(B) — H(A, B))
NMI = = 5)
H(A)+ H(B) H(A)+ H(B)

where H(A) and H(B) denote the entropies of the two cluster sets A
and B, H (A, B) their joint entropy, and (A, B) the mutual information.

NMI ranges from zero to one, where one indicates perfect agreement
(identical cluster sets) and zero denotes no shared information.

2.6.3. Cluster overlap

An asymmetric measure to compare two cluster sets A and B and
hence quantify reproducibility is overlap or purity (Manning et al.,
2008), which ranges between 0 and 1. It assesses how much the clusters
of two cluster sets overlap by calculating the maximum overlap for each
cluster/label in A with labels in B and vice versa. The average overlap
is used as a cluster set similarity measure.

Let there be N objects that are grouped by clustering A into clusters
ag, ... ,a; and by clustering B into clusters b, ..., b;. The overlap of A
with B is then defined as

1
overlap(4, B) = N Z mjax la; N bl 6)

To obtain a symmetric measure, we computed the overlap as

overlap(A4, B) + overlap(B, A)
2

)

overlap =

3. Results
3.1. Embedding using UMAP

As an initial validation step, the influence of UMAP hyperparame-
ters was tested. The parameters control if global or local associations
within the data are emphasised by minimising the cross-entropy (Sup-
plementary Material B.1). A lower number of neighbours led to a
more curled structure, while a higher number unfolded it (Fig. 2, a-c).
Increasing the number of neighbours to more than 20 did not further
change the embedding (Fig. 2, c). As expected, a higher minimum
distance caused the data points to spread apart further, blurring finer
topologies (Fig. 2, e-f). For the final cluster runs, the number of neigh-
bours was set to 20 and the minimum distance to 0 (Fig. 2, b and d) so
that the embedding space, with three dimensions, exhibited a distinct
topology. Over 20 iterations, the final embedding achieved a mean
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(a) n_neighbors=5
min_dist=0.0

(b) n_neighbors=20
min_dist=0.0
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(c) n_neighbors=100
min_dist=0.0

N
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(d) n_neighbors=20 (e) n_neighbors=20 (f) n_neighbors=20
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Fig. 2. Influence of the UMAP hyperparameters number of neighbours (n_neighbors, top) and minimum distance (min_dist, bottom) on the embedded space. With an increasing
number of neighbours, the topology unfolded but did not substantially change for more than 20 neighbours. With a growing minimum distance, the data structure lost structural

detail.

Table 1

Overview of clustering results. For external validation, the clustering was visually analysed in geographical and embedding spaces (last two
columns, cf. Section 3.2). Note that the Cluster Validity Indexes (CVIs), i.e. Calinski-Harabasz Score (CH), Davies—Bouldin Score (DB), Silhouette
Score (SH), k-Density Based Clustering Validation (k-DBCV), Clustering Validation Index Based on Nearest Neighbours Halkidi (CVNNH) and
Contiguous Density Region (CDR), are not suitable to compare across clustering methods (see Section 4.3). High CH, SH and k-DBCV as well

as low DB, CVNNH and CDR indicate a well separated clustering.

Data Algorithm  Hyperparameters Internal validation External validation
CH 1 DB| SH1 k-DBCVT CVNNH| CDR| Geo UMAP
Original K-Means Aelusters = 2 57,358 0.78 0.50 -1.00 0.24 0.57 Warm-cold Straight cut
separation
Embedded K-Means Relusters = 8 49,703 0.71 047  -0.78 3.55 0.60 Non- Non-
separation of  separations
deep areas
Original Agg. Ward  nggers = 2 51,825 0.84 048 -1.00 0.24 0.56 Hot-cold like  Intrusions
Embedded Agg. Ward  ngygers = 25 65,901 0.72 0.46 -0.61 1.72 0.59 Geo. Intrusions,
connected non-
separations
Original DBSCAN € =0.11949153 800 1.44 0.55 —-1.00 0.98 0.54 Focus on One big
Mifggmples = 11 Baltic cluster
Embedded DBSCAN e =0.10661017 1,754 1.5 -035 -041 3.31 0.56 Density- Many small
Milgmples = 4 oriented clusters
trustworthiness of 0.97 + 0.004 and a mean continuity of 0.97 + 0.007. 3.2.1. K-Means

Global neighbourhood was better preserved than local ones (Qglobal =
0.87 £ 0.009, Qlocal = 0.66 + 0.01, Fig. S4). A Shepard plot of a UMAP
embedding is illustrated in Supplementary Material Fig. S4.

3.2. Clustering results

Six experiments were carried out during which three clustering
methods were applied to original and embedded data. Each experiment
was run ten times for every hyperparameter combination. A striking
result was that little agreement between the CVIs was found (Table 1).

Clustering original data. For k-Means applied to the original 6D
data, all three classical distance-based scores - CH, DB and SH - reached
peak performance when setting the number of clusters to two (Fig. S5).
Plotting the result of k-Means with two clusters in geographic space,
two coherent regions emerged (Fig. 3). They most strongly resembled
the input temperature distribution, supported by temperature having
the highest feature importance (47%). Structural validity scores, in
contrast, showed different preferences: CVNNH reached its optimum
at 12 clusters, while CDR and k-DBCV favoured higher values, contin-
uing to improve up to 60 clusters, though k-DBCV remained negative
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Fig. 3. K-Means applied to the original data with two clusters in geographic space (left) and its projection into the embedded space (right). The geographic separation of the
clusters resembled the temperature distribution. In embedding space, the division approximated a straight cut.
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Fig. 4. K-Means applied to the embedded data with eight clusters (right) and its projection to geographic space (left). Insufficient performance is reflected in clusters that are not

separated despite their clear segregation in embedding space, e.g. the blue cluster.

throughout. Note that clustering here is not performed on the embed-
ding. The embedding is merely used to visualise how the clusters look
like in this space. The visualisation in embedding space showed clear
errors: Structures that are separate were not subdivided, other clusters
intruded into foreign clusters.

