
1. Clumped Dispersal and Species Coexistence 

 

Clumped Dispersal and Species Coexistence 

 

Authors: 

Michael Potthoff 1 mpotthoff@awi-bremerhaven.de  

Karin Johst 2  karin.johst@ufz.de  

Julian Gutt 1   jgutt@awi-bremerhaven.de 

Christian Wissel 2  

 

 
1Alfred Wegener Institute for Polar and Marine Research,  
Columbusstr,  
27568 Bremerhaven, Germany 
 

2
Department of Ecological Modelling,  

UFZ Centre for Environmental Research Leipzig-Halle, 

 PO Box 500135,  

04301 Leipzig, Germany 
 

 

 

 

This article has been published in 

Ecological Modelling 

Volume 198, Issues 1-2 , 15 September 2006, Pages 247-254 

doi:10.1016/j.ecolmodel.2006.04.003  

 

The original article is available at http://www.sciencedirect.com/ 

 

This is an author-created version of the unchanged article according to the copyright 

agreement between the authors and the publisher. 



1.1 Abstract 

Anisotropic clumped (patchy) dispersal of species is a widespread phenomenon in 

nature, however its relevance for structuring communities and maintaining 

biodiversity is still a matter of debate. We used a spatially explicit simulation model to 

assess the effects of spatial aggregation through this dispersal strategy compared to 

isotropic clumped (local) dispersal on the diversity of a model community of sessile 

species. The species differed only in terms of their dispersal distance and no a priori 

trade-offs between dispersal and local competitive strength were assumed. We 

investigated spatially homogeneous and heterogeneous environments without and 

with temporally fluctuating reproduction success. In all cases patchy dispersal 

allowed the long-term coexistence of a variety of species – in contrast to local 

dispersal. In particular, patchy dispersal was found to decouple the mechanism of 

spatial aggregation from the dispersal distance. This supports species coexistence 

even in environments where local dispersal was a superior or inferior dispersal 

strategy. Thus, the specific way of spatial aggregation can be decisive for 

coexistence. Spatial aggregation independent of the dispersal distance is an attribute 

of dispersal offering new possibilities for trade-offs with life-history traits and with the 

dispersal distance itself. 



1.2 Introduction 

Much theoretical research has been done to reveal and understand the mechanisms 

that lead to the coexistence or to the exclusion of species and subsequent 

succession. Dispersal is one of the major factors shaping communities and mediating 

coexistence. Field observations show that dispersal patterns can be highly complex. 

Most marine species for example disperse through pelagic larvae stages 

(Roughgarden et al., 1988; Muko and Iwasa, 2000). Since they are exposed to the 

same environmental influences and originate simultaneously from a specific location, 

they often behave as a swarm and disperse as a group (Hofmann et al., 1998; Flierl 

et al., 1999; Lockwood et al., 2002). This will result in an anisotropic and clumped 

(patchy) dispersal pattern. Such patchy dispersal seems to be a widespread 

phenomenon in nature, not restricted to marine environments (David et al., 1997; 

Heard and Remer, 1997; Smith and Witman, 1999; Nathan and Muller-Landau, 2000; 

Wenny, 2001). It can be generated by various abiotic or biotic dispersal agents (wind 

and water currents, animals) or a combination thereof (Nathan and Muller-Landau, 

2000; Stoyan and Wagner, 2001; Wenny, 2001; Wang and Smith, 2002; Wagner et 

al., 2004). Using abiotic dispersal agents, landscape elements can act as an attractor 

or interceptor for dispersal stages (Reed et al., 2000) like any kind of obstacle, e.g. a 

scrub in an open landscape or a rock in the sea. Using biotic dispersal agents, 

patchy dispersal can emerge due to the behaviour of the agent (Heard and Remer, 

1997; Wenny and Levey, 1998; Fragoso and Huffman, 2000; Hartley and Shorrocks, 

2002; Wehncke et al., 2003). Secondary dispersal processes such as scatter 

hoarding may also be an important source of patchy dispersal (Nathan and Muller-

Landau, 2000; Wang and Smith, 2002; Roth and Vander Wall, 2005). Notably, 

fertilization success of sedentary organisms like wind-pollinated plants or sessile 

marine animals is greatly influenced by anisotropic gamete dispersal as well 

(Claereboudt, 1999). 

