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ABSTRACT: Marine dissolved organic matter (DOM) is an extremely
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complex mixture of organic compounds that plays a crucial role in the global | e Prediction
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carbop cycle. In tbe Arctic, c_llma_te chang.e acc_elerates the release of terrestrial ‘ EEEE EEEE
organic carbon. Since chemical information is the only way to track DOM Mass Normalization T

spectrometry data

sources and fate, it is essential to improve analytical and data science Filter
approaches to assess the DOM composition. Here, we compare random forest Predictor dariable:
(RF), support vector machines, and generalized linear models (GLM) to Terrestrial organic matter |  Machine | [ [ |

. . . learning [ [ [ [ N T[T
predict a fluorescence-derived proxy for terrestrial DOM based on molecular EEEE EEEE
formula data from liquid chromatography coupled with Fourier transform mass h L
spectrometry (LC-FTMS). We systematically evaluate different data —bh
preprocessing, normalization, and ML techniques to optimize prediction
accuracy and computational efficiency. Our results show that a generalized linear model (GLM) with sum normalization provides
the most accurate and efficient predictions, achieving a normalized root-mean-square error (NRMSE) of S5.7%—close to the
precision of the fluorescence measurement. The prediction based on RF regression was slightly less accurate and required
significantly more computation time compared to GLM, but it was most robust against data preprocessing and independent of linear
correlations. Feature selection significantly improved the performance of all models, with robust predictions obtained using only ca.
2000 of the ca. 70,000 molecular features per sample. Additionally, we assessed the impact of chromatographic retention time on
prediction accuracy and explored the key molecular features contributing to terrestrial DOM signatures using Shapley values and
permutation importance (for RFs). Our study is a blueprint for the application of ML to enhance the analysis of high-resolution mass
spectrometry data, offering a scalable approach for predicting information important for the understanding of marine DOM
chemistry.

1. INTRODUCTION

The large reservoir of marine dissolved organic matter (DOM)
is an extremely complex mixture of organic compounds.”” In
the dissolved phase, chemical information on individual

erosion of the Arctic coastline is another, more direct source of
terrestrial DOM.® It is therefore likely that the composition of
DOM in the Arctic Ocean will change with yet unknown
consequences for the carbon cycle. To track these changes, it is

constituents allows reconstruction of DOM sources, trans-
formations, and their role in the global carbon cycle. The
immense chemical complexity that is explored with high-end
analytical tools requires new data science approaches to extract
relevant chemical information.

DOM results from a plethora of different organic matter
sources and biological and chemical alteration processes. It can
be categorized into terrestrial (decomposed biomass mainly
exported by rivers) and marine origins (mainly marine
microalgae). In the context of climate change, understanding
and monitoring DOM fluxes in the oceans is crucial for an
accurate assessment of the global carbon cycle.” Particularly,
the Arctic region is experiencing a larger-than-average increase
in temperatures,4 resulting in the massive release of terrestrial
organic carbon stored in permafrost’ that is exported through
the Siberian rivers into the Arctic Ocean. The accelerating
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crucial to improve data science approaches to evaluate the
enormous amount of data generated by state-of-the-art
analytical techniques™® such as fluorescence spectroscopy
and mass spectrometry.

Between 20% and 70% of the DOM can absorb visible and
ultraviolet light” and is called chromophoric dissolved organic
matter (CDOM). Some of this CDOM emits light as
fluorescence (FDOM) when excited with light. Recording a

Received: March 28, 2025
Revised:  June 17, 2025
Accepted: June 23, 2025
Published: July 3, 2025

https://doi.org/10.1021/acsomega.5c02849
ACS Omega 2025, 10, 29497—-29509


https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Marlo+Bareth"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Boris+P+Koch"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Gabriel+Zachmann"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Xianyu+Kong"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Oliver+J.+Lechtenfeld"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Sebastian+Maneth"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Sebastian+Maneth"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acsomega.5c02849&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.5c02849?ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.5c02849?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.5c02849?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.5c02849?goto=supporting-info&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.5c02849?fig=abs1&ref=pdf
https://pubs.acs.org/toc/acsodf/10/27?ref=pdf
https://pubs.acs.org/toc/acsodf/10/27?ref=pdf
https://pubs.acs.org/toc/acsodf/10/27?ref=pdf
https://pubs.acs.org/toc/acsodf/10/27?ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acsomega.5c02849?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://http://pubs.acs.org/journal/acsodf?ref=pdf
https://http://pubs.acs.org/journal/acsodf?ref=pdf
https://acsopenscience.org/researchers/open-access/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://acsopenscience.org/researchers/open-access/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

ACS Omega

http://pubs.acs.org/journal/acsodf

LC-FTMS measurements

WAL

e

EEMs PARAFAC component

N

a

o
L

Emission (nm)
B

270 300 330 360 390 420 450
Excitation (nm)

[%2]
@
Q.
MGSS/Ch S %10-
U9e l £ Molecular formula time points (MFTs) ..g
- A N o 5
c
Sample  CyH,,0;  CigHpON,  CyoHy04 3
Sample Start Mol. Intensity 12.3min  12.3min 13.3min o 0
time formula s1 1229607 229432 2092322 0-?2t ) ]98275 0.06
ntensity o
S1 123 CoHy,04 1229607 s2 81633 0 73638
s1 123 C,H,O,N, 229432 s3 363444 192863 0
s1 133 CyH,,04 2092322 Molecular formulas (MFs) Sample  C475
N component
s2 12.3  CyH,,0,4 81633 e N )
Sample C,,H,,0 C,H,:0,N Joins X' s1 0.0152
S2 133 CyoHy,0;4 73638 P 10 1273 18258 2
s1 1229607 + 229432 S2 0.0253
S3 12.3  CyH,04 363444 2092322 s3 0.0479
! 123 C,H,.O,N, 192863 S2 81633 + 0
73638
S3 13.3  CygHys0.N, 466036 s3 363444 192863 +
466036

Figure 1. Overview of data preprocessing: LC-FTMS data as mass spectra (top left) and as a table of assigned molecular formulas (bottom left);
tables of molecular formula data including the retention time (MFRTs, “time-aware”; top center) and molecular formulas (MFs) for which the
intensity of all retention times were summed (”time agnostic data”; bottom center); the PARAFAC component C475 (right side) was derived from
EEM fluorescence analysis (top right) and represents terrestrial dissolved organic matter. Adapted in part (top right EEM) with permission from

Kong, 2022.>° Copyright 2022 Xianyu Kong (CC BY 4.0).

range of intensities of the emission wavelengths for different
excitation wavelengths is called excitation—emission matrices
(EEMs).'® A common approach for evaluating EEMs is parallel
factor analysis (PARAFAC),'""> which reduces the multi-
dimensional data into several linear components that can be
used for the assessment of DOM sources (e.g, terrestrial
input) and biological activity."”