Higher numbers of clusters resulted in more globular clusters in
embedding space (Fig. S6). Across most clustering levels, temperature
and oxygen emerge as the most important features, while the lower-
ranked feature of phosphate slightly gained in importance for larger
cluster numbers.

Clustering embedded data. For k-Means applied to the data in the
previously computed embedded space (Section 3.1), internal validation
(the scores) suggested numbers of clusters greater than two (Fig. S5).
SH and DB both favoured eight clusters, while the other scores rose/fell
beyond the selected value range with CH peaking locally at 14 clusters.
Despite some improvement over clustering on original data, the re-
sulting clusters still showed non-separated regions in embedding space
(Fig. 4).

To compensate for potential inaccuracies in internal validation,
cluster sets across different numbers of clusters were further evaluated
externally. A higher number of clusters resulted in the embedded
space adapting a chessboard pattern (Fig. S7), that was clearly not
representative of the underlying co-variance space given by the data.

3.2.2. Agglomerative Ward

Clustering original data. Similar to k-Means on the original data,
all three classical CVIs suggested two clusters as the best split us-
ing agglomerative Ward clustering (Fig. S8). The visualisation in the
embedding revealed a straight cut (Fig. 5) and temperature had the
highest importance (35%) followed by oxygen (34%). Structural scores
(k-DBCV, CVNNH and CDR) indicated more fine-grained cluster sets,
with optimal values of 27, 12 and 30 clusters, respectively. Increasing
the number of clusters up to 30, regardless of the scores, resulted
in unseparated clusters and intrusion issues (visible in the embedded
space), though less than using k-Means. Temperature contributed most
to separation followed by oxygen and salinity.

Clustering embedded data. The scores for agglomerative Ward
clustering applied to the embedded data preferred a number of clusters
larger than two (Fig. S8). While CH and CVNNH did not show an
extreme value that could be used to optimise the number of clusters,
SH suggested 24 clusters as the optimum. DB and k-DBCV preferred
24 clusters and CDR was minimal for 23 and 28 clusters. Selecting
25 reasonably divided the embedded data at areas of low data point
density, except for the Labrador Sea and some smaller clusters (Fig.
6). Deeper ocean regions (two bulbous structures on the left side of
embedding space) and the Mediterranean water masses were well-
separated while clustering of original data was not able to find these
differences.
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Fig. 5. Agglomerative Ward clustering applied to the original data with two clusters (left) and its projection into the embedded space (right).
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Fig. 6. Agglomerative Ward applied to embedded data with 25 clusters (right) and its projection to geographic space (left).

3.2.3. DBSCAN

In contrast to k-Means and agglomerative Ward clustering, DBSCAN
requires tuning of two main hyperparameters: epsilon, i.e., the search
radius, and min_samples, i.e., the minimum cluster size. DBSCAN labels
data points that it could not assign to a cluster as noise. Therefore,
the amount of noise was taken into account for the final choice of hy-
perparameter settings. For hyperparameter tuning of min_points, values
between 2 and 11 and for epsilon values between 0.01 and 0.2 (20 steps
with step size 0.00322) were tested for original and embedded data.

Clustering original data. All tested hyperparameter combinations
for DBSCAN applied to the original 6D data resulted in similar cluster-
ings that heavily focused on the Baltic, Black and/or Mediterranean Sea
(Fig. 7) independent of the tuning criterion (Table ST1). For low epsilon,
some surface clusters were identified along with 40-60% DBSCAN
noise. The number of small clusters decreased with increasing epsilon
while higher min_samples led to less small clusters and more coherent,
but few (mostly below 10) regions.

CH favoured a high min samples producing a low-noise clustering
with coherent regions in the Baltic Sea. DB preferred fewer min_samples
and generated a clustering with low noise but spatially less coherent
clusters. SH and CVNNH suggested high values for epsilon, SH also
requiring high min samples. K-DBCV quantified all points as noise in
99% of the tested combinations. CDR suggested low epsilon producing
cluster sets with around 10% noise.

Clustering embedded data. The distribution of the number of
clusters and the noise fraction was similar for DBSCAN applied to the

embedded data compared to original data. However, the number of
clusters rose above 6,500 and the noise reached proportions of 99%.
Low epsilon and high min samples generally resulted in highest noise.
Low epsilon and low min_samples led to a large number of small clusters,
while an epsilon value above 0.1 generated larger, coherent structures.

The CH (Fig. S9) formed a clear ridge that rose linearly with increas-
ing min_samples. It separated very coarse cluster sets (above the ridge,
i.e., larger epsilon values) from cluster sets consisting of smaller regions
(below the ridge, i.e., smaller epsilon). The score hence delineated a
compromise between coarse and fine cluster sets. Its optimal/maximal
value (at epsilon = 0.15491525, min_samples = 11) produced a cluster
set that incorporated clearly delineated regions in geographic and
embedded space. In the embedded space, some larger structures were
not subdivided despite only thin connections, such as a geographic
region in the north. The SH resembled the CH only favouring lower
epsilon and min_samples resulting in more small clusters. In contrast,
the DB preferred hyperparameter combinations producing much noise.
The structural CVIs (k-DBCV, CVNNH and CDR) generally favoured
configurations that produced many small clusters with small differences
in the few larger clusters and noise proportion.

Final hyperparameters were selected based on CH as well as external
validation, i.e., the visual inspection of embedded and geographic
space. CH was used as orientation since it reflected the trade-off be-
tween small clusters versus larger coherent regions. The other scores
were ignored due to their lack of agreement with visual clustering
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Fig. 7. DBSCAN applied to original data (left) and its projection to embedding space (right). The hyperparameters were selected through the Calinski-Harabasz Score (CH). The

clustering was heavily focused on the Baltic.

quality, i.e., they favoured cluster sets with more noise and/or many
small clusters. The visual inspection led to the decision of epsilon =
0.10661017 and min_samples = 4 (Fig. S9, red square). Epsilon smaller
than the selected value resulted in more small clusters while for larger
epsilon, clusters tended to merge. A min_samples smaller than four at
the selected epsilon formed a larger cluster in the Labrador Sea and
more small clusters. The clustering for a minimum of five samples
was similar, but had more noise (5.17% versus 3.82%). Increasing the
min_samples up to 11 resulted in regions of smaller size.

