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Zusammenfassung 
Das nordsibirische Lena-Delta ist das größte Delta der Arktis und das zweitgrößte der 

Welt. Die bedeutenden Faktoren für die Entwicklung des Lena-Deltas während des 

Spätquartärs ähneln denen anderer Delta-Systeme; dies schließt den eustatischen 

Meeresspiegelanstieg, die gelieferte Sedimentfracht des Flusses und tektonische 

Bewegungen ein. Das Hauptziel dieser Arbeit ist die spätquartäre 

Umweltrekonstruktion dieser Faktoren mithilfe von Sedimentanalysen und 

geophysikalischen Messungen. Dabei liegt der Schwerpunkt im Nutzen eines multi-

methodischen Zugangs, um die verschiedenen fluviatilen und lakustrinen 

Ablagerungsmilieus zu entschlüsseln. Sedimentstrukturen und Sedimenteigenschaften 

(z.B. Schwermineralzusammensetzung, Korngrößenverteilungen, Gesamtgehalte an 

organischem Kohlenstoff (TOC)) und Altersbestimmungen (AMS 14C und IR-OSL) 

werden genutzt, um die wichtigsten Sedimenteinheiten der drei bedeutenden 

geomorphologischen Terrassen, die das Lena-Delta aufbauen, zu unterscheiden. 

Zusätzlich ermöglichen Analysen an Seesedimenten (Korngrößenverteilungen, TOC, C-

Isotopenverhältnisse im TOC, Pollenanalyse) des größten Sees innerhalb des Lena-

Deltas eine umweltgeschichtliche Rekonstruktion für den nordwestlichen Sektor des 

Lena-Delta-Gebietes. Sie werden wesentlich durch geophysikalische Messungen 

ergänzt (Georadar und hochauflösende Seismik).  

Die Hauptstufen in der Entwicklung der geomorphologisch-sedimentären Abfolge des 

Lena-Deltas können wie folgt zusammengefasst werden: das Lena-Delta ist ein 

geomorphologischer Komposit aus Erosionsresten verschiedener spätpleistozäner 

Flussstadien (dritte und zweite Terrasse) und eigentlicher, spätholozäner bis rezenter 

Deltasedimentation (erste Terrasse). Letztere ist vor allem im östlichen Sektor zu 

finden. Der westliche Sektor wird dominiert von torfig-sandigen und sandigen 

Hochlagen und Inseln, deren Sedimente während des letzten glazialen 

Meeresspiegeltiefstandes abgelagert wurden (dritte und zweite Terrasse).  

Dritte Terrasse 

Paläo-fluviale Sande und eingeschaltete Wurzelhorizonte, datiert auf den Zeitraum 

~88-43 ka v.H. (ka = 1000 a), dokumentieren den frühesten nachweisbaren Beginn der 

Sedimentabfolge, die das heutige geographische Lena-Delta umfasst. Schwer-

mineralogische Vergleiche belegen, dass die sandigen Sedimente der Lena entstammen. 

Aufschlussbeschreibung, Korngrößenverteilungen und TOC-Gehalte zeigen, dass die 
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sedimentäre Fazies vergleichbar ist mit der rezenten Auen- bzw. floodplain-

Sedimentation. Die fluvialen Sande repräsentieren den unteren Bereich der dritten 

Terrasse (0 bis 14 m ü.NN). 

Der Sedimentationsnachweis für die zweite Hälfte des Weichsels (43-14 ka v.H.) ist 

begrenzt auf den lokal entstandenen Eiskomplex. Korngrößen-, Schwermineral- und 

TOC-Untersuchungen zu Folge handelt es sich bei dieser Formation um eine Abfolge 

von polygenetischen, organikreichen Sedimenten. Sie stammen aus den südlich 

gelegenen, küstennahen Gebirgszügen (Chekanovsky- und Kharaulakh-Gebirge) und 

sind in deren Vorebenen abgelagert worden. Im Lena-Delta bilden sie die Deckschicht 

der dritten Terrasse (14 bis 35 m ü.NN). Der abrupte Fazieswechsel zwischen den 

liegenden Sanden und dem Eiskomplex wird als ein deutliches Anzeichen eines 

tektonischen Einflusses auf die Sedimentverteilung und die Ablagerungsentstehung im 

Lena-Delta gedeutet. Sedimente, die von der Lena geschüttet worden sind, sind für den 

Zeitraum der Entstehung des Eiskomplexes nicht überliefert. Allerdings werden sie 

entlang eines Flusslaufes der Lena vermutet, der zu einem Paläo-Delta verlief, das für 

diese Zeit weiter nördlich anzunehmen ist. 

Zweite Terrasse 

Auf die Phase allgemeiner Stabilität der Umweltbedingungen während der 

Eiskomplex-Bildung folgte eine neue Episode der fluviatilen Einschneidung und 

Sedimentakkumulation der Lena zwischen >14,5 und 10,9 ka v.H. Die Sedimentation 

erfolgte in einem verwilderten, verzweigten Flusssystem unter Bedingungen von 

saisonal hohen Abflussraten und karger Vegetationsdecke. Die mächtigen 

Sandsequenzen, die typisch sind für diese Periode, repräsentieren die zweite Terrasse 

(10 bis 30 m ü.NN). Zu Beginn des Holozäns lässt im nordwestlichen Sektor des Lena-

Deltas die fluviale Sedimentationstätigkeit nach. Schließlich wird sie abgelöst durch 

äolische Aktivität und anhaltenden, tiefreichenden Thermokarst (<7 ka v.H.). Dieses 

Alter (unkalibriertes 14C-Alter) ist aus den ältesten Sedimenten des Nikolay-Sees 

ermittelt worden. 

Die Thermokarstprozesse setzten in inaktiv gewordenen Flussläufen ein. Sie erklären 

die Entstehung der zahllosen Seebecken, die sich auf der zweiten Terrasse befinden, 

einschließlich des Nikolay-Sees, der der größte und tiefste See unter ihnen ist. Das 

Einsetzen des Thermokarstes fiel mit dem regionalen holozänen Klimaoptimum (7-5 ka 

v.H. unkalibriertes 14C-Alter) zusammen. Seit ca. 5 ka v.H. unterliegt die Region 
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stabilen Umweltbedingungen. Die Morphologie der Thermokarsteinsenkungen konnte 

mithilfe hochauflösender Seismik und Georadar identifiziert werden. Die 

Sedimentlagerung benachbarter Zonen aus limnischen und kryo-terrigenen Sedimenten 

sind dabei in kombinierender Weise aufgezeichnet worden. Während prozessierte, 

hochauflösende seismische Daten vor allem die wassergesättigten Beckensedimente 

aufzeichnen, sind die Georadar-Profile besonders geeignet, den gefrorenen Untergrund, 

der die Becken umgibt, abzubilden. Zusätzlich zeigen seismische Daten, dass die 

einzelnen Thermokarstbecken in ihrem Untergrund Auftauzonen (Taliks) aufweisen. 

Die Ausdehnung der Taliks führt zur Sedimentsetzung, die wesentlich für die 

anhaltende Vertiefung der Seen verantwortlich ist. 

Erste Terrasse 

Die fluviale Abfolge setzte sich mit den holozänen (<8,5 ka v.H.) Sedimenten der 

ersten Terrasse (0 to 10 m ü.NN) fort. Die Aufgabe des nordwestlichen Sektors und der 

Wechsel des Hauptsedimentationsgebietes in den nordöstlich/östlichen Sektor des Lena-

Deltas wird mit tektonischen Bewegungen entlang einer N-S verlaufenden Bruchzone in 

Verbindung gebracht, die beide Gebiete trennt. Der Meerespiegelanstieg in der Laptev 

See gelangte in der Mitte des Holozäns an seine heutige Position, und die Delta-

Akkumulation in den Lena-Flussarmen der heutigen Delta-Ebene wurde eingeleitet. Auf 

höher gelegenen Flächen der alluvialen Ebene konnten sich Böden bilden. 

Altersinversionen entlang der Sedimentprofile der ersten Terrasse weisen auf ein 

hochenergetisches Ablagerungsmilieu hin, das die Verwilderung der Flussarme auf der 

Deltaebene einschließt. Die Sedimente der zweiten und dritten Terrasse sind in dieser 

Phase anhaltender Thermoerosion und fluviatiler Abtragung ausgesetzt. 

Im Gegensatz zu einigen Wissenschaftlern, die annehmen, dass pleistozäne 

Vergletscherungen teilweise das Lena-Delta bedeckt hatten, unterstützen die 

analytischen Ergebnisse dieser Arbeit diese These nicht - weder sedimentologisch (zum 

Beispiel im Auftreten von Tillen oder Moränen) noch geophysikalisch (zum Beispiel im 

Auffinden massiven Untergrundeises, das Gletschern entstammen könnte). 

Summary 
The north Siberian Lena Delta is the largest delta in the Arctic and the second largest 

in the world. Major controls on the Lena Delta development during the Late Quaternary 

are similar to those of other deltaic systems, including eustatic sea-level rise, sediment 

load and tectonics. Primary objectives of this thesis are directed to the Late Quaternary 
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environmental reconstruction of the major controls by means of sediment analyses and 

geophysical measurements. Emphasis is placed upon the benefits arising from this 

interdisciplinary approach to decipher the sedimentation history of the Lena Delta, i.e. 

its main fluvial and lake environments. They are studied by core and outcrop analysis 

and the measured sediment properties (heavy mineral composition, grain size 

characteristics, total organic carbon content) and age determinations (AMS 14C and IR-

OSL*) allow to discriminate the main sedimentary units of the three major geomorphic 

terraces. In addition, lake sediment analyses (grain size distributions, total organic 

carbon content, isotopic ratio of the total organic carbon) complemented by geophysical 

measurements (ground penetrating radar and high-resolution seismic) of the largest lake 

held by the Lena Delta enable the environmental reconstruction of the northwestern part 

(Arga Island) of the Lena Delta area.  

The main stages of the morpho-sedimentary succession as deduced from the geologic 

and geophysical datasets can be outlined as follows: the Lena Delta is a geomorphic 

composite of erosional remnants from different Late Pleistocene-aged fluvial stages 

(third and second terrace) and actual, Late Holocene-aged to modern deltaic 

sedimentation (first terrace). The latter is found primarily in the eastern sector. The 

western and northwestern sectors are dominated by exposed peaty-sandy and sandy 

uplands and islands formed during the Last Glacial sea-level lowstand (third and second 

terrace, respectively).  

Third Terrace 

Paleo fluvial sands and intercalated root horizons dated at ~88-43 ka BP (ka = 1000 a) 

form the minimum start of the sediment succession comprised by the present-day Lena 

Delta area. Evidence from heavy mineral studies supports that they derive from the 

Lena River. Outcrop, grain size and total organic carbon data show that the sedimentary 

facies is comparable to modern floodplain environments. The fluvial sands represent the 

lower section of the third terrace (0 to 14 m a.s.l.). 

Evidence for sedimentation activity during the second half of the Weichselian (43-14 

ka BP) is restricted to the locally originated Ice Complex. According to grain size, 

heavy mineral and total organic carbon studies this is a polygenetic and organic-rich 

formation derived from and positioned at the foots of the north Yakutian mountains 

(Chekanovsky and Kharaulakh Ridges). In the Lena Delta area they form the cover of 

                                                
* accelerator mass spectrometry and infrared optically stimulated luminescence 
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the third terrace (14 to 35 m a.s.l.) upon the lower sandy layers mentioned above. The 

strong facial change between the lower sand and the Ice Complex is seen as a strong 

indication for tectonic influence on sediment dispersal and strata formation in the area. 

Lena River derived sediments are not preserved from this period, but they are assumed 

in a main river channel flowing to a paleo Lena Delta located further north. 

Second Terrace 

The phase of general environmental stability during Ice Complex formation was 

followed by a new episode of incision and subsequent fluvial accumulation of the Lena 

River between >14.5 to 10.9 ka BP. It took place in a braided system under conditions 

of high peak discharges and diminished vegetation. The thick sandy sequences 

characteristic for this period represent the second terrace (10 to 30 m a.s.l.). In the 

beginning of the Holocene evidence for fluvial activity decreases in the northwestern 

area of the Lena Delta. It is ultimately replaced by aeolian activity and continuing, deep 

reaching thermokarst (<7 ka BP). This age (uncalibrated 14C years) has been revealed 

from sediments of Lake Nikolay. 

Thermokarst processes are taking place in the abandoned fluvial pathways. They 

explain the origin of the numerous lake basins located on the second terrace including 

Lake Nikolay as the largest and deepest of them. The onset of the thermokarst coincides 

with the regional Holocene climate optimum. Since ca. 5 ka BP the region has been 

under environmentally stable conditions. The morphology of the thermokarst terrain 

could be identified with the aid of high-resolution seismic data and ground penetrating 

radar (GPR). The stratigraphy of adjacent zones of limnic and cryo-terrigenic 

environments has been recorded in combined measurements. Whereas processed high-

resolution seismic data is an effective means to display the water-saturated lake basin 

fills, GPR profiles have been especially applicable for frozen ground surrounding the 

lake depressions. In addition, seismic data show that the single thermokarst basins have 

a distinctive zone of thawed subground (i.e. talik) below them. The expansion of the 

talik leads to sediment settling and is essentially responsible for the continuing depth 

increase of the lake. 

First Terrace 

The fluvial succession continues with the first terrace sediments (0 to 10 m a.s.l.) of 

Holocene age (<8.5 ka BP). The abandonment of the northwestern sector and the shift 

of the main depo-center towards the northeastern/eastern sector are associated with a 
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tectonic downwarping along a N-S trending fracture zone separating both areas. The 

rise of the Laptev Sea water level was established at its modern position in the middle 

of the Holocene and the recent deltaic fill of the river channels was initiated. Soils have 

been developing on the higher sites of the alluvial plain of the first terrace. Age 

inversions along the sediment profiles point to the high-energetic sedimentary 

environment including the uncertainty of river arm migration on the delta plain. 

Thermo- and fluvial erosion of second and third terrace sediments proceeds.  

In contrast to a number of scientists believing that Pleistocene glaciers partly covered 

the Lena Delta region the analytic data of this study do not support this - neither 

sedimentological (for example in the occurrence of tills or moraines) nor geophysical 

(for example in the detection of massive underground ice derived from glaciers).  

 



1 Introduction 
_____________________________________________________________________________________ 

 1 

1 Introduction 

1.1 Scientific Background  
Delta Characteristics 
River deltas are the main gateway for terrigenous sediment flux to the oceans during 

transgression or highstands of sea level, when much river-borne material is trapped at 

the coast to form thick sediment sequences. Extensive research on modern and ancient 

delta sequences has provided an advanced understanding of the important processes and 

facies within these settings (Fisk and McFarlan, 1955, Morgan, 1970, Galloway, 1975, 

Nemec, 1990, Orton and Reading, 1993, Stanley and Warne, 1994, Postma, 1995). Yet, 

all deltas differ widely in morphology and stratigraphy, reflecting complex interplay 

among controls such as climate, eustasy, basin geology, catchment geology and 

tectonics. Studies of Arctic delta processes, delta morphology and facies development 

are relatively limited compared to the extensive literature on low-latitude deltas (Jenner 

and Hill, 1998). Whereas the development of all deltas is governed by the interaction of 

sediment supply, the stability of the receiving basin and wave and tide processes, an 

additional primary factor in Arctic delta settings is the influence of climate, i.e. 

permafrost and ice (Reimnitz, in press). The effects of frozen ground are reflected in the 

sedimentary facies of northern latitude deltas and on sediment processes at the river 

mouth. Such is the case for the north Siberian Lena Delta. The most direct 

sedimentological indicator of its arctic setting are cryogenic features like ice wedges 

and ice-bond deposits, which are widely spread in the delta plain. But also the 

seasonally dependent water discharge is characteristic and different from deltas in lower 

latitudes. It occurs mainly after ice break-up in early summer.  

The Lena Delta Setting 
The Lena Delta is the largest delta in the Arctic and the second largest in the world 

covering an area of 3.2 x 104 km2 (Gordeev and Shevchenko, 1995). This is twice the 

area of the Canadian Mackenzie Delta, which follows second and is one of the most 

investigated deltas in the Arctic (French and Heginbottom, 1983, Walker, 1998). The 

Lena River is 4400 km long and has its origin in the Baikal Mountains more than 20° of 

latitude to the south. In addition to the Baikal area the Lena River also drains part of the 

Siberian platform. The Lena River is a good example of those long arctic rivers that 

transport the characteristics of the temperate latitude of their origin to the coast 

(Gordeev and Shevchenko, 1995, Walker, 1998). These characteristics are observed far 
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out in the sea. With the river´s second largest discharge (525 km3/yr) in the Arctic the 

Lena Delta is the main connection between interfering continental and marine processes 

within the Laptev Sea (Rachold et al., 2000). Sediments of the Laptev shelf off the Lena 

Delta reflect the dominant influence by the Lena River for example on the heavy 

mineral composition (Peregovich et al., 1999), the clay composition (Müller and Stein, 

2000), the occurrence of freshwater algae (Matthiesen et al., 2000) and the organic 

matter characteristics (Rachold and Hubberten, 1998). In addition, sediments 

transported to the sea are partly incorporated into the sea ice (Dethleff et al., 2000).  

At present, the delta surrounds a distinctive pattern of upstream and lateral islands. 

Apart from a few Paleozoic and pre-Pleistocene rocky outcrops there are numerous 

small sedimentary isles, only hundreds of meters or a few kilometres in length. 

Geomorphologically a subdivision can be made to them into three terraces (Grigoriev, 

1993). The first terrace (1-12 m a.s.l.) including active floodplains covers the main part 

of the eastern delta sector between the Tumatskaya and the Bykovskaya branches (Fig. 

1-1). This terrace is assumed the „active“ delta. The western sector between 

Tumatskaya and Olenyokskaya branches consists of mainly sandy islands, from which 

Arga Island is the largest. It has a diameter of 110 km and represents the major part of 

the second terrace (20-30 m a.s.l.). Sandy sequences covered by the so-called “Ice 

Complex” form the third terrace (30-55 m a.s.l.).  

Arga Island has many lakes and is generally uncut by river branches. In contrast, the 

rest of the delta area holds hundreds of branches. Of these, four are of major importance 

and carry the bulk of the water. The largest, known as Trofimovskaya branch, has been 

diverted strongly toward the east (Fig. 1-1). It receives 61% of the annual water 

discharge, it is followed by the Bykovskaya branch with 25% towards southeast, by the 

Tumatskaya branch to the north and by the Olenyokskaya branch to the west, each of 

them with 7% (Alabyan et al., 1995, Ivanov and Piskun, 1995). The month of maximum 

flow of the Lena River is June; more than one-third of the annual discharge occurs 

during that month. The June amount is about 60 times that of April (Gordeev and 

Sidorov, 1993). Starting in autumn the Lena Delta as well as the Laptev Sea is then 

usually ice-covered for 8-9 months per year (Timokhov, 1994, Gordeev and Sidorov, 

1993). 

Winter ice and permafrost govern the stratigraphic development of interchannel and 

channel-mouth deposits. Annual displacement of lateral and mid-channel bars is 

estimated 50-60 m and is to be explained by the widespread distribution of permafrost 
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in the delta plain (Korotayev, 1986). It retards all reworking of sediment along channels 

to a rate of only one half or one third of that on rivers outside the permafrost zone. Ice 

cover confines flow at primary channel mouths, promoting the bypassing of sediments 

across the delta front during peak discharge in spring. Permafrost minimizes 

consolidation subsidence and accommodation near the shore. This further enhances 

sediment bypass.  

 
 
Figure 1-1: Geomorphologic overview of the Lena Delta according to Grigoriev (1993). Values for the 

river runoff in the major delta branches are added after Alabyan et al. (1995). 

 
The modern alluvium consists of fine-grained sediment load (Grigoriev, 1993). 

However, despite a low tidal range of 0.4 m (Ashik et al., 1999), the Lena Delta is not 

prograding seaward but rather is undergoing shoreface erosion (Rachold et al., 2000). 

During summer thermoerosion and –abrasion induces sediment transport and removes 

sediment oceanward from the delta system into shelf channel and shelf floor 

environments. These environments are considered separate depositional systems. In 

contrast to the generally relative uniform physiography of the delta- front shoreline, the 
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local outline becomes complex due to irregular thermokarst terrain. The ingression of 

the sea into valleys and breached lake basins is attributed to the flooding by rising 

relative sea levels (Romanovskii et al., 2000, Solomon et al., 2000).  

Onshore wave-creating winds are moderate to occasionally strong in summer when the 

Laptev Sea has become open water. Maximum wave heights during storms in the 

Laptev Sea are in the range of 4-6 m (Are, 1996), but the wave incidence is attenuated 

markedly in the nearshore area by a delta fringe along the 2-m isobath (Korotaev, 1986). 

Below the fast ice in winter the gently sloping apron becomes frozen and is regarded a 

typical feature of arctic river deltas (Are and Reimnitz, 2000).  

Major controls on Lena Delta development during the Late Quaternary are similar to 

those of other deltaic systems, including eustatic sea-level rise, sediment load and 

tectonics (Goodbred and Kuehl, 2000, Stanley and Chen, 2000). However, for the Lena 

Delta system the latter two controls seem dominant with 17.6 x 106 t/yr of total 

suspended matter discharge (Gordeev and Sidorov, 1993) that contribute to create the 

largest delta in the Arctic (Walker, 1998) and active plate-driven tectonics in the area 

(Mackey et al., 1998, Franke et al., 2000).  

There are some investigators, who were concerned with reconstructing major stages in 

the history of the Lena Delta or parts of it (Galabala, 1987, 1997, Korotaev, 1986, 

Kunitsky, 1989, Grigoriev, 1993, Grosswald et al., 1999, Are and Reimnitz, 2000). 

Despite the broad knowledge obtained various problems about geologic-

geomorphologic development and sediment environments of delta deposits remained 

open. Paleogeographic reconstructions for the Late Pleistocene and the Holocene suffer 

from a lack of analytical data sets, which allow interpreting questionable sedimentary 

facies and environments. That is;  

• some scientists believe that Pleistocene glaciers partly covered the Lena Delta 

(Grosswald et al., 1999), but direct glacial traces in this area have not been found yet.  

• Alluvium of the first terrace and modern floodplain levels are determined as Holocene, 

but the exact ages of the borders between the Holocene levels are unknown (Grigoriev, 

1993). 

