
Parallel Filter Algorithms

for Data Assimilation in Oceanography

von Lars Nerger

Dissertation

zur Erlangung des Grades
eines Doktors der Naturwissenschaften

— Dr. rer. nat. —

Angefertig am
Alfred-Wegener-Institut

für Polar und Meeresforschung
Bremerhaven

Vorgelegt im Fachbereich 3 (Mathematik & Informatik)
der Universität Bremen

im Dezember 2003



Datum des Promotionskolloquiums: 12. Februar 2004

Gutachter: Prof. Dr. Wolfgang Hiller (Universität Bremen und
Alfred-Wegener-Institut Bremerhaven)
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Abstract

A consistent systematic comparison of filter algorithms based on the Kalman filter and
intended for data assimilation with high-dimensional nonlinear numerical models is
presented. Considered are the Ensemble Kalman Filter (EnKF), the Singular Evolutive
Extended Kalman (SEEK) filter, and the Singular Evolutive Interpolated (SEIK) filter.
Within the two parts of this thesis, the filter algorithms are compared with a focus on
their mathematical properties as Error Subspace Kalman Filters (ESKF). Further, the
filters are studied as parallel algorithms. This study includes the development of an
efficient framework for parallel filtering.

In the first part, the filter algorithms are motivated in the context of statistical esti-
mation. The unified interpretation of the algorithms as Error Subspace Kalman Filters
provides the basis for the consistent comparison of the filter algorithms. The efficient
implementation of the algorithms is discussed and their computational complexity is
compared. Numerical data assimilation experiments with a test model based on the
shallow water equations show how choices of the assimilation scheme and particular
state ensembles for the initialization of the filters lead to significant variations of the
data assimilation performance. The relation of the data assimilation performance to
different qualities of the predicted error subspaces is demonstrated by a statistical ex-
amination of the predicted state covariance matrices. The comparison of the filters
shows that problems of the analysis equations are apparent in the EnKF algorithm
due to the Monte Carlo sampling of ensembles. In addition, the SEIK filter appears
to be a numerically very efficient algorithm with high potential for use with nonlinear
models.

The application of the EnKF, SEEK, and SEIK algorithms on parallel computers
is studied in the second part. The parallelization possibilities of the different phases
of the filter algorithms are examined. In addition, a framework for parallel filtering
is developed which allows to combine filter algorithms with existing numerical models
requiring only minimal changes to the source code of the model. The framework has
been used to combine the parallel filter algorithms with the 3-dimensional finite element
ocean model FEOM. Numerical data assimilation experiments are utilized to assess the
parallel efficiency of the filtering framework and the parallel filters. The experiments
yield an excellent parallel efficiency for the filtering framework. Furthermore, the
framework and the filter algorithms are well suited for application to realistic large-
scale data assimilation problems.
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Introduction

Simulating the ocean general circulation provides the possibility to improve the un-
derstanding of climate relevant phenomena in the ocean. Absolute currents can be
simulated which determine, for example, oceanic heat transports. Furthermore, the
stability and variability of oceanic flows can be examined.

The numerical models used for simulating the ocean are based on physical first prin-
ciples formulated by partial differential equations. Due to the discretization, models
of high dimension arise. In addition, several different fields have to be modeled like,
temperature, salinity, velocities, and the sea surface elevation. These large-scale ocean
models are computationally demanding and hence require the use of parallel computers
to cope with the huge memory and computing requirements. Despite their complexity,
the models comprise several errors. Due to the finite resolution of the discretization,
there are unresolved processes. These remain either unmodeled or are considered in
parameterized form. Some processes are not included in the model physics or base on
empirical formulas. The numerical solution itself will also cause errors. Apart from
this, the model inputs also contain errors. That is, the model initialization is not exact
and inputs during the simulation are uncertain, like fresh water inflows from rivers or
interactions with the atmosphere, e.g. by the wind over the ocean.

A different source of information about the ocean is provided by observational
data. Nowadays, there are many observations of the ocean provided by satellites
like TOPEX/POSEIDON, or the more recent satellite missions Envisat and Jason-1.
These satellites measure the sea surface height and temperature. Wind speeds and
directions at the sea surface are measured by other satellites like QuikSCAT. In addi-
tion to satellite data, in situ measured observations are available. These include, e.g.,
temperatures and salinities at different depths, or current measurements from ships,
moored instruments or drifting buoys. Despite the amount of available measurements,
the observational data are sparse in space as well as in time. While there are many
measurements at the ocean surface a relative small amount of information is provided
about the interior of the ocean. Thus, the available observations do not suffice to
provide a complete picture of the ocean.

To obtain an enhanced knowledge about the ocean, the information provided by
numerical models and observational data should be used together. The combination
of a numerical model with observations to determine the state of the modeled sys-
tem is denoted inverse modeling. In meteorology and oceanography, the quantitative
framework to solve inverse problems is known as “data assimilation”. This technique
incorporates – assimilates – observational data into a numerical model to improve the
ocean state simulated by the model.
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2 Introduction

There are currently two main approaches to data assimilation which are either based
on optimal control theory or on estimation theory, see e.g. [77, 24]:

• Variational data assimilation – This technique uses a criterion measuring the
misfit between model and observations. This criterion, typically denoted the
cost function, has to be minimized by adjusting so called control variables of the
model. These are usually initial conditions or certain parameters of the model
such as the wind stress or heat flux. Variational data assimilation is based on
the theory of optimal control. The most common method is the so called adjoint
method, see [14, 78], which is widely used in oceanography, see e.g. [93, 76].
A related variational method is the representer method [3, 10].

• Sequential data assimilation – This technique is based on estimation theory and
represents a filter method. The observations and the model prediction of the
state are combined using weights computed from the estimated uncertainties of
both the predicted model state and the observational data. The schemes used
for sequential data assimilation are mostly based on the Kalman filter [41, 42].
An alternative approach is represented by particle filters, see [2, 55, 85, 47].

The advantage of sequential data assimilation algorithms is their flexibility. While
the adjoint method requires to integrate the numerical model and its adjoint multiple
times over the time interval of interest, the sequential schemes assimilate observational
data at the time instance at which the data becomes available. Thus, with sequential
algorithms it is not required to restart the assimilation cycle when new observations
are provided. In addition, an adjoint of the numerical model is not required by the
sequential methods. Also the potential for parallelization is higher for the algorithms
based on the Kalman filter.

The first approaches to apply the Kalman filter in oceanography relate back to
the middle of the 1980’s. The Kalman filter is only suited for linear systems and the
application of the full Kalman filter is not feasible for realistic large-scale numerical
ocean models. During the last decade several algorithms have been developed on the
basis of the Kalman filter which reduce the computational requirements of the Kalman
filter to feasible limits and promise to handle nonlinearity in a better way.

One of the newly developed algorithms is the Ensemble Kalman Filter (EnKF),
introduced by Evensen [17]. This filter is based on a Monte Carlo approach and,
due to its apparent simplicity, already widely used in oceanography and meteorology
(see, e.g. [18] for a review of applications of the EnKF). In addition, some variants of
the EnKF have been proposed [34, 1, 5, 94]. Alternative algorithms are the SEEK and
SEIK filters, introduced by Pham [65, 68]. These filters represent the estimated error
statistics by a low-rank matrix. Some variants of these filters have been proposed which
permit to further reduce the computational requirements [32, 33]. The SEEK filter has
been applied in several studies, e.g. [90, 9, 63, 7, 6], and some applications of the SEIK
algorithm have been reported [66, 33, 83]. Other approaches to a simplified filter are
the reduced-rank square root Kalman (RRSQRT) filter by Verlaan and Heemink [88]
and the concept of error subspace statistical estimation introduced by Lermusiaux and
Robinson [49, 50].
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The computational requirements of data assimilation problems is generally much
higher than for numerical ocean models alone. Thus, the use of parallel computers
is strongly required when data assimilation is performed with realistic large-scale nu-
merical models. The algorithms based on the Kalman filters offer a high potential for
parallelization. The application of the filter algorithms on parallel computers has been
discussed for the Ensemble Kalman filter by Keppenne and Rienecker [44, 45] and by
Houtekamer and Mitchell [36]. Some approaches have also been investigated in the
context of the RRSQRT algorithm [73, 70].

Besides the use of parallel computers there is the requirement to combine data
assimilation algorithms with existing models to obtain a data assimilation system.
This should be possible with minimal changes to the model source code. Verlaan [87]
discussed an abstract coupling between a model and filter algorithm. In addition, the
programs SESAM [75] and PALM [60] provide interface structures based on strongly
different concepts.

In this work a consistent systematic comparison of filter algorithms based on the
Kalman filter is presented. Considered are the Ensemble Kalman filter and the SEEK
filter. The former algorithm represents the Monte Carlo approach to filtering while
the latter algorithm uses a low-rank approximation to represent the error statistics
of the model. Further, the SEIK filter, which unites aspects of both approaches, is
included in the study. Besides the comparison, parallel variants of the algorithms
are developed and discussed. In addition, an efficient framework for parallel filtering
is introduced. The framework defines an application program interface to combine
the filter algorithms with existing numerical models. To test the efficiency of the
framework, it is used to combine the filter algorithms with the three-dimensional finite
element ocean model FEOM which has been recently developed at the Alfred Wegener
Institute [12].

The new unified interpretation of the filter algorithms as Error Subspace Kalman
Filters (ESKF) provides the basis to compare the algorithms consistently. The in-
terpretation corresponds to the concept of error subspace statistical estimation [49].
The experimental study of the ESKF algorithms under identical conditions presents
the first quantitative comparison of these algorithms. It also shows the influence of
higher order sampling schemes. Heemink et al. [31] performed a numerical comparison
of the RRSQRT and EnKF algorithms using a 2-dimensional advection-diffusion equa-
tion. In addition, the EnKF algorithm was compared with the SEEK filter [7] using a
model of the North Atlantic. In this study, however, the experimental configurations
differed for the two algorithms rendering the results difficult to interpret.

The parallelization of the SEEK and SEIK filters has not yet been discussed. Fur-
thermore, a separated parallelization of the filter algorithms and parallel model tasks
is hardly considered [70, 60]. The filtering framework presented in this work is, on
the one hand, simpler than the existing PALM coupler interface [60], on the other
hand it is more efficient than SESAM [75]. The application of filter algorithms to a
three-dimensional finite element ocean model has not yet been reported. The studies
presented in this work, which use an idealized configuration of FEOM, yield promising
results proving feasibility of the algorithms also for realistic model configurations.



4 Introduction

Outline

This work is subdivided into two parts. The first considers filter algorithms based on the
Kalman filter as sequential algorithms with a focus on their mathematical properties.
The second part discusses the filters as parallel algorithms.

In part I, the fundamentals of data assimilation are introduced in chapter 1. In
chapter 2, the filter algorithms based on the Kalman filter and intended for application
to large-scale nonlinear numerical models are motivated, presented, and discussed as
Error Subspace Kalman Filters (ESKF) in the context of statistical estimation. Sub-
sequently, in chapter 3, the ESKF algorithms are compared under the aspect of their
application to large-scale nonlinear models. The efficient implementation and the nu-
merical complexity of the algorithms are also discussed in this chapter. To assess the
capabilities of the ESKF algorithms experimentally, the filters are applied in identical
twin experiments to an oceanographic test model in chapter 4. Part I is concluded by
chapter 5 summarizing the findings of the study of Error Subspace Kalman Filters.

Part II is commenced in chapter 6 with an overview and motivation of the appli-
cation of ESKF algorithms as parallel algorithms. The parallelization possibilities of
the ESKF algorithms are examined in chapter 7. Here different approaches are dis-
cussed and resulting parallel algorithms are presented. Chapter 8 introduces a frame-
work for parallel filtering. This framework defines an application program interface
which permits to combine the parallel filter algorithms with existing numerical mod-
els requiring minimal changes to the model source code. In Chapter 9 the parallel
efficiency of the filtering framework and the parallel filter algorithms is studied. For
this, the framework is used to combine the filter algorithms with the finite element
model FEOM. Twin experiments are performed to assess the parallel efficiency of both
the framework and the algorithms. Further, the data assimilation capabilities of the
ESKF algorithms when applied to a three-dimensional model are examined. The results
of this part are summarized and conclusions are drawn in Chapter 10 which completes
part II.