Fourier transform ion cyclotron resonance or Orbitrap mass
spectrometry (FTMS) can also be used to acquire chemical
information about DOM. In FTMS, the DOM components are
ionized, and their exact molecular weight and intensity are
measured, from which a molecular formula can be calculated.
In direct infusion FTMS, a DOM extract is directly ionized,
and a single mass spectrum is generated. By coupling reversed-
phase liquid chromatography and FTMS (LC-FTMS), the
DOM is further separated according to its chemical polarity, so
that several mass spectra are recorded along the chromato-
graphic retention time. LC-FTMS has recently been applied to
measure the unprocessed filtered seawater.” The main

advantage of the new approach is that it avoids bias caused
by solid-phase extraction."*™'® The resulting LC-FTMS raw
data are large (ca. 25GB per sample), and its efficient
evaluation requires modern data analysis methods that are able
to detect nonlinear relationships for making predictions using
these data.

Several recent studies applied machine learning (ML) for
DOM data evaluation, for example, the classification of DOM
bioavailability and reactivity based on molecular formula
data.'”'® Regression tasks have been approached with ML
algorithms, such as random forest (RF), gradient boosting,
linear regression, and support vector machine, for predicting
stable carbon isotope ratios.'® LC-FTMS data were used to
predict Spearman’s rank correlation coeflicients of environ-
mental factors (e.g, land use, sodium, or magnesium
concentration) and Shapley Additive Explanation (SHAP)
values were calculated to find trends of molecular descrip-
tors.'”” RF regression was also applied to predict how well
molecular formulas correlate with chlorophyll concentration

https://doi.org/10.1021/acsomega.5c02849
ACS Omega 2025, 10, 29497—-29509


https://pubs.acs.org/doi/10.1021/acsomega.5c02849?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.5c02849?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.5c02849?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.5c02849?fig=fig1&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.5c02849?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

ACS Omega

http://pubs.acs.org/journal/acsodf

and solar radiation.”” The resistance of DOM against UV
irradiation was evaluated using multilabel ML regression
methods.”" Riverine DOM was studied using RFs and SHAP
values for key feature analysis and combined model features
into chemical groups.”

Previous ML-based evaluation of FDOM was typically based
on PARAFAC components as features, which were used to
predict the origins of pollutants®>** and reduction in oxidant
exposure.25 Since it is now possible to measure original
seawater for its DOM composition using LC-FTMS ,/ we can
predict for the first time PARAFAC components based on
nonextracted marine DOM data.

In our study, we aimed to lay the groundwork for analyzing
FTMS and LC-FTMS data sets with ML methods by exploring
the feasibility and challenges of using molecular formulas
directly as features. For this, we used mass spectrometric and
fluorescence data that were acquired from samples taken
during a unique full-year ship-based campaign in the central
Arctic Ocean (MOSAIC; Multidisciplinary drifting Observ-
atory for the Study of Arctic Climate expedition).”® We
validated different ML methods for their ability to efliciently
predict an exemplary environmental parameter (contribution
of terrestrial DOM in the Central Arctic) based on molecular
formula data acquired by mass spectrometry. In this case study,
we tested multiple methods for data preparation, reduction,
and normalization: (i) sum and (ii) ubiquitous sum normal-
ization, (iil) normalization by the dissolved organic carbon
(DOC) concentration of a sample, and (iv) log ratio
transformation. All of these combinations were optimized
using hyperparameter tuning via a grid search. Finally, we
explored chemical characteristics of the PARAFAC predictor
variable.”” We regard our methodological study as a basis for
similar applications of ML for LC-FTMS data in the future.
Our main research questions for our case study are

(1) How well can ML algorithms predict a fluorescence
proxy for terrestrial DOM based on LC-FTMS measure-
ments?

(2) Which preprocessing, normalization, and ML method
yield the best, most efficient, and most robust
predictions?

(3) Does the consideration of the chromatographic
retention time in LC-FTMS improve the prediction?

(4) Which features are most important for good predictions?

The best-performing model in our study was a generalized
linear model (GLM) with a root-mean-square error that was
only 5.7% of the original scale of the terrestrial component.
This model also had the fastest running times for training and
tuning. RF regression models were least prone to changes in
preprocessing and normalization and also covered nonlinear
relationships. Fewer features generally led to improved
performance in all machine learning approaches, and precise
predictions were achieved using only 2000 features instead of
the entirety of ca. 70,000 features (molecular formula and
retention time combination) per sample of the LC-FTMS data.

2. METHODS

2.1. Origin of the Water Samples. 95 water samples were
collected during the “Multidisciplinary Drifting Observatory
for the Study of Arctic Climate” (MOSAIC) expedition by the
research vessel Polarstern, a drift study from October 2019 to
July 2020.%° The vessel passively drifted with the ice floes from
the Amundsen Basin via the western Nansen Basin and Yermak

Plateau to the Fram Strait. A second drift period continued
from the end position of the first drift, while the third drift
started again from the Amundsen bay.”® During the three
drifts, the water column below the vessel was sampled from the
surface to the bottom water.

2.2. LC-FTMS Measurements of DOM in Water
Samples. Liquid chromatography (LC) was applied before
detection with Fourier transform ion cyclotron resonance mass
spectrometry (FTMS). The LC (UltiMate 3000RS, Thermo
Fischer Scientific, Waltham, USA) was carried out using a
reversed-phase column (ACQUITY HSS T3, 1.8 um, 100 A,
150 X 3 mm, Waters, Milford, USA) and a water—methanol
gradient’ so that the chromatographic retention time
represented a decreasing polarity of DOM molecules (see
Figure 1 top left, going front to back). In FTMS (solariX XR,
Bruker Daltonics, Billerica, USA), the molecules were ionized
by electrospray ionization (Apollo II, Bruker Daltonics,
Billerica, USA, capillary voltage: 4.3 kV) and a unitless
intensity for each ion as molecular mass (in Dalton) per
charge (m/z) was recorded in a range from m/z 150—1000.
To improve the signal-to-noise ratio, the mass spectra were
summed in 1 min retention time segments. For our study, we
used mass spectra from ten segments for each sample with start
times between 12.3 and 22.3 min by using a custom script in
DataAnalysis (Version 6, Bruker). Molecular formulas were
assigned using the R tool UltraMassExplorer” as described in
Kong et al. (submitted).”'

2.3. Fluorescence Data. Three-dimensional excitation—
emission matrix spectra (EEMs) were acquired and analyzed
(for details cf. Kong et al, 2024°") using a parallel factor
analysis (PARAFAC),'”***" which is a generalized principal
component analysis (PCA).*” The PARAFAC component that
had its maximum emission at 475 nm was named C47S and
was shown to have terrestrial characteristics.”®”” It is used as a
terrestrial proxy and hence as the predicted variable in our
work.