• The age correlation between the sandy second terrace (Arga Island) and the third 

terrace (sandy sequences below ice-rich peaty sand, so-called “Ice Complex”) is still 

discussed (Are and Reimnitz, 2000).  

• The genesis of the sandy deposits of the second terrace is in debate (op. cit.).  
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• The majority of the scientists believe that the Ice Complex was formed by fluvial and 

polygenetic processes (Grigoriev, 1993, Sher, 1999), but also a loess-like origin is 

proposed (Tomirdiaro, 1984).  

• The genesis, age and morphology of the large and deep lakes on the second terrace 

(Arga Island) is unknown (Are and Reimnitz, 2000). 

1.2 Aims and Objectives 
Primary objectives of this thesis are directed to above listed concerns in order to 

contribute to the ongoing debate. For the study a broader interdisciplinary methodology 

is applied, whose important elements are:  

(i) core and outcrop sampling at representative sediment sites in the Lena Delta. They 

are regarded as representative according to previous works conducted in the area 

(Grigoriev, 1993). (ii) Characterizing the sedimentary properties of terrace deposits (i.e. 

grain size characteristics, heavy mineral associations, total organic carbon content). (iii) 

Establishing an age frame for the morpho-sedimentary development of the Lena Delta 

by using radiocarbon and luminescence datings. (iv) Application of geophysical 

profiling (high-resolution seismic and GPR) in connection with sediment drilling and 

lake sediment analysis (i.e. grain size characteristics, total organic carbon content, 

isotopic ratios of the total organic carbon) in order to reconstruct the history of Lake 

Nikolay and its surrounding environment. Lake Nikolay is the largest amongst the lakes 

on Arga Island, and, therefore, might mirror large parts of the history of Arga Island and 

the second terrace. (v) The potential is examined for the use of GPR data in comparison 

with processed digital high-resolution seismic data for lake sediment profiling. 

1.3 Synopsis 

The study is written in the form of three papers representing independent but 

successive units. Overlapping statements may occur due to the article structure. In the 

following chapter 2, an interpretation is given on the origin of Lake Nikolay´s 

surrounding and the formation of the lake basin. In chapter 3, the attention is devoted to 

compare methodically the two geophysical recording systems used at Lake Nikolay. 

Chapter 4 focuses on reconstructing the paleogeography of the three major 

geomorphologic terraces building up the Lena Delta. Their development is regarded in 

characteristic evolutionary stages for the sedimentation history of the delta area. The 

chapter 5 summarizes the results by synthesizing the morpho-sedimentary succession 

and points to a selected open question where future research may be directed to. Further 
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information on the range of applied sedimentological methods and the measurements 

conducted to the samples is presented in the appendix. This includes a report on the 

measurements conducted to obtain luminescence (IR-OSL) ages for sandy sediments, 

which are essential for this study. This report will be published very soon as well. 

It is necessary to note that the term “Lena Delta” or “Lena Delta area” generally is 

used in a broader geographical sense, related to the overall fan-like shape of the entire 

sedimentation environment as seen from space or on topographic maps, respectively. 

This is at first regardless of the virtual genesis of the various sedimentary formations, 

which it comprises. 
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2 Evolution of Lake Nikolay, Arga Island, Western Lena Delta,  
during Late Pleistocene and Holocene time* 

2.1 Introduction 
According to Grigoriev (1993) the Lena Delta protuberating into the North Siberian 

Laptev Sea can be subdivided into three major geomorphological terraces (Fig. 2-1). The 

northeastern part of the delta (first terrace including modern floodplain levels) is assumed 

the "active" delta with accumulations of mainly sandy sequences and alluvial organic 

matter of late Holocene age (Schwamborn et al. 2000a). The northwestern part consists of 

mainly sandy deposits (second terrace). IR-OSL datings show a Late Pleistocene age for the 

uppermost layers of the second terrace (Krbetschek et al., Appendix). Third terrace deposits 

are found at the southern rim of the delta plain. 

 
Figure 2-1: Location of the study site Lake Nikolay. The lake is positioned on Arga Island, which represents 

the major part of the second terrace in the Lena Delta (after Grigoriev, 1993). 

 

                                                
* Schwamborn, G., Andreev, A.A, Rachold, V., Hubberten, H.-W., Grigoriev, M.N., Tumskoy, V., Pavlova, 

E.Yu., Dorozkhina, M.V., Polarforschung 70 (2000). Reprint kindly permitted. 
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They consist of ice-rich peaty sand accumulations (so-called Ice Complex) overlying 

sequences of sandy sediments. They are of Early to Middle Pleistocene age (Krbetschek et 

al., Appendix). Today the Lena Delta is part of the permafrost area of northern Siberia 

where permafrost thickness reaches 500-600 m (Gavrilov et al., 1986). However, there is a 

disagreement upon the extent of the ice sheet in the area during Late Pleistocene time. 

Especially the origin of the sandy second terrace and the age and origin of the numerous 

lakes located there is in discussion (Are and Reimnitz, 2000). Viewpoints contrary interpret 

the history of Arga Island, which forms the main part of the second terrace, as glacial or 

periglacial, respectively. One view favors a panarctic ice sheet covering the entire Arctic 

continental margin during the last glaciation cycle (Grosswald and Hughes, 1999) whereas 

another viewpoint regards the Eurasian continental margin as partially ice-free during that 

time (Galabala, 1997). Deposits forming Arga Island developed in a distance to the 

perimeter of a northern ice sheet. 

Arga Island, 110 km in diameter, consists of well-sorted quartz sands and ice wedges 

penetrating the sandy sediments are abundant. The Arga deposits are presumably of fluvial 

origin (Grigoriev, 1993). However, several authors have considered other processes to 

explain their genesis, i.e. a marine or lagoonal derivation, a limnic-alluvial or an alluvial-

aeolian origin (Grigoriev et al., 2000 and various authors cited therein). The sedimentary 

environment is attributed to an intracontinental or half-open basin partly connected to the 

sea. From the glacial viewpoint ice-rich frozen sands and silts are suggested that 

accumulated in meltwater paleo-basins confined by a proximal marine ice sheet from the 

north (Grosswald, 1998). Meltwater streams may even have tunneled under the grounding 

line of the panarctic ice shelf (Grosswald and Hughes, 1999). The periglacial viewpoint 

expressively excludes oscillations of the shelf ice sheet onto land and regards the sandy 

accumulations as outwash plains derived from local snow glaciers located in the 

mountainous areas on continental Siberia at the relevant time (Galabala, 1997). This also 

includes a considerable amount of aeolian accumulation (Fig. 2-2). 

Upon these sandy sediments a lake relief developed in the centrally positioned watershed 

of the island. The long axis of most of the lakes shows a submeridional orientation 

typifying lake depressions of elliptical shape. The maximum water depth is in the range of 

10-30 m for most of the lakes (Grigoriev, 1993). These deep lake basins are surrounded by 
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shallow submerged rims (up to 1 km broad) with water depths of less than 2 m. Often two 

or three basins merge to create a composite lake. Local thaw subsidence may create minor 

depressions in the shallow lake areas. Lake Nikolay shows this typical form and bathymetry 

(Fig. 2-3a).  

The central lake basins are believed to be either fluvial or lagoonal or deflation 

depressions that have been modified by aeolian and cryogenic processes as discussed in 

Grigoriev et al. (2000 and authors cited therein). Another suggestion relies on the 

assumption that the lake relief on Arga Island is a typical lake-thermokarst relief.  

 
Figure 2-2: There are two main hypotheses upon the origin of the sandy deposits and the lake area placed in 

the western Lena Delta: a glacial (a) and a periglacial (b) one. Map (a) points to the geomorphologic 

complexes of the north Yakutian lowland and adjacent areas simplified according to Grosswald (1998) and 

Grosswald et al. (1999). Map (b) shows the paleogeographical sketch-map of the Weichselian Glaciation in 

Northern Siberia according to Galabala (1997).  
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A thawing of excess ice bodies in the subground is postulated in order to explain the thaw 

settlement below the lake basins, even though discrete ice bodies have not been detected 

yet (Are and Reimnitz, 2000). In contrast, the glacial viewpoint explains the lake basins as 

erosion forms connected with glacial furrows (Grosswald et al., 1999).  

The main objective of this study is directed to this controversy whereby determining the 

age and genesis of Lake Nikolay, which is the largest amongst the lakes on Arga Island. 

Therefore, it might mirror large parts of the history of Arga Island. The lake is up to 8 km 

wide from west to east and up to 6 km long from north to south. It consists of five sub-

basins but approximately 70% of the lake area have a water depth of less than 2 m. In the 

shallow parts, below a thin (0.5 m) active layer, the underlying sediments are perennially 

frozen. Radiocarbon and IR-OSL age determinations and sedimentological studies (ice 

content, granulometry, organic carbon) are applied to reconstruct sedimentation processes 

and environmental conditions during the deposition of both lake and permafrost sediments. 

Geophysical profiling is used to obtain subsurface information of the lake basin (Fig. 2-3b). 
 

 
Figure 2-3: Map (a) shows the bathymetry and sediment sampling sites (box). Sub-basins and shallow 

margins are delined as measured the water depths with a portable infrared sounder on board of a rubber boat 

and with the aid of aerial photography. Map (b) shows the positions of geophysical profiles. Profiles 

described later in the text are highlighted by bold lines and their Figure numbers.  
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2.2 Methods 
Fieldwork and sampling was carried out during the expeditions LENA 1998 (Rachold and 

Grigoriev, 1999) and LENA 1999 (Rachold and Grigoriev, 2000). Geophysical surveys and 

sediment sampling have been performed for both lake and permafrost deposits. In addition, 

mathematical modeling has been applied to aid geophysical data interpretation. 

2.2.1 Geophysical Profiling 
A survey of shallow seismic and ground penetrating radar (GPR) was run to explore the 

mosaique of limnic and cryo-terrigenic environments (Fig. 2-3 (b)). Seismic studies 

concentrated on the deeper parts of the lake where the water depths range from 10 to 30 m 

(the greatest depth in one of the sub-basins). A sediment echo sounder (GeoChirp 6100A 

from Geoacoustics, UK) with high-frequency pulse of 1.5 to 11.5 kHz installed aboard a 

rubber boat was used for surveying the deeper lake basins. It allows a theoretical vertical 

resolution of ca. 35 cm (Quinn, 1997) of the processed Chirp data. Recording time of the 

GeoChirp is restricted to a time window of 130 ms TWT (two-way travel time). The 

seismic reflections are automatically processed during the cruises applying a cross-

correlation and analogue print-outs are provided already in the field. These prints are used 

for presentation in this paper. An approximation of penetration depth is based on assuming 

average sonic velocities of 1420 m/s for water and 1490 m/s for unconsolidated limnic 

sediments (Niessen and Melles, 1995) and 1800 m/s for compressed sandy sediments 

(Eyles and Mullins, 1997, Niessen and Jarrard, 1998).  

GPR studies allowed extending the subsurface profiling to the marginal parts of the lake 

where wave penetration into the permafrost was possible by electromagnetic (EM) means. 

Profiling has been carried out using 25 and 100 MHz antenna pairs from the winter ice 

cover in connection with drilling activities. GPR is an established technique for permafrost 

investigations (Annan and Davies, 1976, Judge et al., 1991, Robinson et al., 1997) and the 

potential of this method for surveying lake sediments through an ice cover has been 

documented (Moorman and Michel, 1997). 

A RAMAC impulse radar system (Mala/Geoscience) was used for GPR profiling. In order 

to determine the velocity-depth function of the EM waves, common mid-point (CMP) 

measurements were recorded at characteristic sites like shallow lake areas, deep basins and 

on land. To verify the CMP measurements the thickness of the lake ice and the water 
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depths were measured in the field with a plumb line and a measuring tape. During the 

summer surveys on land in August 1998 the thickness of the active layer was determined. 

The propagation velocities for the EM waves were measured 55 m/µs for saturated lake 

sediments, 161 m/µs for permafrost below the lake ice and 173 m/µs for lake ice. The value 

for water is set to 33 m/µs according to Davies and Annan (1989). Estimates of depths in 

different media are based on these values. As the resolution of GPR is dependent on the 

wavelength in the different media (Moorman and Michel, 1997) the approximate vertical 

resolution for example with the 100 MHz antenna pair was calculated in the permafrost 0.7 

m and in the water-saturated lake sediments 0.3 m, respectively. In total, 13 profiles were 

collected with data for about 25 km of lake sediments. The field survey was operated by a 

computer and the resulting reflections were on-line visualized on the screen. Lab 

processing of the radar sections included time-zero correction, band-pass filtering, 

automatic gain control and corrections for topographic migration wherever necessary.  

During the field work GPR was used to determine appropriate lake sediment coring sites. 

Vice versa, the core data are used to interpret the reflection pattern of the radargrams. 

2.2.2 Sediment Sampling 
A drilling transect was undertaken to obtain continuous core samples from one of Lake 

Nikolay´s sub-basins to the shallow margin around it. The sampling sites (cores A1, A2, A4 

and A5) are displayed in Figure 2-3 (a). Vertical drilling in both frozen and unfrozen lake 

sediments was performed from the ice using a frozen-ground rotary coring kit consisting of 

an engine power-auger unit, iron rods, and iron core barrels. Samples of second terrace 

deposits around the lake have been retrieved by drilling into the permafrost at a manually 

cleaned outcrop near the shore. A HILTI drilling machine was used to recover frozen 

samples horizontally out of a 5 m sandy sequence (sampling site D1).  

Core sections were cleaned, described and stored immediately after sectioning. By 

packaging each individual sample in the field, it was unnecessary to maintain the samples 

in their frozen state during transit to the laboratory. 

2.2.3 Laboratory Methods 
After the sediment samples had been examined for moisture (gravimetric water content) 

the grain-size distribution was determined by laser particle sizing (LS200, Coulter Corp.) 

for both core and outcrop sediments. Individual samples were oxidized (3% H2O2) to 
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remove organic matter and dispersed (10% NH4OH) to diminish surface tension. Total 

organic carbon (TOC) was analyzed with a Metalyt-CS-1000-S (Eltra Corp.) on pulverized 

samples after removal of carbonate (10% HCl) at a temperature of 80°C. International 

standard reference materials (GSD, 9, 10, 11) as well as double measurements were used to 

check the external precision. The analytical precision of the analyses is ±5% for TOC 

contents >1 wt% (wt = weight) and ±10% for TOC contents <1 wt%.  

A stable carbon isotope profile was determined for organic material of core A1 from the 

basin center. 13C/12C isotope ratios were measured using a FINNIGAN DELTA S mass 

spectrometer after removal of carbonate with 10% HCl in Ag-cups and combustion to CO2 

in a Heraeus elemental analyzer (Fry et al. 1992). Accuracy of the analytical methods was 

checked by parallel analysis of international standard reference material. The analytical 

precision of the carbon isotope analyses is ± 0.2 ‰. 

Finally, the pollen record of core A1 was analyzed. Pollen samples were prepared using 

standard techniques (Føgri and Iversen, 1989). For each sample 200-300 terrestrial pollen 

grains were counted at 400x magnification. Spores were counted in addition and the 

relative frequency of pollen, spores and algae was determined according to Berglund and 

Ralska-Jasiveczowa (1986). Selected organic-rich layers and plant remains were used for 

AMS radiocarbon dating at the Leibniz Laboratory, Kiel. Ages cited in the text are 

expressed in radiocarbon ages (yr BP) unless calibrated into calendar years before present 

(cal. yr B.P.) according to the intercept method (Stuiver et al., 1998).  

2.2.4 Mathematical Modeling 
In one seismic profile, a prominent reflector is interpreted to show the boundary between 

frozen and unfrozen sediment below one of the sub-basins. To test this hypothesis a 

mathematical model has been calculated illustrating the thawing propagation. The two-

dimensional axisymmetrical model used takes into account cryolithogenic properties and 

lake evolution in time. The equation for heat conduction is described by a finite differences 

method. For simulation, the computational area was set to a size of 3600 m in horizontal 

and 3000 m in vertical direction. The initial distribution of temperatures was determined 

according to the boundary conditions. They are based on measured field data (water 

temperature, depth, permafrost temperature according to Schwamborn et al. 2000b) and 

include the age of the lake (Schwamborn et al., 2000a). The thawing development below 
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the deeper basin only has been estimated excluding the shallow-water margin around the 

basin. The following presumptions are made: 

1. Lake Nikolay predominantly has a thermokarst genesis; i.e. it has developed due to the 

thawing of frozen deposits that have a thickness of at least 10 m and a volumetric ice 

content of 25%. 

2. Lake formation started at 7000 14C yr BP. 

3. The occurrence of massive ice bodies is excluded and, thus, does not affect subsidence. 

4. The thermophysical properties of the deposits at Lake Nikolay that could not be 

determined are similar to those of sand deposits in the north of Western Siberia (Ershov, 

1984). They have a comparable genesis, grain size and moisture (ice content). Since 

these parameters are changeable, they are reviewed in versions of different groups (N1 

through 3) of thermophysical properties (Table 2-1). 
 

Region groups λ f λ t Cf Ct Q γ  W 
 

Common data 
for West Siberia, 

fine sand, laIII-IV 

 
N 1 

 
2.2 

 
2.16 

 
1920 

 
2630 

 
113970 

 
1700 

 
0.2 

Common data 
for West Siberia, 

dusty sand, laIII-IV 

 
N 2 

 
1.82 

 
1.46 

 
1920 

 
2630 

 
113970 

 
1700 

 
0.2 

Common data 
for West Siberia, 

fine sand, laIII-IV 

 
N 3 

 
2.05 

 
1.99 

 
1860 

 
2520 

 
106995 

 
1680 

 
0.19 

λf = frozen thermal conductivity [W/(m*K)] 
λt = unfrozen thermal conductivity [W/(m*K)] 
Cf = frozen heat capacity [J/m3*K] 
Ct = unfrozen heat capacity [J/m3*K] 
Q = latent heat [J/m3] 
 γ  = density [kg/m3] 
W = sand moisture 

Table 2-1: Thermal properties of deposits adopted for the simulation according to Ershov (1984) and 

Gavrilov et al. (2000). Three groups of Siberian sandy deposits (N1-N3) have been defined. 

 
5. The geothermal heat flux at the lower boundary is 50 mW/m2 and the dynamics of mean 

annual ground temperature are according to Vostok ice core data from Antarctica (Petit 

et al., 1999), which have been customized for the Laptev Sea region (Gavrilov et al., 

2000). 
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2.3 Results and Discussion 
2.3.1 Land Deposits 

An outcrop near the southern lake shore exposes about 5 m of fine-grained sand belonging 

to the second terrace of the Lena Delta (site D1 in Figure 2-3 (a)). The sand is bound by 

lens-shaped texture ice and contains a complex system of narrow ice veins. It is noteworthy 

that the geomorphic situation at the southern shore banks, where site D1 is located, is more 

stable than at the northern ones. Thermoabrasion is active around the entire lake, but 

especially along its northern margin. Due to the high latitudinal position of the area, 

insolation is higher at southerly exposed slopes. Destruction and retreat of the northern 

shore banks is more rapid, therefore supporting a lake elongation towards the north. For 

Lake Nikolay this relationship - insolation effects and bank retreat - is favoured against a 

predominance of wave (wind) action influencing the lake’s shape as preferred in a review 

of literature on the elongation of oriented thaw lakes in periglacial regions by French 

(1996). 

The sediments as found at the bluffs around Lake Nikolay are lacking pronounced 

bedding structures and appear as massive fine-sandy accumulations. Throughout the 

sequence of site D1, the sediments show similar grain size distributions with mean grain 

sizes varying between 2.0 and 2.5 phi (1st statistical moment). They are well to moderately 

sorted (2nd statistical moment: 0.8-1.4) and poor in organic content (TOC content ≤ 0.1 

wt%). Gravimetric ice content of the frozen sands does not exceed 20 wt%. The ice veins, 

up to 0.5 m wide, build up ice wedge polygons of 10 to 15 m diameters towards the surface. 

Formation of the ice wedges is probably of Late Pleistocene to Early Holocene age as 

deduced from oxygen isotope measurements (H. Meyer unpublished data). The results 

resemble measurements from Bykovsky Peninsula, southeast of the Lena Delta, which have 

been dated accordingly (Meyer et al., in press). Downwards the fabric of ice veins can 

reach depths of 50 m and more as indicated by GPR records (Schwamborn et al., 2000c). 

Luminescence datings, which were conducted to the sandy sequence, reveal a time span of 

deposition from 14,500 to 10,900 yr BP (Krbetschek et al., in press). Since the post 

Pleistocene transgression of the Laptev Sea only reached its modern coastline at about 

6000-5000 yr BP (Holmes and Creager, 1974, Bauch et al., 1999, Romanovskii et al., 

1999), the sediments of Arga Island have to be related to a continental environment. The 
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high sedimentation rate implied by the overlapping ranges of the luminescence ages 

probably is associated with a fluvial environment under upper flow regime. It has been 

shown at comparable river bed sediments of the Russian Plain and of the same age that 

periglacial river channels during and posterior to the Weichselian Glaciation were formed 

under conditions of high water flow during spring that is believed to have been up to eight 

times greater than the modern discharges (Panin et al., 1999, Sidorchuk et al., 2000). 

Correspondingly, marine records from the outer Laptev Shelf have revealed that significant 

climate changes at the termination of the Pleistocene led to rapid increases of sediment 

supply to the Arctic Ocean after 15,000 and 13,000 yr BP (Müller and Stein, 2000, 

Boucsein et al., 2000, Spielhagen et al., 1998). This is supported by seismic penetration 

into pre-Holocene paleoriver channels identified on the Laptev Sea shelf in Parasound 

profiles (Kleiber and Niessen, 2000). The seismic records and drilling results suggest that 

the river runoff was continuous through the major valleys on the exposed Laptev Shelf with 

increased input between approximately 13,400 and 10,000 yr BP. Furthermore, these events 

seem to coincide with abrupt changes in the hydrological and environmental conditions in 

the non-glaciated continental lowland areas of Siberia. Numerous permafrost sites show 

evidence for a rapid increase of denudation linked with activation of different 

geocryological (solifluction, thermokarst, thermal erosion etc.) and fluvial processes during 

this time (Siegert, 1999). For example, the formation of the deep and wide valleys of 

tributaries of the middle Lena River were dated to have occurred before 14,000 yr BP 

(Katasonova and Ziegert, 1982). Pronounced thermokarst processes started at 13,000 yr BP, 

for example on glacial deposits with dead-ice bodies in the Labaz Lake area (Taymyr 

Peninsula) (Siegert et al., 1999) and at Ice Complexes in the central Yakutian lowland 

(Katasonov et al., 1999). In general, the north Yakutian lowlands are thought to have 

remained ice-free for the last 50,000 yr BP (Romanovskii et al., 2000). Massive bodies of 

Ice Complexes in the area, as on Bykovsky Peninsula, have preserved a continuous record 

of environmental history from the Early Weichselian to Holocene time (Schirrmeister et al., 

2000, Siegert et al., in press). These climate-induced formations can only form in non-

glaciated environments.  