Part I

Error Subspace Kalman Filters
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Chapter 1

Data Assimilation

1.1 Overview

Data assimilation is the framework to combine the information provided by measure-
ments with a numerical model describing the physical processes of the considered geo-
physical system. There are three different application types of data assimilation. First,
the future state of the physical system can be computed based on observations avail-
able until the present time. This application type is denoted as forecasting. Second,
the current state can be estimated on the basis of all observations available until now.
This situation is referred to as filtering or now-casting. The third application type is
smoothing or re-analysis. Here the state trajectory in the past is estimated based on
all observations available until the present time.

The technique of data assimilation originated in meteorology from the need to pro-
vide accurate weather forecasts. From the first steps of objective analysis of observa-
tional data about 50 years ago, the techniques evolved toward the current assimilation
methods. A review on this history is given by Ghil and Malanotte-Rizzoli [25]. The
method of optimal interpolation (see e.g. [51]), which was the most widely used method
for operational numerical weather prediction in 1991 when this article was published,
is today replaced by 4D-Var, see e.g. [69]. This is the space and time dependent vari-
ational data assimilation using the adjoint method. In addition, approaches to the
application of sequential algorithms based on the Kalman filter exist [20, 21].

The situation for data assimilation in physical oceanography is different from that
in meteorology. The spatial scales in the ocean are smaller than in the atmosphere. In
contrast to this, the time scales are larger. In addition, the amount of observational
data of the ocean is significantly smaller than the quantity of atmospheric measure-
ments. Due to this, oceanographic data assimilation is a rather young discipline moti-
vated by the improvement in the understanding of the dynamics of ocean circulation.
However, the availability of remotely sensed observations from satellites increased the
amount of data significantly motivating further the application of data assimilation in
oceanography (see e.g. [16] for a review on several data assimilation methods used with
ocean models). Today, there are first attempts for operational oceanography or ocean
forecasting which involve advanced data assimilation algorithms, e.g. by the projects
DIADEM [13] and MERCATOR [54].

7



8 1 Data Assimilation

Data assimilation algorithms are currently characterized by two main approaches.
The first is variational data assimilation which is based on optimal control theory.
One representative of this approach is the widely used adjoint method. Because of
its current importance, this technique will be reviewed in the following section. The
second approach is provided by sequential data assimilation algorithms. These filter
methods are based on estimation theory and are typically derived from the Kalman
filter [41, 42]. These algorithms are the subject of this work. Section 1.3 provides an
overview on the sequential data assimilation algorithms based on the Kalman filter.
The mathematical foundations of these algorithms are introduced in Chapter 2.

1.2 The Adjoint Method

The adjoint method is a variational technique aiming at the minimization of an empiric
criterion measuring the misfit between a model and the observations. It is typically
employed as a smoothing method or to provide a state estimate used to compute a fore-
cast. The adjoint method is derived here according to the derivation by Le Dimet and
Talagrand [14]. The notations follow the unified notation proposed by Ide et al. [37].

The principle of the adjoint method is as follows:
We consider a physical system which is represented by the state vector x(t) ∈ S
where S is a Hilbert space with inner product < , >. The time evolution of the state
is described by the model

dx(t)

dt
= M [x(t)] (1.1)

with the initial condition

x(t0) = x0 . (1.2)

In addition, observations {yo(ti)} of the state will be available at some time in-
stances {ti, i = 1, . . . , k}.

Let the misfit between the state and the observations be described by the scalar
cost functional J given by

J [u] =
1

2

k∑
i=1

< yo(ti) − x(ti), yo(ti) − x(ti) > (1.3)

where u is the vector of control variables. For simplicity we consider the case that the
initial state is used as the control variables:

u = x(t0) (1.4)

The problem of variational data assimilation is now: Find the optimal vector ũ of
control variables which minimizes the cost functional J :

J [ũ] = minuJ [u] (1.5)



1.2 The Adjoint Method 9

To minimize J with respect to u, e.g. by the quasi-Newton optimization method,
the gradient ∇uJ has to be computed. The gradient is defined by

δuJ =< ∇uJ, δu > . (1.6)

where δuJ is the first order variation of J with respect to u. δu is the perturbation of u.
From equation (1.3) the first order variation of J resulting from a perturbation δx(t0)
is given by

δuJ =
k∑

i=1

< yo(ti) − x(ti), δx(ti) > (1.7)

where the first order variations {δx(ti)} are related to the perturbation δx(t0) by

δx(ti) = R(ti, t0)δx(t0), i = 1, . . . , k . (1.8)

R(ti, t0) is the resolvent of the linearization

d

dt
δx(t) = M(t)δx(t) (1.9)

of equation (1.1) about the state x(t). Here M(t) is the linearized model operator.
Equation (1.9) is also denoted the tangent linear model. The resolvent R(ti, t0) is the
linear operator obtained by integrating equation (1.9) from time t0 to time ti under
the initial condition δx(t0) = δu.

For any continuous linear operator L on S exists a linear operator L† on S defined
by

< a, Lb >=< L†a, b >, ∀a,b ∈ S . (1.10)

L† is denoted the adjoint operator of L. Introducing the adjoint resolvent R†(ti, t0),
equation (1.7) can be written as

δuJ =
k∑

i=1

< R†(ti, t0) [yo(ti) − x(ti)] , δx(ti) > . (1.11)

Hence, the gradient of J with respect to u is, according to equations (1.6) and (1.4),

∇uJ =
k∑

i=1

R†(ti, t0) [yo(ti) − x(ti)] (1.12)

The adjoint resolvent can be determined in the following way: The adjoint model
to the tangent linear model (1.9) is given by

d

dt
δx†(t) = −M†(t)δx†(t) (1.13)

where δx†(t) ∈ S and M†(t) is the adjoint of M(t). Now it can be shown, see [14],
that the resolvent S(t0, ti) of equation (1.13) is given by the adjoint resolvent of equa-
tion (1.8):

S(t0, ti) = R†(ti, t0) (1.14)
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Thus, the gradient of J is finally obtained as

∇uJ =
k∑

i=1

S(t0, ti) [yo(ti) − x(ti)] (1.15)

The term S(t0, ti) [yo(ti) − x(ti)] is evaluated by integrating the adjoint model (1.13)
backward in time from ti to t0 with the initial condition δx†(ti) = yo(ti) − x(ti). Since
equation (1.13) is linear, a single backward integration suffices to compute the the
gradient ∇uJ . For this the integration is started at time tk with the initial condi-
tion δx†(tk) = yo(tk) − x(tk). During the backward integration the term yo(ti) − x(ti)
is added to the current value δx†(ti) at time instants ti where observations are available.

Summarizing, the adjoint method to compute the optimal initial conditions is given
by the iterative algorithm:

1. Choose some estimate x0 of the initial state vector: x(t0) = x0.

2. For j = 1, . . . loop:

3. Integrate the model (1.1) from t0 to tk. Store the obtained state trajectory.

4. Evaluate the cost functional J according to equation (1.3).

5. Integrate the adjoint model (1.13) backward in time from tk to t0 starting from
δx†(tk) = yo(tk) − x(tk). Add yo(ti) − x(ti) to δx†(ti) at each observation time.
Then, according to equation (1.15), it is ∇uJ = δx†(to).

6. If ∇uJ ≤ ε for some condition ε, exit the loop over j.

7. Update the initial condition according to the chosen optimization algorithm, e.g.
quasi-Newton.

8. End of the loop over j.

Remarks on the adjoint method:
Remark 1: The formulation of the adjoint method can be extended to optimize, e.g.,
physical parameters or lateral boundary conditions. In addition, the method can be
extended to handle observations which are functions of the state vector. Thus, it is
not required that the complete state vector itself is observed.
Remark 2: To apply the adjoint method, the adjoint operator M†(t) has to be im-
plemented. For large-scale nonlinear models the propagation operator M is implicitly
defined by its implementation in the source code of the model. Hence, also the adjoint
operator has to be implemented as an operator rather than as an explicit matrix. The
implementation is a difficult task. It can, however, be simplified by automatic differ-
entiation tools like TAMC, see [53].
Remark 3: The adjoint method does not provide an estimate of the error of the ob-
tained optimal control variables. To obtain an error estimate, the Hessian matrix of
the cost function J has to be determined [95].
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Remark 4: The adjoint method requires to integrate the model and the adjoint model
multiple times during the optimization process. These integrations are the most time
consuming part of the algorithm.
Remark 5: To evaluate the adjoint model operator M†(t), the state trajectory of
the forward integration (point 2) has to be stored. If the time integration is performed
over long time intervals with large-scale models, huge memory requirements will result.

1.3 Sequential Data Assimilation

Sequential data assimilation algorithms combine the predicted state estimate of a model
with observations at the time when the observational data become available. The
combination, denoted analysis, is computed using weights obtained from the estimated
errors of both the model state and the observations. The computed state estimate
can be used to perform a model forecast. Also it is possible to formulate smoothing
algorithms which also modify the model state in the past on the basis of a newly
available observation, see [86]. This work will focus on filtering, that is, the current
state is estimated using only the observations available up to the present time.

Over the recent years there has been an extensive development of filter algorithms
based on the Kalman filter (KF) [41, 42] in the atmospheric and oceanic context.
These filter algorithms are of special interest due to their simplicity of implementation,
e.g. no adjoint operators are required, and their potential for efficient use on parallel
computers with large-scale geophysical models [45]. In addition, an error estimate is
provided by the filter algorithms in form of an estimated error covariance matrix of the
model state.

The classical KF and the extended Kalman filter (EKF), see [38], share the prob-
lem that for large-scale models the requirements of computation time and storage are
prohibitive. This is due to the explicit treatment of the error covariance matrix of
the model state. Furthermore, the EKF shows deficiencies with the nonlinearities
appearing, e.g., in oceanographic systems [15]. Due to this, algorithms are required
which reduce the memory and computation requirements and provide better abilities
to handle nonlinearity.

There have been different working directions over the recent years. One approach
is based on a low-rank approximation of the state error covariance matrix of the EKF
in order to reduce the computational costs. Using gradient approximations of the lin-
earized model which is required to evolve the covariance matrix, these algorithms also
show better abilities to handle nonlinearity than the EKF. Examples of low-rank filters
are the Reduced Rank Square-Root (RRSQRT) algorithm [88] and the Singular Evo-
lutive Extended Kalman (SEEK) filter [68]. An alternative approach is to employ an
ensemble of model states to represent the error statistics which are treated in the EKF
by the state estimate and its covariance matrix. An example is the Ensemble Kalman
filter (EnKF) [17, 8] which applies a Monte Carlo method to forecast the error statistics.
For an improved treatment of nonlinearities, Pham et al. [67] introduced the Singu-
lar Evolutive Interpolated (SEIK) filter as a variant of the SEEK filter. It combines
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the low-rank approximation with an ensemble representation of the covariance ma-
trix. This idea has also been followed in the concept of Error Subspace Statistical
Estimation (ESSE) [49].

The major part of the computation time in data assimilation with filter algorithms is
spent for the prediction of error statistics using the linearized or the nonlinear model.
Thus, the efficiency of a filter algorithm will be determined by its ability to yield
sufficiently good estimates with as few model evaluations as possible. In general, using
a larger rank for the approximation of the state covariance matrix or a larger ensemble
for its representation will provide a more reliable state estimate. In practice, the rank
or ensemble size will be, however, limited by the available computing resources.



Chapter 2

Filter Algorithms

2.1 Introduction

This chapter introduces the mathematical foundations of filter algorithms based on
the Kalman filter. In addition, the equations of several approximating algorithms are
motivated and related to the extended Kalman filter. The focus lies on the Ensemble
Kalman Filter [17], the Singular Evolutive Extended Kalman (SEEK) filter [68] and
the Singular Evolutive Interpolated Kalman (SEIK) filter [67]1. The EnKF and SEEK
filters are representative for the two approaches of low-rank and ensemble filters. The
SEIK filter is considered because it unites aspects of both approaches. The relation
of these filters to other approximating filter algorithms will be discussed. The SEEK,
EnKF, and SEIK algorithms approximate the full error space of the EKF by an error
subspace. In addition, all algorithms apply the analysis equations of the Kalman
filter. For this reason, it will be referred to the algorithms as Error Subspace Kalman
Filters (ESKF).

The filter algorithms are presented and discussed based on the probabilistic view-
point similar to Cohn [11] but with a focus on nonlinear large-scale systems. For ease
of comparison, the notations follow, as far as possible, the unified notation proposed by
Ide et al. [37]. Section 2.2 introduces to the estimation theory. The Kalman filter and
the extended Kalman filter are motivated and discussed in section 2.3. Subsequently,
in section 2.4 the error subspace Kalman filter algorithms SEEK, EnKF, and SEIK
are introduced and discussed. The discussion of the extended Kalman filter and the
ESKF filters is performed assuming a linear relation between model fields and obser-
vations. The situation of nonlinearly related model fields and observations is discussed
in section 2.5.