3.3. UMAP-DBSCAN: Uncertainty and post-processing

Based on the above analysis, DBSCAN applied to the data embedded
by UMAP best represented the given data structure. Due to stochasticity
of UMAP-DBSCAN, each of the 100 runs produced slightly different
results. To assess reproducibility, three sources of uncertainty were
examined:

First, UMAP was applied 100 times with the same n_neighbors and
min_dist to the scaled input data. It was not possible to directly compute
the Root Mean Squared Error (RMSE) between any two embeddings
since they were not always spatially aligned. Therefore, the point
clouds of the embeddings were aligned through manual translation,
rotation and/or mirroring followed by the application of the Iterative
Closest Point (ICP, Python library simpleicp, version 2.0.14) algorithm
to maximise alignment. ICP calculates a translation and rotation matrix
for one point cloud trying to minimise distances to another point cloud.
The RMSE was computed for the embeddings before and after apply-
ing ICP. The minimal deviation, i.e. the error when two embeddings
aligned best, was stored, resulting in an average RMSE of 0.22 + 0.06
(or about 1.3 +£0.36% of the value range).

Second, variability of DBSCAN was assessed by applying it 100
times to a fixed, pre-computed embedding while keeping hyperparam-
eters fixed. For each run, the rows of the training data were shuffled as
DBSCAN is sensitive to the sequence of input data. The mean overlap
between the resulting cluster sets was 99.99 + 0.003%.

Third, variability of the combined UMAP-DBSCAN pipeline was
assessed by running it 100 times, i.e., in each iteration both, the
embedding and the clustering, were recomputed. On average, the ARI
between the resulting cluster sets was 0.78+0.05, the NMI was 0.91+0.01
and the overlap was 88.81 + 1.8% (Fig. S10).

Final cluster assignments. To obtain a final cluster set, follow-
ing the NEMI framework, the individual members of the 100 UMAP-
DBSCAN runs were combined. As base id, the cluster set with lowest
mean uncertainty was chosen. The final clustering (Fig. 8) had 321

Table 2
Similarity of this study’s final cluster set with marine provinces (Longhurst, 2007) and
Ecological Marine Units (EMUs, Sayre et al. (2017)).

Similarity score Longhurst provinces EMUSs
Overlap 0.56 0.62
Normalised Mutual Information (NMI) 0.43 0.51
Adjusted Rand Index (ARI) 0.16 0.18

clusters and 3.92% (n = 1920) of the grid cells were assigned as noise
and were subsequently excluded.

The average uncertainty (Fig. 9) was 15.49 + 20% (min: 0%, max:
96%) and 50% of the uncertainties were < 5%. Lowest mean uncertain-
ties (0%) were found in 6 clusters, three of which were geographically
scattered but well separated in embedding space (labels 209, 244,
288). The three certain, geographically cohesive clusters were located
in the Black Sea (100-2,000 m; label 93), in the southern Baltic Sea
(100-400 m; label 102) and in the Gulf of Saint Lawrence (200 - 1,000 m;
label 112). Uncertainties > 50% were geographically scattered with
the exception of a cluster stretching from the Strait of Gibraltar until
—64.5° West (0-300m; label 28) and a cluster off the coast of North
West Africa (200-1,500 m; label 53).

3.4. Case studies

Three ocean regions from the final clustering, which were deter-
mined based on the combination of 100 UMAP-DBSCAN runs using the
NEMI framework (Fig. 8), were inspected. Overall, the final cluster set
shows higher similarity to the EMUs than to Longhurst provinces (Table
2). In both cases, overlap and NMI are moderate, while ARI values are
relatively low.

3.4.1. Mediterranean Sea

In the presented regionalisation, the Mediterranean Sea, delineated
by longitude € [-6,30] and latitude € [30,48] omitting the Black Sea
and Bay of Biscay, had a total of 2,509 grid cells (Fig. 10). The region
was subdivided into one large cluster occupying 83% of all cells (label
6), the second largest cluster covering 7% of the grid cells (label 35) and
25 smaller clusters (< 80 cells) that were mainly found at the surface.
Only one larger clusters extended downwards until 100m (label 35,
eastern basin).

The main Mediterranean clusters (labels 6, 32, 35, 138) were partly
related to the North Atlantic representing the Mediterranean in- and
outflow (labels 0, 10, 19, 28) at the Strait of Gibraltar. In TS space,
the division between the Mediterranean Sea and North Atlantic waters
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Fig. 8. Final UMAP-DBSCAN clustering melted from 100 runs using Native Emergent Manifold Interrogation (NEMI) in geographic (top), embedded (bottom left) and temperature-
salinity (TS) space (bottom right). The three use cases (discussed in Section 3.4) are highlighted: Deep Atlantic waters (DW), Labrador Sea (LS) and Mediterranean Sea (MS).

was clearly visible around the 27-isopycnal. In embedding space, it
was even more pronounced by the large distance between the main
Mediterranean cluster (label 6) and the remaining data structure. The
clusters representing the Mediterranean outflow were sorted by in-
creasing depth in embedding space. Highest uncertainties were found
in this outflow area (Fig. S11), while the remaining clusters of the
Mediterranean Sea had low uncertainty.

3.4.2. Deep Atlantic waters

The deep waters of the North Atlantic extended from 3,000m to
5,000 m stretching over the complete range of considered latitudes and
longitudes excluding the Mediterranean Sea. The presented clustering
detected 43 clusters (Fig. 11), two of which accounted for the assign-
ment of 79% of the grid cells in that area (labels 2 and 11). 38 clusters
had less than 100 cells. Despite having been generally separated by

the North Atlantic Ridge, the eastern water mass was also present
at the west side of the ridge between 10and 30°. In TS space, these
water masses were not distinguishable. For further analysis, six clusters
(labels 2, 11, 31, 42, 51, 52) were chosen that had uncertainties below
10%, except one in the south-west (27%, label 52, Fig. S12).