2.4. Data Set. The data table for our study consisted of ca.
1.48 million rows, in which the first four columns were the
longitude, latitude, depth, and date time. Other columns
specified the start time of the retention time segment (each 1
min) from the liquid chromatography, the measured (neutral)
mass in Daltons (Da), the corresponding molecular formula of
the mass,”* the measured mass peak intensity, the intensity of
the PARAFAC component (ranging from 0.00927 to 0.0624;
Figure 1), and the dissolved organic carbon (DOC)
concentration in gmol carbon per kilogram water (umol/kg;
used for DOC normalization).

2.5. Wide Table Format. To apply our machine learning
methods, the data table described previously was transformed
into a wider format, where each sample was represented by
exactly one row, resulting in a table of 95 rows. We distinguish
two different wide tables obtained from the original table in
two different ways:

(1) the time-agnostic table
(2) the time-aware table.

The time-agnostic table had one column for each different
molecular formula of the long table. If a molecular formula
appeared in a given sample, then the entry for this molecular
formula was the mean of all intensities for that sample and
formula. If the molecular formula is not present in this sample,
then the entry is set to zero. The time aware table has one
column for each combination of molecular formula (MF) and

https://doi.org/10.1021/acsomega.5c02849
ACS Omega 2025, 10, 29497—-29509


http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.5c02849?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

ACS Omega

http://pubs.acs.org/journal/acsodf

segment retention time (MFRT). The entry is the correspond-
ing intensity if it existed or zero otherwise (Figure 1).

2.6. Feature Elimination. Many molecular formulas were
only present in a few samples (or retention time segments). If
the molecular formula feature was not present, it was assigned
an intensity of zero in the two wide tables. These entries
accounted for an average of 79.3% of the data, and to check the
influence of the zero value contribution, two approaches of
feature elimination were applied: (i) elimination of each
feature that contained at least one zero value (remaining
features were called ubiquitous) and (ii) elimination of each
feature that contained more than 90% zero values (remaining
features were called no low variance).

2.7. Normalization. Different ranges of values, e.g, in
DOC concentration or numbers of MFs, can lead to problems
in our comparisons of samples. Data normalization can help
overcome such problems. We tested three different normal-
ization methods as well as one transformation:

(1) We expect higher intensities when more DOM is present
in the sample, as original seawater was measured without
equalizing concentrations. For DOC normalization
(DOC-N), each mass peak intensity was divided by
the DOC concentration of the sample.

(2) Sum normalization (SUM) tries to balance out higher
intensities in some samples. Instead of relying on other
measurements (e.g., DOC concentration), we divide
each intensity by the sum of all intensities of a spectrum.

(3) Ubiquitous sum normalization (UBISUM) divides each
intensity by the summed intensities of those molecular
formulas that occur in all samples. This gives a common
ground between samples and avoids including possible
sample contaminations.

(4) Log ratio transformation (ALR) was calculated by taking
the logarithm of the ratio between each intensity and the
ubiquitous feature with the lowest variance in intensity
over all samples. To avoid taking the logarithm of zero
assigned intensities, one-third of the lowest intensity is
used as a zero replacement.

The normalizations were applied to the two wide table
formats, which were filtered by combinations of feature
elimination. The two wide table formats yielded 32 different
preprocessing combinations for four feature elimination
combinations (none, ubiquitous filtering, low variances
excluding filtering, or both) and four normalizations. The
C475 component was normalized using the Z-score, setting the
mean as zero and converting the scaling above or below in
units of standard deviations. As the Z score takes the difference
to the mean C47S value, positive values can be considered to
indicate terrestrial influence, while negative normalized C475
values indicate a marine origin, assuming that only marine and
terrestrial DOM sources predominate in the Arctic Ocean.

2.8. Machine Learning Methods. To train the machine
learning models, we took a data set and trained the model to
make predictions on the used data. We split the data set into
two sets: training (80%) and testing (20%). The former was
used to train the model and the latter was used to evaluate the
models’ performance on unseen data. In our study, we applied
three machine learning methods: (i) generalized linear model
(GLM) as a linear approach,® (ii) random forest regression
(RF),*® and (iii) support vector regression (SVR)’ as
nonlinear approaches.

GLMs extend linear regression, which gives a prediction by
building the sum of the products of a weight (beta values) and
the model feature (e.g., the intensity of a molecular formula).
One extension is a random component, which is a class of
probability distributions that the response is assumed to follow.
The other extension is the link function; it describes the
relationship between the linear predictor and the prediction
mean. We use a modified version of GLMs, which includes a
regularization that tries to prevent overfitting by limiting the
magnitude of the weights of the linear terms of the GLM. This
“elastic net regularization” has two parameters: lambda, the
overall strength of the regularization, and alpha, which controls
the norm that is used for the regularization by taking a value
between zero and one. When alpha is one, it only applies the
L1 norm (Manhattan distance) and is known as lasso
regression. When comparing two highly correlated features,
one weight is reduced to zero. When alpha is zero, the
complete regularization is based on the ridge regression, which
uses the L2 norm (Euclidean distance) and reduces the
predictors but keeps all features.

The GLM method was tested due to its linear approach.
Linear regression was previously used in DOM analysis but
was outperformed by the nonlinear approaches.”’ Yet, we
included the model, as its simplicity has two useful benefits.
The GLMs can be trained quickly and provide simple access to
the feature importance metric. To avoid overfitting and
improve the performance, we regularized the features with
the elastic net.

RF regression models consist of multiple decision trees that
form an average of different predictions. For the construction
of each tree, only a subset of the data is available to create
independent trees. This means not all features and samples are
available. The decision tree consists of nodes, where the data
are split into two subsets and directed into nodes further down
in the tree. The splitting is done by trying numerous split
candidates, which is called mtry, where the data is split
according to one feature and a threshold. How well a split is
considered at dividing the data into subsets is determined by a
split rule. The end of the repeated splitting is reached when a
minimum number of samples remain in any child node, which
is referred to as the min node size. Such leaf nodes are assigned
the average of the remaining sample values. RFs were chosen
in this study because they can show nonlinear relationships and
are resistant to overfitting.”** RFs were previously used in
DOM analysis using mass spectrometry' ~>**' and remote
sensing data.’”