1The names of the latter two algorithms have a French origin with “evolutive” coming from the
French word “évolutif” meaning evolving.

13
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2.2 Statistical Estimation

We consider a physical system which is represented by its state x(t) ∈ S where S is
a Hilbert space. The state is described by a discrete numerical model governing the
propagation of the discretized state xt ∈ Sn, denoted the true state. Since the discrete
model only approximates the true physics of the system, xt is a random vector whose
time propagation is given by the stochastic-dynamic time discretized model equation

xt
i = Mi,i−1[x

t
i−1] + ηi . (2.1)

Here Mi,i−1 is a, possibly nonlinear, operator describing the state propagation between
the two consecutive time steps i − 1 and i. The vector ηi is the model error, which is
assumed to be a stochastic perturbation with zero mean and covariance matrix Qi.

At discrete times {tk}, each ∆k time steps, observations are available as a vec-
tor yo

k of dimension mk. The true state xt
k at time tk is assumed to be related to the

observation vector by the measurement model

yo
k = Hk[x

t
k] + εk . (2.2)

Here Hk is the forward measurement operator. It describes diagnostic variables, i.e.,
the observations which would be measured given the state xt

k. The vector εk is the
observation error consisting of the measurement error due to imperfect measurements
and the representation error caused, e.g., by the discretization of the dynamics. εk is
a random vector. It is assumed to be of zero mean and covariance matrix Rk and
uncorrelated with the model error ηk.

The state sequence {xt
i}, prescribed by equation (2.1), is a stochastic process which

is completely described by a probability density function p(xt
i). The state sequence is a

Markov process under the assumptions that the model error ηi is Gaussian and white
in time {xt

i}. In this case, the time evolution of p(xt
i) is described by the Fokker-Planck

or forward Kolmogorov equation (see Jazwinski [38]), in time discretized form

p(xi) = p(xi−1) −
n∑

α=1

∂
(
p(xi−1)Mi,i−1(α)(xi−1)

)
∂xi−1(α)

+
1

2

n∑
α,β=1

∂2
(
p(xi−1)Q(αβ)

)
∂xi−1(α)∂xi−1(β)

(2.3)

where the Greek indices denote the components. In practice, the high dimensionality of
realistic geophysical models prohibits the explicit solution of the Fokker-Planck-Kolmo-
gorov equation. Nonetheless, it is possible to derive equations for statistical moments
of the probability density like the mean and the covariance matrix, see, for example
Jazwinski [38].

In general, the filtering problem is solved by the conditional probability density
function p(xt

k|Yo
k) of the true state given the observations Yo

k = {yo
0, . . . ,y

o
k} up to

time tk. In practice, it is not feasible to compute this density explicitly for large-scale
models. Thus, one has to rely on the calculation of some statistics of the density. In
the context of filtering usually the conditional mean is computed, which is also the
minimum variance estimate, see Jazwinski [38].
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In the following we will concentrate on sequential filter algorithms. That is, the
algorithms consist of two phases: In the forecast phase the conditional probability
density p(xt

k−∆k|Yo
k−∆k), or statistical moments of it, is evolved up to the time tk

when observations are available, yielding p(xt
k|Yo

k−∆k). Then, in the analysis phase,
the conditional density p(xt

k|Yo
k) is computed from the forecasted density and the

observation vector y0
k. Subsequently the cycle of forecasts and analyses is repeated.

To initialize the filter sequence an initial density p(xt
0|Yo

0) is required. In practice
this density is unknown and a density estimate p(x0) is used for the initialization.

2.3 The Extended Kalman Filter

For linear dynamic and measurement models, the Kalman filter (KF) [41, 42] is the
minimum variance estimator if the initial probability density p(xt

0) and the model error
and observation error processes are Gaussian. To clarify the assumptions about the
statistics of the model error, the observation error and the probability density of the
model state, we will motivate the KF based on statistical estimation. With this we will
also show the approximations which are required for the derivation of the Extended
Kalman Filter. A detailed derivation of the KF in the context of statistical estimation
is presented by Cohn [11] and several approaches toward the KF are discussed in
Jazwinski [38].

First, let us consider linear dynamic and measurement operators. Thus, equa-
tions (2.1) and (2.2) can be written in matrix-vector form as

xt
k = Mk,k−∆kx

t
k−∆k + ηk , (2.4)

yo
k = Hkx

t
k + εk . (2.5)

Here the linear operator Mk,k−∆k propagates the state vector from time step k − ∆k
to time step k. We assume that the stochastic processes ηk and εk are temporal white
Gaussian processes with zero mean and respective covariance matrices Qk and Rk.
Additionally, the probability density function p(xt

k) is assumed to be Gaussian with
covariance matrix Pk, and all three processes are mutually uncorrelated. Denoting the
expectation operator by < >, the assumptions are summarized as

ηi ∝ N (0,Qi) ; < ηiη
T
j >= Qiδij (2.6)

εk ∝ N (0,Rk) ; < εkε
T
l >= Rkδkl (2.7)

xt
i ∝ N (x̄t

i,Pi) ; (2.8)

< ηkε
T
k >= 0 ; < ηi(x

t
i)

T >= 0 ; < εk(x
t
k)

T >= 0 , (2.9)

where N (a,B) denotes the normal distribution with mean a and covariance matrix B
and δkl is the Kronecker delta with δkl = 1 for k = l and δkl = 0 for k 6= l. Under
assumptions (2.6) - (2.8) the corresponding probability densities are fully described by
their two lowest statistical moments: the mean and the covariance matrix. Applying
this property, the KF formulates the filter problem in terms of the conditional means
and covariance matrices of the forecasted and analyzed state probability densities.
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To derive the forecast equations for the KF only a part of assumptions (2.6) to (2.9)
is required. Suppose the conditional density p(xt

k−∆k|Yo
k−∆k) at time tk−∆k is given in

terms of the conditional mean

xa
k−∆k :=< xt

k−∆k|Yo
k−∆k > , (2.10)

denoted analysis state, and the analysis covariance matrix

Pa
k−∆k :=< (xt

k−∆k − xa
k−∆k)(x

t
k−∆k − xa

k−∆k)
T |Yo

k−∆k > . (2.11)

In the forecast phase, the KF evolves the density forward until time tk. That is, the
mean and covariance matrix of the probability density p(xt

k|Yo
k−∆k) are computed. The

forecast state is the conditional mean xf
k :=< xt

k|Yo
k−∆k >. With the dynamic model

equation (2.4) and the assumption that the model error has zero mean this leads to

xf
k = Mk,k−∆kx

a
k−∆k . (2.12)

The expression for the corresponding forecast covariance matrix follows from equa-
tions (2.4), (2.12), and the assumption (2.9) that xt

k and ηk are uncorrelated, as

Pf
k := < (xt

k − xf
k)(x

t
k − xf

k)
T |Yo

k−∆k >

= Mk,k−∆kP
a
k−∆kM

T
k,k−∆k + Qk . (2.13)

Equations (2.12) and (2.13) represent the forecast phase of the KF. Besides the as-
sumption of uncorrelated processes xt

k and ηk and unbiased model error no further
statistical assumptions are required for the derivation of these equations, in particular
the densities are not required to be Gaussian.

Suppose a vector of observations yo
k ∈ Rmk to be available at time tk. Then the

analysis phase of the KF computes the mean and covariance matrix of the conditional
density p(xt

k|Yo
k) given the density p(xt

k|Yo
k−∆k) and the observation vector yo

k. Under
the assumption that the error process εk is white in time, the solution is given by
Bayes’ theorem as

p(xt
k|Yo

k) =
p(yo

k|xt
k)p(xt

k|Yo
k−∆k)

p(yo
k|Yo

k−∆k)
. (2.14)

Since this relation only implies the whiteness of εk it is also valid for nonlinear dy-
namic and measurement operators. Assumptions (2.6) to (2.9) are however required
to derive the analysis equations as the mean and covariance matrix of the analysis
density p(xt

k|Yo
k). A lengthly calculation leads to the analysis state xa

k and analysis
covariance matrix Pa

k as

xa
k = xf

k + Kk(y
o
k − Hkx

f
k) , (2.15)

Pa
k = (I − KkHk)P

f
k(I − KT

k HT
k ) + KkRkK

T
k (2.16)

= (I − KkHk)P
f
k (2.17)

where Kk is denoted the Kalman gain. Equation (2.17) is only valid for a Kk given by

Kk = Pf
kH

T
k (HkP

f
kH

T
k + Rk)

−1 (2.18)
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or, alternatively, if Rk is invertible,

Kk = Pa
kH

T
k R−1

k . (2.19)

Equations (2.15) to (2.18) complete the KF theory.

The Extended Kalman filter (EKF) is a first-order extension of the KF to nonlinear
models as given by equations (2.1) and (2.2). Again it is based on the first two statisti-
cal moments of the probability density and on the probabilistic assumptions (2.6)-(2.9).
The EKF equations are obtained by linearizing the dynamic and measurement opera-
tors around the most recent state estimate. We will consider here only the case of linear
measurement operators. The use of nonlinear measurement operators is discussed in
section 2.5.

The EKF forecast equations can be derived by applying a Taylor expansion to
equation (2.1) at the last estimate, the analysis state xa

i−1. That is

xt
i = Mi,i−1[x

a
i−1] + Mi,i−1z

a
i−1 + ηi + O(z2) , (2.20)

where za
i−1 = xt

i−1−xa
i−1 and Mi,i−1 is the linearization of the operator Mi,i−1 around the

estimate xa
i−1. Neglecting in equation (2.20) terms of higher than linear order in za the

conditional mean and the corresponding covariance matrix of the density p(xt
k|Yo

k−∆k)
are computed. This yields the EKF analog of equations (2.12) and (2.13) for the
forecast of the state and the forecast error covariance matrix:

xf
i = Mi,i−1[x

a
i−1] (2.21)

Pf
k = Mk,k−∆kP

a
k−∆kM

T
k,k−∆k + Qk (2.22)

Here uncorrelated statistics of the model errors and the state were assumed as in the
KF. Equation (2.21) is iterated from time tk−∆k until time tk to obtain xf

k .

Since here only linear measurement operators H are considered, the analysis equa-
tions for the EKF are identical to those of the linear Kalman filter. Thus the analysis
of the EKF is given by equations (2.15) to (2.19).

To apply the KF or EKF the filter sequence has to be initialized. That is, an initial
state estimate xa

0 and a corresponding covariance matrix has to be supplied Pa
0 which

represent the initial probability density p(xt
0).

Remark 6: The forecast of the EKF is due to linearization. The state forecast is
only valid up to linear order in z while the covariance forecast is valid up to second
order (z2 ∝ Pa). The covariance matrix is forecasted by the linearized model. For
nonlinear dynamics this neglect of higher order terms can lead to an unrealistic rep-
resentation of the covariance matrix [39] and subsequently to instabilities of the filter
algorithm [15].
Remark 7: To avoid the requirement for an adjoint model operator MT

k,k−∆k the
covariance forecast equation is usually applied as

Pf
k = Mk,k−∆k(Mk,k−∆kP

a
k−∆k)

T + Qk (2.23)
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Remark 8: The covariance matrix P is symmetric positive semi-definite. In a nu-
merical implementation of the KF this property is not guaranteed to be conserved,
if equation (2.17) is used to update the covariance since the operations on P are not
symmetric. In contrast to this equation (2.16) preserves the symmetry.
Remark 9: For linear models the KF yields the optimal minimum variance estimate
if the covariance matrices Q and R as well as the initial state estimate (xa

0,P
a
0) are

correctly prescribed. Then the estimate is also the maximum likelihood estimate, see
Jazwinski [38]. For nonlinear systems, the EKF can only yield an approximation of
the optimal estimate. For large-scale systems, like in oceanography where the state
dimension can be of order 105−107, there are generally only estimates of the covariance
matrices available. Also xa

0 is in general only an estimate of the initial system state.
Due to this, the practical filter estimate is sub-optimal.
Remark 10: For large scale systems the largest computational cost resides in the
forecast of the state covariance matrix by equation (2.13). This requires 2n applica-
tions of the (linearized) model operator. For large scale systems the corresponding
computational cost is not feasible. In addition, the KF and EKF require the storage
of the covariance matrix containing n2 elements which is also not feasible for realistic
models and current size of computer memory.