Summarized, a periglacial and continental environment is proposed for Arga Island during 

Late Pleistocene time. Seasonally dependent river activity with higher peak discharges led 
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to high sediment transport and deposition of thick fluvial sequences in the North Yakutian 

lowlands. Partially they are preserved in morphological terraces like Arga Island north of 

the continental mountains or distributed along river valleys on the Siberian mainland as 

shown by Galabala (1997).  

2.3.2 Lake Sediment Stratigraphy 
Lake basin sediments were sampled in the middle of one sub-basin (core A1) of Lake 

Nikolay, where sedimentation is not affected by marginal gravitational sliding. Core A1 has 

been recovered in a length of 3.25 m. Based on field description and according to physical 

and biogeochemical measurements the core can be divided into two sedimentary units (Fig. 

2-4). The upper unit (0.9 m) consists of organic-rich fine sand (max. TOC content: 3.9 

wt%, water content: 30 to 60 wt%) with sporadical plant fragments. This unit is regarded as 

lake sediment reaching from the modern status backwards in time. The lower unit of the 

core (2.35 m) consists of organic-poor fine sand. The sands of this unit are interpreted to 

have the same origin as the sediments at the bluffs around the lake. The structureless sandy 

sediments of the lower unit from core A1 match the sandy deposits of site D1 in terms of 

similar mean grain sizes (1st statistical moment: 2.4 to 3.4 phi), sorting (2nd statistical 

moment: 1.3 to 2.1), low TOC content (<0.1) and water content (<20 wt%). 

When comparing the grain size characteristics of the lower and the upper unit of core A1 

both core units show a narrow range of grain size (Fig. 2-4). Yet, a shift in the median by 

~64 µm from coarser grains in the lower unit to finer grains in the upper unit can be seen. 

This is interpreted as resulting from a considerable aeolian contribution to the sedimen-

tation of the upper unit. In the modern lake sediments, sand derived from aeolian transport 

admixes with presumably suspended material from the small inlets around the lake. This 

may lead to a slight decrease in mean grain size due to a preferential transport of sand with 

smaller grain sizes. The incomplete vegetation cover in the area and exposed ground would 

have allowed considerable transport of silty sand by wind. Strong winter winds are capable 

to expose bare ground and move sandy dust across the surface, as seen on the lake ice and 

on land during our field work. Holocene aeolian sediments are widely spread on Arga 

Island. They consist of silty sand with vertical plant stems and roots (Galabala, 1997). 
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Four AMS 14C dates 

in a consistent depth/ 

time relation were 

obtained from plant 

remains revealing a 

maximum age of about 

7090±40 14C yr BP 

(Table 2-2) for the 

upper unit. This age 

marks the beginning of 

organic-rich sedimen-

tation in the depression. 

The oldest date of 

12,480±60 14C yr BP 

dates presumed pre-lake 

material of the lower 

unit. This age agrees 

well with the IR-OSL 

ages of 14,500 to 

10,900 yr BP measured 

for the sandy sediments 

at site D1. 
 
 
 
 
 

 
sample core depth (m) lab. no. measured age 

(14C yr BP) 
calibrated age 
(cal. yr B.P.) 

 
A1 0.1 KIA9113  2080±30 2060 
A1 0.3 KIA9114  4335±40 4910 
A1  0.85 KIA9115  7090±40 7920 
A1  0.95 KIA9116 12480±60 14850 

 
Table 2-2: AMS radiocarbon ages and calculated calendar years for core A1. 
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2.3.2.1 Organic Carbon Isotope Record 
The organic carbon isotope record (δ13Corg.) of the lake sediments includes 21 samples of 

bulk organic material of the upper unit from core A1. The low TOC values for the 

underlying pre-lake sediments show that organic matter plays a negligible role (Fig. 2-4). 

Organic-rich sediments of the upper unit have been deposited with a narrow range of 

δ13Corg. values between –25 and –27 ‰ V-PDB. This is similar to δ13Corg. values from –

26.6 to -24.3 ‰ V-PDB of terrestrial plant material in this climatic region (Gundelwein, 

1998). In contrast, fresh-water plankton generally has depleted δ13Corg. values of –30.0±3 

‰ V-PDB (Ariztegui and McKenzie, 1995). Modern autochthonous macrophytes of Lake 

Nikolay fall between these two ranges with values of –26.3 ‰ V-PDB. A negative 

correlation between TOC concentrations and the δ13Corg. values in the upper unit is seen in 

Figure 2-4. A prominent maximum in the TOC content at about 7000-6000 14C yr BP and a 

few minor TOC maxima following towards the top of the section are paralleled by shifts of 

δ13Corg. towards lighter values. These findings indicate that lighter δ13Corg. values can be 

explained by an increasing contribution from plankton. Thus, light δ13Corg. values indicate 

high lake-internal productivity and correlation with high TOC values mirrors lake 

production for Lake Nikolay rather than terrestrial supply. It confirms the suggestion of 

little supply from the catchment made by the grain size data. The generally rather small 

range of carbon isotopes indicates that the lake environment seemed environmentally stable 

at least after the bioproductive maximum between 7000-6000 14C yr BP. 

2.3.2.2 Vegetation History 
Also the pollen spectra of core A1 provide information about paleoenvironmental changes 

over the last 12,500 14C yr (Fig. 2-5). A high percentage of algae (Pediastrum and 

Botryococccus) occur in the lower unit of the core radiocarbon dated at 12,480±60 14C yr 

BP. This is associated with a shallow water environment, for example a water pond, at that 

time. Pollen data reflect that scarce sedge and grass dominated the vegetation with some 

Artemisia communities on dryer ground. Rare grains of Alnus fruticosa, Betula nana and 

Salix may reflect the reworked character of the sediments, or these species might have 

grown in well-protected places of the Lena River valley. Generally, very few pollen were 

found in the sandy sediments between 0.9 and 1.0 m (zone I). 
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Figure 2-5: Pollen spectra of core A1. The determination of the relative frequency of pollen is based on the 

sum of tree and herbs pollen. The percentage of spores is based on the sum of pollen and spores. The 

percentage of redeposited taxa (Tertiary spores and Pinaceae) is based on the sum of pollen and redeposited 

taxa. The percentage of algae is based on the sum of pollen and algae. 
 

Pollen spectra deposited at the onset of the upper unit about 7000 14C yr BP (zone II) 

suggest that shrubby vegetation (Alnus fruticosa and Betula nana) dominated around the 

lake. High amounts of Cyperaceae, Ericales pollen, Equisetum spores and the presence of 

Menyanthes trifoliata pollen indicate wide distribution of wetlands. Shrubby tundra with 

shrub alder (Alnus fruticosa) and dwarf birch (Betula nana) dominated around the lake 

from 7000 to 6000 14C yr BP. This requires that climate was significantly warmer then 

today. Other pollen and plant macrofossil data from the area also support that the warmest 

climate occurred during that time (MacDonald et al., 2000, Andreev et al., 2001, Pisaric et 

al., 2001, Andreev et al., in press). The pollen concentration is highest, reflecting high 

productivity of plant communities on Arga Island. These data are in a good agreement with 
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a TOC maximum between 7000 and 6000 14C yr BP in the lake sediments (Fig. 2-4). 

Between 6000 and 5000 14C yr BP a decrease of Alnus fruticosa and Betula nana pollen 

and a significant increase of long-distance transported pollen of Picea obovata, Pinus 

pumila and P. sylvestris document changes in the local vegetation and a decrease in 

productivity of the plant communities. Such deterioration of climatic conditions is probably 

connected with the sea-level rise to its present level about 6000-5000 yr BP (Bauch et al. 

1999). The climate after that time in many coastal Arctic regions became more maritime 

(Andreev and Klimanov, 2000). Shrub alder communities were probably growing on the 

island during that time. Disappearance of Alnus from pollen spectra after 4300-4200 14C yr 

BP is in a good agreement with pollen data from Bykovsky Peninsula, southeast of the 

Lena Delta, where Alnus fruticosa pollen also declined about that time (Andreev et al., in 

press). It is interesting to note that the youngest Larix remains found above the modern 

treeline (Tit-Ary Island area) are also dated at 4200 14C yr BP (MacDonald et al., 2000). 

Pollen data suggest that climate during that period was the most favorable for the terrestrial 

and limnic ecosystems. Pollen spectra dated at 4000-2000 14C yr BP reflect that herb-

shrubby tundra with dwarf birch (Betula nana) dominated around the lake during this 

period. Relatively high amounts of reworked Pinaceae pollen and Encalypta spores (moss 

growing on disturbed soils) reflect scarce vegetation cover during that time. 

Vegetation cover and climate became similar to modern conditions at about 2000 14C yr 

BP (zone III). Open sedge and grass communities have been dominating in the area since 

then. The high percentages of long distance transported pollen such as Picea and Pinus 

reflect low pollen productivity of local plant communities. 

2.3.2.3 Seismic Stratigraphy of Basin Fills 
As has been shown Lake Nikolay is dominated by sandy sediments. The basin fill covers 

different subaqueous relief levels and varies in thickness in the decimeter to meter range 

(Schwamborn et al., 1999). Based on the geometry of subbottom profile shown in Figure 2-

6 three seismic units can be identified. They are referred to as seismic units (SU) 1 through 

3. 

SU 1: The uppermost boundary shows continuous to semi-continuous reflections of 

laterally alternating high and low amplitudes. Changing backscatter of the reflectors may be 

due to variations of organic matter content in the sediments, which at site A1 mainly 
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consist of organic-rich fine sand as seen in the core. The first reflections of SU 1 are 

underlain by a narrow band, which is seismically transparent. The total thickness of both 

parts of this unit amounts to 0.5-1.0 m. SU 1 continuously overlies the underlying units. 

The draping of SU 2 by SU 1 without large differences in SU1 thicknesses indicates 

sedimentation from “pelagic” rain. This suspensional transport through the water column 

may be promoted by the small inflows shown in Figure 2-3 (a) and aeolian sediment supply 

as mentioned earlier. 

SU 2: The top of SU 2 is marked by a strong continuous reflector. Below this, the unit 

alternates from transparent parts to parts with several internal reflectors. The unit locally 

thins to decimeters and pinches out in the central parts of the basin, but thickens to as much 

as 5 m at the margin. It suggests that slumping or turbidity currents will have caused the 

observed geometry. Core A1 indicates the lithofacies of this unit as fine sand in the relevant 

part of the core. The water content changes sharply from 30 to 60 wt% in the upper part of 

the core to about 20 wt% in the lower part, which is relevant to SU 2. This contrast in water 

content is interpreted to have caused the uppermost reflections of SU 2. 

SU 3: The upper surface of SU 3 varies from smooth to hummocky. Below a strong upper 

reflector, internal reflectors are horizontally stratified or spotty. The causes of the internal 

reflectors of SU 3 remain unclear since the core A1 does not provide a clear indication. It 

consists of fine sand only in the relevant part of the core as already described for SU 2. 

Unfortunately, a multiple of the upper surface of SU 3 occurs in the seismic data. This 

interferes with further stratigraphic interpretations and a lower boundary of SU 3 is not 

clearly visible. Either wave penetration has ceased due to loss of energy or the restriction of 

the GeoChirp´s time window prevents more subbottom detail. Assuming the same material 

below the lake as around it, as indicated by sediment data from core A1 and site D1, the 

subground of Lake Nikolay consists of massive fine sand down to at least 60 m sediment 

depth. This is suggested by GPR measurements around site D1, which show a continuous 

radar facies pointing to a uniform geological substrate of this thickness (Schwamborn et al., 

2000c). 
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 Figure 2-6: Shallow seismic profile illustrating the acoustic stratigraphy of the studied basin sediments (VE: 

~1:5). For interpretations of the seismic units 1 through 3 (SU 1-3) see the text. Approximate locations of 

cores A1, A2, A4 and A5 drilled through the lake ice are added. 

2.3.3 Talik Development  

2.3.3.1 Seismic Indication 

One of the seismic profiles penetrates as much as 120 ms TWT and reveals a curved 

reflector below one of the sub-basins (Fig. 2-7, for location see Fig. 2-3b). This reflector 

corresponds to about 95 m of fill at maximum below the water column. With a steep drop 

in the beginning of the profile, the unit thickens to about 110 ms TWT in the southern part 

of the basin. It then thins slightly towards the northern part of the profile before abruptly 

pinching out. In contrast to layered seismic reflections, which are generally indicative of 

sediment changes, the trough-like curved seismic boundary is assumed to be created by the 

talik-permafrost boundary. Outside of the talik outline, seismic penetration is prevented by 

the permafrost table and sediment structures within the permafrost remain unknown. The 

lack of internal reflectors for the recorded talik area suggests that the acoustic waves have 

penetrated a fairly homogenous substrate with little internal sedimentary structure and/or 
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low acoustic contrasts, respectively. Possible sedimentary changes may be too subtle to be 

resolved. An additional sedimentary explanation for the acoustic transparency could be the 

fact that internal layering of talik sediments may have been destroyed due to thaw and 

subsidence. 

On the other hand, the propagation of acoustic energy through the water column and sub-

surface generally results in energy loss due to spherical spreading of the wave front, 

attenuation by inter-granular friction loss and the reflection coefficient of each material 

interface crossed (Sheriff and Geldart, 1995).  

The general lack of internal reflectors, i.e. material interfaces, in the recorded talik means 

that the attenuation of signal loss is low. Furthermore, multiples caused by the water/lake-

sediment interface are weaker than in other profiles. This implies that a greater proportion 

of the energy may have penetrated the subground, thus enabling the higher penetration. 

Nevertheless, with increasing penetration depth higher acoustic contrasts are needed to be 

resolved by seismic means. 

To describe the clear reflections presumably caused by the permafrost table below the 

sub-basin a calculation of the reflection coefficient for this boundary has been applied. 

Following Kearey and Brooks (1984) a reflection coefficient (R) for a deeper reflection can 

be calculated for seismic data using the following relationship: 

 
ρ2 ν2 - ρ1 ν1           Z2 – Z1 

R =             =                       (1) 
ρ2 ν2 + ρ1 ν1          Z2 + Z1 

 
where ρ, ν, Z are the density, the P-wave velocity, the acoustic impedance for an upper 

(Z1) and a lower (Z2) rock layer, respectively. If R = 0 all the incident energy is transmitted. 

This is the case when there is no contrast of acoustic impedance across an interface (i.e. Z1 

= Z2), even if the density and velocity values are different in the two layers. If R = +1 or –1, 

all the incident energy is reflected. Values of reflection coefficient R for interfaces between 

different rock types rarely exceed ±0.5 and are typically less than ±0.2 (Kearey and Brooks, 

1984). There are no field or laboratory measurements available for the fine-grained 

sediments of Lake Nikolay. Therefore, in our case study ν1 is 1800 m/s as the assumed 

wave velocity in the fine sandy talik sediments, introduced earlier, ν2 is 3700 m/s as the 

wave velocity in unconsolidated permafrost according to measurements on frozen fine sand 
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Figure 2-7: The shallow seismic profile exhibits a prominent curved reflector below one of the sub-basins  

(VE: ~1:5). This line is interpreted to represent the boundary between unfrozen and frozen sediments. 
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from the Canadian Arctic (Zimmerman and King, 1986). The latter is a minimum value; 

seismic velocities in frozen sand can even reach 4190 m/s (Zimmerman and King, op.cit). 

Density values for ρ1 and ρ2 are set to 1.7 g/cm3 according to measurements on fine sand of 

deposits in the north of Western Siberia (Ershov, 1984), which are regarded to be 

comparable with those of Lake Nikolay. However, frozen sands may have slightly lower 

density values since the density of ice (0.92 g/cm3) is lower than that of water.  

The result of the calculation of the reflection coefficient for the presumed talik-permafrost 

boundary is following equation (1) +0.35. The high contrast between the two acoustic 

impedances allows the boundary to be detected even when there is left only a small amount 

of seismic energy in greater depth. The differences in the acoustic impedances are mainly 

caused by their large differences in wave velocities for unfrozen and frozen media. 

The permafrost table detected by drilling at one basin margin supports the seismic 

interpretation. The cryolithogenic properties of sediment cores A2, A4 and A5 next to one 

lake basin show that the subsurface is unfrozen fine sand (Fig. 2-6). It only becomes a 

thoroughly frozen subground at the end of the core transect in a distance of 15-20 m to the 

basin (core A5). Grain size distributions and ice/water contents of the fine sands from cores 

A2, A4 and A5 resemble those of the lower unit of core A1. 

2.3.3.2 Results of Mathematical Modeling 
To aid seismic interpretation for the subsurface below the basin a mathematical model has 

been calculated. It predicts the expansion of a thawing front below the lake basin, where a 

fresh water body with temperatures above 0°C induces thawing of surrounding permafrost 

ground. The model is intended to characterize the cryolithogenic properties of the 

subground, where no drilling results can provide verification. It is applied to the sub-basin 

shown in Figure 2-7. Accepting the initial and boundary conditions and the thermophysical 

values for the geological material (see Table 2-1) the model calculates a talik expansion 

below the deeper basin as displayed in Figure 2-8. The calculation initiates at 120,000 yr 

BP. At 7000 yr BP the lake formation starts and extends to its maximum given size at 

present with a rate of 2 m/yr. The temperature of the bottom sediments is received to be at 

first 4°C, and then it decreases down to 2.5°C in conformity to field data.  

We note that the shallow seismic profile does not cover the center of the basin, but is 

shifted towards its western margin. Thus, the maximum values calculated by the model 
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have to be corrected towards the basin margins assuming that greater water depth in the 

center of the basin has led to a greater talik depth below it (Table 2-3). The data in Table 2-

3 demonstrate that the talik depth under the lake is dependent mainly on ground heat 

conduction in thawed and frozen geologic material, respectively. 

 

Figure 2-8: Results of mathematical modeling of talik formation below one of Lake Nikolay´s sub-basins. 

The total depth (m) of the lake talik is dependent on the accepted thermophysical properties. Min. and max. 

results reflect the range originated by the different values of groups N1 through 3 (see Table 2-1). Location of 

seismic profile from Fig. 2-7 is indicated. It has been gained perpendicular to the west-east oriented 

mathematical model. 

 

Therefore, the talik depths obtained for groups N1 and N3 describing similar geologic 

material are similar, for group N2 it is smaller. The average depth of the talik bottom at the 

basin margin as deduced from the mathematical model is calculated at 106 m. The 

estimated depth of the curved reflector in the seismic chart (95 mtalik + 1.5 mresolved basin 

sedimentation + 5 mwater column = 101.5 mtotal depth) is in a good agreement with the calculated talik 

depth in the model (see Fig. 2-8) and the values of Table 2-3. Consequently, the 
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mathematical model can support the interpretation that the curved seismic reflector 

represents the boundary between unfrozen and frozen sediment.  
 

bottom depth (m) of the lake talik below lake surface in dependence 
on the groups N1 through N3 

distance from 
basin margin (m) 

N1st group of 
thermophysical properties 

N2nd group of 
thermophysical properties 

N3rd group of 
thermophysical properties 

100  82.8  73.4  81.7 
150 116.1 100.4 114.5 
200 135.1 115.8 133.7 

central part of the basin 159.3 134.3 158.7 
total bottom depth (m) of the talik boundary below the lake surface according to seismic data: ~101.5 m 

 
Table 2-3: Calculated total bottom depth (m) of lake talik according to the modeling results and in 

dependance on the distance from the basin margin. 

2.3.4 GPR of Permafrost Deposits 
GPR profiles from the shallow margins of the lake, in contrast to the seismic records, 

display several internal reflectors in the sediments (Fig. 2-9). The radar profile of Figure 2-

9 has been recorded as the continuation of seismic profile of Figure 2-6 towards northwest. 

The sediments consist of frozen fine sand as seen in core A5. Below the winter lake ice 

cover (thickness: 1.2 m) sediment structures are resolved down to a penetration depth of ca. 

23 m with the 100 MHz antenna pair. The frozen sand as recovered in core A5 exhibits 

horizontal to slightly inclined reflectors in the radargram, probably representing fluvial 

bedding structures. The inclined bedding points towards the basin located at the 

southeastern end of the profile. This suggests that the thermokarst depression was 

established in the center of a former fluvial pathway.  

2.4 Conclusions 
We can reconstruct the following post Pleistocene evolution of depositional processes in 

the Lake Nikolay area from our data set.  

At ca. 15,000 to 11,000 yr BP, a continental sedimentation dominates the environment of 

Arga Island. Sandy deposits formed with high sedimentation rates indicate a fluvial 

environment under upper flow regime. Sediments underlying today’s lake basins in the area 

consist of fine sand that is comparable with the surrounding sandy environment. 
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Figure 2-9: Radar profile of the shallow lake margin obtained with the 100 MHz antenna pair and the 

lithofacies of core A5. 

 
Gravitational sliding of marginal sediments into individual basins took place before lake 

sedimentation starts at about 7000 14C yr BP after a transition period from a fluvial to a 

shallow water to a limnic environment. The beginning of lake sedimentation coincides with 

the onset of the regional Holocene climatic optimum. Limnic sedimentation consisting of 

organic-rich sands in the center of the sub-basins takes place with average sedimentation 

rates of about 0.1 m per 1000 years.  

Lake Nikolay has induced a talik expansion below its deeper basins. Mathematical 

modeling of the talik expansion supports the interpretation that thaw subsidence of the 

sandy subground alone is sufficient to have created the deeper basins on Arga Island even 

though the ice content is low in the subground. Neither geological (for example the 

occurrence of till, moraine) nor geophysical (for example the detection of glacial furrows or 

scratch marks) results are obtained, which support the hypothesis of a glacially caused 

morphology of the area as deduced from remote sensing techniques according to Grosswald 
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et al. (1999). The occurrence of massive underground ice proposed by Are and Reimnitz 

(2000) cannot be proven by GPR and shallow seismic measurements, either.  