SVR models try to find the best fit for the data within a
margin of tolerance. This can be visualized in three dimensions
as a tube or a long cylinder that is fitted to minimize the error
of points outside the tube. The errors inside the tube are not
considered. How strictly the error is penalized is defined by the
cost parameter. Sigma determines how influential single
samples are on the model. To make the model more suitable
for different data sets, a kernel can be applied. They map the
input into a high-dimensional feature space. This allows the
SVM to handle nonlinear data. The kernel functions can be
based on different functions like polynomial or radial basis
functions. SVMs were chosen in our study as a second
nonlinear ML method that was previously applied to
DOM'®*" and mass spectrometry data.*”*" With GLMs
already covering linear relationships, we chose the polynomial
(SVMPOLY) and radial basis function kernels (SVMRBEF) in
our test.

https://doi.org/10.1021/acsomega.5c02849
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2.9. Evaluation Metrics. The model performance was
measured using the root-mean-square error (RMSE) between
the true PARAFAC component intensity and the predicted
PARAFAC component intensity across all samples of the test
set. With the predicted variable being a unitless PARAFAC
component, we decided to convert the RMSE for easier
understanding. The normalized RMSE (NRMSE) was
calculated by normalizing RMSE by the original scale of
C475 values in the data set (see Figure 1, box plot on the
right). This means the NRMSE is the RMSE divided by the
difference between the maximum and minimum of C475
values. During the training of models on the training set with
different hyperparameter combinations (e.g., RFs with varying
mtry values), RMSE was used to compare the models. We
utilized NRMSE for reporting the results of the model that was
best performing during training, based on which the samples
from the test set were predicted. To check whether an RMSE
was an outlier, we utilized the standard error of the mean,
which is the standard deviation divided by the square root of
the number of repeated model trainings. For the significance
tests of experiment comparisons, we use the two-sided rank
test with a continuity correction. A p-value of less than 0.0S is
considered significant.

After tuning the models, we aimed to find the features that
affected the model predictions the most, which we consider to
be important. To evaluate these key features in RF models, the
SHAP values and permutation importance determined the
feature importance. For GLMs, beta values were used, as they
weigh the feature in a direction and thus can be considered on
a scale of importance. This works only when the intercept of
the linear model is zero. This way, a positive weight indicates a
terrestrial feature. Sets of these features were compared based
on the Jaccard similarity, which measures the similarity
between two sets and has a range from zero, for sets without
overlaps, to one, for equal sets.

Recursive feature elimination (RFE) is performed to check
the model performances with different numbers of features. It
is done by constructing a random forest, assessing the
importance of the features, and removing the least important
features from the data set. Then, a new random forest was
built, and the next iteration of RFs was calculated until no
features were left. For this, the permutation importance of the
out-of-bag error was used. This means that the samples that
were not included for the building of the trees were used to
evaluate the features by shufiling the feature values between
these samples and comparing the corresponding predictions.
We used a step size of 10% of the currently remaining features
to be removed, giving us a good resolution at small feature
numbers but not requiring many models for high feature
counts. To make the results more reliable, a cross-validation
with 10-fold was performed in each step. Each fold was used
once as an evaluation set to avoid over- or underscoring
features for a single data split and the model only being able to
predict the training data.

2.9.1. SHAP Values. The permutation importance provides
insight into how important a feature is to find a good
prediction. It does not grant insight into the direction in which
a high, or low, value of a feature shifted the prediction. For this,
SHAP (Shapley additive explanation) values can be used. The
original Shapley values are based on game theory and how
different players of a team contributed to a profit. The
contribution is calculated by building coalitions of different
players and player numbers and then predicting their profit,

and then each participants’ contribution can be calculated.
This is done for the features of ML predictions as well by using
SHAP values. They do simulate numerous possible feature
coalitions instead of calculating all coalitions, as the number of
coalitions is exponentially increased by the number of features.
Adding the SHAP values together results in a difference from
the mean predicted value. The drawback of SHAP values is
that they are calculated for each sample and therefore are
different for a feature when comparing different samples.*”

2.10. Experimental Setup. The programming language R
(version: 4.3.1)" was used for implementation, as it allows
seamless interaction with the UltraMassExplorer package.” The
models were constructed by using the caret package. Our
experiments started with splitting the data tables into the
commonly used 80% training set and 20% test set by using the
createDataPartition method from the caret, which is designed
to build similar sets based on the C475 intensity. This avoided
bias in the distribution of C475 intensities in each set, but due
to computational limitations, a nested cross-validation where
the test/training split would have been segmented as well was
not feasible. The complete model training was only performed
on the training set, and we used a grid search with 10-fold
cross-validation and ten repeats. The grid search builds models
with different combinations of hyperparameters that influence
the models. After initial tests, we selected some hyper-
parameters to have fewer values in the tuning grid to reduce
the computation time of the training process. The 10-fold
cross-validation split the training set into ten parts, called folds.
Nine of the folds were used to train the model, and the other
part was used to validate the model performance. For each
fold, this was performed for a total of ten iterations.
Subsequently, the best-performing models were selected and
evaluated based on the test set. This test set was never used in
training and was used to check if the model only performed
well on the training data and not on new data (overfitting). We
calculated the RMSE and NRMSE based on the test set
evaluation, to detect overfitting. For a few experiments, we
repeated the cross-validation with different random seeds to
estimate the impact of the training and test data split.

For GLM, we utilized the glmnet package (version 4.1-8).
We assumed the error to be normally distributed and used the
linear link function. The grid search contained the two
parameters of elastic nets: alpha and lambda. alpha was
increased in 0.05 increments during the hyperparameter
tuning. lambda took values from 0 to 2 in 0.05 increments.
As mentioned in the previous chapter, we use an intercept of
zero.

For RF, the ranger method from caret was used. 1000 trees
per random forest were found to be an acceptable compromise
between performance and time required based on initial tests.
The split rule was left as the variance for all experiments.
Values for mtry were tested in one-sixth increments of the
number of features, up to the whole. The minimum node size
was tested for values of 3, 5, 7, 10, and 15, having bigger steps
between the higher values. As RF does not yield the same
result every time a model is trained, 500 RFs were built after
the hyperparameter tuning with the selected optimal tuning
parameters.

For the polynomial kernel SVR, we tested cost hyper-
parameters of 0.01, 0.1, 0.25, 0.5, 0.75, and 1, as well as
polynomial degrees from one to five degrees at a fixed scale
parameter of one. The grid for the radial basis function kernel
was built from the cost and sigma values. Cost parameter
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Figure 2. Model performance based on all molecular formula features: Normalized root-mean-square errors (NRMSE) are expressed in percent of

the original scale of C475.
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Figure 3. Model performance after the removal of low variance features: normalized root-mean-square errors (NRMSE) in percent of the original

scale of C475.

values of 0.001, 0.01, 0.1, 0.25, 0.5, 0.75, 0.9, 0.99, and 1 were
used. We evaluated sigma values ranging from 107% to 1,
including 10°¢ up to 107° in factor 2.5 increments, 2 X 1075, a
coarser grid of S X 107> up to S X 10™* in factor S increments,
and a sparse upper scale of 10~ increasing by a factor of 10, up
to one.