Theoretical approaches modelling dispersal, however, often assumed isotropic global 

dispersal (mean-field assumption) where all units can freely interact over all scales. 

This is appropriate as long as suitable habitat is abundant (King and With, 2002). 

However, as Durrett and Levin (1998) point out, it neglects spatial aspects and thus 

can have important consequences for diversity (Murrell et al., 2001). More realistic 

approaches distribute dispersal stages according to particular dispersal kernels over 

certain distances but assume the adult at the centre and dispersal of individual 



propagules or offspring being possible in all directions (Clark et al., 1999; Hovestadt 

et al., 2000; Levin and Muller-Landau, 2000; Nathan and Muller-Landau, 2000; Johst 

et al., 2002). This isotropic (around the source) and local dispersal may lead to local 

clustering and has a positive effect on diversity when there is a competitive difference 

among the species with respect to favourable habitats (Chesson, 1994; Chesson and 

Neuhauser, 2002; Snyder and Chesson, 2003).  

Modelling a realistic seed abscission process for anemochorous plants Schippers 

and Jongejans (2005) demonstrated that an anisotropic seed shadow can emerge, 

that strongly influences the long distance dispersal which in turn is essential for 

maintaining diversity (Higgins et al., 2003). A theory linking such anisotropic dispersal 

and diversity is the aggregation model of coexistence (Shorrocks et al., 1979; Hartley 

and Shorrocks, 2002). This theory has been used to explain the high diversity of 

insect communities utilising ephemeral resources. It states that individuals of a 

species may be clumped together in a way limiting their own population growth such 

that resources that are left free can be utilised by inferior competitors (Hartley and 

Shorrocks, 2002). Thus, the basic mechanisms are the well known coexistence 

criteria “intraspecific competition higher than interspecific competition” (see e.g. 

Begon et al. 1998; Murrell et al.2001) and dispersal limitation of a superior competitor 

(Hurtt and Pacala, 1995). These mechanisms also play a role in the so-called 

competition-colonisation trade-off mechanism (Tilman, 1994 but see Higgins and 

Cain, 2002). It assumes that in a spatially structured population the locally superior 

competitor is the inferior disperser, e.g. has the shorter dispersal distance. 

All these mechanism relate diversity to dispersal and have been found to work in 

theory as well as having been demonstrated in nature. However, they are based on 

species difference and spatial heterogeneity to work and cannot explain the 

coexistence of apparently similar species in homogeneous environments. For 

example, it is unclear whether coral reefs or rain forests provide enough niches to 

explain the high diversity in these habitats. The unified neutral theory (Hubbell, 2001) 

tries to fill this gap. One major assumption of this theory is that niches are absent and 

extinction, immigration and speciation are the essential processes structuring the 

communities on evolutionary time scales (Hubbell, 2001; Volkov et al., 2003). 

Dispersal influences the long-term structure of a neutral community via its influence 

on the extent of species mixing. Although neutral models are able to reproduce 

species-area relationships surprisingly well (Hubbell, 2001; Chave, 2004; McKane et 



al., 2004) even slight violations of the neutrality can lead to a quick breakdown 

(Fuentes, 2004). Therefore, the neutral theory has been controversially discussed 

(Nee and Stone, 2003; Adler, 2004; Alonso and McKane, 2004).  

In general four forms of dispersal may be distinguished: a) global dispersal (isotropic 

non-clumped), b) local dispersal (isotropic clumped), c) directed dispersal 

(anisotropic, e.g. along a vector) and d) patchy dispersal (anisotropic clumped). 

Dispersal kernels of the type a) and b) have been extensively studied as the isotropic 

approach has the advantage of simple analytical tractability.  