The east-west separation (label 2 and 11 in Fig. 11) was not clear
in TS space but very pronounced in embedding space (which also
considered oxygen and nutrients). Taking a closer look at parameter
distributions (Fig. 12) revealed that the western region has notably less
silicate and more oxygen as well as lower nitrate and phosphate values.

3.4.3. Labrador Sea and Davis Strait
The Labrador Sea is located between the Labrador Peninsula and

Greenland. The Davis Strait between 60 and 70°N connects it with Baffin
Bay forming a shallower water pathway. 4,170 grid cells were located
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Fig. 9. NEMI uncertainty of a UMAP-DBSCAN clustering melted from 100 runs using NEMI in geographic (left), embedded (middle) and temperature-salinity (TS) space (right).
The mean uncertainty was 15.49 +20% with a median of 5%. The high standard deviation and low median indicate a few highly uncertain grid cells skewing the mean.
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Fig. 10. Selected Mediterranean Sea clusters (labels 6, 32, 35, 138) and related in-/outflow regions in the North Atlantic (labels 0, 10, 19, 28) in geographic (left, zoomed into
the geographic area of the Mediterranean Sea), embedded (middle) and temperature-salinity (TS) space (right).
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Fig. 11. Selected clusters in the deep North Atlantic (labels 2, 11, 31, 42, 51, 52) in geographic (left), embedded (middle) and temperature-salinity (TS) space (right). The clusters
were indistinguishable in TS space (except label 50 in the south), but well separable in embedding space. In geographic space, a division along the Mid-Atlantic ridge was visible.

between 45and 70°N and 40and 77°W, which were assigned to 124
different clusters. The six largest clusters (labels 3, 17, 18, 24, 30, 42,
Fig. 13) were analysed, each comprising more than 100 grid cells and
the largest having 780 cells (label 17).

The clusters exhibited a strong vertical structure. One cluster (label
17) formed a wide stretch around the surface coasts vanishing at about
300 m, another one appeared centrally in the Labrador Sea at 50 m depth
stretching down to 1,000m (label 18). It borders the largest cluster
(label 3), which reaches until 3,000m where it is replaced until the
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bottom by another cluster (label 42). Cluster label 30 filled Baffin Bay
from 100to 400m and was separated from the central cluster (label
18) by an intermediate region (label 24). The latter reached form the

surface until 3,000 m.

The cluster assignment uncertainty (Fig. S13) in this region was on
average 10.73 + 15.4%, the median was 4% indicating that uncertainty
was inclined towards the lower end. Uncertainties mainly increased
along the edges of the embedded data structure, which corresponded
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Fig. 13. Selected clusters in the Labrador Sea and Davis Strait (labels 3, 17, 18, 24, 30, 42) in geographic (left), embedded (middle) and temperature-salinity (TS) space (right).

geographically to the central area (0-500m) and an area along the
American east coast (1,500 m).

4. Discussion
4.1. Comparison of clustering algorithm performance

DBSCAN applied to embedded space created through UMAP best
suited the input data. It outperformed k-Means, agglomerative Ward
clustering and DBSCAN on original data, as seen in external validation,
specifically the visualisation in geographic and embedding spaces. K-
Means and (to a smaller extent) Ward clustering were not able to
distinguish small data structures in the embedded space, where clusters
were non-separated or merged (Section 3.2). We assess that the main
reason for the superiority of DBSCAN is its ability to detect clusters
of any shape since it operates on data density (Ahmad and Dang,
2015), i.e., it identifies areas where points are concentrated. Also,
DBSCAN proved to work well in a similar use case, where it is applied
to a dimensionality-reduced data space using t-Stochastic Neighbour
Embedding (t-SNE) (Sonnewald et al., 2020). Clusters with varying
densities pose challenges for DBSCAN (Ahmad and Dang, 2015), which
may explain the occurrence of small clusters. Erroneous data could also
contribute to this issue. A key result was that CVIs based on similarity,
density and neighbourhood structures were inconsistent and thus not
helpful. This has wide implication for studies relying on only one or a
few CVIs as is common in the geosciences.

DBSCAN on original data led to unsatisfactory results, as none of the
tested hyperparameter combinations yielded a clustering that reflected
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the actual data structure, neither in embedded nor in geographic space.
The focus on the Baltic Sea, whose salinity levels are well below oceanic
average (Tomczak and Godfrey, 2003), is consistent with the feature
importances revealing salinity (35%) as the most important feature
followed by silicate (19%).

K-Means is a common and fast clustering method and therefore
used as a baseline in this work. However, k-Means was not able to
reflect the data structure. When applied to the original data, the CVIs
agreed on two as the optimal number of clusters. However, the scores
cannot be computed for less than two clusters and there is no clustering
for less than two clusters. Hence, this result indicated that either (i)
two clusters was indeed the best number of clusters or (ii) k-Means
could not separate the data structure into relevant clusters or (iii) the
scores were not meaningful. For only two clusters, the clustering is
mainly a trivial hot-cold separation as seen by the high feature impor-
tance of temperature. Mapping the clusters into the embedded space
highlighted how k-Means operates, i.e., drawing straight cuts through
data structures. Further visual investigation with higher numbers of
clusters revealed a tendency to form globular clusters and no increase
in clustering quality, i.e., better representation of the embedded data
structure.

When applying k-Means to the embedding, the CVIs reached their
optimum beyond two clusters. Compared to clustering on the original
data, this indicated that k-Means was now better able to detect struc-
tures that were also recognised by the scores. However, the scores did
not agree: While SH reached its optimum for eight and DB for ten
clusters, the DB rose beyond the selected value range. This disagree-
ment emphasised the need for selecting scores carefully and consulting
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not only one but multiple scores. Still, the clustering exhibited obvious
flaws as it could e.g. not distinguish clearly separate structures in
embedding space, such as the deep water. Again, a likely explanation
is that k-Means detects spherical clusters best (Ahmad and Dang, 2015;
Jain, 2010; Harris and De Amorim, 2022), which were not observed
in the embedded space. This clearly indicated that k-Means was not
appropriate for the data and might not be for other non-linear use
cases either, which are frequent in environmental sciences. Moreover,
k-Means is sensitive to the initialisation of cluster centroids (Jain, 2010;
Harris and De Amorim, 2022) introducing a variance not investigated
in this study.

