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 A B S T R A C T

Defining ocean regions and water masses helps to understand marine processes and can serve downstream 
tasks such as defining marine protected areas. However, such definitions often result from subjective decisions 
potentially producing misleading, unreproducible outcomes. Here, the aim was to objectively define regions of 
the North Atlantic through systematic comparison of clustering methods within the Native Emergent Manifold 
Interrogation (NEMI) framework (Sonnewald, 2023). About 300 million measured salinity, temperature, and 
oxygen, nitrate, phosphate and silicate concentration values served as input for various clustering methods 
(k-Means, agglomerative Ward, and Density-Based Spatial Clustering of Applications with Noise (DBSCAN)). 
Uniform Manifold Approximation and Projection (UMAP) emphasised (dis-)similarities in the data while 
reducing dimensionality. Based on systematic validation of clustering methods and their hyperparameters using 
internal, external and relative validation techniques, results showed that UMAP-DBSCAN best represented the 
data. Strikingly, internal validation metrics proved systematically unreliable for comparing clustering methods. 
To address stochastic variability, 100 UMAP-DBSCAN clustering runs were conducted and aggregated following 
NEMI, yielding a final set of 321 clusters. Reproducibility was evaluated via ensemble overlap (88.81±1.8%) 
and mean grid cell-wise uncertainty (15.49±20%). Case studies of the Mediterranean Sea, deep Atlantic waters 
and Labrador Sea showed strong agreement with common water mass definitions. This study revealed a more 
detailed regionalisation compared to previous concepts such as the Longhurst provinces through systematic 
clustering method comparison. The applied method is objective, efficient and reproducible and will support 
future research on biogeochemical differences and changes in oceanic regions.
1. Introduction

The definition of ocean regions has offered fundamental advances 
in our understanding of marine (eco)systems, biodiversity distribu-
tions and their variability. Since the 19th century, efforts to delineate 
biogeographic patterns have evolved from early taxonomic classifica-
tions (Forbes, 1856) to more comprehensive ecological and physical 
ocean regionalisations (Ekman, 1935; Hedgpeth, 1957; Briggs, 1974; 
Hayden et al., 1984; Briggs, 1995; Bailey, 1998). One of the most 
influential partitioning schemes, the ecological provinces by Longhurst 
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(2007), has provided a foundational framework for investigating large-
scale oceanographic patterns and processes, hotspots of biodiversity 
and ecological relationships. For example, the Longhurst regimes
helped quantify primary production (Longhurst et al., 1995), charac-
terise tuna movements (Logan et al., 2020) and trophic dynamics and 
food web structure (Arnoldi et al., 2023).

Ocean regionalisations have been used in studies addressing fields 
such as biogeographic realms (Costello et al., 2017), carbon flux
(Gloege et al., 2017) or patterns of marine viruses (Brum et al., 2015). 
They also serve economic decisions in fisheries (Juan Jordá et al., 
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2022) and policy such as the designation of marine protected areas 
legislation (Spalding et al., 2007; Sonnewald et al., 2020; Zhao et al., 
2020b; Reisinger et al., 2022). 

While previous approaches often rely on predefined thresholds and 
subjective criteria, emerging data-driven techniques, particularly clus-
tering algorithms, provide a more objective framework for ocean region 
delineation (Devred et al., 2007; Hardman-Mountford et al., 2008; 
Oliver and Irwin, 2008; Kavanaugh et al., 2014; Sayre et al., 2017; 
Sonnewald et al., 2019, 2020). The Native Emergent Manifold Inter-
rogation (NEMI) method  (Sonnewald, 2023)  addresses key challenges 
in analysing complex geophysical data by integrating manifold learn-
ing, clustering, stochastic ensemble methods, uncertainty quantification 
and intuitive validation to ensure robust and interpretable clustering 
outcomes. This study builds upon and enhances the NEMI method 
through systematic comparison of clustering algorithms applied to 
biogeochemical data. Fundamentally, clustering results are influenced 
by algorithmic biases (Thrun, 2021) and, for some algorithms, the 
possibility of variable outcomes raising concerns about suitability, com-
parability and reproducibility. Two main validation strategies exist (Rui 
and Wunsch, 2005; Ullmann et al., 2022): (i) Internal validation, 
which assesses cohesion within clusters and separation between clus-
ters using indices, such as the Calinski–Harabasz index (Caliński and 
Harabasz, 1974), Davies–Bouldin index (Davies and Bouldin, 1979) 
and Silhouette score (Rousseeuw, 1987) and (ii) external validation, 
which utilises knowledge not seen during model training, like com-
paring clustering results to established ecological classifications or 
visual analysis in different data spaces. For example, dimensionality 
reduction techniques like Uniform Manifold Approximation and Pro-
jection (UMAP, McInnes et al. (2018a)) improve the interpretability 
of clustering outcomes through enhancing associations between data 
structures and visualisation (Allaoui et al., 2020).

A key challenge for clustering is quantifying uncertainty. Some clus-
tering and dimensionality reduction algorithms are non-deterministic 
and a globally optimal solution is not guaranteed. For example, UMAP 
uses stochasticity (McInnes et al., 2018a), Density-Based Spatial Clus-
tering of Applications with Noise (DBSCAN) results may change with 
permuted input data (Schubert et al., 2017) and k-Means is sensitive to 
cluster centroid initialisation (Fränti and Sieranoja, 2019). Quantifying 
clustering variability is crucial to assess reproducibility and reliability. 
One approach involves multiple runs and single-number similarity 
metrics, such as overlap (Manning et al., 2008). The NEMI method, 
which combines multiple clustering runs to form a final cluster set, has 
been proposed as a novel solution to represent statistical variability and 
quantify uncertainty.

Most prior studies on ocean partitioning focus on surface waters 
(e.g. Devred et al. (2007), Longhurst (2007), Hardman-Mountford et al. 
(2008), Oliver and Irwin (2008), Vichi et al. (2011), Reygondeau 
et al. (2013), Fay and Mckinley (2014), Kavanaugh et al. (2014), 
Reygondeau et al. (2020), Sonnewald et al. (2020)) despite the fact 
that critical processes such as particle export, upwelling or deep-water 
formation extend into deeper layers. Also, vertical mixing affects bio-
diversity leading to depth-variable community trends (DeLong et al., 
2006; Hörstmann et al., 2022). Recent efforts to develop 3D ocean 
regionalisations have incorporated clustering approaches such as k-
Means (Sayre et al., 2017) and hybrid methods combining k-Means, 
CMeans, agglomerative Ward and agglomerative full linkage (Rey-
gondeau et al., 2017). In physical oceanography, the definition of 3D 
water masses, mainly defined by temperature and salinity but also 
e.g. oxygen, has always played a central role (e.g. Emery (2001), Tom-
czak and Godfrey (2003)). More recent definitions of water masses are 
based either on regional (Liu and Tanhua, 2021) or model data (Zika 
et al., 2021).

This study aims to develop an objective and reproducible 3D re-
gionalisation of the North Atlantic ocean and its marginal seas using 
a data-driven clustering approach. Geographic coordinates and depth 
were excluded from the clustering to ensure that the regions are purely 
2 
based on water properties.  The analysis is based on a mostly post-
industrialisation time-aggregate representing a long-term observational 
baseline, maximising spatial data coverage. A key novelty of this work 
is the systematic definition and evaluation of a marine clustering using 
both internal and external validation criteria, bridging statistical rigour 
with oceanographic knowledge. Furthermore, we increase statistical 
representativeness by combining multiple clustering runs within the 
NEMI framework that also allows for quantification of uncertainty. To 
contextualise the results, clustering outputs are compared to established 
definitions of ecological provinces and ocean regions (Longhurst, 2007; 
Sayre et al., 2017) in three distinct areas: the deep Atlantic, the 
Mediterranean and the Labrador Sea. This work specifically addressed 
the following research questions: (i) Which clustering method works 
best within the NEMI framework for the given oceanographic data? 
(ii) How reproducible are the clustering results? (iii) How do the re-
sults compare to existing definitions of ecological provinces and ocean 
regions?

The insights gained from this study have broad potential for ecolog-
ical and environmental research. A thoroughly validated, data-driven 
ocean partitioning may refine or challenge existing frameworks, in-
fluencing our understanding of oceanic systems, climate dynamics, 
and marine resource management. By integrating ecological informat-
ics methodologies, we contribute to the advancement of reproducible 
and objective ocean classifications, ultimately supporting more robust 
marine ecosystem assessments and policy applications.

The final gridded 3D set of clusters of the North Atlantic Ocean 
is publicly available (https://doi.org/10.5281/zenodo.15201767). It 
also contains auxiliary information, like the gridded oceanographic 
parameters. For interactive exploration of the clusters, a dashboard is 
available (https://ocean-cluster-dashboard.onrender.com, code: https:
//doi.org/10.5281/zenodo.16742244).