2.4 Error subspace Kalman Filters

The large computational cost of the KF and EKF algorithms implies that a direct
application of these algorithms to realistic models with large state dimension is not
feasible. This problem has led to the development of a number of approximating al-
gorithms, sometimes called ’suboptimal schemes’ after Todling and Cohn [80]. While
being clearly suboptimal for linear systems, this is not necessarily true for nonlinear
systems. Treating the forecast of the statistics in different manners, e.g. by nonlin-
ear ensemble forecasts, some algorithms are better suited for application to nonlinear
systems than the EKF.

This work focuses on three algorithms, the EnKF [17, 8], the SEEK Filter [68], and
the SEIK Filter [67]. As far as possible the filters are presented here in the unified
notation [37] following the way they have originally been introduced by the respective
authors. The relation of the filters to the EKF as well as possible variations and
particular features of them are discussed.

All three algorithms use a low-rank representation of the state covariance matrix
P either by an explicit low-rank approximation of the matrix or by a random ensem-
ble. Thus, the filter analyses operate only in a low-dimensional subspace, denoted
as the error subspace. The error subspace approximates the error space considered
in the EKF. It is characterized by the eigenvectors and eigenvalues of the approx-
imated state covariance matrix. As all methods use the analysis equations of the
EKF adapted to the particular method, we refer to the algorithms as Error Subspace
Kalman Filters (ESKF). This corresponds to the concept of error subspace statistical
estimation [49].
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2.4.1 SEEK – The Singular Evolutive Extended Kalman Filter

The SEEK filter [68] is a so called reduced-rank filter. It is based on the EKF using
an approximation of the covariance matrix Pa

0 by a singular matrix of low rank and its
treatment in decomposed form.

From the statistical viewpoint, the rank reduction is motivated by the fact that the
probability density function p(xt

0) is not isotropic in state space. If the density function
is Gaussian it can be described by a probability ellipsoid, whose center is given by the
mean xa

0 and the shape is described by Pa
0. Figure 2.1 sketches the probability ellipsoid

with its main axes in two dimensions. The principal axes of the ellipsoid are found by
an eigenvalue decomposition of Pa

0: {Pv(i) = λ(i)v(i), i = 1, . . . , n}, where v(i) is the
i’th eigenvector and λ(i) the corresponding eigenvalue. With this, the principal vectors
are {ṽ(i) = (λ(i))1/2v(i)}. Approximating Pa

0 by the r (r ¿ n) largest eigenmodes corre-
sponds to the neglect of the least significant principal axes of the probability ellipsoid.
Also it provides the best rank-r approximation of Pa

0, see Golub and van Loan [26].
The retained principal vectors {ṽ(i), i = 1, . . . , r} are the basis vectors of a tangent
space at the state space point xa

0. This is the error subspace Ẽ , which approximates the
true error space characterized by the full covariance matrix. The metric of Ẽ is given
by G̃ = diag

(
(λ(1))−1, . . . , (λ(r))−1

)
. In SEEK the error subspace is evolved until the

next analysis time of the filter by forecasting the vectors {v(i), i = 1, . . . , r} with the
linearized model. In the analysis phase the filter operates only in the error subspace,
that is, in the most significant directions of uncertainty.

xa
0

(2)v(1) ~

~v(1)

(2)v
v

Figure 2.1: Probability ellipsoid representing the probability density function p(xt
0).

The SEEK filter is given by the following equations:
Initialization:
The initial probability density p(xt

0) is provided by the initial state estimate xa
0 and a

rank-r approximation (r ¿ n) of the covariance matrix Pa
0 given in decomposed form:

xa
0 =< xt

0 >; P̂a
0 := V0U0V

T
0 ≈ Pa

0 (2.24)

Here the diagonal matrix U0 ∈ Rr×r holds the r largest eigenvalues. Matrix V0 ∈ Rn×r

contains in its columns the corresponding eigenvectors (modes) of P̂a
0.
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Forecast:
The SEEK forecast equations are derived from the EKF by treating the covariance
matrix in decomposed form as provided by the initialization.

xf
i = Mi,i−1[x

a
i−1] (2.25)

Vk = Mk,k−∆kVk−∆k (2.26)

Analysis:
The analysis equations are a re-formulation of the EKF analysis equations for a covari-
ance matrix given in decomposed form. To maintain the rank r of P̂a

0 the model error
covariance matrix Qk is projected onto the error subspace by

Q̂k :=
(
VT

k Vk

)−1
VT

k QkVk

(
VT

k Vk

)−1
. (2.27)

With this the SEEK analysis equations are for an invertible matrix Rk

U−1
k =

(
Uk−∆k + Q̂k

)−1

+ (HkVk)
T R−1

k HkVk , (2.28)

xa
k = xf

k + K̂k

(
yo

k − Hkx
f
k

)
, (2.29)

K̂k = VkUkV
T
k HT

k Rk
−1 . (2.30)

The analysis covariance matrix is implicitly given by P̂a
k := VkUkV

T
k .

Re-diagonalization:
To avoid that the modes {v(i)} become large and increasingly aligned a re-orthonormali-
zation of these vectors is required. This can be performed by computing the eigenvalue
decomposition of the matrix Bk ∈ Rr×r defined by

Bk := AT
k VT

k VkAk (2.31)

where Ak is computed by a Cholesky decomposition of the matrix Uk: Uk = AkA
T
k .

The eigenvalues of Bk are the same as the non-zero eigenvalues of Pa
k = VkUkV

T
k .

Let Ck contain in its columns the eigenvectors of Bk and the diagonal matrix Dk the
corresponding eigenvalues. Then the matrix Ṽ holding re-orthonormalized modes and
the corresponding eigenvalue matrix Û are given by

V̂k = LkCkD
−1/2
k ; Ûk = Dk . (2.32)

Remark 11: The state covariance matrix is approximated by a singular matrix P̂ of
low rank. Throughout the algorithm the approximated matrix is treated in the decom-
posed form P̂ = VUVT . The full covariance matrix is never computed explicitly and
has never to be stored.
Remark 12: Due to its treatment in decomposed form, all operations on P̂ are per-
formed symmetrically. Hence, P̂ remains symmetric throughout the algorithm.
Remark 13: It is not required that the decomposition of P̂ is computed from a trun-
cated eigenvalue decomposition of the prescribed matrix Pa

0. However, mathematically
this yields the best approximation of Pa

0.
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Remark 14: The forecast of the covariance matrix is computed by only forecasting
the r modes of P̂. With typically r < 100 this brings this forecast toward acceptable
computation times.
Remark 15: The SEEK filter is a re-formulation of the EKF focusing on the ana-
lyzed state estimate and covariance matrix. Hence its filtering performance will be
sub-optimal. Further, SEEK inherits the stability problem of the EKF by considering
only the two lowest statistical moments of the probability density. If r is too small,
this problem is even amplified, as P̂a systematically underestimates the variance pre-
scribed by the full covariance matrix Pa. This is due to the neglect of eigenvalues of
the positive semi-definite matrix Pa.
Remark 16: The increment for the analysis update of the state estimate in equa-
tion (2.29) is computed as a weighted average of the mode vectors in Vk which belong
to the error subspace. This becomes visible when the definition of the Kalman gain
(equation (2.30)) is inserted into equation (2.29):

xa
k = xf

k + Vk

[
UkV

T
k HT

k Rk
−1

(
yo

k − Hkx
f
k

)]
(2.33)

The term in brackets represents a vector of weights for combining the modes V.
Remark 17: In practice, it can be difficult to specify the linearized dynamic model
operator Mi,i−1. As an alternative, one can approximate the linearization by a gradient

approximation. Then, the forecast of column α of Va
i−1, denoted by v

a(α)
i−1 , is given by

Mi,i−1v
a(α)
i−1 ≈ Mi,i−1[x

a
i−1 + εv

a(α)
i−1 ] − Mi,i−1[x

a
i−1]

ε
. (2.34)

For a gradient approximation the coefficient ε needs to be a small positive num-
ber (ε ¿ 1). Some authors [91, 31] report the use of ε ≈ 1. This can bring the
algorithm beyond a purely tangent-linear forecast but it is no more defined as a gradi-
ent approximation and requires an ensemble interpretation.
Remark 18: Due the neglect of higher order terms in the Taylor expansion (2.20)
the forecast of the state estimate will be systematically biased. To account for the
first neglected term in the Taylor expansion second order forecast schemes have been
discussed [87, 73]. The examination of the forecast bias can also be utilized to quantify
the nonlinearity of the forecast [89].
Remark 19: Equation (2.28) for the matrix Uk can be modified by multiplying with
a so called forgetting factor ρ, (0 < ρ ≤ 1) [68]:

U−1
k = (ρ−1Uk−∆k + Q̂k)

−1 + (HkVk)
TR−1

k HkVk (2.35)

The forgetting factor can be used as a tuning parameter of the analysis phase to
down-weight the state forecast relative to the observations. This can increase the filter
stability as the systematic underestimation of the variance is reduced.
Remark 20: In equation (2.26) the modes V of P̂ are evolved with initially unit
norm in the state space. However, it is also possible to use modes scaled by the square
root of the corresponding eigenvalue, i.e. the basis vectors of the error subspace, Then,
matrix U will be the identity matrix. Using scales modes the re-diagonalization should
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be performed after each analysis stage, replacing equations (2.32) by V̂k = VkCk and
Ûk = Ir×r. This scaled algorithm is equivalent to the RRSQRT algorithm introduced
by Verlaan and Heemink [88].

2.4.2 EnKF – The Ensemble Kalman Filter

The EnKF [17, 8] applies a Monte Carlo method to sample and forecast the probability
density function. The initial density p(xt

0) is sampled by a finite random ensemble
of state realizations. The density is forecasted by evolving each ensemble member
with the full stochastic model. For the analysis each ensemble state is updated using
an observation vector from an ensemble of observations, which has to be generated
according to the observation error covariance matrix.

From the viewpoint of statistics the EnKF solves the Fokker-Planck-Kolmogorov
equation (2.3) for the evolution of the probability density p(xt) by a Monte Carlo
method. In contrast to the SEEK algorithm, where the rank reduction directly uses
the assumption that the density is Gaussian and thus can be described by a prob-
ability ellipsoid, the EnKF samples the density by a random ensemble of N model
states {xa(α)

0 , α = 1, . . . , N}. The probability density is given in terms of the ensemble
member density in state space dN :

dN

N
→ p(xt

0)dx for N → ∞ (2.36)

This sampling of p(xt
0) converges rather slow (proportional to N−1/2), but it is valid for

any kind of probability density, not just Gaussian densities. Forecasting each ensemble
state with the stochastic-dynamic model (2.1) evolves the sampled density with the
nonlinear model until the next analysis time. In the analysis phase the EKF analysis,
which implies that the densities are Gaussian, is applied to each of the ensemble states.
For the analysis the covariance matrix P is approximated by the ensemble covariance
matrix P̃. Since the rank of P̃ is at most N − 1, the EnKF also operates in an error
subspace which is determined by the random sampling. Unlike the SEEK filter the
directions are not provided by the principal vectors of the prescribed covariance ma-
trix but determined by the random sampling. To ensure that the ensemble analysis
represents the combination of two probability densities, the observation error covari-
ance matrix R has to be represented by a random ensemble of observations [8]. Each
ensemble state is then updated with a vector from this observation ensemble. This
implicitly updates the state covariance matrix.

The EnKF algorithm is prescribed by the following equations:
Initialization:
The initial probability density p(xt

0) is sampled by a random ensemble of N state
realizations. The statistics of this ensemble approximate the initial state estimate and
the corresponding covariance matrix, thus

{xa(α)
0 , α = 1, . . . , N} (2.37)
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with

xa
0 =

1

N

N∑
α=1

x
a(α)
0 →< xt

0 > for N → ∞, (2.38)

P̃a
0 :=

1

N − 1

N∑
α=1

(
x

a(α)
0 − xa

0

)(
x

a(α)
0 − xa

0

)T

→ Pa
0 for N → ∞. (2.39)

Forecast:
Each ensemble member is evolved up to time tk with the nonlinear stochastic-dynamic
model (2.1) as

x
f(α)
i = Mi,i−1[x

a(α)
i−1 ] + η

(α)
i . (2.40)

Analysis:
For the analysis a random ensemble of observation vectors {yo(β)

k , β = 1, . . . , N} is gen-
erated which represents an approximate observation error covariance matrix (R̃k ≈ Rk).
Each of the ensemble members is updated analogously to the EKF analysis by

x
a(α)
k = x

f(α)
k + K̃k

(
y

o(α)
k − Hkx

f(α)
k

)
, (2.41)

K̃k = P̃f
kH

T
k

(
HkP̃

f
kH

T
k + Rk

)−1

, (2.42)

P̃f
k =

1

N − 1

N∑
α=1

(
x

f(α)
k − xf

k

)(
x

f(α)
k − xf

k

)T

. (2.43)

The analysis state and corresponding covariance matrix are then defined by the en-
semble mean and covariance matrix as

xa
k :=

1

N

N∑
α=1

x
a(α)
k , (2.44)

P̃a
k :=

1

N − 1

N∑
α=1

(
x

a(α)
k − xa

k

)(
x

a(α)
k − xa

k

)T

(2.45)

which complete the analysis equations of the EnKF.

