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The Singular Evolutive Extended Kalman (SEEK) filter (Pham et
al, 1998) is a low-rank approximation of the Extended Kalman
Filter (EKF). Several successful applications of it have been
reported in the literature.
This work reconsiders the SEEK algorithm with respect to its
application to large-scale non-linear numerical models. The
mathematical formulation and numerical requirements are com-
pared with the widely used Ensemble Kalman Filter (EnKF,
Evensen, 1994) and the less common Singular Evolutive Interpo-
lated Kalman (SEIK) filter (Pham et al, 1998). The SEIK filter has
been invented as an interpolated variant of the SEEK filter, but one
can also interpret it as an ensemble filter using a preconditioned
ensemble. The application of the three algorithms to a numerical
model using the shallow water equations with non-linear evolu-
tion demonstrates the different abilities and the similarities of the
filters.

The SEEK filter approximates the state covariance matrix used
in the EKF by a matrix of low rank which is stored in decom-
posed form. The equations of the EKF are re-formulated to
respect the decomposed form of the covariance matrix. A re-
orthonormalization phase improves the numerical stability of the
algorithm by constraining the modes of the covariance matrix.
The SEIK and EnKF filters not just approximate the EKF. They
apply nonlinear ensemble forecasts which have the ability to better
represent the prediction of the state covariance matrix and state
estimate than the SEEK filter.
The major differences between the SEIK and the EnKF rely in the
proposed initialization of the ensemble and in the analysis phase.
Both filters apply the EKF analysis which assumes Gaussian er-
ror statistics, but the EnKF updates each single ensemble member
while the SEIK updates the ensemble mean followed by a resam-
pling of the ensemble.

SEEKThe Singular Evolutive Ex-
tended Kalman Filter is derived from the
Extended Kalman Filter by approximat-
ing the state error covariance matrix by
a matrix of reduced rank and evolving
this matrix in decomposed form.

Initialization: Choose the initial estimate
for the model state and an approximate
state covariance matrix of low rank in

decomposed form.

Forecast:Evolve the state estimate with
the non-linear model and the modes of
the covariance matrix with the tangent-

linear model or a gradient approximation.

Analysis:Apply the update step of the
Extended Kalman Filter (EKF) to the

state forecast. The covariance matrix is
approximated by the forecasted modes.
It is updated by a relation derived from

the Riccati equation.

Re-orthonormalization:Ooccasionally
perform a re-orthonormalization of the

modes of the covariance matrix to avoid
successive alignment of these vectors.
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EnKFThe Ensemble Kalman Filter
applies a Markov-Chain Monte-Carlo
method to forecast the error statistics. A
random ensemble is forecasted. In the
analysis each single ensemble member
is updated.

Initialization: Sample the initial error
statistics given by the prescribed state
estimate and error covariance matrix

approximately by a stochstic ensemble of
model states.

Forecast:Evolve each of the ensemble
member states with the full numerical

model.

Analysis:Apply the EKF update step to
each single ensemble member with an
observation vector from an observation
ensemble which has to be generated.
The covariance matrix is approximated
by the ensemble statistics. The error

statistics are updated implicitely with the
ensemble update. The state estimate is

given by the ensemble mean.
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SEIK The Singular Evolutive Inter-
polated Kalman Filter can be interpreted
as a reduced-rank preconditioned en-
semble Kalman filter. It is formulated to
use a particular ensemble and applies an
analysis analogous to the SEEK filter.

Initialization: Initialize as in the SEEK
filter. Then, by a transformation of the

modes, generate an ensemble of model
states of minimum size which exactly
represents the low rank covariance

matrix.

Forecast:Evolve each of the ensemble
member states with the full numerical

model.

Analysis:Perform the analysis
analogous to the SEEK filter. But here,

apply the EKF update step to the
ensemble mean. The covariance matrix

is approximated by the forecasted
ensemble. It is updated analogous to the

SEEK analysis.

Resampling:Resample the state
ensemble to represent the updated error

statistics of the model state by
transforming the forecasted ensemble.
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SEEK modes          
scaled modes        
True error ellipsoid

Initialization of SEEK by modes of the
low-rank approximated covariance matrix.
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EnKF (Monte Carlo Initialization)
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Initialization of EnKF with Monte Carlo
sampling (ensemble of 100 states).
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SEIK (minimum 2nd order exact sampling)

SEIK ensemble states
True error ellipsoid
SEIK sampled ellipse

Initialization of SEIK with second order exact
sampling of the low-rank approx. matrix.