2. Material and methods

2.1. Native emergent manifold interrogation (NEMI) framework

This study implements the Native Emergent Manifold Interrogation 
(NEMI) framework, developed by Sonnewald (2023), as the method-
ological foundation for objective ocean regionalisation. NEMI inte-
grates manifold learning, systematic clustering comparison, ensemble 
methods, and uncertainty quantification to ensure robust clustering 
outcomes. Specifically, we used NEMI to 1) aggregate results from 
multiple stochastic clustering runs (here UMAP-DBSCAN), reducing 
variability to yield robust final clusters, 2) quantify uncertainty by com-
bining ensemble runs, where NEMI directly quantifies the uncertainty 
of cluster assignments, enhancing reproducibility and reliability, and 
3) utilising a systematic framework for validation through structured 
approach to integrate external and relative validation strategies. The 
following sections detail our implementation of the NEMI protocol 
and systematic algorithm comparison in the context of the COMFORT 
dataset, described below. 

2.2. Data

The dataset for this study (Korablev and Olsen, 2022) was assem-
bled in the framework of the EU project ‘‘Our Common Future Ocean 
in the Earth System’’ (COMFORT) and combines ten observational 
datasets, including the World Ocean Database 2018 (WOD18) and Argo 
floats (for more information refer to Korablev et al. (2021)). It contains 
data on 47 parameters measured globally from the year 1772 to 2020 
amounting to 458,724,734 values.

The focus area was the North Atlantic from −77 to 30◦ longi-
tude, from 0 to 70◦ latitude and from 0 to 5,000m depth. From the 
COMFORT dataset, the parameters temperature, salinity, as well as 
oxygen, nitrate, silicate and phosphate concentration were selected, 
which had comparatively good spatial coverage. After quality filtering, 

https://doi.org/10.5281/zenodo.15201767
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Fig. 1. The workflow was iterative and comprised (i) pre-processing, (ii) clustering, (iii) external, internal and relative validation that helped refine the selection of pre-processings, 
clustering methods and hyperparameter settings, and (iv) interpretation within the respective context leading to (new) knowledge.
Source: Clustering procedure adapted from Rui and Wunsch (2005).
unit conversions and averaging over all times (years 1772 – 2020), the 
data was mapped on a grid with a spatial resolution of 1◦ and 12 water 
depth intervals: 0 – 50m, 50 – 100m, 100 – 200m, 200 – 300m, 300 – 400m, 
400 – 500m, 500 – 1,000m, 1,000 – 1,500m, 1,500 – 2,000m, 2,000 – 3,000m, 
3,000 – 4,000m, 4,000 – 5,000m. Missing values were imputed using the 
K-Nearest Neighbours (KNN) algorithm (Python library scikit-learn, 
version 1.5; Pedregosa et al. (2011)). Details on data preparation and 
parameter distributions can be found in Supplementary Material A.

2.3. Clustering

Following a systematic clustering procedure (Fig.  1), three cluster-
ing methods were selected (Python library scikit-learn, version 1.5; Pe-
dregosa et al. (2011)) for comparison: k-Means (the baseline), ag-
glomerative Ward clustering (a hierarchical method) and DBSCAN (a 
density-based algorithm). All six parameters were scaled to a range 
from zero to one (MinMaxScaler, Python library scikit-learn, version 
1.5) making the values comparable and usable with distance-variant 
methods like k-Means clustering.

To assess the influence of pre-processing, each algorithm was ap-
plied to the scaled data and to a dimensionality-reduced version of 
the scaled data. For the projection from six parameters (6D) to 3D, 
the non-linear method UMAP (Python library umap-learn, version 
0.5.5; McInnes et al. (2018b)) was applied. The resulting 3D space will 
be called embedding in the following. This study focused on clustering 
methods that map a data point to exactly one cluster/label and assumed 
that the number of clusters must be 𝐾 > 1. The terms cluster and 
label will be used interchangeably. For methodological details see 
Supplementary Material B.

To analyse the importance of each input parameter, cluster assign-
ments were replicated with a more interpretable, predictive model 
by using the six scaled parameters as input and the cluster labels as 
output. The idea is similar to translating the clustering function into 
a neural network (Kauffmann et al., 2024), though without explicitly 
transferring the formulas. For cluster assignment replication, a random 
forest classifier (RandomForestClassifier, Python library scikit-learn, 
1.4) was trained for each clustering model and its inherent feature 
importance was leveraged. The hyperparameters were configured as 
follows: The number of trees was set to 1,000, weights were balanced 
and the random state was fixed.
3 
2.4. Validation

Validation can generally be categorised into internal and external 
approaches. Sometimes relative validation is listed as a third option 
referring to the comparison of different models (Rui and Wunsch, 
2005). Internal validation exploits information available during the 
modelling process. In particular for clustering, Cluster Validity Indices 
(CVIs) or ‘‘scores’’ provide information on how cohesive a cluster is 
within itself and how separate it is to other clusters. Here, distance, 
density, and neighbourhood based CVIs were used. The applied dis-
tance based CVIs are the Calinski–Harabasz (CH, Caliński and Harabasz 
(1974)), Davies–Bouldin (DB, Davies and Bouldin (1979)) and Silhou-
ette (SH, Rousseeuw (1987)) scores (Python library scikit-learn, version 
1.5).  The applied density and neighbourhood based CVIs are k-Density-
Based Cluster Validation (k-DBCV, (Hammer et al.); adaption of Python 
library kdbcv, version 1.0.0; a more efficient implementation of DBCV, 
(Moulavi et al., 2014)), Clustering Validation Index based on Nearest 
Neighbours by (Halkidi et al., 2015) (CVNNH, Python library ascvi, 
version 0.1.0, (Schlake and Beecks, 2024); an adaption of CVNN, (Liu 
et al., 2013)) and Contiguous Density Region (CDR, (Rojas-Thomas and 
Santos, 2021); Python library ascvi, version 0.1.0).  The CVIs were com-
puted to determine hyperparameters and compare performance and 
are described in detail in Supplementary Material B.3. Desirable high 
within-cluster cohesiveness and between-cluster separation is indicated 
by low DB, CDR and CVNNH and by high SH and k-DBCV as well as 
by a local or global maximum of CH.

External validation is achieved by additional knowledge, such as 
ground truth labels or domain expertise. For biogeochemical and phys-
ical clustering, basic principles can be used to evaluate the cluster sets 
in their 3D geographic space as well as in their temperature-salinity 
(TS) space. Visual cluster examination can also be conducted in a 
dimensionality-reduced feature space to assess compliance with feature 
topology.

For dimensionality reduction methods like UMAP that enhance 
associations between data structures, several internal validation metrics 
have been proposed to e.g. assess embedding quality and guide hyper-
parameter tuning, including reconstruction error  (Zhang et al., 2021). 
Trustworthiness and continuity evaluate how well local neighbour-
hoods are preserved during the projection (Venna and Kaski, 2006). 
Trustworthiness measures the extent to which neighbours in the em-
bedding were also neighbours in the original space, while continuity 
measures whether neighbours in the original space remain close in 
the embedding. Qlocal and Qglobal provide an alternative approach 
to quantifying neighbourhood preservation at different scales (Lee and 
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Verleysen, 2010). Unlike trustworthiness and continuity, which are 
based on binary neighbour relationships, these metrics consider relative 
ranking of all pairwise distances. Trustworthiness, continuity, Qglobal 
and Qlocal range between zero and one, with higher values indicating 
better structure preservation. They were computed using the Python 
library pydrmetrics, version 0.0.7 (Zhang et al., 2021) on a random 
subset of 2,000 data points for computational efficiency.

2.5. Uncertainty assessment

Uncertainty was systematically examined in four parts of the analy-
sis. First, 100 clustering runs were performed and combined into a final 
cluster set following the NEMI framework since the selected cluster-
ing pipeline (UMAP-DBSCAN) contains non-deterministic components. 
Variability of the complete process was assessed by the Adjusted Rand 
Index (ARI), Normalised Mutual Information (NMI), cluster overlap (see 
Section 2.6) and by NEMIs inherent grid-cell-wise uncertainty. Second, 
this work addressed uncertainty of the dimensionality reduction alone 
by computing the UMAP embedding 100 times and by comparing the 
similarity between runs using the root mean-squared error (RMSE). 
Third, for hyperparameter tuning, uncertainty was taken into account 
by computing each hyperparameter combination ten times for each ex-
periment (see Section 3.2). Fourth, to quantify uncertainty of DBSCAN, 
it was applied 100 times to a fixed embedding.