Directed dispersal (type c) has been found to affect the diversity and genetic flow of 

populations (Wenny, 2001) and spatial heterogeneity in sedentary organisms (Reed 

et al., 2000). Wagner et al. (2004) modelled anisotropic seed dispersal using a 

cluster point process and proposed a positive effect for long distance disperser (e.g. 

pioneer species) when suitable habitat is rare.  

More complicated dispersal kernels (e.g. type d) and the consideration of spatially 

and temporally variable environments (which can influence the competitive 

advantage of a dispersal strategy) complicate analytical tractability. Simulation 

models provide an alternative way to investigate such complex situations. Some 

attempts have been made using correlated random walk or Lagrangian models 

(Yamazaki and Haury, 1993; Yamazaki and Okubo, 1995). However, these explicit 

methods are time consuming and not well suited for high individual numbers. 

Therefore, simplified approaches are needed when analysing the influence of 

complex dispersal pattern on diversity. 

In the following we will focus on patchy (anisotropic clumped) dispersal. To our 

knowledge and compared to type b) dispersal, its relevance for species coexistence 

has not yet been investigated. What are the characteristically properties of such a 

type d) dispersal mechanism? Although patchy dispersal results in a high number of 

propagules at some sites, thus creating spatial aggregation similar to local dispersal, 

the peak propagule density is not at the original site. Therefore, patchy dispersal 

bears aspects of both local and global dispersal and it is not obvious which aspects 

dominate in different environments and competitive scenarios. For that reason we 

investigate the effects of patchy dispersal on diversity (in the sense of species 

richness) with a simulation model for neutral (with respect to demographic 

parameters) and hierarchical communities in different environments. We demonstrate 

that patchy dispersal can promote coexistence in heterogeneous as well as in 



homogeneous environments and between competitively equal and competitively 

different species. Thus we show that patchy dispersal is able to mediate coexistence 

even in situations in which local dispersal is unable for it. Although we use the terms 

‘adult’ and ‘larva’, these terms can be replaced by others such as tree and seed, as 

our model is general and can describe many sessile and sedentary organisms in 

many kinds of habitats.  

 

1.3 The model 

The model space is represented by a rectangular, two-dimensional grid of 50 × 50 

cells. To avoid boundary effects we use periodic boundary conditions, i.e. simulation 

is performed on a torus around which all the borders of the grid are warped. Each cell 

is equivalent to a site which can support a total number of individuals corresponding 

to the local carrying capacity KC of the site.  

 

1.3.1 Homogeneous versus heterogeneous environments  

If all the sites have the same local carrying capacity, we refer to a homogenous 

environment. If the local carrying capacity changes from site to site we refer to a 

heterogeneous environment. For simplicity, we distinguish only two different site 

types: “high capacity sites” where KC = KH and “low capacity sites” where KC = KL. 

In such a heterogeneous environment the carrying capacity of each site is randomly 

chosen with the probability p of being KH and 1-p of being KL and remains constant 

during a simulation. 

 

1.3.2 Species definition 

To focus on the effects of the dispersal pattern on diversity, all the species in our 

model have the same competitive strength and mean reproductive rate (number of 

larvae, see constant vs. fluctuating environment below) . We do not assume any 

trade-offs or disturbance events. Differences in the species traits consist in the mean 

dispersal distance DS before settlement (see below). As we consider sessile species, 

we assume larvae to be the only dispersal stages. Further on, we distinguish 



between two dispersal modes: local (“isotropic clumped dispersal”) and patchy 

(“anisotropic clumped dispersal”). The modes are described below in more detail.  

 

    

 

  

 

 Figure 1, Examples of the spatial dispersal pattern generated by the different 

dispersal strategies. a) local ( isotropic clumped) dispersal, b) patchy 

(anisotropic clumped) dispersal. Each picture shows the final larvae pattern 

after the dispersal of 20 × 20 larvae originating from the centre. 