For selected models, we also checked if the NRMSE was an
outlier. For this, we repeated the tuning 1000 times and used
different splits for the training and test sets.

The model tuning and repeated model trainings were run on
a server node that had 256 GB RAM and two AMD Rome
Epyc 7702 processors with 128 cores in total (albedo server,
AWI). We used 120 threads in the experiments to allow
background processes to execute. All other preprocessing and
experiments were conducted on a workstation with an Intel i7-

1165G7 processor, an Nvidia TS00 graphics card, and 32 GB
RAM.

3. RESULTS

The preprocessing of the molecular formula data resulted in 32
data tables, each of which was used to train four ML methods,
leading to 64 models without (Figure 2) and 64 models with
(Figure 3) low variance filtering.

3.1. Prediction Performance Using All Features. When
comparing the NRMSE values, the best prediction was
achieved with a GLM using ubiquitous data, the retention
time dimension, and SUM or UBISUM normalization (Figure
2, top right). GLMs performed best or second best (13 out of
16 variants), except for the models using ALR-transformed
data. The SVM models performed worst when using all data,
with the exception of the models that used ALR-transformed
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data. GLM was the only method that consistently yielded an
NRMSE below 10% when using ALR transformation. RF
performance was best for the models that included all time-
aware data using SUM and UBISUM normalization (lower left
subplot; Figure 2), whereas in the ubiquitous data and time-
aware experiments (top right subplot; Figure 2), RF had the
highest error. Generally, the NRMSE was similar or smaller
when using only the ubiquitous data, compared to the use of
all data. The performance of models based on time-aware data
(top of Figure 2) did not show significant differences (p =
0.144) compared to experiments with time-agnostic data
(bottom of Figure 2). It should be noted that for ubiquitous
data, the sum of intensities (SUM) was the same as the sum of
ubiquitous features (UBISUM), leading to identical errors for
models except RFs. The other metrics, such as R* and mean
absolute error, showed similar trends for all entries (Figures
S6— S8), but RFs did have the highest or second-highest R? in
11 out of 16 cases. For the high error occurring in ALR-
transformed GLMs of unfiltered, time-aware data, we
exemplarily performed 1000 repeated model trainings of the
hyperparameter search with different train-test splits. The
STEM was 0.547% NRMSE for 100 repeated splits and 0.184%
NRMSE for 1000 repeated splits. For quality control, the
repeated cross-validation was performed using the unfiltered
time-aware data with DOC normalization that was used to
train a GLM (Figure 2 top left; bottom row, first column). It
was selected because the model had the highest feature count
possible and otherwise the best-performing normalization. The
models showed an average NRMSE over 1000 models trained
of 8.87%, compared to 8.1% in the heatmap.

3.2. Prediction Performance after the Removal of
Low Variance Features. Removing the low-variance features
led to a 61—62% reduction in the number of features and a
significantly (p = 0.0417) better performance (Figure 3).

In contrast to all data experiments (Figure 2), the removal of
low-variance features overall led to improved performance.
The NRMSE values were consistently below 10%, except for
five experiments, when excluding ALR transformation. A
significant change in NRMSE was found over all experiments
(p = 0.0417) when using the ALR-transformed models. The
highest NRMSE with 16.9% is around half as high as the worst
case in the nonfiltered experiments (30.2%). However, no
significant (p = 0.702) difference was found between the
ubiquitous filtered data without (Figure 2 right) and with low-
variance filtering (Figure 3 right). The difference between
model performance using only low-variance filtered data
(Figure 3 left) and those with additionally ubiquitous filtered
data (Figure 3 right) was not significant when ALR
transformation was excluded (p = 0.643). A paired Wilcoxon
signed rank test with continuity correction between the time-
aware and time-agnostic models found no significant difference
(p = 0.417) between the two pairs of 64 models and also no
significant difference between the low-variance filtered data (p
= 0.660). GLMs based on the time-aware and SUM/UBISUM
normalization (Figure 3 top right) yielded the best predictions,
similar to the results of the low variance including data sets
(Figure 2). SVM with a polynomial kernel performed best or
second-best in most (seven out of eight) preprocessings for
data, which were not further filtered by ubiquitous contents
(Figure 3 left). GLMs performed equally well in 14 out of 16
experiments. SVM with a polynomial kernel outperformed
GLM or performed equal in half of the 16 experiments, where
five out of these eight used time-agnostic data. Similar trends

were observed for the R* and mean absolute error (see Figures
S7 and S9).

3.3. Random Forest Regression. Although the RF
models did not yield the overall best performance when
focusing on NRMSE, the RFs did have high R? values, did not
require linear relationships, and performed well across all
tested normalization (excluding ALR transformation) and
filtering approaches (Figures 2 and 3). Since RF regression was
the only method that was not deterministic, we assessed the
prediction error introduced by randomness. The performances
of 500 repeated runs were evaluated for RFs between variants
that were not filtered to exclude low variances. The NRMSE
introduced by RF uncertainty was much smaller than the errors
between the models (details in Figure S1), and the RF
uncertainty was significantly lower than the NRMSE differ-
ences between time-aware and time-agnostic models (p =
0.0078).

3.3.1. Recursive Feature Elimination: Evaluation of
Random Forest Model Performance. We tested recursive
feature elimination to validate how the model’s performance
changes with the number of features used in each model,
where we used the complete time-aware data with UBISUM
normalized. The importance is based on the permutation
importance obtained from the out-of-bag error that is
accessible in RF models from the caret and ranger.

In each iteration of the recursive feature elimination, the
10% least important features were removed (Figure 4) and a

30
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Figure 4. Recursive feature elimination: normalized root-mean-square
error (NRMSE) of the random forest experiment based on time-
aware DOC normalized and nonfiltered data; the initial number of
features is n = 70,683.

10-fold cross-validation and recalculation of the importance
were performed. For less than ca. 2000 features, the error
increased from 10% to about 12% NRMSE for less than 300
features. A plateau of about 30% NRMSE was reached at 20 or
fewer features.

3.4. Feature Importances. As a first step for key feature
analysis, we used RF permutation importance and SHAP
values to identify the most important molecular formulas and
MFRTS, respectively, that represented the C475 fluorescence
component.

3.4.1. Random Forest Permutation Importance. The
permutation importance of RFs is a commonly applied
parameter to identify the most relevant features. To check
how reliable the found importance values were, we created 500
forests. The hyperparameter optimization was performed only
once at the beginning and then used for RF creation. From
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these, we selected a number of top-ranking features from each
forest, increasing in number (1 to 100). Then, we built a set
that contained all unique formulas that were included in these
500 forests. The RFs reached 592 different MFRT in the top
100-ranked important features by permutation importance,
using a nonfiltered data set, among which ALR transformation
resulted in the best model (see Figure S2). If time-agnostic
data were used, the number of different features reached
around 300 MFs. Similar numbers of varying features were
observed from ranking the SHAP values of the built RFs (see
Figure S3 for time-aware data and Figure S4 for time-agnostic
data).