Additional sources of uncertainty of the presented approach were 
data quality and coverage, as well as missing value imputation. Data 
was filtered using existing quality flags, which is why data quality was 
not further investigated in this study. It should be noted though that 
the COMFORT dataset comprises data measured at different times and 
with different instruments decreasing accuracy and precision. Another 
potential source of uncertainty was the imputation of non-existent mea-
surement values in the defined geospatial grid, which was considered 
by flagging each imputed data point.

Following the NEMI framework, an ensemble of clustering runs 
was performed and aggregated, from which NEMI infers uncertainty 
to assess variability. The algorithm requires manual selection of a base 
cluster set (base_id), against which all other cluster sets are compared. 
The process begins by matching labels across ensemble members. For 
this, each cluster set is reassigned new labels sorted by cluster size 
(with label zero corresponding to the largest cluster). For every member 
cluster set (except the base), the algorithm visits every possible pair of 
a base label 𝑎𝑖 and a member label 𝑏𝑗 and determines the overlap as 

NEMI_overlap(𝑎𝑖, 𝑏𝑗 ) =
volume(𝑎𝑖 ∩ 𝑏𝑗 )
volume(𝑎𝑖 ∪ 𝑏𝑗 )

(1)

i.e., the volume of geographically shared data points divided by the 
joint volume of data points. The original NEMI implementation works 
with cell count instead of volume.

The ensemble approach also allows uncertainty quantification per 
grid cell, which was computed here as the number of times the cell 
was assigned to different clusters: 

NEMI_uncertainty(grid_cell) = 100 −
|same_cluster_assignment|

|ensemble| (2)

2.6. Cluster similarity metrics

When clusters are generated, comparisons to other sets of clusters or 
regionalisations, i.e. relative validation, is an important step for putting 
results into context. Various metrics are available to assess similarity 
of cluster sets (cf. e.g. Vinh et al. (2010)) such as overlap (Manning 
et al., 2008), Adjusted Rand Index (ARI, Hubert and Arabie (1985)) 
and Normalised Mutual Information (NMI, Strehl and Ghosh (2002)). 
4 
2.6.1. Adjusted Rand index
The Adjusted Rand Index (ARI, Python library scikit-learn, version 

1.5, Hubert and Arabie (1985)) is a symmetric measure to assess 
similarity between two cluster sets. It is based on the Rand Index (RI), 
which measures the proportion of agreeing pairs of points between two 
cluster sets 
RI = 𝑎 + 𝑏

(𝑛
2

) , (3)

where 𝑎 is the number of pairs of points that are in the same cluster 
in both partitions, 𝑏 is the number of pairs that are in different clusters 
in both partitions, and 𝑛 is the total number of points. The ARI adjusts 
this measure for chance agreement 

ARI = RI − E[RI]
max(RI) − E[RI]

(4)

where E[RI] denotes the expected RI of random labellings. The index 
is bound between −0.5 and one, where identical cluster sets receive a 
score of one, a random label matching a score of zero and complete 
disagreement a negative score.

2.6.2. Normalised mutual information
Normalised Mutual Information (NMI, Strehl and Ghosh (2002)) 

quantifies the amount of shared information between two cluster sets. 
In this study, the normalisation proposed by Kvalseth (1987) was 
applied yielding 

NMI =
2𝐼(𝐴,𝐵)

𝐻(𝐴) +𝐻(𝐵)
=

2
(

𝐻(𝐴) +𝐻(𝐵) −𝐻(𝐴,𝐵)
)

𝐻(𝐴) +𝐻(𝐵)
(5)

where 𝐻(𝐴) and 𝐻(𝐵) denote the entropies of the two cluster sets 𝐴
and 𝐵, 𝐻(𝐴,𝐵) their joint entropy, and 𝐼(𝐴,𝐵) the mutual information.

NMI ranges from zero to one, where one indicates perfect agreement 
(identical cluster sets) and zero denotes no shared information.

2.6.3. Cluster overlap
An asymmetric measure to compare two cluster sets 𝐴 and 𝐵 and 

hence quantify reproducibility is overlap or purity (Manning et al., 
2008), which ranges between 0 and 1. It assesses how much the clusters 
of two cluster sets overlap by calculating the maximum overlap for each 
cluster/label in 𝐴 with labels in 𝐵 and vice versa. The average overlap 
is used as a cluster set similarity measure.

Let there be 𝑁 objects that are grouped by clustering 𝐴 into clusters 
𝑎0,… , 𝑎𝐼  and by clustering 𝐵 into clusters 𝑏0,… , 𝑏𝐽 . The overlap of 𝐴
with 𝐵 is then defined as 
overlap(𝐴,𝐵) = 1

𝑁
∑

𝑖
max
𝑗

|𝑎𝑖 ∩ 𝑏𝑗 | (6)

To obtain a symmetric measure, we computed the overlap as 

overlap =
overlap(𝐴,𝐵) + overlap(𝐵,𝐴)

2
(7)

3. Results

3.1. Embedding using UMAP

As an initial validation step, the influence of UMAP hyperparame-
ters was tested. The parameters control if global or local associations 
within the data are emphasised by minimising the cross-entropy (Sup-
plementary Material B.1). A lower number of neighbours led to a 
more curled structure, while a higher number unfolded it (Fig.  2, a-c). 
Increasing the number of neighbours to more than 20 did not further 
change the embedding (Fig.  2, c). As expected, a higher minimum 
distance caused the data points to spread apart further, blurring finer 
topologies (Fig.  2, e-f). For the final cluster runs, the number of neigh-
bours was set to 20 and the minimum distance to 0 (Fig.  2, b and d) so 
that the embedding space, with three dimensions, exhibited a distinct 
topology. Over 20 iterations, the final embedding achieved a mean 
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Fig. 2. Influence of the UMAP hyperparameters number of neighbours (n_neighbors, top) and minimum distance (min_dist, bottom) on the embedded space. With an increasing 
number of neighbours, the topology unfolded but did not substantially change for more than 20 neighbours. With a growing minimum distance, the data structure lost structural 
detail.
Table 1
Overview of clustering results. For external validation, the clustering was visually analysed in geographical and embedding spaces (last two 
columns, cf. Section 3.2). Note that the Cluster Validity Indexes (CVIs), i.e. Calinski–Harabasz Score (CH), Davies–Bouldin Score (DB), Silhouette 
Score (SH), k-Density Based Clustering Validation (k-DBCV), Clustering Validation Index Based on Nearest Neighbours Halkidi (CVNNH) and 
Contiguous Density Region (CDR), are not suitable to compare across clustering methods (see Section 4.3). High CH, SH and k-DBCV as well 
as low DB, CVNNH and CDR indicate a well separated clustering.
 Data Algorithm Hyperparameters Internal validation External validation
 CH ↑ DB ↓ SH ↑ k-DBCV ↑ CVNNH ↓ CDR ↓ Geo UMAP  
 Original K-Means 𝑛clusters = 2 57,358 0.78 0.50 −1.00 0.24 0.57 Warm-cold 

separation
Straight cut  

 Embedded K-Means 𝑛clusters = 8 49,703 0.71 0.47 −0.78 3.55 0.60 Non-
separation of 
deep areas

Non-
separations

 

 Original Agg. Ward 𝑛clusters = 2 51,825 0.84 0.48 −1.00 0.24 0.56 Hot-cold like Intrusions  
 Embedded Agg. Ward 𝑛clusters = 25 65,901 0.72 0.46 −0.61 1.72 0.59 Geo. 

connected
Intrusions, 
non-
separations

 

 Original DBSCAN 𝜖 = 0.11949153
𝑚𝑖𝑛samples = 11

800 1.44 0.55 −1.00 0.98 0.54 Focus on 
Baltic

One big 
cluster

 

 Embedded DBSCAN 𝜖 = 0.10661017
𝑚𝑖𝑛samples = 4

1,754 1.5 −0.35 −0.41 3.31 0.56 Density-
oriented

Many small 
clusters
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rustworthiness of 0.97 ± 0.004 and a mean continuity of 0.97 ± 0.007. 
lobal neighbourhood was better preserved than local ones (𝑄𝑔𝑙𝑜𝑏𝑎𝑙 =
.87 ± 0.009, 𝑄𝑙𝑜𝑐𝑎𝑙 = 0.66 ± 0.01, Fig. S4). A Shepard plot of a UMAP 
mbedding is illustrated in Supplementary Material Fig. S4. 