Presumably small ponds in abandoned fluvial pathways rather extended in depth and size 

due to thermokarst processes promoted in the ice-poor sandy subsurface. Thermokarst is 

still active especially at the northern shores where insolation is higher than at the southern 

shores and shore banks are retreating more rapidly due to thermoabrasion. This process 

promotes the elongation of the lake’s shape. The spreading of the shorelines has merged 

several small thermokarst lakes together forming today’s Lake Nikolay as the largest lake 

hold by the second terrace of the Lena Delta. 
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3 High-resolution seismic and ground-penetrating radar– geophysical 

profiling of a thermokarst lake in the western Lena Delta, N-Siberia* 

Abstract 
High-resolution seismic and ground-penetrating radar (GPR) data have been acquired over 

Lake Nikolay in the western Lena Delta in order to study the uppermost basin fill and the 

bordering frozen margins. GPR (100 MHz antenna pair) measurements were completed on the 

frozen lake and its permafrost margins, while high-resolution seismic data were acquired from 

the lake during open water conditions in summer using a 1.5-11.5 kHz Chirp profiler. The 

combined use of the two profiling systems allows stratigraphic profiling in both frozen and 

unfrozen parts of the lake. Shallow seismic reflection images of the uppermost 4 to 5 m of 

sediments are compared to GPR sections, which have approximately the same horizontal and 

vertical resolution. Short sediment cores aid calibrate the geophysical data. 

3.1 Introduction 
The Lena Delta is a large Arctic delta and the main connection between continental and 

marine environments in the Laptev Sea (Rachold et al., 1999). The climatic and sedimentary 

conditions of the Lena Delta are different from those of delta regions in lower latitudes 

because it is part of the continuous permafrost zone of northern Siberia. Permafrost 

thicknesses can reach more than 600 metres in the area (Grigoriev, 1960). Lake Nikolay is the 

largest confined water body in the Lena Delta and is situated in the northwestern part of Arga 

Island (Figure 3-1). This lake is one of numerous lakes belonging to a type of oriented lake 

which is a widespread geomorphological feature on Arga Island (Grigoriev, 1993). From west 

to east, Lake Nikolay is about 8 km wide and from north to south ca. 6 km long. 

Approximately 70 % of the lake area has a water depth of less than 2 m. Below these shallow 

margins an active layer exists with an average thaw depth of ca. 0.5-0.6 m in late summer. 

During winter, this shallow marginal area is completely frozen and covered by lake ice. A 

maximum water depth of 30 m is recorded in a series of sub-basins. In these sub-basins, the 

basin fill remains unfrozen below a water column, which has an ice cover 2 to 3 m thick 
1during the winter months. 

                                                
* Schwamborn, G., Dix, J.K., Bull, J.M., Rachold, V., Permafrost and Periglacial Processes 13 (2002).  
Reprint kindly permitted. 
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Recent studies suggest that Lake Nikolay has a thermokarst origin (Schwamborn et al., 

2000). Age determinations and pollen analyses of lake sediments reveal that its formation is 

related to a regional climatic optimum at ca. 7 ka BP (uncalibrated radiocarbon years). 

Continuous sediment subsidence due to thawing subground (i.e. thermokarst) is thought to 

have promoted the creation of the lake depression. To locate the coring site and to reveal 

structural information on the sediment bedding within Lake Nikolay, ground-penetrating radar 

(GPR) measurements with a 100 MHz antenna pair were acquired during the winter of 1999. 

These activities complement shallow seismic (Chirp) measurements collected as a pre-survey 

of the sediment fill in the preceding summer season (see Figure 3-1).  

 
Figure 3-1: Map of Lake Nikolay on Arga Island (western Lena Delta). The locations of geophysical profiles and 

sediment coring are highlighted that are described in the text. The 2 m bathymetric line marks the boundary to 

which the shallow margins are completely frozen during winter. Sub basins and shallow margins are delined as 

measured the water depths with a portable infrared sounder on board of a rubber boat and with the aid of aerial 

photography. 

 

GPR sounding is an established technique for permafrost investigations (Annan and Davis, 

1976, Arcone et al., 1998, Judge et al., 1991, Robinson et al., 1997, Hinkel et al., 2001), active 

layer surveys (Doolittle et al., 1990) and lake sediment profiling (Mellet, 1995). Mellet (1995) 
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and Moorman and Michel (1997) have shown the potential of the GPR method for surveying 

sediments through a lake-ice cover. Literature on seismic surveys of lake sediments is well-

established, for example Niessen et al. (1999) have used the same Chirp sound source as for 

this study, Abbott et al. (2000) operated with a 3-7 kHz seismic pulse system, and Mullins and 

Halfman (2001) deployed a sub-bottom profiling system that has sweep frequencies of 2 to 12 

kHz. A comparison of higher frequency GPR data (50 and 100 MHz) to a seismic system on 

open water (using a 7 kHz transducer) demonstrated that these techniques often provide 

complementary information (Delaney et al., 1992, Sellman et al., 1992).  

In this study, the combined use of Chirp and GPR data was guided by our desire to know, 

whether a cost-intensive field campaign of seismic pre-survey at a remote arctic site could be 

omitted from a field investigation. With regard to the GPR measurements it was necessary to 

establish whether the quality of GPR profiling acquired through a winter lake-ice cover was 

satisfactory enough to provide the needed subsurface information for subsequent sediment 

coring from the ice and to eventually replace the summer seismic program. 

To find suitable answers, the following procedure was chosen. Profiles of the basin fills and 

profiles of the shallow margins were obtained in equal manner with both profilers. The post-

processing flows for Chirp and GPR data were adjusted to assure a thorough comparison of 

the data sets. The vertical and horizontal resolutions of the Chirp and the GPR data were lined 

up to show that they delivered similar resolution characteristics even though the propagation 

velocities are very different. Short sediment cores were used to aid geophysical data 

interpretation.  

3.2 Seismic Data Acquisition 
A Chirp subbottom profiler (GeoChirp™ by GeoAcoustics) with a 32 ms 1.5-11.5 kHz 

sweep source was used to collect 25 km of profiles across the lake. The system, which can be 

used on open water only, was mounted upon a surface-towed catamaran, attached to which 

was an 8-element, single-channel 0.5-15 kHz hydrophone streamer. The whole system was 

operated from a small inflatable boat. The transmission trigger rate was set to four chirps per 

second and the survey speed was approximately 1.6 ms-1. A global positioning system (GPS) 

receiver provided survey navigation.  

Chirp profilers are digital, frequency-modulated (FM) sources with a predetermined and 

repeatable source signature for high-resolution, normal incidence seismic reflection data 
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acquisition. The Chirp systems comprise calibrated, linear electronic components and transmit 

signals containing pre-determined phase and amplitude corrections (Quinn, 1997). This 

ensures that no anomalies occur in the transducers or the transmitting and receiving 

electronics. The S/N ratio of Chirp data is improved through matched filter processing by 

correlating the reflection data with the pre-determined transmitted pulse (Schock and LeBlanc, 

1990). If reflections or noise do not match the outgoing Chirp waveform, the filter attenuates 

the unwanted signal. See Quinn (1997) and Quinn et al. (1998) for a description on Chirp 

profiling generally and Niessen et al. (1997) for a description of the specific system used. 

The post-processing flow applied in the lab has been designed to improve data clarity and 

lateral continuity specifically for high-resolution Chirp data (Quinn, 1997, Quinn et al., 1998, 

Lenham, 2000). The processing sequence includes bandpass filtering (Ormsby), F-X 

deconvolution, AGC, a Stolt F-K migration, an F-K filtering and the application of a dynamic 

S/N filter (Figure 3-2). The first three algorithms in the processing sequence are standard 

seismic processing applications (Yilmaz, 1987). The application of the dynamic S/N filter as a 

final step is less standard and is particularly suitable to Chirp data (Quinn, 1997). For 

converting the TWT (two-way travel) times into depth, p-wave velocities of 1420 ms-1 and 

1490 ms-1 are assumed for the water column and the lake sediments respectively, after Niessen 

and Melles (1995). 

3.3 GPR Data Acquisition 
GPR profiling was conducted along flagged traverse lines within Lake Nikolay using the 100 

MHz antenna pair from RAMAC (Malå/Geoscience). A GPS receiver provided the navigation. 

Data were collected with settings as listed in Table 3-1. They were found to offer the best 

trade-off between signal-to-noise (S/N) ratio and time required for data acquisition. Since the 

lake water has low conductivity (<50 µS/cm) good penetration of the GPR signals was 

permitted through the water column. In total thirteen GPR profiles (23 km total) of the lake 

basins and the surrounding margins were collected. GPR profiling was completed using a 

diesel vehicle, the antenna pair being mounted on a textile sheet and towed behind the vehicle. 

The transmitting and receiving antennae had a constant offset of one metre and were arranged 

perpendicular to the profile direction.  
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Figure 3-2: The GPR data processing flow (right) resembles the Chirp data processing flow (left) to enable a 

more thorough comparison of the digital data. SEG-Y stands for a tape standard developed by the Society of 

Exploration Geophysicists (SEG). 

The GPR data were imported into seismic processing software (ProMAX™) and an optimal 

processing flow determined according to the seismic processing procedure (Figure 3-2). This 

comprised a true amplitude recovery, a spiking/predictive deconvolution, automatic gain 

control (AGC), dynamic S/N filtering and finally a (Ormsby) bandpass filter. 

 
antenna pair 100 MHz 
antenna offset 1 m 

samples per trace 1536 
stacks 128 

sampling frequency 1016 MHz 

Table 3-1: GPR system settings for lake sediment profiling. 
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3.4 Sediment Sampling 

Sampling of frozen and unfrozen sediments was performed using a frozen-ground rotary 

coring kit consisting of an engine power-auger unit, iron rods, and iron core barrels. The stable 

winter ice cover of the lake served as the coring platform. Core sections were cleaned, 

described and stored immediately after sectioning into 5 cm intervals. After transit to the 

laboratory the individual samples were examined for moisture (gravimetric water content) 

expressed in weight percent (wt%). 

3.5 EM Velocity Analyses 
In order to determine the velocity depth function for the electro-magnetic (EM) waves several 

common mid-point (CMP) measurements were recorded. Antenna spacing was changed with 

constant increments of 1 m to offsets of 100 m at maximum. This generated an antenna-

separation versus travel-time plot, from which the propagation velocity of subsurface materials 

can be deduced (Annan and Davis, 1976). 

These profiles were recorded at characteristic 

sites such as deep basins or the shallow 

margins (Figure 3-3). The main drawback of 

this technique is that velocity determination of 

deeper layers becomes increasingly difficult 

due to the weakening strength of returns, the 

presence of refractions, and the complicated 

geometry of the travel paths of reflections 

(Moorman and Michel, 1997). Consequently, 

direct calculations of signal propagation 

velocity were made by comparing the TWT 

times between reflections on GPR profiles 

with measured thicknesses of the lake-ice 

cover, the water column, and the sediment 

layers in the core (Figure 3-4). The thickness 

of lake ice and the water depth were measured 

manually with a plumb line and a measuring 

tape. During the summer measurements, the  
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Figure 3-3: Example of CMP deduced subsurface 

velocities. Measurements have been conducted over 

a shallow margin of Lake Nikolay where frozen 

sediments lie directly underneath the lake ice. For 

position see Figure 3-5.
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thickness of the active layer at the 

shallow margins was determined in a 

comparable way with a prick rod. Two 

cores, one into the basin sediments, 

and one into a frozen margin, enabled 

us to identify the materials and 

sedimentary boundaries, respectively.  

The propagation velocities for the EM 

waves used in this study are listed in 

Table 3-2 along with the method of 

determination and extant values 

published in Davis and Annan (1989). 

 
material determination method EM velocity (m/ns) literature value 

air CMP 0.30 0.30 
ice CMP 0.17 0.16 

frozen ground below ice CMP 0.16 0.11-0.15* 
saturated sand direct measurement 0.06 0.06 

fresh water direct measurement 0.036 0.033 
* according to RAMAC/GPR Operating Manual (1997) 

Table 3-2: EM velocity values used to estimate depth scales with literature values according to Davis and Annan 

(1989) for comparison. 

3.6 Resolution of GPR and Seismic Data 

Vertical Resolution 

The depth (or vertical) resolution of both EM and seismic waves is dependent on the 

wavelength (λ) in the different media so the approximate vertical resolution can be calculated 

from the following formula: 

λ = ν / f      (1) 

where ν is the propagation velocity [ms-1] of the wavelet within the material, and f is the 

antenna frequency [Hz] used. The theoretical depth resolution is about one-quarter of the 

wavelength in the different media (Sheriff and Geldart, 1995). Deconvolution processing has 

been applied to both Chirp and GPR data sets to enhance them. Using the dominant frequency 

of the direct wave arriving at the system's receiver has approximated the dominant 

material
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wavelength. In case of the here-used Chirp profiler the dominant frequency was found to be 3 

kHz by screen control. Likewise the GPR center frequency of 100 MHz has been confirmed. 

In order to approximate the theoretical resolvable bed thicknesses that can be estimated with 

the different profiling systems the velocity information relevant to the profiling system and the 

sub-bottom environment was taken. The obtained theoretical depth resolution for GPR data 

amounts to 0.12 m in the saturated uppermost basin fill and to 0.3 m in frozen deposits. The 

same equation applied to the Chirp data of lake sediments results in 0.12 m depth resolution 

(see also Table 3-3). However, in most terrains the vertical resolution is found to be 2 or 3 

times the theoretical vertical resolution, depending upon surface roughness and slope, volume 

scattering, pulse bandwidth, dispersivity, properties contrast etc. 

system GPR (100 MHz) GPR (100 MHz) Chirp (1.5-11.5 kHz) 
dominant return frequency 100 MHz 100 MHz 3 kHz 

environment frozen basin margins lake sediments 
propagation velocity        0.16 m/ns      0.06 m/ns 1490 m/s 

vertical resolution 0.4 m 0.15 m   0.12 m 
horizontal resolution* 5.7 m 2.8 m 3.1 m 
*depth position and 10 m of frozen ground 10 m of water column 

relevant propagation velocity 
in the overlying material 

 
0.16 m/ns 

 
0.036 m/ns 

 
1420 m/s 

horizontal shot interval 1 m 1 m 0.4 m 

Table 3-3: Resolution of GPR and Chirp data in the different environments. Vertical resolving limit is assumed 

to be one quarter of the dominant wavelength. Horizontal resolution (=2r) of the sediments is dependent on the 

depth position and the materials above with their relevant propagation velocities (listed in italic letters). 

The ability to compare physical event identification using the two systems Chirp and GPR is 

caused by having similar wavelengths in the same environment. The dominant 3 kHz 

frequency of the Chirp corresponds to a wavelength of 0.5 m in saturated sands and the 100 

MHz dominant frequency of the GPR corresponds to a wavelength of 0.6 m in the same 

environment, although the relevant propagation velocities are very different (1490 ms -1 and 

0.06 mns -1, respectively). 

Horizontal Resolution 
Spatial (or horizontal) resolution refers to the reflected energy that arrives from a circular 

zone (Fresnel zone) on the reflector. Its radius increases with depth. The radius r of the first 

Fresnel zone can be approximated by 

r = [ν / 2 ] [ t / f ] 0.5     (2) 
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where ν is the wave velocity [ms-1] along its path, t is the TWT time [s] for the wave reflected 

from a given depth and f is the frequency [Hz] of the wave. From equation (2), it can be seen 

that the spatial resolution decreases as a function of depth (i.e. the increase of time) but is 

modified by the different wave velocities in the different media. Calculated examples are 

given in Table 3-3. 

The derivation of the Fresnel zone radius approximation is analogous for both, seismic and 

EM waves, although this equation gives only a rough estimate of the horizontal resolution 

limit. It actually depends on many factors; for example, in case of Chirp data the beam angle 

and, therefore, the footprint of the system, is also dependent upon the transducer array and the 

bandwidth of the source (Quinn, 1997). In case of GPR data it is dependent on the direction 

and shape of the EM cone transmitted into the ground (Arcone, 1995). 

A final factor effecting horizontal resolution of the profiles is the horizontal shot interval. In 

the case of the Chirp survey, this factor is dependent upon survey speed (in our measurements 

1.6 ms-1) and the chosen pulse rate (in our measurements 4 shots per second, i.e. 0.4 m per 

trace). In the case of the GPR surveys, it is the chosen shot spacing (in our measurements 1 m 

per trace). The shot interval for both profilers is smaller than the calculated horizontal 

resolution (=2r), or Fresnel zone, respectively. The horizontal portions equivalent to the 

“effective” Fresnel zone are, thus, covered several times by subsequent traces. The coverage 

increases with closer spaced shot intervals. Hence, it is a significant factor in the effective 

horizontal resolution and should be considered in data interpretation, in our case especially in 

the seismic profiles.  

3.7 Results and Discussion 
Aerial photographs show dark areas at the centre of the Lake Nikolay surrounded by brighter 

areas towards the shore. The brightness is interpreted as being correlating with lake 

bathymetry. The results from GPR and seismic measurements confirm this interpretation 

showing several relatively deep central lake basins (10 to 30 m) surrounded by shallower 

areas. The irregular shape of the lake floor often shows one or two morphological steps framed 

by steep slopes before reaching the deepest part of the basin. Not all of the survey results are 

shown here; rather, one example is displayed where certain geophysical features are verified 

by sediment drilling. In this example, a Chirp line is compared with a radargram that has been 

obtained over the same lake basin (Figure 3-5). Because of inaccuracies during online-
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positioning with GPS between the two field seasons the locations of the profiles differ by 

±100-200 m. This can be seen, for example, by slight differences following the basin floor 

surface. However, both profile lines are complementing one another, since the depositional 

situation does not change decisively as inferred from additional profile lines not shown here. 

Profiling of the frozen basin margin 

A comparison of Chirp with GPR measurements of the shallow frozen basin margin can be 

made when regarding the left part of Figure 3-5. At top, the seismic profile obtained during 

open water conditions is displayed and, at bottom, the equivalent radargram is displayed as 

obtained during the winter season from the lake ice. Below a shallow water column of less 

than 2 m, the Chirp profile exhibits a strong reflection response within a shallow sediment 

depth. This is due to the permafrost table, which was at a depth of 0.5 m during the summer 

season. Previous seismic studies have shown that seismic systems will not trigger reliably in 

less than approximately 2 m water depth (Delaney et al., 1992, Quinn, 1997) making 

quantitative assessments unreliable for that water depth. In our case the returning echo in that 

shallow depth appears as a convolution of the direct pressure wave, its reflection from the lake 

surface and from the shallow lake bottom and, finally, the shallow permafrost table underneath 

as mentioned above. It causes almost total reflection of the seismic waves, thus, preventing 

imaging of internal structures within the frozen basin margins using the seismic system. 

Multiples of the permafrost table are observed beneath and ringing effects may explain the 

further distortions, which come to pass down the section. 

In contrast, sub-bottom information of the shallow margin is revealed in the GPR profile. 

From the top the radargram begins with continuous high-amplitude events, which are the 

direct air wave arrivals. This occurs because the EM velocity in air (the speed of light = 0.30 

m/ns) is much faster than in any geological material. Thus, the waves travelling directly 

through air between the two antennae are the first to arrive. They are followed by the ground 

wave on top of the ice cover. Below the lake ice cover, the frozen basin margin has a number 

of internal horizontal to inclined reflectors. The lowest reflectors are found at a depth of ca. 23 

m and mark the depth of resolved EM penetration with the 100 MHz antenna pair in the frozen 

subground. At the permafrost coring location, as marked in the radargram, the lake ice has a 

thickness of 1.2 m and is lying directly on frozen ground. The frozen subsurface is made of 

fine sand and has been drilled down to a sediment depth of 7 m. The internal reflectors  
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Figure 3-5: The Chirp (a) and the GPR (b) profile have been gained over the same lake basin and are regarded to 

complement each other. Bathymetric information, EM penetration into frozen ground and position of short cores 

with their lithofacies are added. 

exhibited in the frozen margin are interpreted as inclined fluvial bedding planes of the frozen 

sand observable only by GPR means but not in the core. This sedimentary detail is likely to be 

caused by electrical-impedance contrasts at the sedimentary boundaries. 

Profiling of the uppermost basin fill 

In Figure 3-6(a-d) a pair of Chirp and GPR profiles is displayed. These magnify the sediment 

fill seen in Figure 3-5 on the right side. The seismograms at the top are displayed as the 

default printout from the field (a) and as the post-processed section (b). The radargrams at the 

bottom display both the unprocessed (c) and processed GPR section (d). With both techniques 

water depth and morphology of the basin can be well determined and compared. The water 

depth deduced from the seismogram is 13.1 m (see also Figure 3-4), the value deduced from 

the radargram is 13.7 m for the approximate same locality. This approximate profile match 

includes the GPS inaccuracies and that the winter elevation of the ice surface to the summer 
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level of the water as the horizontal reference level is not further taken into account. The lake 

sediments have been sampled and relevant material thicknesses are given in Figure 3-4. The 

location of lake sediment coring is marked in Figures 3-5 and 3-6d. 

When comparing the magnified profiles of the lake sediments, both records offer straight 

visual interpretability, especially after enhancement of the data. There is a lateral variability in 

reflector coherency along the Chirp section due to noise (Figure 3-6a). Figure 3-6b has 

improved in S/N ratio and reflector continuity is enhanced.  The same is valid for the GPR 

section (Figures 3-6c and d). Both the Chirp and the GPR profile allow defining major 

physical boundaries within the sediment fill as marked by the arrows. On top of the sediments 

one strong reflector is revealed followed by a weaker amplitude event in the uppermost section 

of the sedimentary basin. The upper one is interpreted as the beginning of the lake sediments, 

the second one the base of it (Figures 3-6b and c, see the two white arrows). The upper seismic 

unit amounts to 0.8 m in thickness. The thickness between the upper two pronounced 

reflectors as picked from the raw GPR section is 0.9 m. This was calculated combining the 

TWT time with the drilling results in order to calculate the EM wave velocity as introduced 

earlier. The upper unit in the geophysical profiles can be linked to a lacustrine organic-rich 

sand cover as revealed from the core (Figure 3-4). It represents the lake sedimentation from 

the modern state backward in time. In contrast, the sandy sediments following below in the 

core section are interpreted to belong to fluvial and/or eolian deposits. This characterizes the 

environment in which the lake depressions evolved (Schwamborn et al., 2000). 