3.4.2. SHAP Values of Random Forest Models. To identify
the importance of the features in the RFs, we utilized SHAP
values. We associated positive SHAP values with terrestrial
features as our prediction variable was high for terrestrial
samples. Therefore, negative SHAP values were assumed to
represent marine features. SHAP values for the features were
calculated on a sample-wise basis and were calculated from the
RF model that excluded low-variance features and used DOC-
N and time-agnostic data. To get an overview of different
samples, we selected three samples from the test set. We
selected one sample that was close to the average C475 of the
test set as well as the most terrestrial and marine samples. To
evaluate the composition of the features, we scaled the positive
SHAP values from one to zero and computed a weighted
average composition for these samples. For the average
terrestrial sample, the positive SHAP values accumulated in
the lower mass region of 200—400 m/z. When scaling these
SHAP values to between zero and one and multiplying them
with the composition of the feature, the average composition is
C151H15N;OgSg15- This means a sulfur-to-carbon atom (S/
C) ratio of 0.009 and a carbon-to-nitrogen atom (N/C) ratio
of 0.06. The very marine-sided sample had a composition of
Ci53H24N; 40,0S024- The S/C ratio was 0.013, and the N/C
ratio was 0.08. For the very terrestrial sample, the composition
of a MF with positive SHAP values was Cg,H,; N;OSg 15,
yielding a S/C ratio of 0.01 and a N/C ratio of 0.05, which
were similar to the average terrestrial sample.

From the average terrestrial sample from the test set, we
found 3546 positive SHAP values, which indicated terrestrial
content. A previous analysis of this data, via linear regression,
found 1450 MFs to be terrestrial.”**’ The overlap of the two
sets was 759 MFs, and the Jaccard similarity between the sets
was 0.18. To compare the permutation importance as well, we
used the 1000 repeated RF runs with DOC normalization,
where we selected the top 100 features by permutation
importance. Around 592 unique MFRT's were identified in the
time-aware data. For time-agnostic data, the number is 316
MFs. The latter was compared to the 1450 terrestrial
features”®”” and yielded a 0.16 Jaccard similarity between
the sets.

Lastly, we compare our sets from SHAP values and from
permutation importance to each other. We found a Jaccard
similarity of 0.70 for the time-aware data (MFRTs) and of 0.74
for the time-agnostic data (MFs).

3.5. Running Times. The computation time for the grid
search was strongly dependent on the machine learning
methods (Figure S). GLMs were quickest for each
preprocessing combination, whereas the RF took the longest
time to compute, especially when no feature reduction and
time-aware data were used. In this case, the hyperparameter
search for the Random forest took close to 200 min, with only

Method Filter Time (min) Method Filter Time (min)
GLM agnostic  0.06 GLM agnostic 0.5

GLM aware 0.07 GLM aware 1.1

RF agnostic 3.1 RF agnostic  59.5

RF aware 6.6 RF aware 194.5
SVMPOLY agnostic 1.1 SVMPOLY agnostic 5.1
SVMPOLY aware 1.5 SVMPOLY  aware 11.3

SVMRBF  agnostic 3.7
SVMRBF  aware 5.13

SVMRBF  agnostic 19.0
SVMRBF  aware 48.3

Figure S. Running times for the grid search averaged over all different
normalizations for ubiquitous data (left) and all data (right).

small variations between the normalization types (191 min
minimum and 201 min maximum).

It is important to note that our experiments were executed
on a high-performance computer employing 120 cores running
in parallel (exemplary models trained on the laptop took 15—
20 times longer). For ubiquitous data, GLMs were faster than
RFs by a factor of between 53 (time-agnostic) and 91 (time-
aware) times, and when we compare GLMs to SVMPOLY,
then they are still faster by a factor of about 19 (Figure $).
When considering all data, GLMs are faster than RFs by factors
between 125 and 170 and GLMs are faster than SVMPOLY by
a factor of around 10.

4. DISCUSSION

4.1. How Well Can ML Algorithms Predict the
Fluorescence Proxy for Terrestrial DOM Based on LC-
FTMS Measurements? The most accurate, molecular-
formula-based prediction for the fluorescence component
C475, a proxy for terrestrial organic matter, was achieved
from the GLM. Depending on the choice of feature type
(molecular formulas or molecular formula time points) and
preprocessing, the lowest prediction error showed an NRMSE
of 5.7% of the original range of C47S. This value was only
slightly above the precision of the fluorescence method itself
(below a factor of 2), which we estimated to have an NRMSE
of 3.5% of the total range of intensities for all samples. This
NRMSE estimation was calculated based on the repeatability
of C475 values in the deep Arctic Ocean (400 m or below),
which generally showed very similar fluorescence signals (cf.
Kong et al. 2024). In a previous study, five ML models were
tested for their ability to predict the stable carbon isotope ratio
6C from molecular formula data.'® Based on solid-phase
extracted DOM, the linear SVM kernel achieved the best
predictions, in contrast to our study, where GLMs and RF
regression showed the best performance. The authors report a
prediction error for §°C of 0.3%c. To make this value
comparable to our results, we scaled this error to the entire
range of §"°C values (—27.7 to —21.9%o0). This resulted in an
NRMSE of 5.1%, which is comparable to our best value of
5.7% for the GLM prediction of terrestrial fluorescence. Our
best-performing SVM (NRMSE of 5.9%) used a polynomial
kernel of first degree and was comparable to the results by Yi et
al.'® who used a linear SVM kernel.

4.2. Which Combination of Preprocessing, Normal-
ization, and ML Method Yields the Best Predictions?
Generally, the best predictions for C475 were achieved with
data that were filtered for ubiquitous formulas and normalized
by SUM (equivalent to UBISUM normalization). The sum
normalization was also used by Yi et al,'® but the molecular
formula assignment differed slightly: While we validated and
filtered the molecular formula set by limiting the double-bond
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equivalents minus oxygen (DBE-O*") to a maximum of ten, Yi
et al. (2003) filtered formulas by H/C < 3 and O/C < 1.5.'° As
expected, the choice of preprocessing and the type of machine
learning model had a large influence on the performance of the
different models. Somewhat surprisingly, a decrease in the
number of features led to an improved prediction. The
performance of most models was improved by removing low-
variance features. Alternatively, filtering for ubiquitous
formulas was performed if the low-variance filtering was not
applied. The only exceptions were the RF experiments, which
delivered robust performance irrespective of the number of
features when excluding the ALR-transformed data.