.2. Clustering results

Six experiments were carried out during which three clustering 
ethods were applied to original and embedded data. Each experiment 
as run ten times for every hyperparameter combination. A striking 
esult was that little agreement between the CVIs was found (Table  1).
 u

5 
.2.1. K-Means
Clustering original data. For k-Means applied to the original 6D 

ata, all three classical distance-based scores - CH, DB and SH - reached 
eak performance when setting the number of clusters to two (Fig. S5). 
lotting the result of k-Means with two clusters in geographic space, 
wo coherent regions emerged (Fig.  3). They most strongly resembled 
he input temperature distribution, supported by temperature having 
he highest feature importance (47%). Structural validity scores, in 
ontrast, showed different preferences: CVNNH reached its optimum 
t 12 clusters, while CDR and k-DBCV favoured higher values, contin-
ing to improve up to 60 clusters, though k-DBCV remained negative 
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Fig. 3. K-Means applied to the original data with two clusters in geographic space (left) and its projection into the embedded space (right). The geographic separation of the 
clusters resembled the temperature distribution. In embedding space, the division approximated a straight cut.
Fig. 4. K-Means applied to the embedded data with eight clusters (right) and its projection to geographic space (left). Insufficient performance is reflected in clusters that are not 
separated despite their clear segregation in embedding space, e.g. the blue cluster.
throughout. Note that clustering here is not performed on the embed-
ding. The embedding is merely used to visualise how the clusters look 
like in this space. The visualisation in embedding space showed clear 
errors: Structures that are separate were not subdivided, other clusters 
intruded into foreign clusters.

Higher numbers of clusters resulted in more globular clusters in 
embedding space (Fig. S6). Across most clustering levels, temperature 
and oxygen emerge as the most important features, while the lower-
ranked feature of phosphate slightly gained in importance for larger 
cluster numbers.

Clustering embedded data. For k-Means applied to the data in the 
previously computed embedded space (Section 3.1), internal validation 
(the scores) suggested numbers of clusters greater than two (Fig. S5). 
SH and DB both favoured eight clusters, while the other scores rose/fell 
beyond the selected value range with CH peaking locally at 14 clusters. 
Despite some improvement over clustering on original data, the re-
sulting clusters still showed non-separated regions in embedding space 
(Fig.  4).

To compensate for potential inaccuracies in internal validation, 
cluster sets across different numbers of clusters were further evaluated 
externally. A higher number of clusters resulted in the embedded 
space adapting a chessboard pattern (Fig. S7), that was clearly not 
representative of the underlying co-variance space given by the data.
6 
3.2.2. Agglomerative Ward
Clustering original data. Similar to k-Means on the original data, 

all three classical CVIs suggested two clusters as the best split us-
ing agglomerative Ward clustering (Fig. S8). The visualisation in the 
embedding revealed a straight cut (Fig.  5) and temperature had the 
highest importance (35%) followed by oxygen (34%). Structural scores 
(k-DBCV, CVNNH and CDR) indicated more fine-grained cluster sets, 
with optimal values of 27, 12 and 30 clusters, respectively.  Increasing 
the number of clusters up to 30, regardless of the scores, resulted 
in unseparated clusters and intrusion issues (visible in the embedded 
space), though less than using k-Means. Temperature contributed most 
to separation followed by oxygen and salinity.

Clustering embedded data. The scores for agglomerative Ward 
clustering applied to the embedded data preferred a number of clusters 
larger than two (Fig. S8). While CH and CVNNH did not show an 
extreme value that could be used to optimise the number of clusters, 
SH suggested 24 clusters as the optimum. DB and k-DBCV preferred 
24 clusters and CDR was minimal for 23 and 28 clusters. Selecting 
25 reasonably divided the embedded data at areas of low data point 
density, except for the Labrador Sea and some smaller clusters (Fig. 
6). Deeper ocean regions (two bulbous structures on the left side of 
embedding space) and the Mediterranean water masses were well-
separated while clustering of original data was not able to find these 
differences.
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Fig. 5. Agglomerative Ward clustering applied to the original data with two clusters (left) and its projection into the embedded space (right).
Fig. 6. Agglomerative Ward applied to embedded data with 25 clusters (right) and its projection to geographic space (left).
3.2.3. DBSCAN
In contrast to k-Means and agglomerative Ward clustering, DBSCAN 

requires tuning of two main hyperparameters: epsilon, i.e., the search 
radius, and min_samples, i.e., the minimum cluster size. DBSCAN labels 
data points that it could not assign to a cluster as noise. Therefore, 
the amount of noise was taken into account for the final choice of hy-
perparameter settings. For hyperparameter tuning of min_points, values 
between 2 and 11 and for epsilon values between 0.01 and 0.2 (20 steps 
with step size 0.00322) were tested for original and embedded data.

Clustering original data. All tested hyperparameter combinations 
for DBSCAN applied to the original 6D data resulted in similar cluster-
ings that heavily focused on the Baltic, Black and/or Mediterranean Sea 
(Fig.  7) independent of the tuning criterion (Table ST1). For low epsilon, 
some surface clusters were identified along with 40–60% DBSCAN 
noise. The number of small clusters  decreased with increasing epsilon
while higher min_samples led to less small clusters and more coherent, 
but few (mostly below 10) regions.

CH favoured a high min_samples producing a low-noise clustering 
with coherent regions in the Baltic Sea. DB preferred fewer min_samples
and generated a clustering with low noise but spatially less coherent 
clusters. SH and CVNNH suggested high values for epsilon, SH also 
requiring high min_samples. K-DBCV quantified all points as noise in 
99% of the tested combinations. CDR suggested low epsilon producing 
cluster sets with around 10% noise. 

Clustering embedded data. The distribution of the number of 
clusters and the noise fraction was similar for DBSCAN applied to the 
7 
embedded data compared to original data. However, the number of 
clusters rose above 6,500 and the noise reached proportions of 99%. 
Low epsilon and high min_samples generally resulted in highest noise. 
Low epsilon and low min_samples led to a large number of small clusters, 
while an epsilon value above 0.1 generated larger, coherent structures.

The CH (Fig. S9) formed a clear ridge that rose linearly with increas-
ing min_samples. It separated very coarse cluster sets (above the ridge, 
i.e., larger epsilon values) from cluster sets consisting of smaller regions 
(below the ridge, i.e., smaller epsilon). The score hence delineated a 
compromise between coarse and fine cluster sets. Its optimal/maximal 
value (at 𝑒𝑝𝑠𝑖𝑙𝑜𝑛 = 0.15491525, 𝑚𝑖𝑛_𝑠𝑎𝑚𝑝𝑙𝑒𝑠 = 11) produced a cluster 
set that incorporated clearly delineated regions in geographic and 
embedded space. In the embedded space, some larger structures were 
not subdivided despite only thin connections, such as a geographic 
region in the north. The SH resembled the CH only favouring lower
epsilon and min_samples resulting in more small clusters. In contrast, 
the DB preferred hyperparameter combinations producing much noise. 
The structural CVIs (k-DBCV, CVNNH and CDR) generally favoured 
configurations that produced many small clusters with small differences 
in the few larger clusters and noise proportion.

Final hyperparameters were selected based on CH as well as external 
validation, i.e., the visual inspection of embedded and geographic 
space. CH was used as orientation since it reflected the trade-off be-
tween small clusters versus larger coherent regions. The other scores 
were ignored due to their lack of agreement with visual clustering 
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Fig. 7. DBSCAN applied to original data (left) and its projection to embedding space (right). The hyperparameters were selected through the Calinski–Harabasz Score (CH). The 
clustering was heavily focused on the Baltic.
quality, i.e., they favoured cluster sets with more noise and/or many 
small clusters. The visual inspection led to the decision of 𝑒𝑝𝑠𝑖𝑙𝑜𝑛 =
0.10661017 and 𝑚𝑖𝑛_𝑠𝑎𝑚𝑝𝑙𝑒𝑠 = 4 (Fig. S9, red square). Epsilon smaller 
than the selected value resulted in more small clusters while for larger
epsilon, clusters tended to merge. A min_samples smaller than four at 
the selected epsilon formed a larger cluster in the Labrador Sea and 
more small clusters. The clustering for a minimum of five samples 
was similar, but had more noise (5.17% versus 3.82%). Increasing the
min_samples up to 11 resulted in regions of smaller size.

3.3. UMAP-DBSCAN: Uncertainty and post-processing

Based on the above analysis, DBSCAN applied to the data embedded 
by UMAP best represented the given data structure. Due to stochasticity 
of UMAP-DBSCAN, each of the 100 runs produced slightly different 
results. To assess reproducibility, three sources of uncertainty were 
examined:

First, UMAP was applied 100 times with the same 𝑛_𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 and 
𝑚𝑖𝑛_𝑑𝑖𝑠𝑡 to the scaled input data. It was not possible to directly compute 
the Root Mean Squared Error (RMSE) between any two embeddings 
since they were not always spatially aligned. Therefore, the point 
clouds of the embeddings were aligned through manual translation, 
rotation and/or mirroring followed by the application of the Iterative 
Closest Point (ICP, Python library simpleicp, version 2.0.14) algorithm 
to maximise alignment. ICP calculates a translation and rotation matrix 
for one point cloud trying to minimise distances to another point cloud. 
The RMSE was computed for the embeddings before and after apply-
ing ICP. The minimal deviation, i.e. the error when two embeddings 
aligned best, was stored, resulting in an average RMSE of 0.22 ± 0.06
(or about 1.3 ± 0.36% of the value range).