An efficient implementation of this analysis is formulated in terms of “represen-
ters” [19]. This formulation as well permits to handle the situation when HkP̃

f
kHk

T is
singular, which will occur if mk > N . The state analysis equation (2.41) is written as

x
a(α)
k = x

f(α)
k + P̃f

kH
T
k b

(α)
k . (2.46)

The columns of the matrix P̃f
kH

T
k are called representers and constitute influence vec-

tors for each of the measurements. Amplitudes for the influence vectors are given by
the vectors {b(α)

k } which are obtained as the solution of

(
HkP̃

f
kHk

T + Rk

)
b

(α)
k = y

o(α)
k − Hkx

f(α)
k . (2.47)
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The explicit computation of P̃f
k by equation (2.43), is not required in the algorithm.

It suffices to compute (see, for example Houtekamer and Mitchell [34])

P̃f
kH

T
k =

1

N − 1

N∑
α=1

(
x

f(α)
k − xf

k

) [
Hk

(
x

f(α)
k − xf

k

)]T

, (2.48)

HkP̃
f
kH

T
k =

1

N − 1

N∑
α=1

Hk

(
x

f(α)
k − xf

k

) [
Hk

(
x

f(α)
k − xf

k

)]T

. (2.49)

For later use we also introduce the matrix notation of the EnKF. The initial state
ensemble matrix holds in its columns the ensemble state as as Xa

0 = {xa(1)
0 , . . . ,x

a(N)
0 }.

Introducing the ensemble matrix of the observation vectors Yo
k = {yo(1)

k , . . . ,y
o(N)
k } we

can rewrite equation (2.47) for the influence amplitudes as(
HkP̃

f
kHk

T + Rk

)
Bk = Yo

k − HkX
f
k (2.50)

where Bk is the matrix of influence amplitudes. The ensemble update (equation 2.46)
is now given as

Xa
k = Xf

k + P̃f
kH

T
k Bk . (2.51)

In addition, the computation of the representers P̃f
kH

T
k and the covariance matrix

HkP̃
f
kH

T
k is written in matrix notation as

P̃f
kH

T
k =

1

N − 1

(
Xf

k − Xf
k

) [
Hk

(
Xf

k − Xf
k

)]T

, (2.52)

HkP̃
f
kH

T
k =

1

N − 1
Hk

(
Xf

k − Xf
k

) [
Hk

(
Xf

k − Xf
k

)]T

. (2.53)

Here the matrix Xf
k contains in all columns the vector xf

k .

The EnKF comprises some particular features due to the use of a Monte Carlo
method in all phases of the filter:
Remark 21: The EnKF treats the covariance matrix implicitly in a square root form,
as is evident from equations (2.43) and (2.45). With this the covariance matrix remains
symmetric in the EnKF. As in the SEEK algorithm it is neither required to store the
full covariance matrix nor to compute it explicitly.
Remark 22: The forecast phase evolves all N ensemble states with the nonlinear
model. This also allows for non-Gaussian densities. Algorithmically the ensemble evo-
lution has the benefit that a linearized model operator is not required.
Remark 23: The analysis phase is derived from the EKF. Thus, it only accounts for
the two lowest statistical moments of the probability density. Using the mean of the
forecast ensemble as state forecast estimate leads for sufficiently large ensembles to a
more accurate estimate than in the EKF. From the Taylor expansion, equation (2.20),
it is obvious that this takes into account higher order terms than the EKF does. In
contrast to the EKF and SEEK filters P is only updated implicitly by the analysis of
the ensemble states.
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Remark 24: The representer analysis method applied in the EnKF operates on the
observation space. Hence, the error subspace is not explicitly considered. An algo-
rithm which operates on the error subspace is given by the concept of Error Subspace
Statistical Estimation (ESSE) [49].
Remark 25: The analysis increments for the ensemble states are computed as weighted

means of the vectors Xf
k − Xf

k which belong to the error subspace. Thus the analysis
equation (2.51) for the ensemble update can be written as

Xa
k = Xf

k +
(
Xf

k − Xf
k

)(
1

N − 1

[
Hk

(
Xf

k − Xf
k

)]T

Bk

)
(2.54)

Evensen [18] noted that the analysis can also be interpreted as a weakly nonlinear
combination of the ensemble states. The first interpretation, however, shows that the
update increments are computed in the error subspace.
Remark 26: Using a Monte-Carlo sampling of the initial probability density also
non-Gaussian densities can be represented. As the sampling convergences slowly
with O(N−1/2), rather large ensembles (N ≥ 100) are required [17, 19] to avoid too big
sampling errors.
Remark 27: To enhance the quality of the filter estimate for small ensemble sizes a
variant of the EnKF has been proposed which uses a pair of ensembles [34]. From the
mathematical viewpoint it is, however, advisable to use as large as possible ensembles
to ensure that the statistics can be estimated correctly. In addition, for a given en-
semble size the state estimate of the EnKF using a single ensemble is better than the
state estimate of the double-ensemble EnKF with the same total number of ensemble
states [84, 35].
Remark 28: Since the estimated correlations of the EnKF will be noisy for small
ensembles it has been proposed [36] to filter the covariances by a Schur product of
correlations functions of local support with the ensemble covariance matrix. This tech-
nique filters out noisy long-range correlations. Further, correlations are intermediate
distances will be weakened. Hence, the influence of observations are intermediate dis-
tances is reduced, see [30]. The localization will, however, introduce imbalances into
the ensemble states as has been studied by Mitchell et al. [56].
Remark 29: The generation of an observation ensemble is required to ensure consis-
tent statistics of the updated state ensemble [8]. With the observation ensemble the
covariance matrix Rk is represented as R̃k in equation (2.16) which would be missing
otherwise. This, however, introduces additional sampling error to the ensemble which
is largest when the ensemble is small compared with the rank of Rk, e.g. if Rk is diag-
onal. Furthermore, it is likely that the state and observation ensembles have spurious
correlations. This introduces an additional error term in equation (2.16).
Remark 30: In equations (2.42) and (2.47) it is possible to use, instead of the pre-
scribed matrix Rk, the ensemble error covariance matrix R̃k of the observation ensem-
ble {yo(β)

k , k = 1, . . . , N}. As proposed by Evensen [18], this allows for an analysis
scheme which is numerically very efficient. However, due to the sampling problems
of Rk this can lead to a further degradation of the filter quality.
Remark 31: To avoid the requirement of an ensemble of observations, several algo-
rithms have been proposed which perform the analysis only on the ensemble mean and
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transform the ensemble after this update [1, 5, 94]. These filter algorithms can be
interpreted in a unified way as ensemble square root filters [79].

2.4.3 SEIK – The Singular Evolutive Interpolated Kalman
Filter

The SEIK filter [67] has been derived as a variant of the SEEK algorithm. It uses
interpolation instead of linearization for the forecast phase. Alternatively it can be
interpreted as an ensemble Kalman filter using a preconditioned ensemble. As in the
SEEK algorithm the SEIK filter uses a low-rank approximation of the covariance ma-
trix. From this an ensemble of minimum size is generated whose ensemble statistics
exactly reproduce the approximated covariance matrix. The ensemble is forecasted
with the nonlinear model like in the EnKF algorithm. The analysis is performed in
analogy to that of the SEEK filter with a single observation vector using the ensem-
ble mean and covariance matrix. Subsequent to the analysis, the state ensemble is
resampled to represent the analysis state estimate and covariance matrix. The SEIK
algorithm should not be confused with other interpolated variants of the SEEK filter,
e.g. [90], which typically correspond to the SEEK filter with gradient approximation.

Statistically the initialization of the SEIK filter is analogous to that of the SEEK:
The probability density p(xt

0) is again represented by the principal axes of Pa
0 and

approximated by the r largest eigenmodes. In the SEIK algorithm the eigenmodes
are, however, not directly evolved but a random ensemble of r + 1 state realizations
is generated. This ensemble exactly represents the mean and covariance matrix of the
approximated probability density. The density is forecasted by evolving each of the en-
semble members with the nonlinear model. The evolved error subspace is determined
by computing the forecast state estimate and covariance matrix from the ensemble.
The analysis is performed analogous to the SEEK filter. This Kalman-type analysis
assumes again Gaussian densities.

The SEIK filter is given by the following equations:
Initialization:
The initial probability density p(xt

0) is provided by the initial state estimate xa
0 and a

rank-r approximation of Pa
0 given in decomposed form as

xa
0 =< xt

0 >; P̂a
0 := V0U0V

T
0 ≈ Pa

0 . (2.55)

From this information an ensemble of r + 1 state realizations is generated as the state
matrix

Xa
0 = {xa(1)

0 , . . . ,x
a(r+1)
0 } (2.56)

with
xa

0 ≡ xa
0 , (2.57)

P̌a
0 :=

1

r + 1

r+1∑
α=1

(x
a(α)
0 − xa

0)(x
a(α)
0 − xa

0)
T ≡ P̂a

0 . (2.58)
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To ensure that equations (2.57) and (2.58) hold, the ensemble is generated in a
procedure called minimum second-order exact sampling [65]2. For this, let C0 contain
in its diagonal the square roots of the eigenvalues of P̂a

0, such that U0 = CT
0 C0. Then

P̌a
0 is written as

P̌a
0 = V0C

T
0 ΩT

0 Ω0C0V
T
0 , (2.59)

where Ω0 is a (r+1)×r random matrix whose columns are orthonormal and orthogonal
to the vector (1, . . . , 1)T which can be obtained by Householder reflections, see e.g.
Hoteit et al. [33]. The state realizations of the ensemble are then given by

x
a(α)
0 = xa

0 +
√

r + 1 V0C
T
0 (ΩT

0 )(α) , (2.60)

where (ΩT
0 )(α) denotes the α-th column of ΩT

0 .

P̌a
0 can also be described in terms of the ensemble states by

P̌a
0 =

1

r + 1
Xa

0T(TTT)−1TT (Xa
0)

T . (2.61)

T is a (r + 1) × r matrix with zero column sums. A possible choice for T is

T =

(
Ir×r

01×r

)
− 1

r + 1

(
1(r+1)×r

)
. (2.62)

Here 0 represents the matrix whose elements are equal to zero. The elements of the
matrix 1 are equal to one. Matrix T fulfills the purpose of implicitly subtracting
the ensemble mean when computing P̌a

0. Equation (2.61) can be written in a form
analogous to the covariance matrix in (2.55) as

P̌a
0 = L0GLT

0 (2.63)

with

L0 := Xa
0 T , (2.64)

G :=
1

r + 1

(
TTT

)−1
. (2.65)

Forecast:
Each ensemble member is evolved up to time tk with the nonlinear dynamic model
equation

x
f(α)
i = Mi,i−1[x

a(α)
i−1 ] . (2.66)

Analysis:
The analysis equations are analogous to the SEEK filter, but here the forecast state

estimate is given by the ensemble mean xf
k . To maintain the rank r of P̌k matrix

Qk is again projected onto the error subspace according to equation (2.27) with Vk

2Note that the definitions of the sampled covariance matrices are different in EnKF and SEIK. The
EnKF uses a normalization factor (N − 1)−1 while SEIK uses (r + 1)−1 = N−1. However, in both
algorithms the ensemble is generated to be consistent with the respective definition of the covariance
matrix.
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replaced by Lk defined by equation (2.64). Uk is updated as in the SEEK algorithm
(equation (2.28)), but with Uk−∆k being replaced by the constant matrix G (equation
2.65). Thus, the analysis equations are

U−1
k = [G + Q̌k]

−1 + (HkLk)
TR−1

k HkLk , (2.67)

xa
k = xf

k + Ǩk(y
o
k − Hkx

f
k) , (2.68)

Ǩk = LkUkL
T
k HT

k Rk
−1 . (2.69)

The analysis covariance matrix is implicitly given by P̌a
k := LkUkL

T
k .