The different normalization methods did not influence the
model performance substantially. The ALR transformation
prevented high error rates for the polynomial kernel SVMs,
when unfiltered data were used, but increased the error for all
other combinations. We discuss this in a later paragraph.

The time-aware data that included only the ubiquitous
features and normalized by the sum of intensities of each
segment performed best, with an NRMSE of 5.7% for GLMs.
This was nearly (0.1% NRMSE) independent of low variance
filtering, which could be due to the ubiquitous filter and
excluding low variance features, since this way every sample
measured a signal and the low variance features mostly are
those with many cases of zero filling.

We clearly found that some model setups were particularly
sensitive to higher numbers of features in combination with the
low number of samples (e.g., SVMs with RBF kernels, Figure
2). RF regression and GLMs did handle the unfiltered data
consistently well for most cases (Figures 2 and 3). We assumed
that RFs cope better with a relatively large number of features,
as the large number of split candidates for each tree filters out
the low-variance features as bad splits.”®*> Several experiments
in our study yielded prediction performances with high errors
(NRMSE of greater than 10%). The maximum NRMSE of
30.2% is a factor of more than eight above the precision of the
fluorescence measurement. High uncertainty was observed
particularly for those experiments that were based on a large
number of features (molecular formula time points and no
removal of low-variance features; Figure 2). We suspect that
the situational large prediction errors for SVMs were caused by
failing to find a solution to the equation system because too
few samples per feature.

We hypothesize that the high test set errors of ALR-
transformed models were caused by overfitting, meaning that
the model adjusted too much to the trained data and does not
generalize well. Evidence for that is that the model has high
errors on the test set while showing low training set errors,
where the RMSE was up to three times as high in the test data
evaluation as in the chosen model from the grid search. Our
theory for the overfitting was induced by collinearities arising
from the original data. They could be a coincidence or induced
by the ALR transformation. We have no other hypothesis
about why the overfitting only affected ALR models to such a
degree.

One general problem could also be the splitting of the test
set. With only 95 samples, the left-out samples possibly were
not well-balanced for the features with high weights that were
found by the model. This would explain why this behavior was
not seen in the low-variance filtered set with no ubiquitous
filtering. Similar problems with a small test set have been
observed and were approached via a pooled test set, which
could be an approach for our future work.*

In our study, the reduction of the number of features led to
an improved prediction performance for most experiments and
a faster processing time, particularly for RFs. Three processes
reduced the number of features: (i) creating time-agnostic data
from the original retention time data (molecular formula time
points, MFRTs), (ii) filtering for formulas or MFRTs that
occurred in all samples (ubiquitous), and (iii) removing
features with low variance. Utilizing all available features led to
a larger variability of the prediction performance and increased
the influence of the normalization method (see Figure 2).
Applying low-variance feature filtering (ca. 61%) minimized
the differences in performance between the models. It also
improved the performance of the models with previously
situational high errors like SVMs and the GLMs with ALR
transformation in cases where ubiquitous filtering was not
applied (Figures 2 and 3 left). It also reduced the time for
tuning the RF and SVMRBEF models by circa three times (see
Figure 5). Using only ubiquitous features, all normalizations
except ALR normalization performed well over most experi-
ments and reduced the calculation time from unfiltered data by
5—15 times (see Figure 5). The reduction of features is
generally beneficial, as each feature adds a new dimension that
needs data to cover it."” The exclusion of features allows the
data to fill more locations in the reduced dimensional space.*®
Only utilizing the ubiquitous features, the feature counts may
reach areas of too-strong filtering, where information was lost.
This was supported by the RFE, where NRMSE rose quickly
for data sets below 2000 features. The time-agnostic,
ubiquitous data set had only ca. 1800 features, which may
explain the increased error.

In our study, the number of samples is small relative to the
number of features. Therefore, some features are likely to be
highly correlated. Using RFE, we found that ca. 2000 out of ca.
70,000 features were sufficient to create an RF model with
comparable prediction power. The filtering here was only
based on the feature importance, which shows the value of
preprocessing by excluding low-variance features or keeping
only ubiquitous features to avoid unnecessary computational
effort. The results from the RFE also relied on cross-validation
to protect the feature selection and model performance from
overfitting. The reported error is based on the omitted folds
and not on a separately kept test set. As the model performed
similar to the other RFs with filtered data, we do not see proof
of overfitting in the RFE. We found a plateau in the required
minimum number of features, an observation that was also
seen in previous studies using RFE and random forests.*” Our
results using RFE agreed with the low NRMSE after low-
variance filtering. These findings led us to advise using at least
one form of filtering to counteract high dimensionality. We did
not analyze whether the small number of features required is
based on the sparse abundance or if a lack of chemical
relevance of molecular formula caused this. This will be the
subject of a subsequent study.

4.3. Does the Consideration of the Chromatographic
Retention Time Improve the Prediction? In standard
liquid chromatography, time-dependent data assume that the
time windows are independent of each other; ie., the same
molecular formula present at different retention times is
considered two independent features. Our comparison of time-
agnostic and time-aware experiments made it possible to
validate the significance of chromatographic retention time.
Time-aware features that included retention time improved the
GLM performance (by around 0.24% NRMSE) but decreased

https://doi.org/10.1021/acsomega.5c02849
ACS Omega 2025, 10, 29497—-29509


http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.5c02849?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

ACS Omega

http://pubs.acs.org/journal/acsodf

the performance in most RF experiments. Overall, there was no
statistical difference found between the prediction performance
based on the time-awareness or time-agnostic data, although
the retention time represents chemical information (polarity of
the molecules) and allows a better separation of the complex
organic material. When removing the time dimension, we
traded better separation of compounds for an input matrix with
less sparsity and an experimental setup with wider availability
in the community. The adaptability of RFs to sparse data®
could have reduced the observable differences between both
data sets (time-agnostic and aware), but both were sparse. Still,
predictions of RFs using time-agnostic data were better, which
we attribute to less overfitting due to the increased variance per
feature and the general reduction in feature dimensions.

The signals of one structural formula have an elution
window of around 30 s and a bell-shaped intensity curve. We
thus assume the majority of each structural formula to be in
one retention time window, even though this is a
simplification. Other approaches avoid this by selecting specific
retention time windows with gaps between them."”

4.4. Which Key Features are Most Important for a
Good Prediction? Computing SHAP values and permutation
importance was suitable to isolate the important features in the
complex mass spectrometry data set. Our findings are
particularly helpful for targeted analytical approaches that
aim to identify structural information from the key features
identified. Terrestrial MFs were characterized by lower masses
compared to marine MFs, which matched the results of
previous studies.”" The average terrestrial N/C element ratio
in previous work (Kong et al, submitted®") was lower than
0.001, in contrast to our results that showed an average N/C of
0.06 for terrestrial MFs identified by SHAP values in a sample
with high terrestrial DOM contribution and an average N/C of
0.08 for a sample with predominately marine DOM
contribution. For S/C ratios, a similar trend was observed.