In contrast to k-Means and DBSCAN, hierarchical clustering pro-
vides a complete hierarchy of clusters. In this work, agglomerative
Ward detected the overall data structures in embedding space well (Sec-
tion 3.2.2) but neglected smaller data point collections. Ward linkage is
mathematically close to a k-Means algorithm in a hierarchical context
since both methods try to minimise the same objective function, namely
the within-cluster-sum-of-squares (Murtagh and Legendre, 2014). It is
therefore reasonable that they also had similar score curves.

Within the NEMI framework, the combination of 100 ensemble
runs showed sensitivity to the base_id parameter. However, initial
experiments showed that the standard deviation of mean uncertainties
across runs with different base_ids was only 1%. An alternative to NEMI
for combining cluster sets from an ensemble are averages over the
proximity matrices (whose ij-entry is one if ith and jth point are in the
same cluster, else zero) of a UMAP-clustering pipeline (Bollon et al.,
2022). This average is then partitioned using spectral clustering.

In the final DBSCAN clustering, some clusters were not geograph-
ically contiguous and appear as geographically disjoint regions with
similar water mass properties. While spatial coherence can be desirable
for certain applications, first experiments with a spatially constrained
Ward clustering (using a 52-nearest-neighbour graph) showed that
enforcing geographic continuity led to lower similarity with established
oceanic classifications such as the EMUs (Sayre et al.,, 2017) and
Longhurst provinces (Longhurst, 2007), quantified by NMI and ARL
This reveals the trade-off between feature homogeneity and geospatial
contiguity (cf. e.g. (Yuan et al.,, 2015; Wang et al., 2024)). Spatial
constraints may obscure meaningful biogeochemical patterns. Not en-
forcing spatial constraints, on the other hand, may reveal physically or
biogeochemically similar water masses across distant regions or alter-
natively, highlight limitations in the feature set’s ability to distinguish
regional differences. Future work may investigate this aspect in more
detail, e.g. by a binarised spatially-constrained spectral clustering as
suggested by Yuan et al. (2015).

In this study, min-max scaling was applied prior to embedding
and clustering to ensure equal contributions of features with varying
ranges. Since the distribution of data used in this work did contain
skew, a robust scaler that is less affected by outliers may be preferable.
Downstream evaluation using UMAP quality metrics (Qlocal, Qglobal,
trustworthiness and continuity) revealed that min-max scaling con-
sistently outperformed robust scaling (RobustScaler, Python library
scikit-learn, version 1.5) across multiple hyperparameter settings. This
effect may be explained by UMAP relying by default on a distance
metric to construct its neighbourhood graph (McInnes et al., 2018a)
rendering the method sensitive to how features are scaled. When
extreme values represent meaningful physical or biogeochemical con-
ditions rather than noise, scaling methods that preserve the full value
range, such as min—-max scaling, may therefore help maintain relevant
relationships.

A focus of future research is the data preparation, especially with
regard to the imputation. Also, density was set to a constant value
of 1.025kgm™3 for unit conversions as suggested previously (Korablev
et al, 2021) when temperature or salinity values are unavailable.
Feature importances computed by random forests were only used to get
a first impression on the influence of parameters on cluster sets. For a
thorough analysis, the models require further tuning and validation.
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4.2. The importance of UMAP embedding for clustering performance

A key result was that all clustering algorithms performed better
when applied to the embedding despite the relatively low dimensional
original data space, confirming previous findings (Allaoui et al., 2020;
Herrmann et al., 2023; Sonnewald et al., 2020). Additionally, the
embedded data shows a more balanced feature contribution across all
parameters (Fig. S14), reflecting a potentially less biased clustering
result. This may lead to clusters that are influenced by multiple factors
rather than being driven by a single dominant feature. A possible reason
for the performance gain using UMAP is that it enhances separability
and thus the ability to cluster data (Herrmann et al., 2023). Moreover,
working on a space with fewer dimensions accelerates computation and
optimises memory consumption of the given down-stream clustering
tasks, and supports external validation by visualisation in the 3D space,
where the six original dimensions could not have been used. As noted
above, relying on CVIs would have resulted in misleading clusters that
did not fairly represent the data. Working on the embedding helps
to overcome the “curse of dimensionality” (Ayesha et al., 2020) that
encompasses all phenomena related to higher dimensional data result-
ing in challenges for learning algorithms. For example, the amount
of necessary training data grows exponentially with the number of
dimensions to prevent overfitting. Also, Euclidean distances, which are
used in all three clustering algorithms, become less discriminative in
higher dimensional spaces (Verleysen and Francois, 2005).

Similar to clustering, dimensionality reduction is an unsupervised
task with hyperparameters that need to be tuned using internal and/or
external validation. In this study, embedding quality was externally
evaluated based on visual clusterability, i.e. how clearly distinct and
compact the clusters appear in the 3D embedded space and by as-
sessing if the uncertainty of UMAP over multiple runs was within
acceptable bounds. Alternatively, hyperparameters can be optimised
using various internal metrics. Here, optimising for Qlocal resulted in
a more dispersed embedding and notably impaired subsequent cluster
sets. This suggests a potential trade-off between faithful Euclidean
structure preservation and clear cluster formation. The discrepancy
may also be explained by misaligned objectives: While the Q-metrics
optimise distance-based rank preservation, UMAP optimises informa-
tion preservation using cross-entropy. Another approach to tune UMAP
hyperparameters would be to use CVIs as proxies for clusterability
(e.g. Jouilili et al. (2024) ). However, performing a joint grid search
over UMAP and clustering parameters increases computational cost
substantially and CVIs are not inherently reliable; they may not consis-
tently reflect meaningful structure or lead to improved embedding or
clustering outcomes (see Section 4.3). The final embedding preserved
global structure well, as indicated by a high Qglobal, and also achieved
high trustworthiness and continuity, suggesting good preservation of
local neighbourhood membership. A lower Qlocal, however, indicated
that the fine-grained local neighbourhood rank ordering was more
distorted. For the given clustering tasks, this level of distortion is
acceptable, as precise ranks are typically less critical than maintaining
broader neighbourhood consistency. This study used UMAP’s default
Euclidean distance and comparative tests with cosine, Mahalanobis,
Chebyshev and Manhattan distances based on Qlocal and Qglobal
supported this choice. The superiour performance of Euclidean distance
is likely due to its ability to preserve meaningful absolute differ-
ences across the scaled oceanographic features and its alignment with
UMAP’s local neighbourhood assumptions. It should be noted, however,
that the Q-metrics are based on Euclidean distances and may therefore
introduce bias.