Resampling:
To proceed with the filter sequence the ensemble has to be resampled in consis-
tency with relations (2.57) and (2.58) at time tk. The procedure is analogous to the
initial ensemble generation but here a Cholesky decomposition is applied to obtain
U−1

k = CkC
T
k . Then P̌a

k can be written in analogy to (2.59) as

P̌a
k = Lk(C

−1
k )TΩT

k ΩkC
−1
k LT

k , (2.70)

where Ωk has the same properties as in the initialization. Accordingly the ensemble
members are given by

x
a(α)
k = xa

k +
√

r + 1 Lk(C
−1
k )T (ΩT

k )(α) . (2.71)

The SEIK algorithm shares features of both the SEEK and the EnKF filters:
Remark 32: Using second order exact sampling of the low-rank approximated co-
variance matrix leads to smaller sampling errors of the ensemble covariance matrix
compared with the Monte Carlo sampling in the EnKF.
Remark 33: The ensemble members are evolved with the nonlinear model. Thus,
as algorithmic benefit, the linearized model operator is not required. In addition, the
nonlinear ensemble evolution yields a more realistic forecast of the covariance matrix
compared with the SEEK filter. Furthermore, the forecast permits to treat model er-
rors as a stochastic forcing like in the EnKF.
Remark 34: The forecast state estimate is computed as the mean of the ensemble
forecast. Analogous to the EnKF this leads to a forecast accounting for higher order
terms in the Taylor expansion equation (2.20).
Remark 35: Like in the SEEK filter, the analysis phase of the SEIK operates
only in an error subspace given by the most significant directions of uncertainty.
With this the SEIK filter is analogous to the concept of Error Subspace Statisti-
cal Estimation (ESSE) [49]. The difference of the SEIK to square root EnKF algo-
rithms [1, 5, 94, 79] lies in the fact that these algorithms compute the analysis update
in the observation space rather than the error subspace.
Remark 36: The forecast phase uses an ensemble which exactly represents the low-
rank approximated state covariance matrix. It has the minimal size r + 1. A similar
scheme, called unscented transformation, has been discussed by Julier et al. [40, 39].
This scheme evolves an ensemble of 2r + 1 states. The ensemble is initialized by the
state estimate xa

0, the r states {xa
0 + ṽ(α), α = 1, . . . , r}, and the r states {xa

0 − ṽ(α)}
where the {ṽ(α)} are the basis vectors of the error subspace.
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2.5 Nonlinear Measurement Operators

We formulated the Kalman filter and the error subspace Kalman filters with linear
measurement operators Hk. It is, in general possible to apply nonlinear measurement
operators Hk with these filters. As we will explain below, the application of a nonlinear
measurement operator cannot be expected to provide an optimal filter estimate.

2.5.1 Nonlinear Measurement Operators in the Extended Kal-
man Filter

To derive the EKF analysis equations with a nonlinear measurement operator a Taylor
expansion is applied to the observation model (2.2) at the forecast state xf

k . Writing

zf
k := xt

k − xf
k it is

yo
k = Hk[x

f
k ] + Hkz

f
k + εk + O(z2) . (2.72)

Here Hk is the linearization of the measurement operator Hk around the forecast
estimate xf

k . Neglecting in the expansion terms of higher than linear order in zf
k ,

the analysis equations with nonlinear H are obtained analogous to equations (2.15)
to (2.18) as

xa
k = xf

k + Kk(y
o
k − Hk[x

f
k ]) , (2.73)

Pa
k = (I − KkHk)P

f
k (2.74)

The Kalman gain Kk is again given by equation (2.18).

The problem in the application of nonlinear measurement operators lies in the fact
that the derivation of the analysis equations of the KF implicitly assumes that Hkx

t
K

is Gaussian distributed. If the distribution of xt
k is Gaussian this will be fulfilled for

a linear operator Hk. However, the nonlinear transformation Hk[x
t
k] will not yield a

Gaussian distribution, even if xt
k is Gaussian. Due to this, the analysis probability

density p(xt
k|Yo

k) will not be Gaussian and hence not be completely described by its
mean and covariance matrix. Hence, the filter estimate will be sub-optimal for all filters
which are based on the analysis equations of the Kalman filter. The state estimate will
not be the minimum variance estimate. In some situations, this can yield stability
problems, as was shown, e.g., by van Leeuwen [85]. A possible, more consistent, way
to cope with the nonlinear H is to apply an iterative analysis scheme instead of the
EKF analysis equations (2.73) and (2.74), see e.g. [38, 11].

2.5.2 Direct Application of Nonlinear Measurement Opera-
tors

Despite the fact that nonlinear measurement operators will yield a sub-optimal filter
estimate, there is no reason which would forbid their application at all. In the error
subspace filter algorithms which use an ensemble formulation, namely the SEIK and
the EnKF algorithm, the nonlinear measurement operators can be directly applied.
We discuss this first in the context of the EnKF algorithm as has been shown e.g. by
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Houtekamer and Mitchell [36]. Since all fields and operators refer to the time tk the
time index is omitted in the following.

The application of the nonlinear operator H is, in general, always valid when applied
to a real model state x. Due to the nonlinearity the application of H to a state difference
as H[(α)xf−xf ] will yield a different result than the operation H[(α)xf ] − H[xf ]. Hence,
equations (2.52) and (2.53) have to be reformulated with nonlinear operators H as

P̃fHT :=
1

N − 1

(
Xf − Xf

)(
H[Xf ] − H[Xf ]

)T

, (2.75)

HP̃fHT :=
1

N − 1

(
H[Xf ] − H[Xf ]

)(
H[Xf ] − H[Xf ]

)T

(2.76)

where H[Xf ] denotes the operation of H on all columns of Xf . The notations on
the left hand side of the equations have to be considered as symbolic, since no simple
matrix-matrix operations are performed. Next to these equations, equation (2.50) for
the influence amplitudes reads(

HP̃fHT + R
)

B = Yo − H[Xf ] (2.77)

Using the SEIK filter, the nonlinear measurement operator can also be applied. For
this the term HL in equations (2.67) and (2.69) has to be replaced by (H[Xf ])T. In
addition equation (2.68) has to be written as

xa = xf + Ǩ
(
yo − H[xf ]

)
, (2.78)

With these replacements the ensemble formulations used in the EnKF and SEIK
algorithms do no more require the linearized operator H. Despite this, these formula-
tions comprise the problem that the analysis will not yield an optimal result of minimal
variance since the analysis probability density will not be Gaussian.

2.5.3 State Augmentation to avoid Nonlinear Measurement
Operators

To avoid the use of a nonlinear measurement operator, it has been proposed, see
e.g. [1, 18, 4], to augment the state vector by the diagnostic variables. In this case, the
measurement operator becomes trivially linear reducing the augmented state to the
diagnostic variables.

For the state augmentation consider the state vector x ∈ Rn and the observations
yo = H[x] + ε ∈ Rn. Now the augmented model state vector x̂ ∈ Rm+n is defined by

x̂ =

(
x

H[x]

)
. (2.79)

The ensemble matrix holding the augmented state vectors is then X̂ = {(1)x̂, . . . ,(N) x̂}.
Now, the measurement model is linear. It is given

yo = Ĥx̂t + ε (2.80)
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with the new linear measurement operator Ĥ = (0m×n 1m×m).

We can rewrite the analysis equations (2.50) and (2.51) of the EnKF filter as

Xa = Xf + P̂fĤTB (2.81)

where B is computed from

(
ĤP̂fĤT + R

)
B = Yo − ĤX̂f . (2.82)

In equation (2.81) we consider only the update of the first n elements in the state
vectors. The augmented part is not changed by the update.

The representer matrix P̂fĤT and the matrix ĤP̂fĤT are given by

P̂fĤT =
1

N − 1

(
Xf − Xf

) [
Ĥ

(
X̂f − X̂f

)]T

, (2.83)

ĤP̂fĤT =
1

N − 1
Ĥ

(
X̂f − X̂f

) [
Ĥ

(
X̂f − X̂f

)]T

. (2.84)

Using equations (2.81) to (2.84) the analysis update can be performed applying only
the linear measurement operator Ĥ.

On the other hand, when the operation of Ĥ in equations (2.82) to (2.84) is per-
formed and the definition (2.79) of the augmented state is used it is

(
ĤP̂fĤT + R

)
B = Yo − H[Xf ] (2.85)

and

P̂fĤT :=
1

N − 1

(
Xf − Xf

) [(
H[Xf ] − H[Xf ]

)]T

, (2.86)

ĤP̂fĤT :=
1

N − 1

(
H[Xf ] − H[Xf ]

) [(
H[Xf ] − H[Xf ]

)]T

. (2.87)

Equations (2.85) and (2.87) are identical to equations (2.75) and (2.77) formulated
for the direct application of the nonlinear operator H discussed in section 2.5.2. Thus,
the method of state augmentation is in fact equivalent to the direct application of the
nonlinear measurement operator.

The logical fault in considering the method of state augmentation as the solution
to cope with nonlinear measurement operators is that, despite the linear measurement
operator, the distribution of the diagnostic variables H[x] will not be Gaussian. This
is hidden in the formulation and likely to be overlooked. As the problems of state
augmentation and direct application of H are the same, the latter method should be
used in numerical applications. It does not produce computational overhead due to
larger memory requirements for the state allocation.
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2.6 Summary

Three different filter algorithms based on the Kalman filter have been motivated and
discussed in the context of statistical estimation. These have been the EnKF, SEEK,
and SEIK algorithms. These filter algorithms use a low-rank representation of the
state covariance matrix and perform an analysis derived from the Extended Kalman
filter (EKF). Due to this, we refer to these algorithms as Error Subspace Kalman
Filters (ESKF). The ESKF algorithms have been related to the EKF. In addition,
possible variations of the algorithms have been discussed.

The SEEK filter is a re-formulation of the EKF for a low-rank approximated state
covariance matrix given decomposed form. This formulation reduces the computational
costs to evaluate the forecast. In addition, the memory requirements are reduced
by storing the covariance matrix in decomposed form. The EnKF filter applies a
Monte Carlo method to sample and forecast the probability density function of the
state estimate. In addition, the analysis computes the combination of two probability
densities. These are the densities of the state estimate and of the observations. The
analysis is performed by applying the analysis equations of the EKF to each ensemble
state. The SEIK filter is an interpolated variant of the SEEK filter. Alternatively, it
can be interpreted as an ensemble filter using a preconditioned ensemble. The SEIK
algorithm uses an ensemble forecast as the EnKF filter. The analysis is computed
analogous to the SEEK algorithm. The SEEK, EnKF, and SEIK algorithms will be
compared more detailed in the next chapter.

Besides the ESKF algorithms, the problem of nonlinear measurement operators has
been discussed. In this case, the filter estimate will be sub-optimal since the probability
density of the analyzed state estimate will generally not be Gaussian. The ensemble
based algorithms EnKF and SEIK show the advantage that they permit to apply the
nonlinear operator directly. In contrast to this, the SEEK filter as well as the EKF
require also the application of a linearized operator. It was also shown that including
the diagnostic variables into the state vector, referred to as state augmentation, does
only virtually solve the problem of nonlinear measurement operators. This method is
equivalent to the direct application of the nonlinear operator.



Chapter 3

Comparison and Implementation of
Filter Algorithms

3.1 Introduction

For the application of filter algorithms to geophysical modeling problems we are con-
cerned with the search for filter algorithms for large-scale nonlinear systems. The three
ESKF algorithms introduced in the previous chapter are compared under this aspect
in section 3.2. Since all three filters owe the Extended Kalman Filter their similarity,
the comparison focuses on the differences of the filters and consequences for their ap-
plication to nonlinear systems. Further, relations to the error subspace are discussed.
The EnKF and SEEK algorithms have also been compared by Brusdal et al. [7]. This
work aimed at formulating the equations of the SEEK filter as similar as possible to
the equations of the EnKF algorithm. Thus, the focus was rather on the similarity of
the algorithms. Some of the results of the work by Brusdal et al. disagree with our
comparison since the authors used also a formulation of the SEEK filter which differs
from the formulation presented in section 2.4.1.