 

    
 

1.3.3 Local dispersal 

Commonly used dispersal kernels are exponential or Gaussian distributions (Nathan 

and Muller-Landau, 2000). In our model the direction α of dispersal was randomly 

chosen (0°-359°) and the actual distance d was determined according to d=DS*-ln(p) 

with p being a random number evenly distributed in the interval [0..1]. The Larva 

settles at the position given by the relative polar coordinate P(d, α). An example of a 

resulting larvae distribution pattern emerging from this dispersal mode is shown in 

Figure 1a.  

 

1.3.4 Patchy dispersal 

Here all the larvae of a species at a particular site are considered as a group. For this 

group the centre of dispersal is chosen using the same dispersal kernel as above. 

Then, all the larvae of this group are distributed around this centre according to a 



kernel with a perimeter of 2 cells. This results in a patchy aggregation of larvae. The 

resulting dispersal pattern can be seen in Figure 1b.  

 

1.3.5 Local dynamics 

In each time step an adult individual of any species produces L larvae (see below). 

After reproduction larvae dispersed, resulting in a local larvae pool of different 

species for each cell (see dispersal). Adult individuals die with a fixed probability 

pd = 0.2 resulting in free positions in a cell. All larvae in a local larvae pool compete 

for empty positions described by lottery competition. For each empty position a larva 

is randomly taken from the local pool, which reduces the number within the pool. This 

is repeated until either the number of established individuals reaches KC or there are 

no larvae left. Larvae that are unable to establish are discarded. 

 

1.3.6 Constant versus fluctuating environments 

The carrying capacities of the grid cells remained fixed in all cases. Environmental 

fluctuations are assumed to affect the reproduction success of established 

individuals. Therefore L was set to L=1 and not modified in constant environments. In 

fluctuating environments L was randomly chosen to be L=0, L=1 or L=2 for each cell 

and in each time step.  

 

1.3.7 Initial conditions 

The first quarter of the grid was initially filled with a random community consisting of 

all available species. For each cell in this area, one of the species was randomly 

assigned and occupied all the available space in this cell. All simulations were 

allowed to run either until a certain final time or were stopped when either all species 

had gone extinct or just one had survived. In both cases it was assumed that the 

species composition would not change again until the final time step was reached.  

 



1.4 Computer simulation experiments 

In the first experiment we implemented a neutral model to see if there is a general 

difference between local and patchy dispersal. We assumed 15 species with identical 

traits all using firstly local dispersal and secondly patchy dispersal. The species had 

an intermediate dispersal distance (Ds=5). In this experiment we assumed both 

homogenous (KH=5, KL=5) and heterogeneous (KH=7, KL=3 and p=0.5) space. The 

experiment ran until time step 1.5*105 with 200 replicate runs. 

 

In a second experiment we again assumed 15 species but now with different 

dispersal distances ranging from 1 to 15 cells in steps of 1. As shown by Hovestadt 

et al. (2000) this reflects different competitive abilities of the species. In this 

experiment we used the same environmental scenarios like in the first experiment. 

Additionally, we tested both temporally constant and fluctuating environments. 

Maximal runtime was 2*105 time steps and we computed 200 replicates 

 

The first two experiments concentrated on the impact of patchy and local dispersal 

on community structure separately, that is all species used either local or patchy 

dispersal. In the third experiment we studied the competition between these two 

dispersal modes. First the local dispersal was rather short-ranged (Ds=2) and the 

patchy dispersal was long-ranged (Ds=10), then the dispersal distances were 

exchanged. To account for the influence of spatial heterogeneity we used a gradient 

from homogeneous to heterogeneous space by setting KH=i and KL=10-KH with i 

running from 5 to 10 and p=0.5 such that the total amount of habitat was equal for all 

simulations. Again we tested temporally constant and fluctuating environments. Due 

to the low species number maximal runtime was set to 0.75*105 time steps and 100 

replicate runs. 