Second, variability of DBSCAN was assessed by applying it 100 
times to a fixed, pre-computed embedding while keeping hyperparam-
eters fixed. For each run, the rows of the training data were shuffled as 
DBSCAN is sensitive to the sequence of input data. The mean overlap 
between the resulting cluster sets was 99.99 ± 0.003%.

Third, variability of the combined UMAP-DBSCAN pipeline was 
assessed by running it 100 times, i.e., in each iteration both, the 
embedding and the clustering, were recomputed. On average, the ARI 
between the resulting cluster sets was 0.78±0.05, the NMI was 0.91±0.01
and the overlap was 88.81 ± 1.8% (Fig. S10).

Final cluster assignments. To obtain a final cluster set, follow-
ing the NEMI framework, the individual members of the 100 UMAP-
DBSCAN runs were combined. As base_id, the cluster set with lowest 
mean uncertainty was chosen. The final clustering (Fig.  8) had 321 
8 
Table 2
Similarity of this study’s final cluster set with marine provinces (Longhurst, 2007) and 
Ecological Marine Units (EMUs, Sayre et al. (2017)).
 Similarity score Longhurst provinces EMUs 
 Overlap 0.56 0.62  
 Normalised Mutual Information (NMI) 0.43 0.51  
 Adjusted Rand Index (ARI) 0.16 0.18  

clusters and 3.92% (𝑛 = 1920) of the grid cells were assigned as noise 
and were subsequently excluded.

The average uncertainty (Fig.  9) was 15.49 ± 20% (min: 0%, max: 
96%) and 50% of the uncertainties were ≤ 5%. Lowest mean uncertain-
ties (0%) were found in 6 clusters, three of which were geographically 
scattered but well separated in embedding space (labels 209, 244, 
288). The three certain, geographically cohesive clusters were located 
in the Black Sea (100 – 2,000m; label 93), in the southern Baltic Sea 
(100 – 400m; label 102) and in the Gulf of Saint Lawrence (200 – 1,000m; 
label 112). Uncertainties ≥ 50% were geographically scattered with 
the exception of a cluster stretching from the Strait of Gibraltar until 
−64.5◦ West (0 – 300m; label 28) and a cluster off the coast of North 
West Africa (200 – 1,500m; label 53).

3.4. Case studies

Three ocean regions from the final clustering, which were deter-
mined based on the combination of 100 UMAP-DBSCAN runs using the 
NEMI framework (Fig.  8), were inspected. Overall, the final cluster set 
shows higher similarity to the EMUs than to Longhurst provinces (Table 
2). In both cases, overlap and NMI are moderate, while ARI values are 
relatively low. 

3.4.1. Mediterranean Sea
In the presented regionalisation, the Mediterranean Sea, delineated 

by longitude ∈ [−6, 30] and latitude ∈ [30, 48] omitting the Black Sea 
and Bay of Biscay, had a total of 2,509 grid cells (Fig.  10). The region 
was subdivided into one large cluster occupying 83% of all cells (label 
6), the second largest cluster covering 7% of the grid cells (label 35) and 
25 smaller clusters (< 80 cells) that were mainly found at the surface. 
Only one larger clusters extended downwards until 100m (label 35, 
eastern basin).

The main Mediterranean clusters (labels 6, 32, 35, 138) were partly 
related to the North Atlantic representing the Mediterranean in- and 
outflow (labels 0, 10, 19, 28) at the Strait of Gibraltar. In TS space, 
the division between the Mediterranean Sea and North Atlantic waters 
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Fig. 8. Final UMAP-DBSCAN clustering melted from 100 runs using Native Emergent Manifold Interrogation (NEMI) in geographic (top), embedded (bottom left) and temperature-
salinity (TS) space (bottom right). The three use cases (discussed in Section 3.4) are highlighted: Deep Atlantic waters (DW), Labrador Sea (LS) and Mediterranean Sea (MS).
was clearly visible around the 27-isopycnal. In embedding space, it 
was even more pronounced by the large distance between the main 
Mediterranean cluster (label 6) and the remaining data structure. The 
clusters representing the Mediterranean outflow were sorted by in-
creasing depth in embedding space. Highest uncertainties were found 
in this outflow area (Fig. S11), while the remaining clusters of the 
Mediterranean Sea had low uncertainty.

3.4.2. Deep Atlantic waters
The deep waters of the North Atlantic extended from 3,000m to 

5,000m stretching over the complete range of considered latitudes and 
longitudes excluding the Mediterranean Sea. The presented clustering 
detected 43 clusters (Fig.  11), two of which accounted for the assign-
ment of 79% of the grid cells in that area (labels 2 and 11). 38 clusters 
had less than 100 cells. Despite having been generally separated by 
9 
the North Atlantic Ridge, the eastern water mass was also present 
at the west side of the ridge between 10 and 30◦. In TS space, these 
water masses were not distinguishable. For further analysis, six clusters 
(labels 2, 11, 31, 42, 51, 52) were chosen that had uncertainties below 
10%, except one in the south-west (27%, label 52, Fig. S12).

The east–west separation (label 2 and 11 in Fig.  11) was not clear 
in TS space but very pronounced in embedding space (which also 
considered oxygen and nutrients). Taking a closer look at parameter 
distributions (Fig.  12) revealed that the western region has notably less 
silicate and more oxygen as well as lower nitrate and phosphate values.

3.4.3. Labrador Sea and Davis Strait
The Labrador Sea is located between the Labrador Peninsula and 

Greenland. The Davis Strait between 60 and 70◦N connects it with Baffin 
Bay forming a shallower water pathway. 4,170 grid cells were located 
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Fig. 9. NEMI uncertainty of a UMAP-DBSCAN clustering melted from 100 runs using NEMI in geographic (left), embedded (middle) and temperature-salinity (TS) space (right). 
The mean uncertainty was 15.49 ± 20% with a median of 5%. The high standard deviation and low median indicate a few highly uncertain grid cells skewing the mean.
Fig. 10. Selected Mediterranean Sea clusters (labels 6, 32, 35, 138) and related in-/outflow regions in the North Atlantic (labels 0, 10, 19, 28) in geographic (left, zoomed into 
the geographic area of the Mediterranean Sea), embedded (middle) and temperature-salinity (TS) space (right).
Fig. 11. Selected clusters in the deep North Atlantic (labels 2, 11, 31, 42, 51, 52) in geographic (left), embedded (middle) and temperature-salinity (TS) space (right). The clusters 
were indistinguishable in TS space (except label 50 in the south), but well separable in embedding space. In geographic space, a division along the Mid-Atlantic ridge was visible.
between 45 and 70◦N and 40 and 77◦W, which were assigned to 124 
different clusters. The six largest clusters (labels 3, 17, 18, 24, 30, 42, 
Fig.  13) were analysed, each comprising more than 100 grid cells and 
the largest having 780 cells (label 17).

The clusters exhibited a strong vertical structure. One cluster (label 
17) formed a wide stretch around the surface coasts vanishing at about 
300m, another one appeared centrally in the Labrador Sea at 50m depth 
stretching down to 1,000m (label 18). It borders the largest cluster 
(label 3), which reaches until 3,000m where it is replaced until the 
10 
bottom by another cluster (label 42). Cluster label 30 filled Baffin Bay 
from 100 to 400m and was separated from the central cluster (label 
18) by an intermediate region (label 24). The latter reached form the 
surface until 3,000m.

The cluster assignment uncertainty (Fig. S13) in this region was on 
average 10.73 ± 15.4%, the median was 4% indicating that uncertainty 
was inclined towards the lower end. Uncertainties mainly increased 
along the edges of the embedded data structure, which corresponded 
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Fig. 12. Comparison of parameter statistics of the eastern (label 2) and western deep Atlantic (label 11). Note that the western region had lower nutrient and higher oxygen 
concentration. The per-parameter differences were statistically significant (p_value = 0, Mann–Whitney U test, Python library scipy, version 1.11.4).
Fig. 13. Selected clusters in the Labrador Sea and Davis Strait (labels 3, 17, 18, 24, 30, 42) in geographic (left), embedded (middle) and temperature-salinity (TS) space (right).
geographically to the central area (0 – 500m) and an area along the 
American east coast (1,500m).