The different ratios indicated vastly different molecular
formulas compared to previous work (Kong et al,
submitted”'), even though the N/C and S/C ratios were
consistently lower in terrestrial compared to marine DOM in
both studies. If we compare the number of identified top 100
important features in 1000 runs, the chance of a feature
appearing in a model’s top 100 features is low (less than 16%,
ca. 600 unique features in the top 100 features). When we used
time-agnostic data, the number of identical, important features
between models increased to 30%. One possible explanation is
that time-aware data can predict fluorescence well on each
time slice but with different MFRTSs. Another explanation is
the reduced feature space. With roughly one-third of the
features in the time-agnostic data (23,835 compared to 70,683,
around 33.7%), only around one-third of the features are found
in the 1000 repeated RF runs, indicating a similar spread of
total features being deemed important. The similar trends
between the permutation importance features and the SHAP
value features were only partially supported, as they had a
Jaccard similarity of 0.7 between the ca. 600 features of the top
100 ALR time-aware data. The time-agnostic top features were
even more similar to a Jaccard similarity of 0.74. Previously
reported stable groups of similar features from rivers™ were
not discovered by our key feature search. Reasons for this are
likely the longer distance in the ocean, as the samples from the
MOSAIC cruise were not taken from the rivers directly but
mostly from the Central Arctic Ocean. This likely allowed
degradation of the MFs by degrading ultraviolet radiation™ or

microorganisms. The cruise was performed over a complete
year, and seasons were not a parameter we considered in our
analysis, but changes in DOM were shown to be more
dependent on region than on the season.”®

All found key features only covered a small fraction of DOM.
The direct measurement of ocean water with LC-FTMS
reduced methodological bias of identified DOM but our
models were also dependent on the PARAFAC component
from the EEMs. As these EEMs measure the fluorescence, all
found features and all trained models were blind to DOM that
was not part of the small subset of fluorescent DOM. In a new
study, C475 was correlated to §"*C and salinity and indicated
that 95% of the terrestrial MFs were also detected with the
8"C and salinity approaches (Kong et al, submitted).’!
Supporting that C475 is a representative proxy for terrestrial
DOM.

4.5. Tuning Grid Decisions and Their Influence on
Model Performance. The performance and the key features
changed when the preprocessing and hyperparameters of the
experiment changed. This is especially true for the tuning grid
that is searched during the training of the model. Due to the
computational cost, especially for the RFs, we decided not to
use a nested cross-validation. We tried to counteract the
possible bias by creating similar training and test sets. Repeated
training of cross-validation hyperparameter searches for the
high-error GLMs showed that the mean error did not vary
much between preprocessing and machine learning method
combinations, indicating a successful split of the training and
test set. The two examples, on which repeated cross-validation
was performed, showed results similar to the results from the
heat maps, indicating that overfitting in these cases was not
induced by the one-time split of the training and test data.
While RFs can cope with high feature numbers and the GLM is
regularized by an elastic net, the SVMs do not have such
mechanics. The SVMs where overfitting occurred on the
unfiltered data likely originated from a suboptimal choice of
kernels. Our choice of polynomial and radial basis function
kernels was driven by their widespread use and the ability to
capture nonlinear relationships. A previous study showed that
linear kernels perform better for cases where overfitting is a
problem.>*

One of the key aspects for RFs is the mtry parameter. A
larger mtry value was suitable for data sets with large parameter
counts. This led to more focused key features, as the few
stronger predictors appeared more often in the selected
subset.” Limiting the mtry values to a smaller percentage of
features may have been more suitable to find the more subtle
features. With MS data, we therefore may not want to tune
mtry to very high values to avoid reducing the importance of
many less obvious features. A strategy for future work could be
to perform model training with different mtry value limitations
to compare the important features in the data. For generalized
linear models, this could be tuned via the alpha parameter.
With fewer feature weights being reduced to zero, the weights
would be spread across the data. Instead of automated feature
selection by the elastic net,” selecting a fixed alpha value and
tuning lambda may be beneficial as a feature selection method.

We also considered GLMs, since they are the fastest to tune
and allow easy usage of the weights as importance measure-
ment and automatic feature selection by changing the elastic
net, which also helps against overfitting. This was mostly
achieved with the exception of the ALR transformation,
revealing the necessity to evaluate normalization methods. The
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repeated cross-validations also showed that in the cases of
overfitting, there were no outliers and a stable performance in
the case of SUM normalization was achieved. For the lasso
regression in GLMs, all features should be on the same scale to
avoid introducing a bias. This was not done by rescaling the
features between the normalization and the model training step
(preprocess in the package caret). The found key features were
not the most intense features (Figure SS) as the selected
weights are not from the features with the highest mean
abundance.

5. CONCLUSIONS

Several state-of-the-art machine learning methods were applied
in order to predict the PARAFAC component C475, which
indicates the terrestrial contribution in DOM, based on a
combination of molecular formulas and their retention time.
The MF and RT measurements were obtained via modern LC-
FTMS, which, most recently, can be applied directly to
saltwater samples. Using our methods, we were able to predict
our proxy with an NRMSE of only 5.7% of the original scale of
the proxy. Moreover, the MFs that were predicted as terrestrial
were different from those that were identified with prior
methods, not taking into account the RT values. Our methods
were thus able to produce new chemical insights showing
trends similar to those in the literature while giving a guideline
for ML-based approaches to DOM problems using LC-FTMS:
for improved model performance, we generally suggest filtering
the data at least for MFs with low variance. For normalization,
we recommend not using the ALR normalization, and for time-
aware/time-agnostic data, we found no preference. We suggest
RFs for data that are not filtered at all or approaches that
require nonlinear assumptions and GLM for faster computa-
tion times.

In the future, it would be desirable to investigate more
closely the chemical characteristics of those MFs that are the
best predictors for terrestrial DOM. Is it possible, using our
methods, to further narrow the search for the actual molecules
that are represented by the MFs? As it turns out, our methods
are able to make good predictions using only around 2000 (as
compared to the original over 70,000 features). It would be
interesting to further investigate these 2000 important features.
How can they be characterized? Is it possible to combine or
reduce these features further to a much smaller set of features
while still being able to make good predictions?

Can our models be applied to water samples stemming from
other regions of the ocean, in particular, to regions that are far
less terrestrial than the Arctic Ocean (e.g, the Antarctic
Ocean)? It is an intriguing open question whether the identical
set of important features will be applicable to such samples,
which will be addressed in a follow-up study.
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