Since the water content decreases from 40-60 wt% in the organic-rich fine sand of the upper 

part of the core to about 20 wt% in the organic-poor fine sands of the lower part of the core, 

this sharp physical contrast is regarded as the cause for the second strong reflections in both 

geophysical records. The water content largely controls the dielectric contrast from different 

geologic material as measured by the GPR method (Davis and Annan, 1989). Similarly the 

elastic boundaries as measured by seismic means, and which are defined by the density and 

velocity contrast, are themselves closely related to the porosity and, thus, to the water content 

(Niessen et al., 1999). 

The Chirp imagery appears to characterize the bottom sediments further down as being more 

chaotic sediments with short, disconnected and bent reflectors next to horizontally to 

subhorizontally aligned reflectors. It is suggested that closely-spaced grain size and sorting 
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Figure 3-6: Comparison of Chirp (a and b) and GPR (c and d) data from survey lines of the same lake basin at 

Lake Nikolay. The separation of the lines is due to GPS inaccuracies; (a) raw correlated Chirp section, (b) 

processed Chirp section, (c) raw GPR section, (d) processed GPR section with the position of the lake sediment 

core marked. White arrows indicate explained horizons, whereas black arrows with question marks indicate 

unexplained horizons. For more discussion see the text. 



3 Ground penetrating radar and high-resolution seismics 
________________________________________________________________________________________ 

 44 

differences affect the porosity of the fine sandy sediment as seen in the relevant part of the 

core. However, this interpretation may only be acceptable as long as there is no direct ground-

truth verification available for the Chirp track. The basin sediments are resolved within the 

Chirp profile to a depth of ca. 4.5 m (6 ms TWT). 

In the comparable part of the GPR section the reflections show lateral continuity and 

coherent horizontal wavelet successions (Figure 3-6d). The processed profile shows some of 

the lower reflectors pinching out especially in the left part of the section. This argues for true 

signal penetration rather than reverberations of the EM energy within the basin sediments. 

Inspection of the raw data wavelets supports the suggestion that the reflected arrivals within 

the lake sediments arose from real sediment boundaries, although the incoming signal wavelet 

is irregular and is partly lengthened (Figure 3-7). This is due to reverberations in the lake ice 

caused by the high dielectric contrast between the lake ice (relative permittivity εr=3-4) and 

the lake water (εr=81). As the depth resolution of the GPR is in the order of 0.12 m, the 

internal reflections from within the basin sediments (enhanced in the processed Figure 3-6d) 

are thought to represent apparent layering and not individual bedding planes, which could 

have been verified. This is supported by a lack of bedding planes as observed within the lake 

sediment core. However, the apparent stratigraphic resolution in the lake sediments may also 

be induced by polarization effects as suggested by Delaney et al. (1992). This is especially 

true for the parallel reflection pattern in the right part of the section, where internal multiples 

cannot be discounted. Furthermore, a strong reflection horizon cannot be explained yet 

(marked by the dark arrow with a question mark). The sediment coring reached beyond the 

relevant depth but no obvious macroscopic sediment boundary can be observed. Although the 

high amplitude event appears in both Chirp and GPR records, its nature remains obscure. The 

maximum resolved depth of the EM waves into the basin sediments is about 4.2 m (140 ns 

TWT).  

In general, the Chirp and GPR profiles show similar penetration capabilities within the 

uppermost 4 to 5 m of basin sediments. The calculated resolution characteristics match fairly 

well for both profilers as presented in Table 3-3. More subtle stratigraphic detail is revealed in 

the Chirp profile providing better definition of discrete targets just beneath the basin floors. 

This is likely a result of improved S/N ratio due to known pulse output allowing effective 

correlation and a smaller trace interval applied. We ignore the difference in profile positions at 
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this place. A continuing upper unit can be distinguished from a lower unit with various high-

amplitude elements and detached, broken to sub-horizontal orientated reflectors. In contrast, 

GPR raw data of the basin fill shows less variability but higher horizontal continuity of 

reflectors. They also allow one to discriminate between an upper and a lower unit. Processed 

profiles can be interpreted less straightforwardly, since the records may suffer from 

polarization limited resolution and internal multiples may be enhanced.  

The upper unit in the geophysical profiles 

can be linked to the lacustrine organic-rich 

sand of the core. The lower unit shows 

organic-poor fine sand suggesting a material 

derived from a fluvial and/or eolian 

environment.  

3.8 Conclusions 
The Chirp and the GPR sections produce 

consistent but different images of the Lake 

Nikolay basin environment. Correlation of 

the Chirp and GPR data with core data is 

seen on the scale of only some stratigraphic 

boundaries. It is remarkable that the amount 

of resolved features with both profilers is 

better than could be verified by core data. A 

more comprehensive investigation of lake-

sediment cores (i.e. density logging, 

dielectric changes) is needed to further 

understand the origin of internal reflectors. 

From a practical viewpoint GPR profiling 

from the lake ice is capable of allowing one 

to dispense with a preceding seismic pre-

survey on open water. Both frozen and unfrozen parts of the investigated thermokarst lake 

could be imaged and stratigraphic details resolved. This makes the GPR system a superior tool 

when working in arctic lake settings. It allows continuous profiling from basin to shallow 
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areas. Thus, it also saves costs and enables geophysical profiling and subsequent sediment 

coring during only one field season on the ice. To improve the horizontal resolution of the 

GPR data, it will be useful to do data acquisition at finer sampling intervals.  
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4 Late Quaternary Sedimentation History of the Lena Delta ∗ 

Abstract 
Core and outcrop analysis from Lena mouth deposits have been used to reconstruct the 

Late Quaternary sedimentation history of the Lena Delta. Sediment properties (heavy 

mineral composition, grain size characteristics, organic carbon content) and age 

determinations (14C AMS and IR-OSL) are applied to discriminate the main sedimentary 

units of the three major geomorphic terraces, which build up the delta.  

The development of the terraces is controlled by complex interactions among the 

following four factors. (1) Channel migration. According to the distribution of 14C and IR-

OSL age determinations of Lena mouth sediments, the major river runoff direction shifted 

from the west during the marine isotope stages 5 to 3 (third terrace deposits) towards the 

northwest during marine isotope stage 2 and transition to stage 1 (second terrace), to the 

northeast and east during the Holocene (first terrace deposits). (2) Eustasy. Sea-level rise 

from Last Glacial lowstand to the modern sea-level position, reached at 6-5 ka BP, resulted 

in back-filling and flooding of the palaeovalleys. (3) Neotectonics. The extension of the 

Arctic Mid-Ocean Ridge into the Laptev Sea shelf acts as a halfgraben pattern showing 

dilatation movements with different subsidence rates. From the continent side differential 

neotectonics with uplift and transpression in the Siberian coast ridges are active. Both of 

them likely have influenced river behaviour (i.e. providing accommodation place). 

Especially deposits building up the second terrace in the western sector have probably been 

preserved against fluvial erosion due to uplift. The actual delta setting comprises only the 

eastern sector of the Lena Delta. (4) Peat formation. Polygenetic formation of ice-rich peaty 

sand (“Ice Complex”) was most extensive (7-11 m in thickness) in the southern part of the 

delta area between 43 and 14 ka BP (third terrace deposits). In recent times, alluvial peat 

(5-6 m in thickness) is accumulated on top of the deltaic sequences in the eastern sector 

(first terrace).  

4.1 Introduction 
The Lena Delta is the largest delta in the Arctic occupying an area of 3.2 x 104 km2 

(Gordeev and Shevchenko, 1995). With the second largest river discharge in the Arctic 
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(525 km3/a) it is the main connection between interfering continental and marine processes 

within the Laptev Sea (Rachold et al., 1999). The distinctive pattern of upstream and lateral 

islands surrounded by the delta holds hundreds of river branches. Today four major delta 

branches carry the bulk of the water. The largest, known as Trofimovskaya branch, is 

directed toward the east and receives 61% of the annual water discharge (Fig. 4-1). It is 

followed by the Bykovskaya branch with 25% towards southeast, by the Tumatskaya 

branch to the north and the Olenyokskaya branch to the west, each of them with 7% 

(Alabyan et al., 1995). During the last two decades several studies have been conducted on 

geomorphology (Korotaev, 1986, Grigoriev, 1993), cryolithology (Kunitsky, 1989), 

hydrology (Alabyan et al., 1995, Rachold et al., 1996), paleogeography (Fukuda, 1994, 

Galabala, 1997, Are and Reimnitz, 2000), tectonics (Avetisov, 1999, Franke et al., 2000), 

coastal retreat (Are, 1999) etc. in the Lena Delta area. However, the sedimentation history 

as well as the processes that control the lateral extension of the Lena Delta in total are 

poorly understood.  

 
Figure 4-1: Geomorphologic overview of the Lena Delta (after Grigoriev, 1993) and distribution of sampling 

sites.  
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According to Grigoriev (1993), the Lena Delta can be subdivided into three 

geomorphologic terraces. The first terrace including active floodplains (1-12 m a.s.l.) 

covers the main part of the eastern delta sector between the Tumatskaya and the 

Bykovskaya branches (Fig. 4-1). This terrace is assumed the „active“ delta. The western 

sector between Tumatskaya and Olenyokskaya branches consists of mainly sandy islands, 

from which Arga Island is the largest. It has a diameter of 110 km and represents the major 

part of the second terrace (20-30 m a.s.l.). Sandy sequences covered by the so-called “Ice 

Complex” form the third terrace (30-55 m a.s.l.). They outline individual islands along 

Olenyokskaya and Bykovskaya branches at the southern rim of the delta setting. The third 

terrace can further be subdivided into two areas due to a considerable difference in altitude 

(more than 20 m) between the western and the eastern sector (Grigoriev, 1993, Pavlova and 

Dorozkhina, 1999, 2000). The age relationships between the major fluvial terraces are not 

yet clear. Especially age and origin of the second sandy terrace and the third terrace 

including the Ice Complex is still being discussed (Are and Reimnitz, 2000). The term “Ice 

Complex” is applied to permafrost sequences, which usually consist of fine-grained loess-

like sediments within organic-rich to peaty formations. They have a high content of 

segregated ice and polygonal ice wedges several meters in height and width. These deposits 

were formed during the Late Pleistocene regression (marine isotope stages 5-3) on the dry 

Laptev Sea shelf and in the North Siberian lowlands (Soloviev, 1989, Sher, 1995, 

Alekseev, 1997, Romanovskii et al., 2000). Ice Complex (IC) deposits in the region are 

regarded as remnants of a Late Pleistocene accumulation plain (Sher, 1999). In the Lena 

Delta they reach thicknesses of 20-30 m (Grigoriev, 1993). Knowledge about the age of the 

IC, the underlying sands and the sands of the second terrace is necessary for understanding 

the modern structure of the delta. Originally, the second terrace was considered to be 

younger than the IC remnants and to be overlapping them (Ivanov, 1970, 1972 in Are and 

Reimnitz, 2000). Later it was proposed that the sands composing the second terrace are 

underlying the IC (Galabala, 1987 in Are and Reimnitz, 2000).  

Not only the age but also the origin of the sandy sediments of the second and third terrace 

is in debate. Both, glacial and periglacial genesis have been suggested. It was proposed that 

glaciers along with subglacial and proglacial meltwater were the agents that created the 

sandy sediments (Grosswald, 1998, Grosswald and Hughes, 1999). Fluvio-nival processes 
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under periglacial conditions in a far distance to a northern ice shield but in connection with 

local snow glaciers from the south are suggested by others (Galabala, 1997). Various 

authors discuss an alluvial or even a marine origin of the sandy sediments as summarised in 

Are and Reimnitz (2000). The origin of the IC is regarded controversial, as well. Fluvial 

(Slagoda, 1993), niveo-fluvial (Kunitsky, 1989), aeolian (Tomirdiaro, 1996), ice-dammed 

alluvial (Grosswald et al., 1999) or polygenetic processes as discussed in Schirrmeister et 

al. (1999) have been proposed.  

The main objective of the present study is to reconstruct the paleogeographic and 

paleoenvironmental development of the Lena Delta area during the late Pleistocene and 

Holocene. Sediment sampling has been conducted at selected sediment profiles of the three 

terraces (Fig. 4-1). They are regarded as representative localities for the Lena Delta setting 

according to previous studies carried out in the area (Grigoriev, 1993). At first, new 

sediment datings are accomplished to establish age relations between the delta terraces. The 

datings are used together with recently published luminescence and radiocarbon age 

determinations from Lena Delta sediments. Secondly, in order to identify the source region 

of the sandy sediments composing the second and the third terrace including the Ice 

Complex heavy mineral studies are applied. The heavy mineral distributions serve as a 

helpful tool for provenance studies and paleoenvironmental reconstructions (Morton and 

Hallsworth, 1994, Dill, 1998, Peregovich et al., 1999). Although heavy mineral studies are 

available for recent Lena River sediments (Serova and Gorbunova, 1997, Behrends et al., 

1999, Hoops, 2000), a comparison of terrace deposits is missing. Thirdly, grain size 

distributions and total organic-carbon (TOC) contents are used to characterize the 

sedimentary environments of the terrace sediments and the major sediment facies, 

respectively.  

4.2 Material and Methods 
Fieldwork was carried out during the expeditions LENA 1998 (Schwamborn et al., 1999) 

and LENA 2000 (Schirrmeister, in press). Sampling was done by permafrost drilling to 

recover frozen sediment cores (max. depth 9.25 m) and through natural exposures. River 

bedload sediments are used to compare for their grain size characteristics. Relevant 

sampling was carried out during an expedition to the Lena River in 1995 (Rachold et al., 

1997). Sediment sections and sampling sites are equally distributed on the terraces and the 



4 Late Quaternary Sedimentation History of the Lena Delta 
________________________________________________________________________________________ 

 51 

major fluvial branches. They are regarded as representative sediment sites according to 

previous works conducted in the area (Grigoriev, 1993), therefore, reflecting the general 

sedimentary and geomorphologic situation in the delta. 

Grain size distributions for terrace sediments have been determined by laser particle 

sizing (LS200, Coulter Corp.). Prior to the measurements the individual samples were 

oxidized (3%-H2O2) to remove organic matter and disperged (10%-NH4OH) to diminish 

surface tension. TOC was analyzed using a Metalyt-CS-1000-S (Eltra Corp.) in 

corresponding pulverized samples after removal of carbonate with HCl (10%) at a 

temperature of 80°C. Heavy mineral analysis has been applied to the 63-125 µm sub-

fraction. Sample preparation was performed according to standard procedures (Boenigk, 

1983, Mange and Maurer, 1992). The heavy minerals were separated using sodium 

metatungstate solution (Na6(H2W12O40)xH2O) with a density of 2.89 g/cm3. On average 

>200 transparent grains were counted on slides. Results are expressed in grain %. Samples 

from sections of each terrace and the IC (Kurungnakh section) were examined for their 

heavy mineral spectra. Samples were chosen from bottom, middle and top sediment layers 

of the representative profiles. Heavy mineral data of recent Lena River sediments of the 

same grain size fraction obtained by Hoops (2000) are used for comparison. 

AMS radiocarbon dating of sediments is based on selected organic-rich layers and plant 

remains. Measurements have been performed at the Leibniz Laboratory for Age 

Determinations, University of Kiel. Only the 14C AMS ages of the extracted residues free 

of humic acids are used for age interpretation. Results are expressed using a timescale 

based on 14C ages (ka BP). For a more complete assessment of age determinations for Lena 

Delta sediments published results of radiocarbon (Kuptsov and Lisitsin, 1996, Pavlova et 

al., 1999) and luminescence datings (Krbetschek et al., in press) are incorporated in the 

review of aged sediments. 

4.3 Results  
4.3.1 Distribution of 14C- and IR-OSL-dated sediments and their lithological 

description 

An overview of the radiocarbon and luminescence datings for Lena Delta sediments 

reveals that different ages can be found at similar hypsometric marks and time ranges of the 

individual terraces may overlap each other (Table 4-1).  
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The third terrace as observed along the Olenyokskaya branch is exposed as an up to ~35 

m high shore cliff. The lower part of the section is dominated by ice-poor (<25 wt% (wt = 

weight)) sandy layers showing wavy bedding that are intercalated with root horizons (0-14 

m a.s.l.). The amount of root horizons decreases towards the top. This sediment facies is 

comparable to the recent alluvium of the first terrace as observed in nearby located sandy 

islands along the river. At the easternmost outcrops of the third terrace (see Fig. 4-1) the 

same lithofacies of sandy sediments has been detected by drilling (Grigoriev, 1993). 

Datings of the lower sandy sediments span a range from 88 ka to 37 ka BP (Nagym and 

Kurungnakh sections in Table 4-1). Measured AMS ages are placed at the limits of the age 

range covered by the 14C method making the age determinations from both methods 

suitable only to narrow the sedimentation period to the time of marine isotope stages 5 to 

early 3 according to Martinson et al. (1987). On top, the sandy sequence is covered by the 

IC consisting of ice-rich (up to 80 wt%) peaty deposits in alternation with organic-rich silty 

sand (14-35 m a.s.l.). Ice wedges of 5-10 meters in height and width occur throughout the 

IC. Formation of IC deposits took place between 43 ka BP (Nagym and Kurungnakh 

sections in Table 4-1) and 14 ka BP as indicated by a radiocarbon dating from the upper 

part of the Sobo section (Fig. 4-2 and Table 4-1). The IC deposits overlie the lower sandy 

sequences with a sharp facial boundary.  

Outcrops of the second terrace (Arga section) show massive, organic-poor, fine-sandy 

sequences. Commonly they have a low ice content (<25 wt%) but contain a net of narrow-

standing (dm scale) ice veins. Formation of the ice veins took place probably at the 

transition time of Late Pleistocene to Early Holocene as deduced from oxygen isotope 

measurements (H. Meyer, unpublished data). The results resemble measurements from 

Bykovsky Peninsula, southeast of the Lena Delta, which have been dated to this time 

(Meyer et al., in press). According to IR-OSL and 14C age determinations the sandy 

sediments have a Late Pleistocene (14.5 to 10.9 ka BP) to early Holocene age (6.4 ka BP, 

Jeppiries section) (Table 4-1). Although the age data from the Arga section are not 

completely in correct chronological order from the bottom to the top of the profile, the 

overlapping of the error ranges does not allow to discuss age inversion (Krbetschek et al., 

in press). It seems likely that the overlapping error ranges of the luminescence datings are 
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associated with a high accumulation rate implied by a fluvial environment under upper flow 

regime. 

 
Figure 4-2: Representative sediment sections with radiocarbon and luminescence ages. References for age 

determinations are given in Table 4-1. 
 

In the easternmost Delta area (Sardakh section), where modern sedimentation is taking 

place (first terrace deposits), alluvial facies of the sediments changes from peaty sands at 

the bottom to silty-sandy peats towards the surface (Fig. 4-2). The sediments have high ice 

contents (>50 wt%) and subaerial or buried ice wedges of 2-3 meters in height and width 

are common. The ages of the first terrace change from early Holocene (8.5 ka BP) in the 

west (M. Tumatskaya section) to late Holocene (<2.8 ka BP) in the east (Samoylov and 

Sardakh sections) to latest Holocene (<1.4 ka BP) in the north (Sagastyr section). The 

pattern of radiocarbon dates from Samoylov and Sardakh, as a group, shows poor 

correlation between age and depth. Various age inversions in core sample and outcrop dates 
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in these sections indicate that the sediments from the inner delta plain are highly reworked. 

The numerous small islands on the delta plain undergo erosion at the river exposed shore 

section altitude  
(m a.s.l.) 

lab. no. measured age 
(14C yr BP)  

* (IR-OSL ka BP) 

reference 

First terrace     
Samoylov (core) 7.5   KIA-8169 435 ±30 this study 
Samoylov (core) 6.6   KIA-8170 230 ±25 this study 
Samoylov (core) 6.2   KIA-8171 500 ±25 this study 
Samoylov (core) 1.3   KIA-8172 2605 ±30 this study 
Samoylov (core) 1.2   KIA-8173 2530 ±30 this study 
Samoylov (core) 0.4   KIA-8174 2635 ±35 this study 
Samoylov (core) 0.1   KIA-8175 2730 ±40 this study 

Samoylov (outcrop) 6.2   IORAN-4167 3700 ±260 Kuptsov & Lisitsin 1996 
Samoylov (outcrop) 4.2   IORAN-4164 4220 ±240 Kuptsov & Lisitsin 1996 
Samoylov (outcrop) 3.6   IORAN-4101 2140 ±110 Kuptsov & Lisitsin 1996 

Sardakh (core) 8.5   KIA-6759 2755 ±25 this study 
Sardakh (core) 8.1   KIA-6760 1360 ±20 this study 
Sardakh (core) 6.6   KIA-6761 2525 ±30 this study 
Sardakh (core) 3.9   KIA-6762 3460 ±30 this study 
Sardakh (core) 1.7   KIA-6763 3025 ±35 this study 
Sardakh (core) 0.6   KIA-6764 3420 ±35 this study 
Sardakh (core) -0.2   KIA-6765 2830 ±35 this study 

Sagastyr (outcrop) 0.4   KIA-12519 360 ±25 this study 
Sagastyr (outcrop) 0.6   KIA-12520 645 ±25 this study 
Sagastyr (outcrop) 0.9   KIA-12521 650 ±25 this study 
Sagastyr (outcrop) 1.1   LU-4201  1400 ±90 Pavlova et al. 1999 

M. Tumatskaya (outcrop) 2.5   LU-4191  8570 ±160 Pavlova et al. 1999 
Second terrace     
Arga (outcrop) 25.9   ARG-5 * 13.1 ±1.1 Krbetschek et al. 2001 
Arga (outcrop) 25.3   ARG-4 * 12.0 ±1.1 Krbetschek et al. 2001 
Arga (outcrop) 24.6   ARG-3 * 13.3 ±1.5 Krbetschek et al. 2001 
Arga (outcrop) 23.2   ARG-1 * 13.4 ±1.1 Krbetschek et al. 2001 

Jeppiries (outcrop) 7.5   LU-4198 6430 ±120 Pavlova et al. 1999 

Third terrace (Ice Complex)     
Sobo (outcrop) IC-top 14.0   GIN-4115 14340 ±150 Grigoriev 1993 

Nagym (outcrop) IC-bottom 11.0   KIA-9899 42930 +3100/-2230 Krbetschek et al. 2001 
Kurungnakh (outcrop) IC-bottom 14.0   KIA-6755 42910 +840/-760 Krbetschek et al. 2001 

Third terrace (lower sands)     
Nagym (outcrop) 10.3   OLE-6 * 55.0 ± 9.0 Krbetschek et al. 2001 
Nagym (outcrop) 5.8   OLE-3 * 49.0 ±22.0 Krbetschek et al. 2001 
Nagym (outcrop) 5.1   KIA-6753 > 56790 Krbetschek et al. 2001 
Nagym (outcrop) 4.0   OLE-2 * 52.0 ±10.0 Krbetschek et al. 2001 
Nagym (outcrop) 3.4   OLE-1 * 57.0 ±  9.0 Krbetschek et al. 2001 
Nagym (outcrop) 3.1   KIA-6754 > 54520 Krbetschek et al. 2001 

Kurungnakh (outcrop) 12.5   KIA-6756 37230 +510/-480 Krbetschek et al. 2001 
Kurungnakh (outcrop) 8.9   OLE-10 * 65.0 ±  8.0 Krbetschek et al. 2001 
Kurungnakh (outcrop) 7.7   KIA-6757 39400 +510/-480 Krbetschek et al. 2001 
Kurungnakh (outcrop) 5.7   OLE-8 * 71.0 ±40.0 Krbetschek et al. 2001 
Kurungnakh (outcrop) 4.3   OLE-7 * 88.0 ±14.0 Krbetschek et al. 2001 
Kurungnakh (outcrop) 4.0   KIA-6758 49440 +1760/-1440 Krbetschek et al. 2001 

 
Table 4-1: List of 14C and IR-OSL datings of Lena Delta sediments. 
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banks and show accumulation at the opposite tips in downstream position. Most probably 

organic material that was initially incorporated and stored upstream for a period has been 

remobilized and finally deposited on the delta plain. This finding like previous studies 

(Stanley and Chen, 2000) argues that the use of the youngest dates is preferable. Based on 

the existing information it is not possible to identify the exact facial boundary of channel 

fill and the beginning of organic-rich deltaic sedimentation. To accurately date the 

beginning of modern delta accumulation longer cored profiles with reliable age 

determinations from the modern depocenter are needed. Only a larger number of datings in 

the Holocene part could confirm the tendency that from west to east the deposits are getting 

younger.  