4. Discussion

4.1. Comparison of clustering algorithm performance

DBSCAN applied to embedded space created through UMAP best 
suited the input data. It outperformed k-Means, agglomerative Ward 
clustering and DBSCAN on original data, as seen in external validation, 
specifically the visualisation in geographic and embedding spaces. K-
Means and (to a smaller extent) Ward clustering were not able to 
distinguish small data structures in the embedded space, where clusters 
were non-separated or merged (Section 3.2). We assess that the main 
reason for the superiority of DBSCAN is its ability to detect clusters 
of any shape since it operates on data density (Ahmad and Dang, 
2015), i.e., it identifies areas where points are concentrated. Also, 
DBSCAN proved to work well in a similar use case, where it is applied 
to a dimensionality-reduced data space using t-Stochastic Neighbour 
Embedding (t-SNE) (Sonnewald et al., 2020). Clusters with varying 
densities pose challenges for DBSCAN (Ahmad and Dang, 2015), which 
may explain the occurrence of small clusters. Erroneous data could also 
contribute to this issue. A key result was that CVIs based on similarity, 
density and neighbourhood structures were inconsistent and thus not 
helpful. This has wide implication for studies relying on only one or a 
few CVIs as is common in the geosciences.

DBSCAN on original data led to unsatisfactory results, as none of the 
tested hyperparameter combinations yielded a clustering that reflected 
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the actual data structure, neither in embedded nor in geographic space. 
The focus on the Baltic Sea, whose salinity levels are well below oceanic 
average (Tomczak and Godfrey, 2003), is consistent with the feature 
importances revealing salinity (35%) as the most important feature 
followed by silicate (19%).

K-Means is a common and fast clustering method and therefore 
used as a baseline in this work. However, k-Means was not able to 
reflect the data structure. When applied to the original data, the CVIs 
agreed on two as the optimal number of clusters. However, the scores 
cannot be computed for less than two clusters and there is no clustering 
for less than two clusters. Hence, this result indicated that either (i) 
two clusters was indeed the best number of clusters or (ii) k-Means 
could not separate the data structure into relevant clusters or (iii) the 
scores were not meaningful. For only two clusters, the clustering is 
mainly a trivial hot-cold separation as seen by the high feature impor-
tance of temperature. Mapping the clusters into the embedded space 
highlighted how k-Means operates, i.e., drawing straight cuts through 
data structures. Further visual investigation with higher numbers of 
clusters revealed a tendency to form globular clusters and no increase 
in clustering quality, i.e., better representation of the embedded data 
structure.

When applying k-Means to the embedding, the CVIs reached their 
optimum beyond two clusters. Compared to clustering on the original 
data, this indicated that k-Means was now better able to detect struc-
tures that were also recognised by the scores. However, the scores did 
not agree: While SH reached its optimum for eight and DB for ten 
clusters, the DB rose beyond the selected value range. This disagree-
ment emphasised the need for selecting scores carefully and consulting 
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not only one but multiple scores. Still, the clustering exhibited obvious 
flaws as it could e.g. not distinguish clearly separate structures in 
embedding space, such as the deep water. Again, a likely explanation 
is that k-Means detects spherical clusters best (Ahmad and Dang, 2015; 
Jain, 2010; Harris and De Amorim, 2022), which were not observed 
in the embedded space. This clearly indicated that k-Means was not 
appropriate for the data and might not be for other non-linear use 
cases either, which are frequent in environmental sciences. Moreover, 
k-Means is sensitive to the initialisation of cluster centroids (Jain, 2010; 
Harris and De Amorim, 2022) introducing a variance not investigated 
in this study.

In contrast to k-Means and DBSCAN, hierarchical clustering pro-
vides a complete hierarchy of clusters. In this work, agglomerative 
Ward detected the overall data structures in embedding space well (Sec-
tion 3.2.2) but neglected smaller data point collections. Ward linkage is 
mathematically close to a k-Means algorithm in a hierarchical context 
since both methods try to minimise the same objective function, namely 
the within-cluster-sum-of-squares (Murtagh and Legendre, 2014). It is 
therefore reasonable that they also had similar score curves.

Within the NEMI framework, the combination of 100 ensemble 
runs showed sensitivity to the 𝑏𝑎𝑠𝑒_𝑖𝑑 parameter. However, initial 
experiments showed that the standard deviation of mean uncertainties 
across runs with different 𝑏𝑎𝑠𝑒_𝑖𝑑s was only 1%. An alternative to NEMI 
for combining cluster sets from an ensemble are averages over the 
proximity matrices (whose 𝑖𝑗-entry is one if 𝑖th and 𝑗th point are in the 
same cluster, else zero) of a UMAP-clustering pipeline (Bollon et al., 
2022). This average is then partitioned using spectral clustering.

In the final DBSCAN clustering, some clusters were not geograph-
ically contiguous and appear as geographically disjoint regions with 
similar water mass properties. While spatial coherence can be desirable 
for certain applications, first experiments with a spatially constrained 
Ward clustering (using a 52-nearest-neighbour graph) showed that 
enforcing geographic continuity led to lower similarity with established 
oceanic classifications such as the EMUs (Sayre et al., 2017) and 
Longhurst provinces (Longhurst, 2007), quantified by NMI and ARI. 
This reveals the trade-off between feature homogeneity and geospatial 
contiguity (cf. e.g. (Yuan et al., 2015; Wang et al., 2024)). Spatial 
constraints may obscure meaningful biogeochemical patterns. Not en-
forcing spatial constraints, on the other hand, may reveal physically or 
biogeochemically similar water masses across distant regions or alter-
natively, highlight limitations in the feature set’s ability to distinguish 
regional differences. Future work may investigate this aspect in more 
detail, e.g. by a binarised spatially-constrained spectral clustering as 
suggested by Yuan et al. (2015).

In this study, min–max scaling was applied prior to embedding 
and clustering to ensure equal contributions of features with varying 
ranges. Since the distribution of data used in this work did contain 
skew, a robust scaler that is less affected by outliers may be preferable. 
Downstream evaluation using UMAP quality metrics (Qlocal, Qglobal, 
trustworthiness and continuity) revealed that min–max scaling con-
sistently outperformed robust scaling (RobustScaler, Python library 
scikit-learn, version 1.5) across multiple hyperparameter settings. This 
effect may be explained by UMAP relying by default on a distance 
metric to construct its neighbourhood graph (McInnes et al., 2018a) 
rendering the method sensitive to how features are scaled. When 
extreme values represent meaningful physical or biogeochemical con-
ditions rather than noise, scaling methods that preserve the full value 
range, such as min–max scaling, may therefore help maintain relevant 
relationships.

A focus of future research is the data preparation, especially with 
regard to the imputation. Also, density was set to a constant value 
of 1.025 kgm−3 for unit conversions as suggested previously (Korablev 
et al., 2021) when temperature or salinity values are unavailable. 
Feature importances computed by random forests were only used to get 
a first impression on the influence of parameters on cluster sets. For a 
thorough analysis, the models require further tuning and validation.
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4.2. The importance of UMAP embedding for clustering performance

A key result was that all clustering algorithms performed better 
when applied to the embedding despite the relatively low dimensional 
original data space, confirming previous findings (Allaoui et al., 2020; 
Herrmann et al., 2023; Sonnewald et al., 2020). Additionally, the 
embedded data shows a more balanced feature contribution across all 
parameters (Fig. S14), reflecting a potentially less biased clustering 
result. This may lead to clusters that are influenced by multiple factors 
rather than being driven by a single dominant feature. A possible reason 
for the performance gain using UMAP is that it enhances separability 
and thus the ability to cluster data (Herrmann et al., 2023). Moreover, 
working on a space with fewer dimensions accelerates computation and 
optimises memory consumption of the given down-stream clustering 
tasks, and supports external validation by visualisation in the 3D space, 
where the six original dimensions could not have been used. As noted 
above, relying on CVIs would have resulted in misleading clusters that 
did not fairly represent the data. Working on the embedding helps 
to overcome the ‘‘curse of dimensionality’’ (Ayesha et al., 2020) that 
encompasses all phenomena related to higher dimensional data result-
ing in challenges for learning algorithms. For example, the amount 
of necessary training data grows exponentially with the number of 
dimensions to prevent overfitting. Also, Euclidean distances, which are 
used in all three clustering algorithms, become less discriminative in 
higher dimensional spaces (Verleysen and François, 2005).