Due to the non-linear nature of the used environmental data, linear
dimensionality reduction techniques were discarded such as Princi-
pal Component Analysis (PCA), Linear Discriminant Analysis (LDA),
Singular Value Decomposition (SVD), Latent Semantic Analysis (LSA),
Locality Preserving Projections (LPP), Independent Component Analy-
sis (ICA) and Project Pursuit (PP) (Nanga et al., 2021). Popular non-
linear methods include Kernel Principal Component Analysis (KPCA),
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Multi-Dimensional Scaling (MDS), Isomap, Locally Linear Embedding
(LLE), Self-Organizing Map (SOM), Latent Vector Quantization (LVQ),
t-Stochastic Neighbour Embedding (t-SNE) and Uniform Manifold Ap-
proximation and Projection (UMAP) (Nanga et al., 2021). With the
perspective to apply the method to a larger dataset in the future
(e.g. by considering a larger geographic area or time as an addi-
tional dimension), slow dimensionality reduction methods that do not
scale well were omitted (KPCA, ISOMAP, LVQ, t-SNE) (Nanga et al.,
2021). Further informing our choice, SOMs are computationally de-
manding (Vesanto et al.,, 2000) and MDS and LLE are sensitive to
noise (Nanga et al.,, 2021) that could be present in the input data.
Therefore, UMAP was favoured because it is able to preserve non-linear
structures and to scale well. As noted in Section 3.1 and detailed in
Supplementary Material B.1, the cross-entropy method UMAP uses for
optimisation was also seen as highly advantageous through its ability to
strengthen associations between the data, which facilitated subsequent
clustering.

4.3. Choice and interpretability of cluster validity indices (CVIs)

CVIs for comparing clustering methods showed limited agreement
with external validation. Despite clearly being the best choice, DBSCAN
received worst ranks according to the classical CVIs (CH, DB and SH)
and CVNNH, except for SH, which assigned DBSCAN on original data
highest rank despite it being the visually poorest subdivision. These
scores clearly favoured k-Means and Ward on the original data, reflect-
ing their bias towards globular, convex clusters (details on convexity
in Supplementary Material B.3). Conversely, CDR preferred DBSCAN
for clustering original and embedded data, likely due to its different
notion of high clustering quality, defined by small local density vari-
ations better captured by DBSCAN. Since each score has its own bias,
i.e. imposes different assumptions on data and clusters, they are not
useful for performance comparison across clustering algorithms. Thrun
(2021) support this by arguing that instead of selecting a clustering
algorithm based on a CVI, the same result would be achieved by directly
optimising for that CVI (Thrun, 2021). Nonetheless, the CVIs are useful
for tuning hyperparameters since their bias is constant throughout the
experiments.

Evaluating the impact of embedding with CVIs requires caution, as
results did not always align with external validation. Most CVIs, includ-
ing SH, CH applied to k-Means, DB applied to DBSCAN, CVNNH and
CDR for all clustering methods, scored worse on the embedding than
on original data, which conflicted with the previous visual finding that
the clusterings benefited from the preceding dimensionality reduction.
A potential explanation may be the scale sensitivity of the CVIs (except
SH and k-DBCV): UMAP inflated the maximum pairwise distanced
from about 1.75 to around 25 (Fig. S4) increasing absolute distances.
This could be further evaluated in future work by scaling embedded
dimensions before score computation. K-DBCV, a scale-independent
score, could not be computed for clustering original data suggesting
that the original feature space lacked a clear density-based structure.
After UMAP, k-DBCV scores slightly increased but remained negative
indicating weak density separability. Visual inspection supported this,
revealing few distinct, arbitrary-shaped clusters embedded in a more
continuous structure with irregular boundaries. This aligns with SH
deteriorating post-embedding since it is incompatible with non-convex
geometry.

These results highlight the need for careful CVI selection and in-
terpretation. The choice of CVIs depends on the context and structure
of the data and the nature of clusters, as each index offers a unique
perspective on the clustering. For example, despite assuming convex-
ity, CH did reflect DBSCAN cluster quality to some extent, indicating
some flexibility of the scores. Generally, Arbelaitz et al. (2013) found
that presence of overlapping clusters or noise significantly impaired
performance of the 30 CVIs they investigated. Another impact factor
is cluster shape: Some CVIs are more suitable for globular clusters,

13

Ecological Informatics 91 (2025) 103390

while others are better equipped to handle arbitrarily shaped clusters,
like DBCV or CDR (Schlake and Beecks, 2024). Other scores could be
tested to tune hyperparameters of the clustering methods, like the Dunn
index (Dunn, 1973), WB index (a weighted ratio of sum-of-squares
within and sum-of-squares between clusters, Zhao and Franti (2014)),
I index (Maulik and Bandyopadhyay, 2002), Cluster Validity index
based on Density-involved Distance (CVDD, Hu and Zhong (2019)) or
Distance-based Separability Index (DSI, Guan and Loew (2020)). Each
has its own mathematical assumptions about the data (Thrun, 2021).
CVDD e.g. claims that it can deal with both spherical and non-spherical
clusters. To assess ecological similarity, indices such as the Jaccard
and Bray-Curtis indices have been utilised (e.g. Carteron et al. (2012),
Sonnewald et al. (2020)).