Besides the comparison of the algorithms, possible efficient implementations of the
filters are presented in section 3.3. This includes a framework for filtering and the
implementations of the analysis and resampling algorithms themselves. Finally, the
computational complexity of the three filter algorithms is compared in section 3.4.

3.2 Comparison of SEEK, EnKF, and SEIK

All three algorithms have in common that they treat the covariance matrix P implicitly
in some decomposed form. This avoids the requirement to compute P explicitly or to
allocate storage for the whole covariance matrix. In addition, as all operations on P are
symmetric, the covariance matrices remain symmetric throughout the computations.

3.2.1 Representation of Initial Error Subspaces

The initialization of the algorithms implies a different representation of their error
subspaces representing the probability density p(xt

0). The initial density p(xt
0) is usually

33
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assumed to be Gaussian or at least approximately Gaussian since the analysis phase of
the filters also assumes a Gaussian density. Hence, p(xt

0) is fully described by the state
estimate xa

0 and the state covariance matrix Pa
0. The Monte Carlo sampling used in the

EnKF filter represents p(xt
0) by a random ensemble of model state realizations. This

approach permits, in general, to sample arbitrary probability densities. The sampling
converges rather slow since the relative weights of the eigenvalues of Pa

0, and hence the
relative importances of the directions in the error subspace, are not taken into account.
The statistics of the ensemble represent the error subspace. The SEEK and SEIK
algorithms represent the error subspace at the state space point of the estimate xa

0 by
the r major principal axes of the error ellipsoid described by the covariance matrix Pa

0.
This implies that the probability density is Gaussian or at least well described by Pa

0.
The SEEK filter treats the covariance matrix directly in it’s decomposed form given by
eigenvectors and a matrix of eigenvalues. The SEIK filter uses a statistical ensemble of
minimum size, generated by minimum second-order exact sampling, whose ensemble
statistics exactly represent the approximated Pa

0. For SEEK and SEIK the convergence
of the approximation with increasing r depends on the eigenvalue spectrum of Pa

0.
Typically, the sampling error in SEEK and SEIK will be much smaller then in the
EnKF.

To exemplify the different sampling methods, figure 3.1 shows the sampling which
represents the matrix

Pt =


 3.0 1.0 0.0

1.0 3.0 0.0
0.0 0.0 0.01


 . (3.1)

Pt has the eigenvalues λ1 = 4, λ2 = 2, and λ3 = 0.01. Thus, the smallest eigenvalue
can be neglected to perform a low-rank approximation. The full matrix Pt can be
represented by a probability ellipsoid in three dimensions while the low-rank approx-
imation is represented by an ellipse. The sampling proposed for SEEK (upper left
panel of figure 3.1) directly uses the eigenvectors of Pt. In contrast, the RRSQRT
algorithm [88], see also the remarks in section 2.4.1, uses modes which are scaled by
the square root of the corresponding eigenvalue. Pure Monte Carlo sampling as used in
the EnKF generates in this example an ensemble of much higher sampling errors. This
is visible in the upper right panel for an ensemble size of N = 100. The second order
exact sampling applied to initialize the SEIK filter is shown in the bottom panel. Here,
three stochastic ensemble states represent exactly the low-rank approximated matrix
Pt.

The row-rank approximation used for second-order exact sampling assumes, that
the major part of the model dynamics is represented by a limited number of modes
or empirical orthogonal functions (EOFs). For realistic geophysical systems this re-
quirement should be fulfilled, as has been shown, for example by Patil et al. [61] in the
context of atmospheric dynamics.

Despite their different representations of the error subspace all three filters can be
initialized from the same probability density or covariance matrix. For a consistent
comparison of the filtering performance of different algorithms, it is even necessary to
use the same initial conditions. Furthermore, the forecast and analysis equations of the
EnKF and SEIK filters are in fact independent from the method the state ensembles



3.2 Comparison of SEEK, EnKF, and SEIK 35

−4 −2 0 2 4
−4

−3

−2

−1

0

1

2

3

4
SEEK

SEEK modes          
scaled modes        
True prob. ellipsoid

−4 −2 0 2 4
−4

−3

−2

−1

0

1

2

3

4
Monte Carlo Initialization (EnKF)

EnKF ensemble states
True prob. ellipsoid
sampled ellipsoid   

−4 −2 0 2 4
−4

−3

−2

−1

0

1

2

3

4
Minimum 2nd order exact sampling (SEIK)

SEIK ensemble states
True prob. ellipsoid
sampled ellipse     

Figure 3.1: Sampling of a covariance matrix of rank 3 with SEEK (upper left), EnKF
(upper right), and SEIK (bottom panel).

are generated. Thus, the initialization methods of Monte Carlo sampling and second-
order exact sampling can be interchanged between EnKF and SEIK. Also the SEEK
filter requires only the matrices Va

0 and Ua
0, but it is independent from the method

used to initialize these matrices. In general, the method to generate an initial state
ensemble should hence be considered separately from the particular filter algorithm.
It is still an open question which type of ensemble initialization will provide the best
filter results in terms of the estimation error and the error in the estimated variance
of the state estimate for a given ensemble size. The study of different initialization
approaches is a topic of current research in meteorology, see e.g. [28, 29, 92].
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3.2.2 Prediction of Error Subspaces

The forecast phase of the filter algorithms computes a prediction of the state esti-
mate xf

k and the error subspace at the next observation time tk. The SEEK filter

evolves the state estimate xa
k−∆k with the nonlinear model to predict xf

k . To evolve the
basis of the error subspace, the modes of Pa

k−∆k are evolved with the linearized model
or a gradient approximation of it. In contrast to this, the EnKF and SEIK filters rely
on nonlinear ensemble forecasting. Apart from the treatment of model errors, both
algorithms evolve an ensemble of model states with the nonlinear dynamic model. The
state estimate itself is not explicitly evolved as is done in the SEEK filter. The statistics
of the forecasted ensemble represent the state estimate and forecast covariance matrix.

The explicit forecast of the state estimate by the SEEK filter only approximates
the mean of the forecasted probability density. The ensemble forecast used in EnKF
and SEIK accounts for higher order terms in the Taylor expansion, equation (2.20).
Thus, these algorithms are expected to provide more realistic predictions of the error
subspace compared with the SEEK filter. Concerning the forecast performed in SEEK,
it can be dangerous to directly evolve the modes of Pa

k−∆k, since this does not represent
nonlinear interactions between different modes. Further, the increasingly finer scales
of higher modes can lead to forecasts which do not provide meaningful directions of
the error subspace.

3.2.3 Treatment of Model Errors

The SEEK and SEIK filters consider model errors by adding the model error covariance
matrix Q to the forecasted state covariance matrix. The same is done in the EKF,
except that the SEEK and SEIK algorithms neglect the parts of Q which are orthogonal
to the error subspace. Alternatively, a simplified treatment is possible by applying the
forgetting factor. This increases the variance in all directions of the error subspace by
the same factor.

The EnKF applies a stochastic forcing during the ensemble forecast to account
for model errors. Also it is possible to use a forgetting factor with the EnKF (See,
for example, Hamill and Whitaker [30], where it is denoted as ’covariance inflation’).
Since the SEIK filter also uses an ensemble forecast, it is possible to apply stochastic
forcing in this algorithm, too.

In the context of a nonlinear system, the addition of Q at observation times is only
an approximation. Over finite time the additive stochastic forcing in equation (2.1)
will result in non-additive effects. Thus, applying stochastic forcing to the ensemble
evolution will generally yield a more realistic representation of model errors than the
addition of a matrix Q. However, this requires the model errors to be known or,
at least, to be well estimated. When the model errors are only poorly known, the
forgetting factor provides a simple and numerically very efficient way to account for
them. In addition, the forgetting factor can be applied to stabilize the filtering process
by reducing the underestimation of the variances.
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3.2.4 The Analysis Phase

The analysis phase of all three algorithms is based on the EKF analysis. Hence, only
the first two statistical moments of the predicted probability density, the mean and
covariance matrix, are taken into account. Thus, the analysis phase will provide only
reasonable and approximately variance minimizing results if the predicted state proba-
bility density and the probability density of the observations are at least approximately
Gaussian. For linear models the forecasted density is Gaussian if the initial density is
Gaussian. For nonlinear systems the forecast density will contain a non-Gaussian part,
but usually the state density will be close to Gaussian if a sufficient number of obser-
vations with Gaussian errors is taken into account as has been discussed by Brusdal et
al. [7].

The increment for the analysis update is computed as a weighted average over
vectors which belong to the error subspace Ẽ . For SEEK these are the vectors in V
and for SEIK the vectors in the matrix L. In the case of EnKF the vectors are given by

the difference Xf
k −Xf

k of the ensemble states to the ensemble mean. While SEEK and
SEIK compute the weights for the analysis update in the error subspace, the EnKF
computes the weights in the observation space. If a large amount of observational data
is to be assimilated, i.e. if m > N , EnKF operates on matrices of larger dimension
than SEEK and SEIK.

The analysis equations of SEEK are a re-formulation of the EKF update equations
for a mode-decomposed covariance matrix P̂a

k = VUVT . The forecast state estimate,
given by the explicit evolution of xf

k−∆k, is updated using a Kalman gain computed

from P̂a
k which itself is obtained by updating the matrix Uk−∆k ∈ Rr×r. The analysis

algorithms of EnKF and SEIK use the ensemble mean as forecast state estimate xf
k

and a covariance matrix P̃k computed from the ensemble statistics. The SEIK filter
updates the single state xf

k and the eigenvalue matrix Uk−∆k. The EnKF filter updates
each ensemble member using for each update an observation vector from an ensemble
of observations which needs to be generated. The analysis covariance matrix P̃a

k is
obtained implicitly by this ensemble analysis.

The requirement for an observation ensemble points to a possible drawback of the
EnKF as, for finite ensembles, the observation ensemble will introduce additional sam-
pling errors in the analyzed state ensemble. This is particularly pronounced if a large
set, i.e. m > N , of independent observations is assimilated. In this case, the observa-
tion error covariance matrix Rk is diagonal having a rank of m > N . Thus, Rk cannot
be well represented by an ensemble of size N .

For linear dynamic and measurement operators the predicted error subspace in the
SEEK and SEIK algorithms will be identical if the same rank r is used and model errors
are treated in the same way. Since also the analysis phases are equivalent both filters
will yield identical results for linear systems. The filtering results of the EnKF will
differ from that of the SEEK and SEIK filters even for linear dynamics and N = r +1.
This is due to the introduction of sampling noise by the Monte Carlo ensembles.
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3.2.5 Resampling

Since the EnKF updates in the analysis phase the whole ensemble of model states the
algorithm can proceed directly to the next ensemble forecast without the need of a re-
sampling algorithm. In contrast to this, a new state ensemble representing P̌a

k and xa
k

has to be generated when the SEIK filter is used. This can be done by a transforma-
tion of the forecast ensemble. Applying the SEEK filter, the forecasted modes of the
covariance matrix can be used directly in the next forecast phase. In general, these
are no more the basis vectors of the error subspace, since they are not orthonormal. A
re-orthonormalization of the modes is recommendable and can be performed occasion-
ally to stabilize the mode forecast. The choice whether an algorithm with or without
re-initialization is used has no particular implications for the performance of the filter
algorithms.

3.3 Implementation

For the implementation of the filter algorithms we aim at a modular structure which
separates the routines of the model and filter parts of the program. In addition, the
treatment of observations, e.g. the initialization of the observation vector or the mea-
surement operator, should be dealt with separately from the model and the filter parts.
Data should be exchanged between the three parts using interface routines.

Typically the filter has to be implemented with an existing model which is not
designed for data assimilation purposes. Thus, the filter part should be attached to the
model with minimal changes to the model source code and a clear interface structure.
Here, we present an implementation of a serial filter environment which assumes that
the time stepper part of the model is available as a subroutine. In chapter 8 we will
present a framework for parallel data assimilation based on Kalman filter algorithms. It
includes an application program interface, allows for efficient use of parallel computers,
and does not require the model time stepper to be implemented as a subroutine. An
interface structure between model and filter has also been discussed by Verlaan [87] in
the context of the RRSQRT algorithm.

3.3.1 Main Structure of the Filter Algorithm

Besides the initialization, the filter algorithms consist of a forecast phase and an analysis
phase. In addition, a resampling phase is performed by the SEEK and SEIK algorithms
respectively for the modes or ensemble states.