Similar to clustering, dimensionality reduction is an unsupervised 
task with hyperparameters that need to be tuned using internal and/or 
external validation. In this study, embedding quality was externally 
evaluated based on visual clusterability, i.e. how clearly distinct and 
compact the clusters appear in the 3D embedded space and by as-
sessing if the uncertainty of UMAP over multiple runs was within 
acceptable bounds. Alternatively, hyperparameters can be optimised 
using various internal metrics. Here, optimising for Qlocal resulted in 
a more dispersed embedding and notably impaired subsequent cluster 
sets. This suggests a potential trade-off between faithful Euclidean 
structure preservation and clear cluster formation. The discrepancy 
may also be explained by misaligned objectives: While the Q-metrics 
optimise distance-based rank preservation, UMAP optimises informa-
tion preservation using cross-entropy. Another approach to tune UMAP 
hyperparameters would be to use CVIs as proxies for clusterability 
(e.g. Jouilili et al. (2024) ). However, performing a joint grid search 
over UMAP and clustering parameters increases computational cost 
substantially and CVIs are not inherently reliable; they may not consis-
tently reflect meaningful structure or lead to improved embedding or 
clustering outcomes (see Section 4.3). The final embedding preserved 
global structure well, as indicated by a high Qglobal, and also achieved 
high trustworthiness and continuity, suggesting good preservation of 
local neighbourhood membership. A lower Qlocal, however, indicated 
that the fine-grained local neighbourhood rank ordering was more 
distorted. For the given clustering tasks, this level of distortion is 
acceptable, as precise ranks are typically less critical than maintaining 
broader neighbourhood consistency. This study used UMAP’s default 
Euclidean distance and comparative tests with cosine, Mahalanobis, 
Chebyshev and Manhattan distances based on Qlocal and Qglobal 
supported this choice. The superiour performance of Euclidean distance 
is likely due to its ability to preserve meaningful absolute differ-
ences across the scaled oceanographic features and its alignment with 
UMAP’s local neighbourhood assumptions. It should be noted, however, 
that the Q-metrics are based on Euclidean distances and may therefore 
introduce bias.

Due to the non-linear nature of the used environmental data, linear 
dimensionality reduction techniques were discarded such as Princi-
pal Component Analysis (PCA), Linear Discriminant Analysis (LDA), 
Singular Value Decomposition (SVD), Latent Semantic Analysis (LSA), 
Locality Preserving Projections (LPP), Independent Component Analy-
sis (ICA) and Project Pursuit (PP) (Nanga et al., 2021). Popular non-
linear methods include Kernel Principal Component Analysis (KPCA), 
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Multi-Dimensional Scaling (MDS), Isomap, Locally Linear Embedding 
(LLE), Self-Organizing Map (SOM), Latent Vector Quantization (LVQ), 
t-Stochastic Neighbour Embedding (t-SNE) and Uniform Manifold Ap-
proximation and Projection (UMAP) (Nanga et al., 2021). With the 
perspective to apply the method to a larger dataset in the future 
(e.g. by considering a larger geographic area or time as an addi-
tional dimension), slow dimensionality reduction methods that do not 
scale well were omitted (KPCA, ISOMAP, LVQ, t-SNE) (Nanga et al., 
2021). Further informing our choice,  SOMs are computationally de-
manding (Vesanto et al., 2000) and MDS and LLE are sensitive to 
noise (Nanga et al., 2021) that could be present in the input data. 
Therefore, UMAP was favoured because it is able to preserve non-linear 
structures and to scale well. As noted in Section 3.1 and detailed in 
Supplementary Material B.1, the cross-entropy method UMAP uses for 
optimisation was also seen as highly advantageous through its ability to 
strengthen associations between the data, which facilitated subsequent 
clustering.

4.3. Choice and interpretability of cluster validity indices (CVIs)

CVIs for comparing clustering methods showed limited agreement 
with external validation. Despite clearly being the best choice, DBSCAN 
received worst ranks according to the classical CVIs (CH, DB and SH) 
and CVNNH, except for SH, which assigned DBSCAN on original data 
highest rank despite it being the visually poorest subdivision. These 
scores clearly favoured k-Means and Ward on the original data, reflect-
ing their bias towards globular, convex clusters (details on convexity 
in Supplementary Material B.3). Conversely, CDR preferred DBSCAN 
for clustering original and embedded data, likely due to its different 
notion of high clustering quality, defined by small local density vari-
ations better captured by DBSCAN. Since each score has its own bias, 
i.e. imposes different assumptions on data and clusters, they are not 
useful for performance comparison across clustering algorithms. Thrun 
(2021) support this by arguing that instead of selecting a clustering 
algorithm based on a CVI, the same result would be achieved by directly 
optimising for that CVI (Thrun, 2021). Nonetheless, the CVIs are useful 
for tuning hyperparameters since their bias is constant throughout the 
experiments.

Evaluating the impact of embedding with CVIs requires caution, as 
results did not always align with external validation. Most CVIs, includ-
ing SH, CH applied to k-Means, DB applied to DBSCAN, CVNNH and 
CDR for all clustering methods, scored worse on the embedding than 
on original data, which conflicted with the previous visual finding that 
the clusterings benefited from the preceding dimensionality reduction. 
A potential explanation may be the scale sensitivity of the CVIs (except 
SH and k-DBCV): UMAP inflated the maximum pairwise distanced 
from about 1.75 to around 25 (Fig. S4) increasing absolute distances. 
This could be further evaluated in future work by scaling embedded 
dimensions before score computation. K-DBCV, a scale-independent 
score, could not be computed for clustering original data suggesting 
that the original feature space lacked a clear density-based structure. 
After UMAP, k-DBCV scores slightly increased but remained negative 
indicating weak density separability. Visual inspection supported this, 
revealing few distinct, arbitrary-shaped clusters embedded in a more 
continuous structure with irregular boundaries. This aligns with SH 
deteriorating post-embedding since it is incompatible with non-convex 
geometry.

These results highlight the need for careful CVI selection and in-
terpretation. The choice of CVIs depends on the context and structure 
of the data and the nature of clusters, as each index offers a unique 
perspective on the clustering. For example, despite assuming convex-
ity, CH did reflect DBSCAN cluster quality to some extent, indicating 
some flexibility of the scores. Generally, Arbelaitz et al. (2013) found 
that presence of overlapping clusters or noise significantly impaired 
performance of the 30 CVIs they investigated. Another impact factor 
is cluster shape: Some CVIs are more suitable for globular clusters, 
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while others are better equipped to handle arbitrarily shaped clusters, 
like DBCV or CDR (Schlake and Beecks, 2024). Other scores could be 
tested to tune hyperparameters of the clustering methods, like the Dunn 
index (Dunn, 1973), WB index (a weighted ratio of sum-of-squares 
within and sum-of-squares between clusters, Zhao and Fränti (2014)), 
I index (Maulik and Bandyopadhyay, 2002), Cluster Validity index 
based on Density-involved Distance (CVDD, Hu and Zhong (2019)) or 
Distance-based Separability Index (DSI, Guan and Loew (2020)). Each 
has its own mathematical assumptions about the data (Thrun, 2021). 
CVDD e.g. claims that it can deal with both spherical and non-spherical 
clusters. To assess ecological similarity, indices such as the Jaccard 
and Bray-Curtis indices have been utilised (e.g. Carteron et al. (2012), 
Sonnewald et al. (2020)).

4.4. Uncertainty quantification

The uncertainty and reproducibility of the best-performing cluster-
ing method (UMAP-DBSCAN) was evaluated using overlap (between all 
UMAP-DBSCAN runs) and RMSE as a measure. DBSCAN is sensitive to 
the sequence of input samples (Tran et al., 2013), which was here deter-
mined to be negligible (overlap: 99.99±0.003%). UMAP uses randomness 
as it implements stochastic gradient descent for an efficient optimisa-
tion (McInnes et al., 2018a). With an average RMSE between the data 
points of the 100 embeddings of 0.22, or 1.3% of the value range, the 
procedure was assessed reproducible on the given data. Consistency 
across multiple runs is supported by low standard deviations of the four 
computed dimensionality reduction scores. The combination of UMAP 
followed by DBSCAN had a mean overlap of 88.81±1.8%, corresponding 
to about 11% uncertainty. Besides this high point-level compliance, the 
cluster sets also exhibited strong consistency in information content, 
as reflected by the high NMI (0.91 ± 0.01). The ARI (0.78 ± 0.05) 
indicates some variability, confirmed by the grid cell-wise uncertainty 
(15.49 ± 20%), which is likely caused by the sensitivity of the pipeline 
to UMAP. In summary, both, UMAP and DBSCAN, yielded robust and 
reproducible results, both individually and in combination, with only 
minor variations in the latter.

Uncertainty can be a factor for deciding on a clustering method 
since a reproducible clustering is often desired. Variance of k-Means 
and agglomerative Ward was not further investigated, though both 
methods can differ over multiple runs (Harris and De Amorim, 2022; 
Gordon, 1987).