 



1.5 Results  

   

 

 

 

   
 Figure 2, Species count and survival of single species, depending on different 

environments and species traits. Left: probability (y-axis) of n species (x-axis) 

survival after 100 replicate runs (Tmax=2*105). Right: probability of survival until 

the climax is reached (y-axis) for species i (i=1-15). 

 

   
 

 



1.5.1 Experiment 1 (neutral model) 

Figure 2 shows the proportions of species in the climax stage. Nearly all runs with 

local dispersal ended in single species communities (Figure 2). Mean convergence 

time ∆TC into a single species system was ∆TC(DS=5,hom)~ 0.67*105 (±0.28) and 

∆TC(DS=5,het)~ 0.66*105 (±0.28) time steps. Simulations with local dispersal and 

different dispersal distances showed that ∆TC could be described by a power law: 

∆TC(hom)~ 0.89*105 * DS
-0.084 (r²=0.41) and ∆TC(het)~ 0.86*105 * DS

-0.269 (r²=0.81). 

See also Figure 3 for a comparison of the species extinction speed. Assuming patchy 

dispersal, 10–13 species were able to coexist at least for 1.5 * 105 time steps.  

 

1.5.2 Experiment 2 (different mean dispersal distances, single dispersal mode) 

Figure 2a shows that neither of the local dispersal strategies led to a notable 

coexistence of several species. In contrast, the patchy dispersal strategies led to the 

coexistence of several species in all cases: In a constant environment this dispersal 

strategy allowed 7–9 species (homogeneous environment) or 3–4 species 

(heterogeneous environment) to coexist. In a fluctuating environment even more 

species coexisted: about 10-12 in the homogeneous and 12-14 in the heterogeneous 

environment (Figure 2c). In the homogeneous environment the surviving species 

were intermediate to long-range dispersers (Figure 2b). In the heterogeneous 

environment short-range dispersers (Figure 2d). The clear ranking of abundance 

according to dispersal distance in the heterogeneous environment was not found in 

the homogeneous environment albeit the general failure of short range dispersers. 

 

1.5.3 Experiment 3 (different mean dispersal distances and two dispersal 
modes) 

Depending on the environmental conditions local or global dispersal could coexist 

with patchy dispersal. Table 1 lists the relative abundances of both dispersal 

strategies in different environments and different degrees of spatial heterogeneity. In 

constant environments coexistence between global long- and patchy short-range 

dispersal was possible when space was sufficiently heterogeneous. In reproductively 

fluctuating environments coexistence between these dispersal modes was possible 

under strong spatial heterogeneity. Coexistence between local short- and patchy 

long-range dispersal was possible when space was homogeneous. 



 

environment 
competing dispersal strategies 

local / patchy 
mean relative abundance after 0.75*105 time steps [N=100] 

long  short  1.00   1.00   1.00   0.88 0.12 0.79 0.21 0.71 0.29 
constant 

short  long  1.00   1.00   1.00   1.00   1.00   1.00   

long  short  1.00   1.00   1.00   1.00   1.00   0.93 0.07 
fluctuating 

short  long  0.72 0.28 0.79 0.21 0.97 0.03 1.00   1.00   1.00   

heterogeneity (high:low capacity) 5:5 6:4 7:3 8:2 9:1 10:0 

 

Table 1, Relative abundances of competing dispersal strategies after 0.75*105 time 

steps [N=100]. Depending on spatial heterogeneity and favourable dispersal 

distance, coexistence between isotropic and anisotropic dispersal is possible. 

Scenarios where coexistence occurred are shaded in grey. 

 



   

 

 

 

   

 

 

 

 Figure 3, Comparison of the extinction speed of isotropic versus anisotropic 
dispersal. a) for Experiment 1 in a heterogeneous environment (compare Figure 
2a). Note that higher dispersal distances accelerate the extinction speed for 
isotropic modes, whereas anisotropic clumped dispersal the extinction 
decelerates the speed (see arrows). b) for Experiment 2 in a constant 
environment (compare Figure 2a) 

 

   



1.6 Discussion 

Although patchy dispersal is known from field observations (e.g. dispersal as a group 

of larvae), previous modelling approaches considered mainly local dispersal as 

source of clustering in the context of species coexistence (e.g. Warren and Topping 

2004). As both dispersal modes cause spatial aggregation, the comparison between 

patchy and local dispersal in terms of their potential to mediate coexistence is 

especially interesting and helpful for understanding coexistence mechanisms. 