According to recent studies on the Late Pleistocene and Holocene history of the Laptev 

Sea the post-glacial sea level rise only reached the modern coastline at 6-5 ka BP (Bauch et 

al., 1999, Romanovskii et al., 1999, Müller-Lupp et al., 2000, Hubberten and Romanovskii, 

in press). These studies show that in the Laptev Sea the post-glacial sea-level rise followed 

the glacio-eustatic sea-level record reconstructed by Fairbanks (1989). For the Early to 

Middle Weichselian the sea level curve after Chappell et al. (1996) can be applied 

(Romanovskii et al., 1999, Hubberten and Romanovskii, in press). The continental shelf is 

very flat with a break occurring at 50 to 60 m water depth and varies in width from 300 km 

to over 500 km (Holmes and Creager, 1974). This implies that during the deposition time of 

the sandy sediments of the third terrace and the IC at 60 ka and 30 ka BP, respectively, the 

sea level was about 60 m lower than at present (Hubberten and Romanovskii, in press). The 

sea level at 12.7 ka BP, the deposition time of the uppermost sediments of the second 

terrace, is calculated to have been lower by approximately 70 m than at present (Müller-

Lupp et al., 2000). Thus, the paleo-coastline of the Laptev Sea was in far distance to the 

north (>150 km) throughout the Late Pleistocene and early Holocene. Then, after the 

termination of the Last Glacial, the sea first invaded the mouths of the Pleistocene river 

valleys on the shelf as seen in sediment cores from the Laptev Shelf (Bauch et al., 1999, 

Peregovich et al., 1999). In consequence, all deposits in today’s Lena Delta showing ages 

older than 6-5 ka BP have to be related to intra-continental sedimentation environments at 

the relevant times.  
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4.3.2 Heavy mineral analysis 
The sandy sediments from all three terraces are similar in their heavy mineral associations 

(Table 4-2). They are dominated by amphibole (30 %) followed by varying amounts of 

garnet, epidote, ortho- and clinopyroxene (each 10 % ±2 %). Typically, terrace sands have 

considerable amounts (8-17 %) of opaque minerals and alterites (rock fragments and 

weathered particles). Apatite is present (3 %), zircon, biotite and titanite are observed in 

accessory amounts (<2 %). Recent Lena River sands, in comparison, are generally 

characterized by the same heavy mineral assemblage, mainly by the dominance of 

amphibole (27 %) and opaque minerals (23 %), followed by alterites (11 %) and typically 

similar amounts of orthopyroxene, garnet (each 10%) and clinopyroxene (8 %). Epidote is 

less abundant than in the terrace sands (2 %), apatites, zircon, biotites, titanites and 

metamorphic minerals like sillimanite and kyanite are equally common, but rare (<2 %). 
 

sample amp cpx opx ep zr gar ap sill ky rut tit bio alt opa
que 

nr. of 
grains 

First terrace                
top (Sardakh section) 26.4 11.2 10.4 10.4 1.6 8.0 4.8 0 0 0 0.8 0 8.8 17.6 250 

Middle (Sardakh section) 23.3 9.0 9.0 11.3 2.3 9.8 4.5 0 0.8 0 1.5 0 11.3 17.3 266 
bottom (Samoylov section) 29.8 13.2 11.6 9.1 0.8 7.4 4.1 0 0 0 0 0 5.8 18.2 242 

mean % 26.5 11.1 10.3 10.2 1.5 8.6 4.3 0 0.4 0 0.8 0 8.5 17.7  
Second terrace                

top (Arga section) 29.7 11.7 18.0 8.1 0.0 14.4 2.7 0 0 0 1.8 0 1.8 11.7 222 
middle (Arga section) 29.4 6.3 8.7 10.3 1.6 10.3 5.6 0 0 0 0 0 16.7 11.1 252 
bottom (Arga section) 28.4 8.1 13.5 13.5 0.7 8.8 2.7 0 0 0 0.7 0 11.5 12.2 296 

mean % 29.2 8.7 13.4 10.6 0.8 11.2 3.7 0 0 0 0.8 0 10.0 11.7  
Third terrace (lower sands)                

top (Kurungnakh section) 26.0 10.6 11.5 10.6 1.9 12.5 0.0 0 0 0 1.0 0 6.7 19.2 260 
middle (Kurungnakh section) 27.1 8.2 8.2 8.2 1.2 10.6 5.9 0 0 0 3.5 1.2 10.6 15.3 255 
bottom (Kurungnakh section) 31.5 5.6 7.9 9.0 3.4 10.1 4.5 0 1.1 0 1.1 0.0 11.2 14.6 267 

mean % 28.2 8.1 9.2 9.3 2.2 11.1 3.5 0 0.4 0 1.9 0.4 9.5 16.4  
modern Lena sediments                

delta of Lena River * 25.9 5.8 10.9 2.2 2.9 10.2 1.1 0.4 0.4 0.7 0.4 0 13.5 25.5 274 
delta of Lena River * 29.7 9.6 10.4 2.0 0.4 10.4 1.2 0 0 0 2.4 2.8 9.6 21.3 249 

mean % 27.8 7.7 10.7 2.1 1.7 10.3 1.1 0.2 0.2 0.4 1.4 1.4 11.6 23.4  
* data after Hoops (2000) 
amp=amphibole, cpx=clinopyroxene, opx=orthopyroxene, ep=epidote, zr=zircon, gar=garnet, 
ap=apatite, sill=sillimanite, ky=kyanite, rut=rutile, tit=titanite, bio=biotite, alt=alterite; opaque 
 
Table 4-2: Results of heavy mineral analysis for terrace sediments (in grain %). Means have been calculated 

since the heavy mineral compositions from the individual samples resemble each other within each terrace. 
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The heavy mineral composition of the IC deposits (Kurungnakh section) is clearly 

different from the Lena River signal (Table 4-3). It shows highest amounts of garnet (25 %) 

and enrichment in epidote (15 %). Amphibole is common like opaque grains (14-15 %), but 

IC sediments are poor in pyroxenes (<2 %). It has to be noted that zoisit, a mineral, which 

does not appear elsewhere in the delta sediments, can be observed (8 %). Apatite (8 %) is 

more abundant than in the Lena River derived sediments. Korund and tourmaline are found 

in accessory amounts besides zircon. Comparative studies of brook sediments from the 

Chekanovsky Ridge south and southwest of the Lena Delta (Fig. 4-1) show that garnet here 

dominates (45 %), as well. Like in the IC equal amounts of amphibole, apatite, zoisit and 

epidote occur (6-8 %), although with varying amounts (Table 4-3). 
 

Sample amp cpx opx tourm ep zr gar ap zoi stau tit kor alt opa
que 

nr. of 
grains 

Ice Complex                
top (Kurungnakh section) 15.9 0.9 1.9 1.9 15.9 1.9 25.2 3.7 12.1 0 0.9 0 6.5 13.1 321 

middle (Kurungnakh section) 12.0 1.1 2.2 1.1 15.2 1.1 25.0 12.0 4.3 0 2.2 1.1 4.3 18.5 276 
bottom (Kurungnakh section) 15.3 1.0 2.0 1.0 16.3 1.0 25.5 7.1 6.1 0 2.0 1.1 5.1 16.3 294 

mean % 14.4 1.0 2.0 1.3 15.8 1.3 25.2 7.6 7.5 0 1.7 0.7 5.3 16.0  
Chekanovsky Ridge 
(N 72°40´, E 123°30´) 

               

brook sediments 7.6 0 0 0 7.6 2.2 45.7 9.8 5.4 2.2 0 0 5.4 14.1 276 
brook sediments 9.6 0 0 0 8.5 1.1 42.6 10.6 4.3 4.3 0 0 6.4 12.8 282 
brook sediments 8.5 0 0 0 8.5 3.2 45.7 8.5 6.4 3.2 0 0 4.3 11.7 282 

mean % 8.6 0 0 0 8.2 2.1 44.7 9.6 5.4 3.2 0 0 5.4 12.9  
amp=amphibole, cpx=clinopyroxene, opx=orthopyroxene, tourm= tourmaline, ep=epidote, zr=zircon, gar=garnet, ap=apatite, 
zoi=zoisit, stau=staurolite, tit=titanite, kor=korund, alt=alterite; opaque 
 
Table 4-3: Results of heavy mineral analysis for IC sediments and Chekanovsky Ridge brook sediments (in 

grain %). Means have been calculated since the heavy mineral compositions from the individual samples 

resemble each other within the IC and the brook sediments, respectively. 

 
In summary, the following essentials can be deduced from the heavy mineral studies: 

sandy sediments of the three fluvial terraces except those from the IC deposits show a 

heavy mineral composition similar to that of recent Lena River sediments (Fig. 4-3). The 

Lena River signal is characterized by an integral heavy mineral composition due to the 

large catchment comprising terrigenous clastic and metamorphic rocks (Hoops, 2000). That 

means, the source area of the sandy sediments in the terraces of the Lena Delta during the 

entire time of fluvial to deltaic accumulation was the Lena catchment. According to 

comparative studies, the source area of the IC´s clastic material is most likely found in the 
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Chekanovsky Ridge. Brook sediments from Chekanovsky outlets (Fig. 4-1) show a heavy 

mineral composition very similar to the composition of the IC sediments. Correlation of the 

IC and the detrital material from the Chekanovsky Ridge is supported by the same palette 

of dominant minerals contributing to the heavy mineral spectra (Fig. 4-3). Hydrodynamic 

reasons may have caused the smaller relative amount of garnet in the IC sediments. Thus, 

the mountain ridges to the south could not have been thoroughly glaciated between ~43 and 

14 ka BP when they acted as a source area. A similar conclusion for IC deposits from 

Bykovsky Peninsula, southeast of the Lena Delta, which are derived from the Kharaulakh 

mountains, has been published recently (Siegert et al., in press). 

 
 
Figure 4-3: Heavy mineral associations of geomorphological terraces 1 through 3 and IC deposits and their 

assumed sediment sources. The same abbreviations for mineral names are valid as in Tables 4-2 and 4-3, ztr = 

zircon + tourmaline + rutile. 
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4.3.3 Grain Size Characteristics and TOC Content 
Grain size parameters are valuable in discriminating depositional subenvironments 

(Engelhardt et al., 1973, Füchtbauer, 1988). Arithmetic mean (1st statistical moment) and 

sorting (2nd statistical moment) reflect the flow strength and the degree of uniformity in the 

deposits produced by current action during grain transport and deposition (Tucker, 1996). 

Sediment grain size data for Lena Delta sediments (Fig. 4-4 A-B) indicate that there are two 

different sediment populations building the three terraces and one interposing between 

them. Moderately sorted  
 

 
Figure 4-4: Mean values, sorting and TOC content of sediment samples. Sample groups listed are first, 

second and third terrace (lower sands) and IC sediments, comparisons are from grab samples of Lena River 

bedload. (A) Scatter plot of mean versus sorting for the samples utilized. (B) Mean and sorting show the 

separation and grouping of sample sets. Error bars indicate standard deviation. (C) Scatter plot of relationship 

between mean and TOC content. (D) Mean and TOC with error bars show the separation and grouping of 

sample sets.  

 
fine sands (‘lower sands’) forming the base of the third terrace match the sandy sediments 

of the second terrace (Fig. 4-4B). In contrast, sediments from the IC are finer and poorly 

sorted. Moreover, unlike any other sedimentary facies in the delta, the sediments from the 

IC show polymodal grain size distributions (Fig. 4-5). Thus, multiple transport processes 
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for the formation of the IC sediments have to be considered. First terrace deposits are 

positioned between IC sediments and the former two (Fig. 4-4B). Their grain size 

distribution and sorting undergo a development along the sediment profiles from river 

bedload at the bottom of the deltaic sequences to suspension load bedding towards the top 

as shown for Sardakh and Sagastyr sections (Schwamborn et al., 2000b). Generally, smaller 

mean grain sizes correspond to poorer sorting, e.g. for deltaic sediments of the first terrace 

and the organic-rich IC sediments. However, presumably wave-winnowed, well-sorted fine 

sands have been found as intercalations within silty-sandy to peaty first terrace deposits. 

Fig. 4-4B indicates that, with regard to mean  
 

 
Figure 4-5: Grain size distributions for IC deposits and lower sands from Kurungnakh section.  

 
grain size, third and second terrace sands plot close to recent fluvial bedload sands of the 

major delta branches. They show overlapping ranges in the standard deviation. In addition, 

the second statistical moment (sorting) supports the conclusion that they may have been 

derived from the same parent population, since they show overlapping error bars. 
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Therefore, the pre-Holocene aged sandy sediments of the second and the third terrace are 

attributed to fluvial bedload sedimentation. A low TOC-content (<0.4 wt%) is common to 

these suggested bedload sands 

(Fig. 4-4 C-D). In contrast, 

high TOC contents (<18 wt%) 

are associated with fine 

grained sediments that are 

preferentially deposited in the 

deltaic plain (first terrace) and 

the IC.  

4.4 Discussion 
The review of the age deter-

minations and mineralogical 

properties allows a general 

reconstruction of the sediment 

succession in the Lena Delta 

(Fig. 4-6).  

4.4.1 Third terrace - Lower 

sands (Nagym and Kurung-

nakh sections) 

The third terrace represents 

a fluvial stage of the Lena 

River for the period of ~88 ka 

to 43 ka BP. Grain size 

characteristics of the sandy 

deposits from the third terrace 

are associated with a bedload 

environment. Sediment struc-

tures like wavy bedding and 

cryoturbations with inter-
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layers of root horizons point to a fluvial sedimentation under shallow water conditions 

comparable to recent floodplain environments. 

4.4.2 Third terrace - Ice Complex (Nagym and Kurungnakh sections) 

IC deposits on top of the fluvial sequences of the third terrace are regarded as periglacial 

polygenetic formations of Late Pleistocene time between 43 ka and 14 ka BP. They are 

derived from the Chekanovsky Ridge and presumably transported to the northern foreland 

through local outflows. Multiple processes like gravitational sliding, surface-water run-off, 

solifluction and most likely wind may have reworked, transported and redeposited 

primarily accumulated material. Changing hydraulic conditions or reworking may have 

modified the heavy mineral composition in single sediment layers. Water flow, both in the 

uplands and the lowlands, was active during seasonal thawing of irregularly distributed 

snow cover, that is, of snow and firn fields, which were probably widespread in the area 

(Kunitsky, 1989, Galabala, 1997, Kunitsky et al., in press). Although fluvial activity 

through Late Pleistocene time is seen in seismic data of the exposed Laptev shelf (Kleiber 

and Niessen, 1999), IC deposition in the area of today’s Olenyokskaya branch is only 

possible during a time of Lena River inactivity in this delta sector. Otherwise, the locally 

derived and fine-grained sediments would have been removed with the Lena River 

downflow.  

The strong facies change from the underlying fluvial sands to the IC is interpreted as 

resulting from tectonic activity. There are strong indications for tectonic movements in the 

Lena Delta area. This includes the development of extensional halfgraben structures on the 

Laptev shelf to the north due to riftogenesis (Drachev et al., 1998, Hinz et al., 1998, Franke 

et al., 2000) and compression tectonics in the continental mountain ridges to the south 

(Romanovskii, 1978, Grinenko, 1998, Mikulenko and Timirshin, 1996). Fault systems 

belonging to the “Lena-Taymyr dislocation” run subparallel to the coastal line  from the 

Taymyr Penninsula in the west to the Lena Delta area in the east (Mikulenko and 

Timirshin, 1996). Here, the course of the fault system is marked by the Olenyokskaya 

branch and is regarded as a central structure within the Lena Delta (Fig. 4-7). It is 

associated with uplifting of the continental side. Considerable tectonic movements in the 

Verkhoyansk and Kharaulakh mountains to the south are reported to have occurred until 50 
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ka BP (Romanovskii, 1978). Local uplifting ranged from several hundred to more than one 

thousand meters. 

Figure 4-7: (a) Distribution of recent earthquake occurrence (magnitude 5-6) in the Lena Delta area (after 

Avetisov, 1999). The Lena Delta is demarcated by tectonic boundaries between the western and the eastern 

sector (according to Pavlova and Dorozkhina, 2000) and along the Olenyokskaya branch in the south 

(according to Mikulenko and Timirshin, 1996). (b) Thicknesses of upper Cretacious-Cenozoic deposits in the 

Lena Delta area (after Grigoriev et al., 1996). 

4.4.3 Second terrace (Arga section) 
Sedimentological and mineralogical parameters indicate that sediments of the second 

terrace are similar to recent Lena River bedload. The lack of silt, clay or organic matter in 

the Arga sands is interpreted as a result of a highly energetic periglacial channel network. 

The overlapping IR-OSL age determinations of the Arga sands suggest high accumulation 

rates. This points to a braided river system implying an upper flow regime, since for the 

same slope braided rivers tend to have higher discharges than meandering rivers (Allen, 

1970, Panin et al., 1999). Braided rivers are generally found close to the hinterland, where 

the slope of the drainage basin is high and low sinuosity rivers flow on flat foreland plains 

(Quirk, 1996). In the case of the Lena River the slope providing the fluvial energy may be 
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replaced by the “Lena Pipe”, the narrow fluvial pathway between the Chekanovsky and the 

Kharaulakh Mountains (Fig. 4-6). It enhances fluvial energy before the Lena River reaches 

the lowland plain. To understand the sediment facies of the second terrace the Arga sands 

may be compared with European periglacial river systems. They are also characterized by a 

pronounced enrichment in fluvial activity at 17 to 12 ka BP (Sidorchuk and Borisova, 

2000) with a periglacial peak discharge that is believed to have been up to eight times 

larger than in modern times (Sidorchuk et al., 2000). The river deposits have similar 

characteristics like the flat-lying Arga sands. They are built of massive fine-grained 

deposits, they lack low-lying interchannel areas and as a result, levees, crevasse deltas and 

lacustrine deposits of the same age are not present (Mol et al., 2000). More deposits like 

those described above have been dated to Late Pleistocene age in eastern Germany (Mol, 

1997) and eastern Netherlands (Huisink, 2000).  

Fine-sandy sediments from these Late Pleistocene periglacial environments building flat-

lying, alluvial fan-like and structureless deposits have been attributed to niveo-fluvial 

activity, or so-called “abluation” (Liedtke, 1981). This means, the sandy deposits are 

related especially to fluvial peak discharges after snowmelt in spring where high sediment 

load of the river is caused by increased slope wash in the drainage basin. The outwash 

delivers particularly fine-grained sediments to the river. The sediment load of the river is 

further enhanced by bank erosion of the increased periglacial river activity and may be 

accompanied by pronounced aeolian activity that is promoted by sparse vegetation cover in 

the periglacial environment (Huissteden et al., 2000). Such a period of pronounced fluvial 

action and the geomorphologic effects of river activity point to environmental changes in 

the catchment. They are believed to last only a short time and to express times of climatic 

change (Vandenberghe, 1995). 

Correspondingly, in a core (PS2458) from the Laptev Sea continental margin (78°N, 

135°E, 985 m water depth) off the mouth of the presumed Late Pleistocene Lena River, 

deglacial changes in the freshwater outflow can be reconstructed from the oxygen isotope 

record of planktic foraminifers. A short-term event (<0.5 ka) of maximum outflow at ~13 

ka BP correlates in time to an oxygen isotope minimum both in the central Arctic Ocean 

(Lomonosov Ridge) and in the western Fram Strait (Spielhagen et al., 1998). A major 

melting event in the Siberian highlands of the Lena River catchment was proposed, which 
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contributed to high fluvial activity at that time. Widespread thick sand deposits are 

described in the northern Yakutian lowlands and in the river lowlands of the Lena River 

catchment, amongst them the Arga sands (Galabala, 1997). A periglacial origin was 

interpreted including fluvial and aeolian activity. Equivalent deposits on the Laptev shelf 

may be found in submarine channels, separated by shoals, which cross the shelf and 

connect the river mouths with troughs or the shelf break further north (Lastotschkin, 1982, 

Pavlidis et al., 1997, Kleiber and Niessen, 1999). Geophysical investigations on Arga 

Island carried out with a radio-echo sound system suggest that the sandy environment 

found here continues at least down to about 60 m (Schwamborn et al., 2000a). Fluvial 

sediments on Bykovsky Peninsula, southeast of the Lena Delta region, which presumably 

belong to the periglacial slope wash, have recently been dated to 12 ka BP in conformity 

with the Arga sands (Schirrmeister and Grosse, unpublished data). Thus, a similar genesis, 

i.e. periglacial outwash sedimentation during early summer peak discharge of the Lena 

River, may be postulated for the sandy deposits on Arga Island. 

