

Organic Carbon Composition and Transport linked to Wind Forcing in the Nearshore Zone of Herschel Island, Qikiqtauk (NW-Canada)

Pia Petzold^{1,2}, Hugues Lantuit^{1,2} & Michael Fritz¹

¹Section Permafrost at the Alfred-Wegener Institute Helmholtz Centre for Polar- and Marine Research, Potsdam, Germany

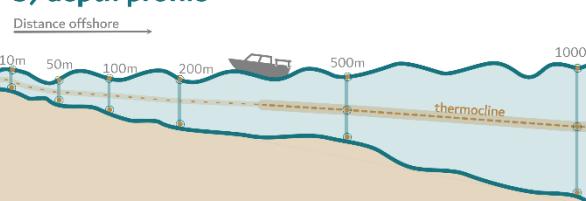
²Institute for Geosciences at the University of Potsdam, Potsdam, Germany

1 Arctic coastal areas underlain by permafrost are
 2 significantly affected by the effects of global climate
 3 change. Rising permafrost temperatures, reduced
 4 sea ice cover and warmer seawater temperatures are
 5 all contributing to increased coastal erosion. This
 6 process releases carbon stored in permafrost into the
 7 adjacent coastal zone, where it is degraded, with the
 8 potential risk of releasing greenhouse gases (GHGs)
 9 into the atmosphere. However, the transport
 10 pathways and degradation processes of organic
 11 carbon (OC) in the nearshore zone are not well
 12 understood. To address this knowledge gap, we
 13 repeatedly sampled the nearshore zone of Herschel
 14 Island, Qikiqtauk, Canada, for dissolved and
 15 particulate OC (DOC, POC) in order to capture the
 16 temporal intraseasonal variability of coastal
 17 biogeochemistry. The sampling was conducted along
 18 two transects in two consecutive weeks in July 2022.
 19 One transect was situated directly offshore of a
 20 retrogressive thaw slump, while the other was located
 21 in front of a permafrost cliff coast. Each transect
 22 comprised six sampling stations spanning from 10 to
 23 1000 m offshore (Figure 1). Water temperature, water
 24 depth, electrical conductivity and salinity were
 25 determined using a CTD CastAway. For water depths
 26 less than 5 m, two water samples were collected at
 27 the surface and near the seafloor using a UWITEC
 28 water sampler. For depths exceeding 5 m, a third
 29 sample was obtained at the thermocline depth.
 30 Turbidity was recorded once per sample with a HACH
 31 2100Q turbidity meter. Subsequently, the collected
 32 seawater was filtered through 0.7 µm GF/F filters. The
 33 filtrate was analyzed for DOC and total dissolved
 34 nitrogen (TDN) using a Shimadzu TOC-L with TNM-L
 35 module. Inorganic carbon was removed from the filter
 36 residues, which were then analyzed for POC and total
 37 particulate nitrogen (TPN) content, $\delta^{13}\text{C}$ and $\delta^{15}\text{N}$
 38 using an elemental analyzer isotope mass
 39 spectrometer (EA-IRMS) at the University of
 40 California Stable Isotope Facility (Davis, USA). When
 41 feasible, the permafrost cliff transect was sampled for
 42 marine surface sediment. Those samples were

43 analyzed for grain size, mercury, carbon and nitrogen
 44 content. The data shows a clear gradient in
 45 temperature, turbidity and organic carbon content
 46 (dissolved and particulate) in the water column,
 47 especially in the beginning of the sampling period.
 48 The influence of the Mackenzie River plume and the
 49 discharge from the slump is evident, with turbidity
 50 values between 3.8 and 205 FNU and salinities from
 51 3.0 up to 31.9 PSU. Field parameters will be
 52 correlated with ERA5 wind data to indicate the
 53 variability in how geochemical properties are affected
 54 by wind direction and speed. Multivariate statistics will
 55 determine and quantify the relation between
 56 water/sediment properties and environmental forcing
 57 factors.

58

1) temporal variability



July 2022

2) slump vs. non-slump affected coast

3) depth profile

59
 60 Figure 1. Variability captured in the data set of nearshore
 61 biogeochemical parameters.