In our simulation experiments, patchy dispersal resulted in species-rich communities 

even under conditions that resulted in single species systems when local dispersal 

was assumed. This was true both within the neutral model assumption (experiment 1; 

for this assumption see also Chave, 2004) and the successional model assumption 

(experiment 2; for this assumption see also Hovestadt et al. 2000). 

In contrast to local dispersal, patchy dispersal enabled the long-term coexistence of 

1/4 or up to 3/4 of all competing species (Figure 2 a,c). Note that the exclusion of 

species is due to stochastic events in the neutral model, but due to competitive 

inferiority (based on the different dispersal distances) in the successional model. 

These competitive differences also explain the different likelihoods to occur in the 

climax community for the different dispersal distances respectively species (Figure 

2b and c). The associated dispersal distances of coexisting species tally with 

theoretical studies on the evolution of dispersal. In this context spatial heterogeneity 

discourages dispersal, i.e. species with patchy short-range dispersal coexisted in 

spatially heterogeneous environments (Figure 2b), whereas spatial homogeneity or 

fluctuating reproduction encourages dispersal (Hamilton and May, 1977; Hovestadt 

et al., 2000), i.e. species with patchy long-range dispersal coexisted in these 

environments (Figure 2d). The advantage of particular dispersal distances reflects 

the fact that patchy dispersal can partially utilize the competitive advantages of the 

appropriate dispersal distance in the corresponding environment but that there are 

additional mechanisms preventing the collapse into a single-species system.  

In general, neutral models can be expected to show random extinction of all but one 

species (Tilman, 1994; Hubbell, 2001). If a species by chance becomes rarer, it will 

have fewer opportunities to win in the next time step and so forth as all species are 

assumed to be equal. Hence its abundance is spiralling down to extinction and 

coexistence is non-stable sensu Chesson (2000 a). Figure 3a exemplifies the 

extinction speed of a neutral community of 15 species with identical traits in a 



heterogeneous environment for different dispersal modes and distances. With 

isotropic dispersal higher dispersal distances lead to higher species mixing, thus 

stronger interspecific competition and consequently a faster extinction. Interestingly 

with patchy dispersal increasing dispersal distances decelerate the extinction 

process. In order to enable similar coexistence times, local dispersal would need to 

be extremely local (e.g. “clumped”, DS<0.1, i.e. virtually no dispersal). The effects of 

patchy dispersal are able to slow down the random exclusion of species in a neutral 

community to such an extent that it virtually allows coexistence up to evolutionary 

timescales (approximated e.g. for the homogeneous environment about 3.7*1012 time 

steps, Figure 3). 

The main difference between local and patchy dispersal is that patchy dispersal 

decouples the area where the larvae compete from the adult individual whereas local 

dispersal ensures that this area is always centred around the adult. Thus patchy 

dispersal decouples the larvae aggregation from the source. This has several 

important consequences. 

First, similar to the aggregation model of coexistence (Shorrocks et al., 1979) the 

concentration of larvae leaves some sites free which can be utilized by other 

competitors. This concentration of conspecific competitors represents a strong 

dispersal limitation and has a stabilizing effect as it increases intraspecific relative to 

interspecific interactions (Chesson, 2000 a). 

Furthermore, local aggregation can cause competitive displacement due to a 

‘phalanx growth’ mechanism as demonstrated by Bolker and Pacala (1999). This 

mechanism is based on the exclusion of heterospecifics due to high self-recruitment, 

allowing a single species to seize habitats and displace competitors. In order to work, 

this process demands either a high number of larvae continuously placed around an 

adult (e.g. by local dispersal) or competetive differences. As patchy dispersal 

decouples the site where larvae compete from their origin, there is no continuous rain 

of larvae at the same place and consequently no high rate of self-recruitment. 