At the onset of the Holocene this fluvial plain was abandoned and between 8-7 ka BP the 

initiation of thermokarst created hollows and lakes in the surface (Schwamborn et al., in 

press – see chapter 2). Glacial features as an evidence for glaciation in the area according to 

Grosswald et al. (1999) have neither been found exposed on Arga Island nor in the lake 

sediments of Lake Nikolay (Schwamborn et al., in press – see chapter 2), which is centrally 

positioned in the area of presumed glaciation.  

Because nowadays the river discharge does not reach the topographic level of 20 m a.s.l. 

corresponding to the average elevation of the second terrace, a tectonic uplift of the western 

sector, or downlift of the eastern sector, respectively, is evident. A sublongitudinal fracture 

zone running through the Lena Delta is seen to separate the western from the eastern sector 

already by Lungershausen (1967). Geomorphologically most conspicuous, the base of the 

IC deposits shows a considerable difference in altitude (more than 20 m) between the 

western and the eastern sections (Grigoriev, 1993, Pavlova and Dorozkhina, 2000). From 

10 to 28 m a.s.l. in the western sector the base dips to –8 to –10 m a.s.l. in the eastern 

sector. In addition, whereas a full complex of terraces is developed in the western sector the 

eastern sector is dominated by floodplain alluvium and to relics of the third terrace. This 

has been taken as an confirmation for a tectonic boundary between these two Lena Delta 
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sectors running from north to south along the Tumatskaya branch (Pavlova and 

Dorozkhina, 2000) (Fig. 4-7). Possible equivalent sandy sediments of the second terrace in 

the eastern sector are considered to have been removed by fluvial erosion. Neotectonic 

activity is documented until recent times (Avetisov, 1999). Both, compression and tension 

patterns are reported in the area with earthquake magnitudes between 5 and 6 (Fig. 4-7). 

Furthermore, the tectonic situation shows an aulacogenic character of the most eastern Lena 

Delta area with a Quaternary sediment infill four times as high than in the western areas as 

revealed by gravimetric and seismic measurements (Grigoriev et al., 1996). Regional 

subsidence reaches from 1 km in the western delta sector down to 4-5 km off the delta in 

the east (Fig. 4-7). The asymmetry of the downwarp located east off the delta and its very 

irregular western border are characteristic of rifts that have formed at the junction of 

substantially different lithospheric plates (Avetisov, 2000). 

4.4.4 First terrace (Samoylov, Sardakh and Sagastyr sections) 
In the Holocene actual delta sector the fluvial facies of the sediments changes from 

organic-rich sands at the bottom to silty-sandy peats towards the surface. This gradual 

facies change is regarded typical for the transition of delta growth on top of backfilled 

fluvial channels. However, the exact facial boundary could not have been detected so far. 

Inversions of age determinations document high-energetic sedimentation conditions on the 

delta plain. The accumulation takes place shortly after river high-stand in early summer. 

Generally, the ages change from early Holocene in the west to late Holocene in the east 

possibly indicating a river migration of this direction. In the Early Holocene climatic 

warming and restoration of vegetation led to a decrease of peak discharges of the Lena 

River, presumably a decrease of bedload and a relatively increased load of fine-grained 

material and organic-rich suspension. Only material in the clay-sized fraction is still being 

washed out to the sea. This resulted in a change of river pattern from aggrading braided 

channels to floodplain sedimentation or slightly meandering channels according to 

Korotaev (1986).  

4.5 Conclusions 
The Lena Delta area is a geomorphic composite of erosional remnants from different Late 

Pleistocene- to Holocene-aged fluvial stages and actual deltaic sedimentation. The latter is 

found primarily in the eastern sector. The western sector is dominated by exposed peaty-
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sandy and sandy uplands formed during the Last Glacial sea-level lowstand. Lower fluvial 

sands of the third terrace represent Paleo-Lena River deposits of Late Pleistocene age 

(marine isotope stages 5 to early 3). The overlying Ice Complex deposits result from local 

outwash from the nearby mountain ridges to the south. Periglacially characterized river 

deposits of the second terrace represent a Lena River stadium of Late Weichselian time. 

These deposits are interpreted as a river response to a short-term climatic change in the 

catchment.  

The general outline of the modern delta began to form only since the middle of the 

Holocene. It is remarkable that the initiation of the delta at its modern position is retarded 

compared to the mean timing of the initial Holocene delta development compiled by 

Stanley and Warne (1994). They calculated a mean of ~7.0 ka BP for northern latitude 

deltas whereas the deltaic sedimentation of the Lena Delta only has started after 6-5 ka BP 

as seen from the transgression history of the Laptev Sea (Bauch et al., 1999). This may be 

due to the great lateral extension of the Laptev shelf (up to 500 km) and its low bottom 

slope inclination (Are, 1996). 

The delta is part of a seismically active zone with considerable block uplift. The tectonic 

activity is responsible for preserving mainly the western parts of the second and third 

terraces against fluvial erosion. Tectonic movement is also regarded as crucial for the 

strong facial boundary between the fluvial sands of the third terrace and the overlying Ice 

Complex.  

The sediment analyses do not support the hypothesis for a Late Pleistocene-time 

glaciation in the Lena Delta area simultaneously to the north European Weichselian 

glaciation. In combination with core analysis and seismic surveys from the Laptev shelf 

sediment analyses suggest a continuous sedimentation of Lena River sands in the area 

throughout Late Pleistocene and Holocene time. The period not covered by fluvial 

sedimentation (between 43 and 14 ka BP) may be explained by progressive river erosion of 

these sediments. 
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5 Summary 
Since the Weichselian deglaciation, eustatic and regional isostatic changes in sea level 

have profoundly altered worldwide coastal geometries. Structures relating to 

Pleistocene coastal and near-coastal lowlands have therefore undergone marine 

inundation and subsequent exposure. Naturally, this is likewise the case in the Lena 

Delta area.  

The goal of this thesis is to gain an overall understanding of the sedimentation history 

and the environmental conditions during evolutional stages of the Lena Delta. This 

study shows that the data sets from sediment analyses (grain size distributions, heavy 

mineral compositions, biogeochemical analyses) and geophysical measurements 

(ground penetrating radar and high-resolution seismics) allow to outline the morpho-

sedimentary succession of the Lena Delta (Fig. 5-1). Emphasis is placed upon the  
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Figure 5-1:Morpho-sedimentary succession in the Lena Delta. The timescale to the left is according to 

the orbitally based chronostratigraphy with conventional marine isotope stages after Martinson et al. 

(1987). 

benefits arising from an interdisciplinary approach to decipher fluvial and lake 

environments. Conclusions and hypotheses relating to individual studies within this 

report are presented in the previous chapters. Overall findings arising during this 

investigation are as follows: 

• The Lena Delta is a geomorphic composite of erosional remnants from different 

Late Pleistocene-aged fluvial stages and actual, Late Holocene-aged to modern 

deltaic sedimentation. The latter is found primarily in the eastern sector. The 

western sector is dominated by exposed peaty-sandy and sandy uplands formed 

during the Last Glacial sea-level lowstand. Thermokarst processes have profoundly 

altered large areas of the Lena Delta, especially in its western sector. 

• Paleo fluvial sands and intercalated root horizons dated at ~88-43 ka BP form the 

minimum start of the sediment succession comprised by the present-day Lena Delta 

area. Evidence from heavy mineral studies supports that they derive from the Lena 

River. Outcrop, grain size and total organic carbon data show that the sedimentary 

facies is comparable to modern floodplain environments. The fluvial sands represent 

the lower section of the third terrace (0 to 14 m a.s.l.). 

• Evidence for fluvial activity during the second half of the Weichselian (43 to 14 ka 

BP) is restricted to the locally originated Ice Complex. According to grain size, 

heavy mineral and total organic carbon studies this is a polygenetic and organic-rich 

formation derived from and positioned at the foots of the north Yakutian mountains 

(Chekanovsky and Kharaulakh Ridges). In the Lena Delta area they form the cover 

of the third terrace (14 to 35 m a.s.l.) upon the lower sandy layers mentioned above. 

The strong facial change between the Ice Complex and the lower sand is seen as a 

strong indication for tectonic influence on sediment dispersal and strata formation in 

the Lena Delta area. Lena River derived sediments are not preserved from this 

period, but they are assumed in a main river channel flowing to a paleo Lena Delta 

located further north. 

• The phase of general environmental stability during Ice Complex formation was 

followed by a new episode of incision and subsequent fluvial accumulation of the 

Lena River between >14.5 to 10.9 ka BP (Fig. 5-2). It took place in a braided system 

under conditions of high peak discharges and diminished vegetation. The thick 
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sandy sequences characteristic for this period represent the second terrace (10 to 30 

m a.s.l.). In the beginning of the Holocene evidence for fluvial activity decreases in 

the northwestern area of the Lena Delta. It is ultimately replaced by aeolian activity 

and deep reaching thermokarst (<7 ka BP, uncalibrated radiocarbon years). This age 

has been revealed from sediments of Lake Nikolay. 

• Thermokarst processes explain the origin of the numerous lake basins located on the 

second terrace including Lake Nikolay as the largest and deepest of them. They take 

place in the abandoned fluvial pathways. The onset of the thermokarst coincides 

with the regional Holocene climate optimum.  

• The morphology of the thermokarst terrain could be identified with the aid of a 

combination of high-resolution seismic data and GPR. It was possible to study 

adjacent zones of limnic and cryo-terrigenic environments. Whereas processed high-

resolution seismic data is an effective means to display the water-saturated lake 

basin fills, GPR profiles are especially applicable for frozen ground surrounding the 

lake depressions. Seismic data, which are supported by mathematical modeling, 

show that the single thermokarst basins have induced a thawing propagation in their 

subground, which causes the sediment settling and the continuing depth increase of 

the lakes. 
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Figure 5-2: Tectono-sedimentary evolution of the Lena Delta during Late Pleistocene and Holocene with 

emphasis on the western sector. Ice Complex deposition along the foots of the highlands was followed by 

lateral and vertical sedimentation of a braided Lena river run-off shortly before the termination of the 

Pleistocene. Due to a relative tectonic uplift of the sector (<11 ka BP) and a subsequent river migration to 

the east the sedimentation phase in the area ceased in the early Holocene. Thermokarst started to take 

place in the abandoned fluvial pathways. The present stage of delta construction (first terrace) in the 

eastern sector was initiated after termination of the glacio-eustatic sea level rise in the middle of the 

Holocene. Ice Complex deposits (third terrace) and sandy sediments of the western sector (second terrace) 

are progressively eroded preferentially along the fault lines by the river in inner-delta areas or due to 

thermoerosion along the coastline (not illustrated in the figure). 

 

• The fluvial succession continues with the first terrace sediments (0 to 10 m a.s.l.) of 

Holocene age (<8.5 ka BP). The abandonment of the northwestern sector and the 

shift of the main depo-center towards the northeastern/eastern sector are associated 

with a tectonic downwarping along a N-S trending fracture zone separating both 

areas. The rise of the Laptev Sea water level was established at its modern position 

and the recent deltaic fill of the river channels was initiated. Soils are developed on 

the higher sites of the alluvial plain of the first terrace. Thermo- and fluvial erosion 

of second and third terrace sediments proceeds. Masses of dry sand can be deflated 

from the shores when strong and persistent winds drive over the delta. The exact 

ages of the borders between the first terrace and the modern floodplain levels could 

not be determined. This is due to age inversions along the profiles, different ages 

revealed for the same altitudes or same ages revealed for different altitudes. 

Reworking of material may have caused these overlapping effects in connection 

with the uncertainty of river arm migration on the delta plain.  

 

• In contrast to a number of scientists believing that Pleistocene glaciers partly 

covered the Lena Delta area (Grosswald, 1998, Grosswald et al., 1999) the analytic 

data of the presented studies do not support this - neither sedimentary (for example 

through the occurrence of tills or moraines) nor geophysical (for example through 

the detection of massive underground ice derived from glaciers). In addition, direct 

glacial traces in the area have not been found either. Glacial influence is also ruled 

out for the time range covered by the period of Ice Complex formation (43-14 ka 

BP). Various micro and macro fossils preserved therein document a great variety of 
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faunal and floral life as shown by Schirrmeister et al. (1999) excluding the nearness 

of a northern ice shield. 

 

A Selected Open Question 

The periods of the major stages of sedimentation in the Lena Delta are not matching 

the temporal boundaries of the Weichselian paleoclimate stages following the oxygen 

isotope stages presented by Martinson et al. (1987) (Fig. 5-1). This illustrates the 

importance of long-term (scale of 10,000s of years) regional climatic conditions in the 

river system. The fluvial response seems generally stable in its tectonic framework and 

is determined by the climate derivatives like the vegetation and river runoff in the 

catchment. The overall climatic conditions are likely to have prevailed during most of 

the Weichselian time (Meyer et al., in press). On- and offset of the locally generated Ice 

Complex formation clearly do not match boundaries of the oxygen isotope stages, 

either. Besides, the Ice Complex formation belonging to the widely spread ice-rich 

permafrost deposits in the Yakutian North is regarded a long-term phenomena in the 

alluvial lowlands. It may have started even in pre-Eemian time at ca. 200 ka BP 

(Schirrmeister et al., submitted). Only parts of its evolution are exposed in the Lena 

Delta area. 

In contrast, short-term river dynamics seem to be reflected in the deposition of the 

second terrace. They point to an instability phase governed by an intrinsic evolution in 

the catchment. The apparently impulsive deposition of a high quantity of sediment 

suggests a time of climatic transition according to Vandenberghe (1995). This may be 

related to more global factors at the termination of Pleistocene time. But to obtain 

answers to this question more studies are needed in the drainage basin of the Lena 

River.  

Of special interest for changes in the freshwater outflow to the Arctic Ocean is the 

glaciation history in the mountains of NE Siberia. A decay of the mountain glaciation at 

ca. 15 ka BP (uncalibrated radiocarbon years) is indicated by age data obtained from 

glaciolacustrine deposits in the Lena River catchment (Spielhagen et al., in prep.). In 

warming periods, when the glaciers retreated, favourable conditions for the formation of 

dammed lakes may have existed. When breaching these lakes could have supplied 

considerable masses of water to flow to the north. However, only a few glacial deposits 
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have been dated so far in the Verkhoyansk mountains south of the Lena Delta (Siegert, 

pers. comm.).  

Another explanation for rising water masses during that time could be the melting of 

widely spread snow glaciers in the mountains and lowlands of Yakutia as proposed by 

Galabala (1997). The proposed snow fields and inactive thin ice sheets would also 

increase the water flow reacting sensitively by melting more rapidly during warming 

periods. 

To further understand the origin of the second terrace of the Lena Delta it is, therefore, 

recommended to conduct studies in the Lena River catchment. 
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APPENDIX - Material and Methods 

Chirp Data Acquisition 
Chirp is a high-resolution, digital, frequency-modulated (FM) sub-bottom profiling 

system. It is capable of obtaining water depth and cross-sectional profiles of the sea- or 

lake-bed and the unconsolidated sediments and strata of the shallow subsurface. This 

system can operate in shallow water depths (>2.5 m) and can acquire data in an industry 

standard format (SEG-Y), which enables its straightforward transfer to off-line 

processing packages. The Chirp source differs from conventional, single frequency, 

sub-bottom profilers by having a repeatable, swept-frequency pulse. This results in the 

data having a significantly improved signal-to-noise ratio (i.e. greater clarity), whilst the 

wide range of frequencies within the single pulse limits the classic trade-off between 

penetration and resolution. Chirp seismic reflection data supporting this thesis was 

acquired utilizing a GeoAcoustics GeoChirp™ profiler, which comprises four ceramic 

transducers, outputting a 32 ms 1.5-11.5 kHz frequency sweep in the so-called high-

resolution mode. The returning sweep of signals is processed in the Chirp Transceiver 

over a period of 130 ms. The separate transmitting and receiving electronics preserves 

the linearity of the acquisition system and allows simultaneous transmission and 

reception (Schock et al., 1994). The system was mounted upon a surface-towed 

catamaran, attached to which is an 6-element, single-channel 0.5-15 kHz hydrophone 

streamer having an offset of 2 m behind the transducer array (Fig. A-1).  

 

Figure A-1: Design of the Chirp catamaran used demonstrating transducer and hydrophone configuration 

(graphics: courtesy by R. Quinn, modified). 
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The catamaran was operated from an inflatable boat (3.6 m) and the output power was 

400 W. For survey navigation a global positioning system (GPS) receiver (Trimble 

Scoutmaster) was used. A scheme of the sub-bottom profiling system as deployed by 

the AWI-Potsdam can be found elsewhere (Niessen et al., 1997).  

The component algorithms of a post-processing flow applied to the correlated data 

gained in the field are taken from Quinn (1997), Quinn et al. (1998) and Lenham 

(2000). The reader is referred to these authors in general for a broader discussion on the 

frequency content and application of the Chirp system.  

The principal aim of the processing sequence as in general is to increase the overall 

signal-to-noise ratio by the application of predictive filters and to enhance the lateral 

coherency of the data. The effectiveness of these coherency enhancing methods benefits 

from the repeatability of the Chirp´s source pulse, as the frequency of the signal content 

remains relatively constant throughout the correlated profiles and is therefore readily 

distinguishable from any arbitrary noise component (Schock and LeBlanc, 1990, 

Verbeek and McGee, 1995).  

GPR Data Acquisition 
Ground penetrating radar (GPR) operates in a similar fashion to seismo-acoustic 

systems like the above described Chirp system, except, it emits electromagnetic energy 

pulses instead of acoustic energy pulses. As the energy radiates out, a reflection is 

created whenever the wave front reaches an interface between materials with different 

electrical properties. The strength of the reflection is proportional to the magnitude of 

the contrast between the dielectric constants of the two materials. 

The RAMAC impulse radar system used for the presented studies was manufactured 

by Mala GeoScience, Sweden (www.malag.se), consisting of (1) the antenna assembly 

(which includes 25 or 100 MHz transmitter and receiver), (2) the control unit, which 

generates timing signals for the transmitter and receiver, and processes the incoming 

data from the receiver, and (3) a laptop computer connected to the control unit, for 

entering the survey parameters, providing real-time data display and to record the data 

to disk (Fig. A-2). The control unit and battery used to power the system are carried in a 

backpack and the computer is slung off the backpack in front of the operator. With this 

system, the two antennas are connected to the control unit by fibre optic cables in order 

to eliminated electromagnetic interference. The field employment was ruled by 

computer and the resulting reflections on-line visualized on the screen. 
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Figure A-2: Schematic diagram of the RAMAC GPR equipment. The transmitter and the receiver 

antennae are connected with the control unit by optical fibre. The scheme shows two horizons in the 

subsurface reflecting parts of the energy. 

 
The GPR data requires certain fundamental processing to highlight the main features 

of the profiles. A combination of time-zero drift correction, remove of clipping, deWow 

(remove of the low-frequent DC component by applying a high-pass and a running 

average filter), a band-pass and mean filtering and automatic gain control yielded the 

clearest images of the subsurface. 

Sediment Analyses 
The following laboratory analyses have been conducted on the sediment samples: All 

sediment data presented are available through the geoscientific database PANGAEA to 

be found at http://www.pangaea.de. 

Water Content 
In the beginning, sediment samples packed in polysterole boxes have been examined 

for moisture. The gravimetric water/ice content was obtained as the difference between 

the fresh-sample-weight and dry-sample-weight after samples had been deep-frozen (-

24° C) and freeze-dried. 

Grain Size Distribution 

Grain size distribution has been determined by laser particle sizing (LS200, Coulter 

Corp.). This allows measurements in the range of 2 µm to 2 mm. Large plant remains 
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were hold back in a sieve with a mesh size of 2 mm on beforehand. To remove organic 

matter suspensions of  

the samples were oxidized (3 %-H2O2) and treated with NH4OH (10 %) to diminish 

surface tension. This procedure was repeated until the reaction ceased. Hereafter, the 

samples have been given to the supply unit where grains are ultrasonicated, stirred and 

centrifuged to be dispersed and transported. The supply unit is connected to the 

measuring unit by tubes. Here, a laser beam produces a diffraction pattern as it passes 

though the sample: the laser beam is deflected at various angles depending on the size 

of the individual particle and - as already observed by Fraunhofer – intensity maxima 

and minima occur at specific distances from the central light beam. The so-called 

‘Fraunhofer law’ describes the physical relationships, and with the help of this law, and 

at a known optical wavelength, the particle sizes can be calculated from the distance 

between the maxima. For this purpose, the distribution of the angle and the 

corresponding distribution of intensity of the diffracted light are detected with a special 

high-resolution multi-element detector (Bumcke, 2000). A connected computer 

calculates the particle size distribution according to granular size and mass from the 

multitude of diffraction patterns created during one measurement. The results are 

expressed in vol% and displayed in graphic or tabular form on the screen or via a 

printer. A comparison with the pipette method, which is based on settling velocities 

following Stoke´s Law, shows that absolute clay contents are lowered but contents in 

the silt fraction are raised by the laser technique. The differences are attributed to 

deviations from the sphere form and when particle density is heterogeneous (Konert and 

Vandenberghe, 1997, Molinaroli et al., 2000). 

Biogeochemical Analyses 
For measurements of total carbon (TC) and total organic carbon (TOC) an aliquot of 

the sediment samples was pulverized (to <63 µm) and homogenized using an achate 

sediment mill. The contents of TC were analyzed with a CHNS-932 determinator (LECO 

Corp.). The elemental analyzer is designed to measure 2 mg of infill. Samples were 

heated (1100° C) in oxygen in a Leco furnace and the evolved CO2 was evaluated by IR 

spectroscopy. 