All three filters differ in their initialization and approximation
of the error statistics prescribed by the state estimate and state
covariance matrix. We examplify here the initialization with a
simple 3-dimensional example.

Consider a Gaussian probability density which is fully pre-
scribed by the covariance matrixP and the mean statex given
by
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This density can be visualized by an error ellipsoid prescribed
by the eigenvectors and eigenvalues ofP. A low-rank approx-
imation of rank 2 (P2) can be performed introducing only a
small error due to the small third eigenvalue ofP. It is used by
the SEEK and the second order exact sampling applied in SEIK.

The SEEK filter uses directly the modes of unit length ofP2

to represent it. (Alternatively it is also possible to formulate
SEEK to use modes scaled by the square roots of the eigen-
values, thus resembling the RRSQRT algorithm by Verlaan
and Heemink (1995).) The modes are forecasted under the
assumption that, without model error, they still represent the
principal axes of the error ellipsoid.

The EnKF algorithm uses Monte Carlo sampling to generate
an ensemble of random states which represents approximately
the density given byfP, xg. No rank-reduction has to be
performed, but the sampling converges rather slow. The
forecast of the ensemble does not assume particular directions.

The SEIK filter applies a second order exact sampling to
generate an ensemble of random states which exactly rep-
resents the low-rank approximationP2. Dependent on the
eigenvalue spectrum ofP a much smaller ensemble than in
the EnKF is required to reach the same sampling error. The
forecast is equivalent to that of the EnKF. (Acting on an error
subspace SEIK is analogous to the ESSE concept introduced
by Lermusiaux and Robinson (1999).)

Due to equivalent forecasts of EnKF and SEIK it is possible to
use Monte Carlo initialization and second order exact sampling
in both algorithms. Then their differences rely in the analysis
and resampling stages.

) The SEEK filter is a low-rank approxima-
tion of the EKF. It is numerically better
suited for large scale problems, but it does
not improve the abilities of the EKF to
handle non-linearities.

)Both, the EnKF and the SEIK filters show
better abilities than the SEEK to treat non-
linearities and are able to handle large
scale problems.

)Using preconditioned ensembles in EnKF
(like generated with 2nd order exact sam-
pling) can improve also the filter perfor-
mance of EnKF.

) The higher numerical complexity of the
SEIK allows for data assimilation with
smaller ensembles than the EnKF - at least
for moderately nonlinear problems.
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Mean time intergrated RMS deviations for the
three filters normalized by the time integrated
RMS deviation of a free run from the true state
sequence. The means and standard deviations
are computed over each 20 simulations with
different random numbers in the initialization.

0 1 2 3 4 5 6 7 8

x 10
5

10
−2

10
−1

10
0

h

Relative RMS estimation errors

re
la

tiv
e 

R
M

S
 d

ev
ia

tio
n

time [s]

0 1 2 3 4 5 6 7 8

x 10
5

10
−1

10
0

u

re
la

tiv
e 

R
M

S
 d

ev
ia

tio
n

time [s]

EnKF init: Monte Carlo       
EnKF init: 2nd order exact
SEIK init: Monte Carlo       
SEIK init: 2nd order exact

Relative RMS estimation errors for surface
elevation (h) and zonal velocity (u) over time for
ensembles of size 100 for EnKF and SEIK with
different initializations.

We performed data assimilation experiments
with all three filter algorithms using shallow
water equations with nonlinear evolution.
We initialized the state estimate with the mean
state of a simulation over 8000 time steps (de-
noted the truth). The covariance matrixP was
computed as the variation about the mean state.
Further we generated synthetic observations of
the surface elevation by adding Gaussian noise
to the true states. These observations were
assimilated each 200 time steps.

Under these equal conditions the three fil-
ters show quite different performances in
estimating the true state depending on the
ensemble size. The SEEK behaves distinct
from the EnKF and SEIK filters which is due
to the different forecast schemes. EnKF and
SEIK converge quite similar with increasing
ensemble size with the SEIK showing the
better performance.

Comparing directly the EnKF and SEIK, it is
evident that both filters initially yield almost
the same estimation error but subsequently the
performance of the EnKF deteriorates. This
is due to noise introduced by the observation
ensemble required for the analysis in EnKF.

Using second order exact sampling for the
EnKF improves the filter performance slightly
for an ensemble of size 100.
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