4.4. Uncertainty quantification

The uncertainty and reproducibility of the best-performing cluster-
ing method (UMAP-DBSCAN) was evaluated using overlap (between all
UMAP-DBSCAN runs) and RMSE as a measure. DBSCAN is sensitive to
the sequence of input samples (Tran et al., 2013), which was here deter-
mined to be negligible (overlap: 99.99+0.003%). UMAP uses randomness
as it implements stochastic gradient descent for an efficient optimisa-
tion (McInnes et al., 2018a). With an average RMSE between the data
points of the 100 embeddings of 0.22, or 1.3% of the value range, the
procedure was assessed reproducible on the given data. Consistency
across multiple runs is supported by low standard deviations of the four
computed dimensionality reduction scores. The combination of UMAP
followed by DBSCAN had a mean overlap of 88.81+1.8%, corresponding
to about 11% uncertainty. Besides this high point-level compliance, the
cluster sets also exhibited strong consistency in information content,
as reflected by the high NMI (0.91 + 0.01). The ARI (0.78 + 0.05)
indicates some variability, confirmed by the grid cell-wise uncertainty
(15.49 + 20%), which is likely caused by the sensitivity of the pipeline
to UMAP. In summary, both, UMAP and DBSCAN, yielded robust and
reproducible results, both individually and in combination, with only
minor variations in the latter.

Uncertainty can be a factor for deciding on a clustering method
since a reproducible clustering is often desired. Variance of k-Means
and agglomerative Ward was not further investigated, though both
methods can differ over multiple runs (Harris and De Amorim, 2022;
Gordon, 1987).

4.5. Relevance for ecological interpretations

The biogeochemical clustering approach in our study has strong
connections to previous approaches. In comparison to the ecological
and biogeochemical regionalisations by Longhurst (2007) and Sayre
et al. (2017), the clustering of this study resulted in similar but more
detailed clusters with some variation in the spatial extents (Figs. 14,
S15, S16) with stronger similarities to EMUs (Table 2). While mod-
erate NMI values for both subdivisions indicate shared information
content and a degree of structural correspondence, relatively low ARI
values suggest larger differences in exact partitioning. It is obvious
that the physical and biogeochemical conditions are closely connected
to the characteristics of marine biomes, such as primary production
(e.g. Taylor et al. (2011)), microbial diversity (e.g. Friedline et al.
(2012)) or cycling of organic matter (e.g. Koch and Kattner (2012),
Schmitt-Kopplin et al. (2012), Hertkorn et al. (2013)). For example,
the Labrador Sea showed strong similarities across the three clustering
sets, though (Longhurst, 2007) suggested a coarser subdivision. Sim-
ilarly, Longhurst (2007) and Sayre et al. (2017) identified only one
or few regions in the Mediterranean Sea, whereas this study resulted
in a total of 27 clusters. This higher number of regions may arise
from the presented method being data-driven in contrast to Longhurst’s
knowledge-guided approach, more sensitive to local structure and not
imposing constraints on cluster number, shape, or size. Moreover, the
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Fig. 14. Surface water masses as defined in this study (UMAP-DBSCAN, left), by Longhurst (2007) (middle) and Sayre et al. (2017) (right). While similarities e.g. in the Labrador
Sea stand out, there were also differences, such as (Longhurst, 2007)’s subdivision of the central North Atlantic.

COMFORT dataset includes the data used in Sayre et al. (2017) and
incorporates additional measurements. Previous studies are based on a
priori decisions on the total number of clusters — based on the data
or the parameters applied for the clustering method. For example,
k-Means (as used by Sayre et al. (2017)) uses a predefined number
of clusters and optimises for the entire dataset. This can result in
smoothing over local variations, with consequences for the ecological
interpretations of the regions. DBSCAN in our study does not enforce a
specific number of clusters but prescribes the connectivity conditions,
i.e., how far apart data points in feature space may be to form a cluster,
which promotes fine-grained subdivisions. In global ecological studies,
the Mediterranean is often described as one region (e.g. Longhurst
(2007), Costello et al. (2017)) though works like (Sayre et al., 2017;
Zhao et al., 2020a) and this study suggest a higher diversity especially
at the surface in comparison, for example, to the North Atlantic. This is
likely caused by complex upper ocean currents (Tomczak and Godfrey,
2003) and small-scale patterns of seasonal primary production (as
represented in https://www.grida.no/resources/5937). A short analysis
of the proportion of endemic species per region using OBIS data (Ocean
Biodiversity Information System (OBIS) (2025), data not shown) re-
vealed 12% of occurring species in the largest and in the second largest
Mediterranean clusters (labels 6, 35) to be endemic suggesting the
ecological uniqueness of the main biogeochemical water masses in the
Mediterranean Sea.

An example for varying region extent in different clustering ap-
proaches is the western deep North Atlantic (cluster 11). In this study
using DBSCAN and UMAP, the region extended further south along the
American coast compared to the Ecological Marine Units by Sayre et al.
(2017). By using k-Means, we were able to reproduce the spatial extend
in the previous work. The visualisation in embedding space revealed
that k-Means struggled to adequately separate this area. This might be
attributable to the complexity of the data, visible in embedding space
as an irregularly connected, curved structure, not resembling normal
distributions for which k-Means is optimised. Despite the intrinsic bias
of k-Means, the clustering by Sayre et al. (2017) and the DBSCAN clus-
tering presented here exhibited many similarities (e.g. surface regions,
Fig. 14). A possible reason is that Sayre et al. (2017) use a higher
depth resolution: In total, 102 depth intervals were defined and the
very variable first 100m of the ocean column are subdivided into 5m
steps. This higher resolution might enable a better separation of data
points in feature space and thus a more precise clustering.