TOC was measured with a Metalyt-CS-1000-S (ELTRA Corp.) in samples (100 mg) 

that have been treated with HCl (10 %) at a temperature of 80° C to remove the 
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carbonate. Samples were heated (1400° C) and carried in oxygen during analysis. The 

TOC content is measured by IR spectroscopy. 

International standard reference materials (GSD, 9, 10, 11) as well as double 

measurements were used to check the external precision. The following standard 

deviations have been accepted: 

- TC and TOC:  ±   5 % for content >1 wt %, 
± 10 % for content <1 wt %. 

Stable carbon isotope ratios 13C/12C of organic carbon were measured on pre-acidified 

(200 µl of 10 % HCl, heated up to 60° C for 120 min.) samples by high-temperature 

combustion (~1000° C) in a HERAEUS Elemental Analyzer coupled with a FINNIGAN 

MAT Delta S mass spectrometer (Fry et al., 1992). The CO2 was cryogenically purified 

in a vacuum line and measured for stable carbon composition with a multiport system. 

The isotopic compositions are reported as δ−values (in ‰) relative to the international 

V-PDB (Vienna PeeDee Belemnite) standard (Coplen, 1995). Results are expressed vs. 

V-PDB in the form: 

δ13C org. (‰) = [(13C/12Csample-13C/12Cstandard)/(13C/12Cstandard)] x 1000. 

Accuracy of the analytical methods was checked by parallel analysis of international 

standard reference material (PTFE-foil IAEA-CH-7: -31.77 ‰ V-PDB). The analytical 

precision of the carbon isotope analyses is ± 0.2 ‰. 

Heavy Mineral Analysis 
Sample preparation was performed according to standard procedures (Boenigk, 1983, 

Mange and Maurer, 1991). First samples of 50 g were oxidized (3 %-H2O2) and 

dispersed (conc. NH4OH). In order to obtain comparative datasets to previous studies 

(Peregovich, 1999, Hoops, 2000) the fraction 63-125 µm was separated by dry-sieving 

using an ATM Sonic Sifter. The heavy minerals were separated using sodium 

metatungstate solution (Na6(H2W12O40)xH2O) with a density of 2.89 g/cm3. Samples of 

approximately 1-3 g were dispersed in the solution and centrifuged for 20 minutes 

(3000 rpm = rounds per minute). The heavy fraction was frozen in liquid nitrogen. The 

light fraction was decanted and the heavy minerals rinsed on filters and dried. For 

optical identification using a polarization microscope, the heavy fraction was mounted 

with a “Quick-stick” immersion liquid (n = 1.68) of Cargille Meltmount™ on slides. On 

average >200 grains were identified and counted. This allows an error of ≤ 5 % for 

frequently occurring mineral species and guarantees that minor species are detected as 

well (Mange and Maurer, 1991). The results are expressed in grain%. 
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Radiocarbon Dating 
Mainly fine plant remains, picked under the Stereomicroscope, were used for 

radiocarbon dating. Measurements were performed by Accelerator Mass Spectroscopy 

(AMS) at the “Leibniz Labor für Altersbestimmung und Isotopenforschung” of the 

University of Kiel. The 14C ages are given as conventional ages; i.e. the ages expressed 

in years before present (yr BP) were calculated on the basis of the measured activity 

using a 14C half-life of 5568 years according to Stuiver and Polach (1977). Radiocarbon 

ages <20,000 yr BP have been calibrated into calendar years before present (cal. yr 

B.P.) according to the intercept method (Stuiver et al., 1998). 

 

Luminescence Dating 

Luminescence dating procedure has been conducted to sandy sediments that were 

either organic-free or presumably with ages beyond the range of the radiocarbon 

method. Field work and lab measurements have been achieved under conduct of the 

Saxon Academy of Sciences in Leipzig, Quaternary Geochronology Section, Bernhard-

von-Cotta-Str. 4, 09596 Freiberg. Methodology and results are documented in the 

following article “Luminescence dating results of sediment sequences of the Lena 

Delta” (see next page).  
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Luminescence dating results of sediment sequences of the Lena Delta∗ 

Summary 
The age correlation between the three main geomorphologic terraces in the Lena 

Delta, especially that of the second sandy terrace (Arga Island) and the third terrace (Ice 

Complex and underlying sands) is still being discussed. Knowledge about the age of the 

Ice Complex and its underlying sands, and the Arga sands is necessary for 

understanding the past and modern structure of the delta. Geochronometric data have 

been acquired for three sediment sequences from the Lena Delta by luminescence dating 

using the potassium feldspar IR-OSL technique. Additionally, 14C dates are available 

for geochronological discussion. Typical sediments of the upper part of Arga Island as 

found in the area of Lake Nikolay are of Late Pleistocene age (14.5 – 10.9 ka). Typical 

third terrace sediments from two sequences located at the Olenyokskaya branch are 

older. At the profile “Nagym“, sandy sequences were most probably deposited between 

about 65 ka and 50 ka before present. The lower part of the sandy sequence at 

“Kurungnakh Island” is possibly older than the sediments of the section at Nagym. 

However, methodological difficulties in luminescence dating (insufficient bleaching at 

the time of deposition) and younger 14C dates make the discussion of the results 

difficult. 

Zusammenfassung 
Die Altersbeziehungen zwischen den drei geomorphologischen Hauptterrassen des 

Lena-Deltas sind noch ungeklärt und Gegenstand laufender Diskussionen. Ihre Kenntnis 

ist jedoch nötig, um die Paläogeographie des Deltas zu rekonstruieren und seine heutige 

Struktur zu verstehen. Mit Lumineszenz-Altersbestimmung wurden geochronometrische 

Daten für drei Sedimentsequenzen des Lena-Deltas ermittelt. Dabei gelangte die 

Methode der IR-OSL Datierung an Kalifeldspäten zur Anwendung. Für eine 

geochronologische Diskussion der Untersuchungsergebnisse stehen desweiteren AMS 
14C-Alter zur Verfügung. Typische Sedimente des oberen Teils der Arga Insel im 

Gebiet des Nikolay-Sees (zweite Terrasse des Lena-Deltas) haben ein spätpleistozänes 

Alter (14,5 bis 10,9 ka). Die sandigen Sedimente der Schichtsequenzen des Olenyok-

Arms (dritte Terrasse des Lena-Deltas) sind älter. Für den mittleren Teil des Profils 

Nagym ist eine Ablagerung vor etwa 65 ka bis 50 ka wahrscheinlich. Der untere Teil 

des Profils auf der Insel Kurungnakh ist möglicherweise älter als die Sedimente von 

                                                
∗ Krbetschek, M.R., Gonser, G., Schwamborn, G., Polarforschung 70 (2000). Reprint kindly permitted. 
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Nagym. Methodische Schwierigkeiten der Lumineszenz-Datierung (unzureichende 

Bleichung zum Zeitpunkt der Ablagerung) und jüngere 14C-Alter gestalten die 

Diskussion der Ergebnisse jedoch schwierig. 

Introduction 
Luminescence dating methods are able to determine the last light exposure of mineral 

grains and therefore the time of deposition of a great variety of sediments. Basic 

physical research and the development of new dating techniques led to their increasing 

importance for Quaternary geochronology in the last decade. Mostly they are the only 

methods to get reliable geochronometric information from aeolian or waterlaid 

sediments in the age range from a few thousand to a few hundred thousand of years.  

Luminescence dating methods are based on the characteristics of various minerals to 

store natural ionising radiation by its transformation into luminescence capability. 

Mineral grains are permanently exposed to such radiation owing to natural Uranium, 

Thorium and Potassium-40 in the sediment and to cosmic rays. During transport and 

deposition, a former luminescence signal is deleted by light exposure. Stored in the 

dark, the luminescence signal increases and becomes a measure for the time of the 

sediment’s deposition. Dating methods using optical stimulation of radiation-induced 

stored luminescence replace the thermoluminescence (TL) methods of the 1980’s in 

sediment dating to a large extent. The signal of Optically Stimulated Luminescence 

(OSL) is reset to zero within a few minutes’ light exposure, also under dimmed 

conditions. The Infrared Optically Stimulated Luminescence (IR-OSL, IRSL) method 

(Hütt et al., 1988) based on feldspar minerals was applied in the present study. The 

internationally acknowledged age range of the IR-OSL method is about 1 ka to 150 ka 

(1 ka = 1000 a). Further basic physical research is necessary to get reliable results of 

greater age. Recent overviews of OSL, sediment dating and dating procedures are given 

by Aitken (1998), Prescott and Robertson (1997) and Wintle (1997).  

The age correlation between the different terraces in the Lena Delta, especially that of 

the second sandy terrace (Arga Island) and the third (Ice Complex) is still being 

discussed (Are and Reimnitz, 2000). Knowledge about the age of the Ice Complex, the 

underlying sands and the Arga sands is necessary for understanding the past and modern 

structure of the delta. Originally, the second terrace was considered to be younger than 

the Ice Complex remnants and to be overlapping them. Later it was proposed that the 

sands composing the second terrace underlie the Ice Complex. No geochronometric data 
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for the sediments were available until now. The present study comprises luminescence 

dating at three sediment sequences – one from Arga Island (adjacent to Lake Nikolay) 

and two from the third terrace (Olenyokskaya Branch) (Fig. L-1). Additionally, seven 

AMS radiocarbon dates are available, which have been measured at the Leibniz 

Laboratory, University of Kiel. 

 

Figure L-1: Location map of the Lena Delta (after Grigoriev, 1993) and the sediment sequences 

investigated. 

Luminescence Dating 
Samples have been taken from sandy fluvial sediments. At the Arga section, the 

outcrop was cleaned by melting the sediment with lake water. A layer of about 1.5 m 

was removed and the samples were taken using a metal hole corer, combined with an 

accumulator drilling machine. During the drilling process, the frozen sediment material 

was transferred into a light-tight black plastic tube inside the corer. The sediment 

samples from the Olenyokskaya Branch area are of non-frozen material. About 0.5 – 1 

m sediment was removed and light tight plastic tubes and a nylon hammer were used for 

taking the samples. All containers have been sealed to prevent any loss of water.  

The sample preparation was carried out under laboratory light conditions (dimmed red 

light) and for additional light safety most of the time the material was handled in light-
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tight containers. In-situ and saturation water content were analysed at first. After sieving 

(100 – 160 µm), removing of organic substances and carbonates by H2O2 and HCl 

treatment, respectively, mineral separation was carried out. Potassium feldspar 

extraction was performed by a feldspar flotation procedure, followed by heavy liquid 

density separation (sodium polytungstate) of the fraction <2.58 g cm-3. Standard HF, 

HCl etching was applied to remove the alpha ray affected part of the grains. Between all 

steps of separation, the material was washed in distilled water to a neutral pH-condition.  

The palaeodose (DE) has been determined by the additive-dose method. Luminescence 

measurements of the 410 nm feldspar IR-OSL emission (Krbetschek et al. 1997) using 

an optical interference filter (peak-max. 410 nm, 20 nm width at half peak transmission) 

have been carried out on a modified Riso-TL/OSL-DA 12 reader, running the IR 

stimulation at 40 mW cm-2. 48 sample aliquots of about 4 mg (volume normalisation) 

were used. Natural sample aliquots were IR-OSL normalised by pulse measurements 

(0.1 s), irradiated (90Sr/ 90Y ß-source, dose rate 0.92 Gy/min, 6-8 additive dose values) 

and measured after storage for at least 1 week at room temperature and preheat for 48 h 

at 140 °C. After a 0.1 s pulse measurement (short shine) the IR-OSL signal of the 

aliquots was detected at 100 s stimulation duration (shine down).  

Data evaluation is illustrated in Fig. L-2a-c. A single exponential saturation dose 

characteristic growth curve fit was used to calculate the palaeodose. The IR-OSL 

measurements (Fig. L-2a) were normalised by the natural short shine signal. After “late 

light” (80-100 s) background subtraction (Aitken and Xie, 1992) the shine down plateau 

was calculated (Fig. L-2b). The growth curve fit was repeated to calculate the final 

palaeodose and error determination using the integral values of the plateau (Fig. L-2c). 

A fading test has been carried out for each sample (>2 month storage at RT). The U, Th 

and 40K concentration of the sediment samples have been determined by low level high 

resolution gamma spectrometry. No significant radioactive disequilibrium was 

observed. The internal dose rate of 40K was calculated based on the potassium 

concentration of the feldspar grains determined with a recently developed spectral 

radiophosphorescence technique (Dütsch and Krbetschek, 1997). Cosmic dose rate 

estimation is based on Prescott and Hutton (1988). The age and error calculations have 

been done using the computer-software of Grün (1992), based on the procedure 

described in Aitken (1985). The error includes systematic and random errors which 

arise from: irradiation source calibration, possibly changing water content in the past, 
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errors in radionuclide-, cosmic dose rate-, feldspar internal dose rate- and palaeodose 

determination. 

 

Figure L-2: Sample ARG 5: a) IR-OSL measurements (mean shine down curves: natural signal; additive 

dose 20, 40, 60, 100, 200, 320 Gy), b) DE vs. stimulation time (shine down plateau), c) IR-OSL dose 

characteristic (plateau-integral). 

Dating Results and Discussion 
The results of different analytical procedures are listed together with the final age 

calculations in Table L-1. The radioisotope concentration of Uranium and Thorium is 

slightly higher in most of the Olenyokskaya sediment samples compared to those from 

Arga. The age data from the Arga sediment profile have relative errors in the range of 

about ±10 % whereas those of the Olenyokskaya sequences are significantly higher and 

reach more than ±40 % for some samples. This is caused by a generally high error in 

palaeodose determination due to a high scatter of IR-OSL measurement results. In the 

case of the samples OLE 4, 5, 9 the calculation of the palaeodose, based on such data, 

was not possible. For OLE 5, this is additionally caused by an insufficient number of 

sample aliquots for IR-OSL measurement due to low potassium feldspar concentration.  
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Sample Radioisotope Concentration Water Dnat DE Age 
U / ppm  Th / ppm K / % % mGy a-1  Gy ka 

 
ARG 1 1.1±0.09 4.9±0.25 3.3±0.28 23±2 3.74±0.11 50±2.6 13.4±1.1 
ARG 2 1.0±0.05 3.8±0.25 2.4±0.26 20±5 * * * 
ARG 3 0.9±0.06 3.4±0.25 2.4±0.19 22±2 3.04±0.17 40±3.9 13.3±1.5 
ARG 4 1.1±0.09 4.4±0.27 2.7±0.16 25±5 3.24±0.22 39±2.4 12.0±1.1 
ARG 5 1.1±0.05 3.7±0.20 2.4±0.18 18±5 3.23±0.23 42±2.0 13.1±1.1 
OLE 1 1.4±0.09 5.9±0.96 2.6±0.14 10±5 3.85±0.27 219±30 57 ±9 
OLE 2 1.5±0.08 6.6±1.53 2.7±0.14 24±5 3.37±0.26 176±31 52 ±10 
OLE 3 1.6±0.25 5.9±0.32 2.5±0.17 31±5 3.00±0.25 147±64 49 ±22 
OLE 4 1.6±0.07 5.9±0.67 2.5±0.19 18±5 3.44±0.27 ** ** 
OLE 5 1.1±0.06 4.6±0.30 2.6±0.17 25±5 3.14±0.25 ** ** 
OLE 6 1.0±0.09 4.3±0.20 2.4±0.13 18±5 3.20±0.24 177±25 55 ±9 
OLE 7 1.7±0.11 7.1±0.27 2.2±0.13 35±5 2.72±0.22 238±32 88 ±14 
OLE 8 0.9±0.06 3.5±0.22 2.0±0.12 28±5 2.54±0.21 180±100 * 
OLE 9 1.5±0.07 6.1±0.27 2.1±0.15 32±5 2.67±0.23 ** ** 

 OLE 10 1.5±0.07 6.4±0.30 2.2±0.14 16±5 3.30±0.24 215±22 65 ±8 
* not determined       **determination not possible 
Dint = 0.78 ± 0.08 mGy/a (ARG1, OLE1-10) ; 0.76± 0.08 mGy/a (ARG 3-5) 
 
Table L-1: Analytical results of IR-OSL dating. 

 
The natural IR-OSL of the sample aliquots (short shine normalisation values) 

characterises the samples’ non-homogeneity to some extent. Although random errors of 

the aliquot-preparation and that of the measurement instrumentation are included, such 

measurements can uncover different effects caused by changing material composition. 

Large data scatter may occur, if the luminescence behaviour of the grains is highly 

variable (e.g. the signal is emitted by a few bright shining grains while most show weak 

luminescence dose response) or the feldspar fraction is a mixture of grains with large 

differences of the bleaching degree at the time of deposition. Insufficient zeroing of the 

luminescence signal prior to sediment deposition is known to be a main source of error 

in luminescence dating of some types of sediment. In the case of sediments from polar 

regions, deposited in a river delta, this is of particular importance. Both, the seasonal 

lack or reduction of sunlight and the ice-melting period may cause insufficient 

bleaching of the IR-OSL signal. The latter leads to sediment reworking, high sediment 

load of the water and transport over short distances – factors that drastically reduce the 

duration or intensity of sunlight exposure. 

The natural IR-OSL normalisation values of the samples are shown in Figure L-3. It is 

obvious that the samples from the Olenyokskaya sequences are characterised by high 

scatter. Additionally a modern sample (NP 7) from the central delta region was 

investigated. It has the highest scatter of the normalisation measurements (Fig. L-3) and 

no reliable dose (which should be zero) could be obtained. The samples from the 
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Arga/Lake Nikolay sediment profile seem to be less affected by insufficient bleaching. 

The reason may be a longer transport distance. 

 
Figure L-3: Relative standard deviation of the natural normalisation measurements (0.1 s short shine) 

calculated for 24 aliquots each, except the modern sediment NP7, where the value is based on the 

measurement of 12 aliquots. 

Geochronometry / Geochronology 
A scheme of the sediment sequences with the luminescence dating results is given in 

Figure L-4. AMS radiocarbon dates are added for further discussion (Table L-2). The 

results of IR-OSL age determination show a very narrow age range in which the 

sediment sequence of Arga / Lake Nikolay must have been formed. Taking into account 

the errors of the data, its formation can be constrained to 14.5 to 10.9 ka before present. 

Taking into account the error ranges, the data are consistent and there should not be a 

basic influence of insufficient bleaching on the age data from Arga. It seems likely that 

the high accumulation rate implied by the overlapping ranges of the luminescence 

datings is associated with a fluvial environment under upper flow regime. The deposits 

are derived most probably from the periglacial Lena River, which flowed on the 

exposed Laptev shelf at that time (Schwamborn et al., in press). 

As mentioned above, for the dating results from the Olenyokskaya profiles high errors 

are typical and most probably caused by insufficient bleaching at the time of deposition. 

Therefore, limitations are set for the geochronological interpretation of the data. The 

data from the Nagym sequence (OLE 1,2,3,6) span a range from 49 ka to 57 ka. No 
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further time resolution is possible because the errors overlap. Deposition between about 

65 to 40 ka before present is most probable, based on the IR-OSL dating results. 

However, the 14C data (root horizons) of the lower part may narrow this range. 

Figure L-4: Scheme of the sediment sequences investigated, compiled with the IR-OSL and 14C age data. 
 

It seems likely, that the deposition took place between about 65 ka and 50 ka. 

Predominantly wavy bedding interrupted by root horizons indicate a fluvial 

sedimentation under shallow water conditions. 

sample depth (m a.s.l.) lab. no. measured age (14C yr BP) 
Nagym 11.0 (base of Ice Complex) KIA 9899      42,930 +3100/-2230 
Nagym  5.1 KIA 6753   > 56,790 
Nagym  3.1 KIA 6754   > 54,520 
Kurungnakh 14.0 (base of Ice Complex) KIA 6755      42,910 +840/-760 
Kurungnakh 12.5 KIA 6756      37,230 +510/-480 
Kurungnakh  7.7 KIA 6757      39,400 +510/-480 
Kurungnakh  4.0 KIA 6758      49,440 +1760/-1440 

(a.s.l. = above sea level; i.e. above Lena River water level, 08.-10.08.98) 
Table L-2: AMS 14C ages of third terrace deposits. 
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The OSL data from the sequence at Kurungnakh Island (OLE 7,10) are between 88 ka 

and 65 ka. A deposition of the lower part of the sequence between about 100 ka and 60 

ka is likely. This is not in accordance with the 14C dates, which are of younger age. 

Thus, the age determinations from both methods are suitable only to narrow the 

sedimentation time to Early to Middle Weichselian time. The OLE-samples may be 

influenced by insufficient bleaching. This can cause age overestimation. However, there 

is a chronological order. It seems, that age overestimation due to partial bleaching does 

not describe the discrepancy between the IR-OSL and 14C ages sufficiently. The 

measured AMS ages are placed at the limits of the age range covered by the 14C 

method. Contamination by young allochthonous carbon is the biggest problem in 

radiocarbon dating of old samples. Whereas 1% contamination with recent carbon 

yields a value of age underestimation of 200 a for a 10 ka old sample, it is 7 ka (!) for a 

40 ka old sample (Geyh and Schleicher, 1990). Because even small contaminations 

influence such old data drastically, radiocarbon ages of more than about 30 ka should 

thus be viewed as minimum ages (Geyh and Schleicher, 1990). The small sample 

amount used in AMS dating may intensify this problem. According to the IR-OSL data, 

therefore, the lower part of the Kurungnakh Island profile is possibly older than the 

Nagym sediment sequence. 

Conclusion 
Geochronometric data have been acquired for three sediment sequences from the Lena 

Delta by luminescence dating using the potassium feldspar IR-OSL technique. 

Furthermore, 14C dates are available for geochronological discussion. The sediments of 

the upper part of Arga Island (second terrace), in the area of Lake Nikolay, are of Late 

Pleistocene age (14.5 – 10.9 ka). The sediments from sequences at the Olenyokskaya 

branch (third terrace) are older. At the profile Nagym, the middle part was most 

probably deposited between about 65 ka and 50 ka before present. The lower part of the 

sequence at Kurungnakh Island is possibly older than the sediments of the section at 

Nagym, but methodological difficulties in luminescence dating (insufficient bleaching 

at the time of deposition) and younger 14C dates make the discussion of the results 

difficult. 
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