4.5. Relevance for ecological interpretations

The biogeochemical clustering approach in our study has strong 
connections to previous approaches. In comparison to the ecological 
and biogeochemical regionalisations by Longhurst (2007) and Sayre 
et al. (2017), the clustering of this study resulted in similar but more 
detailed clusters with some variation in the spatial extents (Figs.  14, 
S15, S16) with stronger similarities to EMUs (Table  2). While mod-
erate NMI values for both subdivisions indicate shared information 
content and a degree of structural correspondence, relatively low ARI 
values suggest larger differences in exact partitioning. It is obvious 
that the physical and biogeochemical conditions are closely connected 
to the characteristics of marine biomes, such as primary production 
(e.g. Taylor et al. (2011)), microbial diversity (e.g. Friedline et al. 
(2012)) or cycling of organic matter (e.g. Koch and Kattner (2012), 
Schmitt-Kopplin et al. (2012), Hertkorn et al. (2013)). For example, 
the Labrador Sea showed strong similarities across the three clustering 
sets, though (Longhurst, 2007) suggested a coarser subdivision. Sim-
ilarly, Longhurst (2007) and Sayre et al. (2017) identified only one 
or few regions in the Mediterranean Sea, whereas this study resulted 
in a total of 27 clusters. This higher number of regions may arise 
from the presented method being data-driven in contrast to Longhurst’s 
knowledge-guided approach, more sensitive to local structure and not 
imposing constraints on cluster number, shape, or size. Moreover, the 
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Fig. 14. Surface water masses as defined in this study (UMAP-DBSCAN, left), by Longhurst (2007) (middle) and Sayre et al. (2017) (right). While similarities e.g. in the Labrador 
Sea stand out, there were also differences, such as (Longhurst, 2007)’s subdivision of the central North Atlantic.
COMFORT dataset includes the data used in Sayre et al. (2017) and 
incorporates additional measurements. Previous studies are based on a 
priori decisions on the total number of clusters — based on the data 
or the parameters applied for the clustering method. For example, 
k-Means (as used by Sayre et al. (2017)) uses a predefined number 
of clusters and optimises for the entire dataset. This can result in 
smoothing over local variations, with consequences for the ecological 
interpretations of the regions. DBSCAN in our study does not enforce a 
specific number of clusters but prescribes the connectivity conditions, 
i.e., how far apart data points in feature space may be to form a cluster, 
which promotes fine-grained subdivisions. In global ecological studies, 
the Mediterranean is often described as one region (e.g. Longhurst 
(2007), Costello et al. (2017)) though works like (Sayre et al., 2017; 
Zhao et al., 2020a) and this study suggest a higher diversity especially 
at the surface in comparison, for example, to the North Atlantic. This is 
likely caused by complex upper ocean currents (Tomczak and Godfrey, 
2003) and small-scale patterns of seasonal primary production (as 
represented in https://www.grida.no/resources/5937). A short analysis 
of the proportion of endemic species per region using OBIS data (Ocean 
Biodiversity Information System (OBIS) (2025), data not shown) re-
vealed 12% of occurring species in the largest and in the second largest 
Mediterranean clusters (labels 6, 35) to be endemic suggesting the 
ecological uniqueness of the main biogeochemical water masses in the 
Mediterranean Sea.

An example for varying region extent in different clustering ap-
proaches is the western deep North Atlantic (cluster 11). In this study 
using DBSCAN and UMAP, the region extended further south along the 
American coast compared to the Ecological Marine Units by Sayre et al. 
(2017). By using k-Means, we were able to reproduce the spatial extend 
in the previous work. The visualisation in embedding space revealed 
that k-Means struggled to adequately separate this area. This might be 
attributable to the complexity of the data, visible in embedding space 
as an irregularly connected, curved structure, not resembling normal 
distributions for which k-Means is optimised. Despite the intrinsic bias 
of k-Means, the clustering by Sayre et al. (2017) and the DBSCAN clus-
tering presented here exhibited many similarities (e.g. surface regions, 
Fig.  14). A possible reason is that Sayre et al. (2017) use a higher 
depth resolution: In total, 102 depth intervals were defined and the 
very variable first 100m of the ocean column are subdivided into 5m
steps. This higher resolution might enable a better separation of data 
points in feature space and thus a more precise clustering.

Generally, the presented cluster set picked up well-known oceano-
graphic features, like the outflow of warm, saline Mediterranean water 
through the Strait of Gibraltar (Pinardi et al., 2023) that is traceable at 
the 2,000m level across the North Atlantic Ocean (Tomczak and God-
frey, 2003). Due to the time-averaging of data, small-scale and dynamic 
oceanographic features such as eddies were not sufficiently represented 
in this cluster set. Another well-represented feature is the subdivision 
of deep Atlantic waters along the north-west axis. Compared to the 
east, the western waters were characterised by lower silicate, nitrate 
and phosphate and higher oxygen concentration (Fig.  12). This is in 
good agreement with the fact that the western part of the deep North 
Atlantic is more influenced by relatively young North Atlantic deep 
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water, while there is more influence of Southern Ocean deep waters in 
the east (Johnson, 2008). This emphasises that while temperature and 
salinity remain key parameters in defining water masses, the inclusion 
of additional parameters such as oxygen and nutrients is crucial for 
a comprehensive and detailed analysis of water mass properties and 
dynamics in the ocean.

The clustering results for the case study in the Labrador Sea and 
Davis Strait, an area of deep-water formation, were generally in very 
good agreement with pertinent oceanographic literature. Those clusters 
that represented freshly formed deep water (particularly labels 3 and 
24) were characterised by high salinity, low temperature and slightly 
depleted oxygen values, as shown previously e.g. by Tomczak and 
Godfrey (2003). The clustering did not always yield spatially coherent 
clusters, for example a cluster in the deep Atlantic near the equator 
(label 7). Despite fairly different temperatures, the same cluster label 
was also assigned to water in the Labrador Sea, because of a high 
similarity in the inorganic nutrient concentrations. A possible reason 
is the exclusion of geographic coordinates (or proximity to coasts, such 
as in Longhurst (2007)) from the clustering process or that additional 
parameter(s) are required for the distinction.

5. Conclusion and outlook

By comparing pre-processings, clustering methods and various val-
idation techniques, this study found a clustering that adequately re-
flected the embedded data structure of North Atlantic physical and 
biogeochemical properties. Such a methodological approach to cluster-
ing is of high importance for quality and hence potential downstream 
tasks. Thrun (2021) formulated this precisely referring to their medical 
use case:

‘‘[...] only the combination of empirical medical knowledge and 
an unbiased, structure-based choice of the optimal cluster analysis 
method w.r.t. the data will result in precise and reproducible clus-
tering with the potential for knowledge discovery of high clinical 
value’’.

[— (Thrun, 2021)]

DBSCAN applied to a dimensionality-reduced space using UMAP 
best reflected the data structure, outperforming k-Means and agglomer-
ative Ward. When validating the results, it was imperative to not rely 
on single criteria, e.g. to compute multiple CVIs for hyperparameter 
tuning. The presented results moreover discourage using CVIs for the 
comparison between clustering methods.

For reproducibility purposes, analysis of uncertainty is an important 
aspect to consider when non-deterministic algorithms are applied. The 
variability of the presented method was quantified using ensemble 
analysis revealing low variabilities of the individual methods (UMAP, 
DBSCAN) and slight deviations in the clustering when combined (over-
lap of 88.81 ± 1.8%). By combining the clustering results over the 
ensemble following the NEMI framework, reproducibility and repre-
sentativeness of the statistical co-variance space was further increased 
(uncertainty of 15.49 ± 20%).

https://www.grida.no/resources/5937
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There were several aspects that could be further explored related to 
data, pre-processing, method and post-processing. Regarding the data, 
further parameters like dissolved (in-)organic carbon or biogeochemical 
tracers such as Apparent Oxygen Utilisation (AOU) could be added. 
Future work aims to scale the clustering up to global coverage and 
add the temporal component to increase oceanographic utility. For this, 
data sparsity could be a limiting factor machine learning is especially 
suited to overcome. Also, other clustering methods that are able to 
deal with varying densities, such as HDBSCAN, are worth exploring. 
Further, self-organising maps (Kohonen, 1990) could increase inter-
pretability of results by providing meaningful maps of the classes while 
preserving data topology (Yonggang and Weisenberg, 2011). To further 
improve performance, other hyperparameters can be explored. Distance 
metrics other than Euclidean could be investigated for Ward and DB-
SCAN clustering to ensure the optimal strategy for the given data. 
Oceanographically, the cluster set can be compared more extensively 
to existing definitions to potentially extract new knowledge.
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Appendix A. Supplementary data

Supplementary material related to this article can be found online 
at https://doi.org/10.1016/j.ecoinf.2025.103390.
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Data availability

The cluster set and auxiliary information is publicly available on 
Zenodo (Oceanregionsdataset) along with the code base used to con-
duct and analyse the presented experiments (Code) and the dashboard 
to explore the final cluster set (Dashboard, Dashboardcode). Column 
descriptions can be found in Supplementary Material D. The COMFORT 
dataset is publicly available online (Korablev and Olsen, 2022).
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