Generally, the presented cluster set picked up well-known oceano-
graphic features, like the outflow of warm, saline Mediterranean water
through the Strait of Gibraltar (Pinardi et al., 2023) that is traceable at
the 2,000 m level across the North Atlantic Ocean (Tomczak and God-
frey, 2003). Due to the time-averaging of data, small-scale and dynamic
oceanographic features such as eddies were not sufficiently represented
in this cluster set. Another well-represented feature is the subdivision
of deep Atlantic waters along the north-west axis. Compared to the
east, the western waters were characterised by lower silicate, nitrate
and phosphate and higher oxygen concentration (Fig. 12). This is in
good agreement with the fact that the western part of the deep North
Atlantic is more influenced by relatively young North Atlantic deep

14

water, while there is more influence of Southern Ocean deep waters in
the east (Johnson, 2008). This emphasises that while temperature and
salinity remain key parameters in defining water masses, the inclusion
of additional parameters such as oxygen and nutrients is crucial for
a comprehensive and detailed analysis of water mass properties and
dynamics in the ocean.

The clustering results for the case study in the Labrador Sea and
Davis Strait, an area of deep-water formation, were generally in very
good agreement with pertinent oceanographic literature. Those clusters
that represented freshly formed deep water (particularly labels 3 and
24) were characterised by high salinity, low temperature and slightly
depleted oxygen values, as shown previously e.g. by Tomczak and
Godfrey (2003). The clustering did not always yield spatially coherent
clusters, for example a cluster in the deep Atlantic near the equator
(label 7). Despite fairly different temperatures, the same cluster label
was also assigned to water in the Labrador Sea, because of a high
similarity in the inorganic nutrient concentrations. A possible reason
is the exclusion of geographic coordinates (or proximity to coasts, such
as in Longhurst (2007)) from the clustering process or that additional
parameter(s) are required for the distinction.

5. Conclusion and outlook

By comparing pre-processings, clustering methods and various val-
idation techniques, this study found a clustering that adequately re-
flected the embedded data structure of North Atlantic physical and
biogeochemical properties. Such a methodological approach to cluster-
ing is of high importance for quality and hence potential downstream
tasks. Thrun (2021) formulated this precisely referring to their medical
use case:

“[...] only the combination of empirical medical knowledge and
an unbiased, structure-based choice of the optimal cluster analysis
method w.r.t. the data will result in precise and reproducible clus-
tering with the potential for knowledge discovery of high clinical
value”.

[— (Thrun, 2021)]

DBSCAN applied to a dimensionality-reduced space using UMAP
best reflected the data structure, outperforming k-Means and agglomer-
ative Ward. When validating the results, it was imperative to not rely
on single criteria, e.g. to compute multiple CVIs for hyperparameter
tuning. The presented results moreover discourage using CVIs for the
comparison between clustering methods.

For reproducibility purposes, analysis of uncertainty is an important
aspect to consider when non-deterministic algorithms are applied. The
variability of the presented method was quantified using ensemble
analysis revealing low variabilities of the individual methods (UMAP,
DBSCAN) and slight deviations in the clustering when combined (over-
lap of 88.81 + 1.8%). By combining the clustering results over the
ensemble following the NEMI framework, reproducibility and repre-
sentativeness of the statistical co-variance space was further increased
(uncertainty of 15.49 + 20%).


https://www.grida.no/resources/5937

Y. Jenniges et al.

There were several aspects that could be further explored related to
data, pre-processing, method and post-processing. Regarding the data,
further parameters like dissolved (in-)organic carbon or biogeochemical
tracers such as Apparent Oxygen Utilisation (AOU) could be added.
Future work aims to scale the clustering up to global coverage and
add the temporal component to increase oceanographic utility. For this,
data sparsity could be a limiting factor machine learning is especially
suited to overcome. Also, other clustering methods that are able to
deal with varying densities, such as HDBSCAN, are worth exploring.
Further, self-organising maps (Kohonen, 1990) could increase inter-
pretability of results by providing meaningful maps of the classes while
preserving data topology (Yonggang and Weisenberg, 2011). To further
improve performance, other hyperparameters can be explored. Distance
metrics other than Euclidean could be investigated for Ward and DB-
SCAN clustering to ensure the optimal strategy for the given data.
Oceanographically, the cluster set can be compared more extensively
to existing definitions to potentially extract new knowledge.

CRediT authorship contribution statement

Yvonne Jenniges: Writing — review & editing, Writing — original
draft, Visualization, Software, Project administration, Methodology,
Investigation, Funding acquisition, Data curation, Conceptualization.
Maike Sonnewald: Writing — review & editing, Supervision, Methodol-
ogy, Conceptualization. Sebastian Maneth: Writing — review & editing,
Supervision, Methodology, Funding acquisition, Data curation, Con-
ceptualization. Are Olsen: Writing — review & editing, Data curation.
Boris P. Koch: Writing — review & editing, Visualization, Supervision,
Methodology, Funding acquisition, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgements

We would like to express our gratitude to the COMFORT project
group for their invaluable contribution in providing the dataset that
formed the foundation of this research. We are thankful to Claire
Monteleoni and Anastase Alexandre Charantonis for their insightful
discussions that helped shape the direction of this study. Also, we
wish to thank Marlo Bareth for being a valuable discussion partner,
whose perspectives helped refine the analysis. YJ was funded through
the Helmholtz School for Marine Data Science, Germany (MarDATA,
Grant No. HIDSS-0005). This work was supported by a fellowship
of the German Academic Exchange Service (DAAD), allowing for a
research stay of YJ with MS at Princeton University and University
of Washington, Seattle. We acknowledge support by the Open Ac-
cess publication fund of Alfred-Wegener-Institut Helmholtz-Zentrum fiir
Polar- und Meeresforschung, Germany. MS acnowledges support from
the Award NA240ARX431C0058-T1-01 from the National Oceanic and
Atmospheric Administration, U.S. Department of Commerce and the
Award RISE-2425906 from the U.S. National Science Foundation.

Appendix A. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.ecoinf.2025.103390.

15

Ecological Informatics 91 (2025) 103390
Data availability

The cluster set and auxiliary information is publicly available on
Zenodo (Oceanregionsdataset) along with the code base used to con-
duct and analyse the presented experiments (Code) and the dashboard
to explore the final cluster set (Dashboard, Dashboardcode). Column
descriptions can be found in Supplementary Material D. The COMFORT
dataset is publicly available online (Korablev and Olsen, 2022).
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