Therefore patchy dispersal hinders a phalanx-growth mechanism and weakens the 

displacement of species. 

This effect is similar to the effect of positive growth-density covariance Chesson and 

colleagues found for intraspecific aggregation due to local dispersal under the 

presence of favourable habitats for particular species (Chesson, 2000 b; Chesson 

and Neuhauser, 2002; Snyder and Chesson, 2003). Such a covariance occurs when 



limited dispersal allows rare species to build up densities in favourable areas, 

resulting in an increase of their overall per capita growth (Amarasaekare, 2003). It 

measures the degree to which competing species can accumulate in favourable 

locations (Snyder and Chesson, 2004). The key process for a positive growth-density 

covariance is a dispersal strategy which permits the establishment of a group of new 

individuals in suitable environments. This can be the result of local aggregation of 

larvae around an adult due to local isotropic dispersal in environments with species 

specific favourable habitats (Chesson, 2000 b; Amarasaekare, 2003; Snyder and 

Chesson, 2003). However, this can also be the result of a dispersal strategy where 

the aggregation of larvae causes temporarily suitable habitats due to the absence of 

competitors. Thus it depends in principle neither on local dispersal nor on species 

specific favourable habitat but solely on the aggregation of larvae at a certain suitable 

place. 

These mechanisms also work in the successional model, where species have 

competitive differences and hierarchies caused by different dispersal distances 

(Hovestadt et al., 2000). With isotropic dispersal, only one species could survive (e.g. 

the local disperser in spatially heterogeneous constant environments or the global 

disperser in homogenous fluctuating environments (Figure 2c and e), which tallies 

with other theoretical studies (Hamilton and May, 1977; Hovestadt et al., 2000). With 

patchy dispersal, coexistence of several species was possible. An interesting result is 

that more species could coexist in the homogeneous than in the heterogeneous 

environment irrespective of the temporal fluctuations (Figure 2 b,d). As in the 

homogeneous environment all patches are equal, short dispersal distances are not 

favoured and the competitive exclusion is weaker. Consequently more species are 

able to coexist. The same is true with respect to long dispersal distances in 

environments with fluctuating reproduction success. 

Coexistence between local and patchy dispersal in competition was only possible 

when patchy dispersal had the superior dispersal distance in the corresponding 

environment, similar to the classic colonisation-competition trade-off (Chave et al., 

2002; Amarasaekare, 2003; Kneitel and Chase, 2004). The reason is that isotropic 

dispersal is a better strategy to search an area for favourable habitats. Such 

dispersers spread their larvae broadly such that sites which are free of competitors 

(e.g. due to patchy dispersal) can be quickly colonized.  



Given these advantages of isotropic dispersal, why should anisotropic (patchy) 

dispersal exists in nature? Introducing additional dispersal traits such as the batch 

size and the dispersal patch radius, patchy dispersal allows a variety of further trade-

offs both within the dispersal traits themselves and with respect to other life-history 

traits. For example, it may be much more effective to protect a group of larvae or 

seeds in one dispersing unit like a capsule or cone than to protect a single seed with 

the same effect.  

Frequency-dependent predation may also discourage isotropic dispersal, as it leads 

to a more frequent predator-prey encounter probability (Gendron, 1987). Schooling is 

a common strategy to minimize an individual’s risk of falling prey, and similar effects 

can be assumed for patchily distributed larvae. 

Finally, it should be questioned whether ideal isotropic dispersal is possible in nature 

as most habitats are subject to some kind of directional phenomena (Levine, 2003). 

The potential of patchy dispersal to foster species coexistence demonstrates that 

dispersal strategies and the subsequent spatial pattern can greatly influence species 

richness in communities. Our results suggest that besides the dispersal distance, the 

variety of other dispersal traits offers far more possibilities for spatial aggregation and 

thus for species coexistence than presently considered and investigated. 
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