To separate the filter part from the model we use a filter main routine which controls
the ensemble forecast and subsequently calls subroutines performing the analysis and
resampling phases of the algorithms. This filter main routine is called from the main
program providing the fields for the filter initialization as subroutine arguments. These
are either the initial state ensemble X0 (for EnKF and SEIK) or the initial state
estimate x0 and matrices U0 and V0 (for SEEK). The initialization is performed in
advance by some user written routine. The main routine for the SEIK filter is shown
as algorithm 3.1 exemplifying the structure.



3.3 Implementation 39

Subroutine SEIK Main(n,N ,X)
int n {state dimension, input}
int N {ensemble size, input}
real X(n,N) {state ensemble array, input}
real x(n) {state estimate}
real Uinv(N − 1, N − 1) {inverse of eigenvalue matrix}
int i {ensemble loop counter}
int step {time step counter}
int m {dimension of observation vector}
real ta {physical time}

1: call User Analysis seik(0,n,N ,X) {call to user analysis routine}
2: loop
3: call Next Observation(step, nsteps, ta)

{get number of time steps, user supplied}
4: if nsteps = 0 then
5: exit loop
6: end if
7: for i=1 to N do
8: call Interface Evolver(n,X(N),nsteps, ta)

{forecast state vector, user supplied}
9: end for

10: step ← step + nsteps
11: call User Analysis(−step,n,N ,X) {call to user supplied analysis routine}
12: call SEIK Analysis(step,n,N ,x,Uinv,X) {perform filter analysis phase}
13: call SEIK Resample(n,N ,x,Uinv,X) {perform ensemble resampling}
14: call User Analysis(step,n,N ,X) {call to user supplied analysis routine}
15: end loop

Algorithm 3.1: Structure of the filter main subroutine for the SEIK algorithm. The
arrays x and Uinv are required for the resampling computed in SEIK Resample. They
are initialized in the analysis routine SEIK Analysis.

The calls to the subroutine User Analysis in algorithm 3.1 provide the possibility
to examine the assimilation progress during the execution. Here the user can analyze
either the forecast or the analysis state ensemble. To distinguish both cases, the sub-
routine is called with the negative of the time step index steps in the forecast case. The
routine permits, e.g., to compute ensemble means or variances estimated by the filter.
In addition, the ensemble or analysis quantities can be written to files. For physical
consistency it can be necessary to post-process the analysis states, for example to en-
sure mass conservation of a model ocean. This post-processing can be also performed
in User Analysis when called after the filter analysis phase.

In the forecast phase an ensemble of N model state vectors X = {(1)x, . . . ,(N) x} is
evolved for nsteps time steps from the model time ta to the time tb = ta + nsteps · ∆t
where ∆t is the time step size. This requires to perform N model evolutions beginning
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from the same model time ta. The ensemble forecast is controlled by the filter, since
the model does not need to consider filter details. The parameters nsteps and ta are
dependent on the data assimilation problem rather than on the model or the filter
algorithm. Thus, they have to be provided by the user. For flexibility and to achieve
a clear structure we implement the initialization of nsteps and ta by a call to the
user supplied subroutine Next Observation. It has as input the current time step step.
Outputs are nsteps and ta.

Having obtained the values of nsteps and ta, the forecast is performed in a loop
over all ensemble vectors. Each of the vectors is handed over to the subroutine Inter-
face Evolver together with the stepping information. This interface routine initializes
the state fields of the model from the state vector and calls the time stepper routine
of the model. Finally the fields are written back into the state vector and the routine
returns. Since Interface Evolver is model dependent it has to be supplied by the user.
The forecast phase requires that the N model evolutions are independent. Thus, any
reused variables of the model have to be re-initialized.

Subsequent to the forecast phase, the analysis will be computed. In algorithm 3.1
this is performed in the subroutine SEIK Analysis. We discuss the implementation of
the analysis phases of the three filters in the following section. Finally, the ensemble will
be resampled in the SEIK algorithm. The new ensemble is computed in the subroutine
SEIK Resample. The implementation of the resampling phases of SEIK and SEEK is
described in section 3.3.3.

Subroutine SEEK Main(n,r,x,Uinv,V)
int r {rank, input}
real x(n) {state estimate, input}
real Uinv(r, r) {inverse of eigenvalue matrix, input}
real V(n, r) {mode matrix, input}
real ε {coefficient for gradient approximation}

...
1: for i=1 to r do
2: V(:, r) ← x + εV(:, r) {generate ensemble from modes}
3: end for
4: for i=1 to r do
5: call Interface Evolver(n,V(:,r),nsteps, ta) {forecast ensemble vector}
6: end for
7: call Interface Evolver(n,x,nsteps, ta) {forecast central state vector}
8: for i=1 to r do
9: V(:, r) ← ε−1(x − V(:, r) {generate forecast modes from ensemble}

10: end for
...

Algorithm 3.2: Structure of forecast part of the filter main subroutine for the SEEK
algorithm
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The structure of the main routine of the EnKF algorithm is analogous to that of
the SEIK filter and thus not shown. The only functional difference is that the EnKF
algorithm does not call a resampling routine. Further, the arrays Uinv and x are not
required. For the SEEK algorithm the forecast part is different from the two other
algorithms. In SEEK the state vector x and the mode matrix V are evolved. The
structure of the forecast loop using a gradient approximation for the evolution of the
modes stored in V is shown in algorithm 3.2.

3.3.2 The Analysis Phase

For the discussion of the implementation of the analysis phase we omit the time index
from the equations. The analysis algorithms of the filter algorithms are shown in pseudo
code as algorithms 3.3 to 3.4. Implemented are the analysis equations (2.28) to (2.30)
of SEEK and (2.67) to (2.69) of SEIK. The EnKF analysis algorithm is implemented
using the representer formulation according to equations (2.46) and (2.47). Further
the ensemble representation of matrix HP̃fHT in equation (2.49) is used.

The analysis equations contain references to quantities which are dependent on the
observations. The necessary observation-related operations in the source code for the
filter analysis phase are:

• Query the dimension m of the observation vector (subroutine Get Dim Obs).
The dimension m is required for dynamic allocation of arrays which are related
to the observation space.

• Project a model state vector onto the observation space by applying the mea-
surement operator H (subroutine Measurement Operator).

• Initialize the observation vector yo (subroutine Measurement for SEEK and SEIK).
For EnKF an ensemble of observation vectors Yo = {(1)yo, . . . ,(N) yo} has to be
generated according to the observation error covariance matrix R. This is done
in the subroutine EnKF Obs Ensemble.

• For SEEK and SEIK: Compute the product of the inverse of the observation
error covariance matrix R with the matrix of modes projected on the observation
space (HV for SEEK and HX for SEIK). This is performed in the subroutine
RinvA.

• For EnKF: Add R to the state covariance matrix projected onto the observation
space (subroutine RplusA).

These operations are implemented using subroutines which are provided by the user.
This ensures modularity and keeps the analysis routines independent from the particu-
lar implementation of the measurement operator H, the initialization of the observation
vector yo, and the implementation of the observation error covariance matrix R.

This structure also permits, e.g., for the implementation of the product with R−1

or the addition of R in operational form, without explicit allocation of the matrix R
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or its inverse. As well the measurement operator can be implemented as an operation
rather than a matrix multiplication. This implementation permits also the application
nonlinear measurement operators which cannot be represented as a matrix. A further
documentation of the observation-related subroutines is provided in appendix B.

In algorithm 3.3, the structure of the SEEK analysis routine with all calls to obser-
vation related subroutines is shown. The analysis routine of SEEK is the simplest of
all three algorithms considered here.

Subroutine SEEK Analysis(step,n,r,x,Uinv,V)
int step {time step counter,input}
int n {state dimension, input}
int r {rank of covariance matrix, input}
real x(n) {state forecast, input/output}
real Uinv(r, r) {inverse eigenvalue matrix, input/output}
real V(n, r) {mode matrix, input/output}
real T1,T2, t3, t4,d,y {local fields to be allocated}
int m {dimension of observation vector}
int i {ensemble loop counter}

1: call Get Dim Obs(step,m) {get observation dimension, user supplied}
2: Allocate fields: T1(m, r),T2(m, r), t3(r), t4(r),d(m),y(m)

3: for i=1,r do
4: call Measurement Operator(step, n,m,V(:, i),T1(:, i)) {user supplied}
5: end for
6: call RinvA(step,m, r,T1,T2) {user supplied}
7: Uinv ← Uinv + T1TT2 {with BLAS routine DGEMM}

8: call Measurement Operator(step, n,m,x,d) {user supplied}
9: call Measurement(step,m,y) {user supplied}

10: d ← y − d

11: t3 ← T2Td {with BLAS routine DGEMV}
12: solve Uinv t4 = t3 for t4 {using LAPACK routine DGESV}
13: x ← x + V t4 {update state estimate with BLAS routine DGEMV}
14: De-allocate local analysis fields

Algorithm 3.3: Structure of the filter analysis routine for the SEEK algorithm without
handling of the model error covariance matrix. The subroutines called in the code
are the observation-dependent operations described in section 3.3.2 and documented
in appendix B. The matrices T1, T2 and the vectors t3, t4, and d are temporary
arrays. Other matrices and arrays appear which the same notation in equations (2.28)
to (2.30).
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Subroutine SEIK Analysis(step,n,N ,x,Uinv,X)
int step {time step counter,input}
int n {state dimension, input}
int N {ensemble size, input}
real x(n) {state estimate, output}
real Uinv(r, r) {inverse eigenvalue matrix, output}
real X(n,N) {ensemble matrix, input/output}
real G,d,y {local fields to be allocated}
real T1,T2,T3, t4, t5, t6 {local fields to be allocated}
int m {dimension of observation vector}
int i {ensemble loop counter}
int r {rank of covariance matrix, r = N − 1}

1: call Get Dim Obs(step,m) {get observation dimension, user supplied}
2: Allocate fields: T1(m,N),T2(m, r),T3(m, r),y(m), t4(r), t5(r), t6(N),
3: G(r, r),Uinv(r, r),d(m)

4: for i=1,N do
5: call Measurement Operator(step, n,m,X(:, i),T1(:, i)) {user supplied}
6: end for
7: T2 ← T1 T {implemented with T as operator}
8: call RinvA(step,m, r,T2,T3) {user supplied}
9: G ← N−1(TT T)−1 {implemented as direct initialization}

10: Uinv ← G + T2TT3 {with BLAS routine DGEMM}

11: x ← N−1
∑N

i=1 X(:, i) {get state estimate as ensemble mean state}
12: call Measurement Operator(step, n,m,x,d) {user supplied}
13: call Measurement(step,m,y) {user supplied}
14: d ← y − d

15: t4 ← T3Td {with BLAS routine DGEMV}
16: solve Uinv t5 = t4 for t5 {using LAPACK routine DGESV}
17: t6 ← T t5 {implemented with T as operator}
18: x ← x + X t6 {update state estimate with BLAS routine DGEMV}
19: De-allocate local analysis fields

Algorithm 3.4: Structure of the filter analysis routine for the SEIK algorithm. The
subroutines called in the code are the observation-dependent operations described in
section 3.3.2 and documented in appendix B. The arrays G and T2 are introduced for
clarity. They do not need to be allocated since their contents are stored respectively
in Uinv and T1. The array t5 is stored analogously in t4.
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The analysis routine of SEIK, shown as algorithm 3.4, is very similar to that of
SEEK. It contains some additional operations like the initialization of the matrix G
in line 9 and the computation of the ensemble mean in line 11. Also the matrix T,
defined by equation (2.62), has to be applied twice. For efficiency, the matrix L = XT
is not explicitly computed according to equation (2.64). Instead, T is applied in two
different ways. First, the matrix HL is computed in lines 4 to 7 of algorithm 3.4.
For this, the state ensemble is first projected onto the observation space yielding HX.
Subsequently, matrix T is applied as (HX)T. To complete the computation of the
analysis state, the equation

xa = xf + XTa (3.2)

has to be evaluated with a given by

a = ULTHTR−1(yo − Hxf ) . (3.3)

Here it is more efficient to act with T on the vector a ∈ R(N−1) instead on the ensemble
matrix X ∈ Rn×N . Since the structure of T is known, the product of some matrix or
vector with T does not need to be computed as a full matrix-matrix product. The
operation (HX)T involves the computation of the ensemble mean vector of HX. This
is then subtracted from the first r columns of HX. The last column of this matrix is
set to zero. Thus, the right-hand-side multiplication with T can be performed in place.
It does only require the temporary allocation of a vector holding the ensemble mean.
Further, only 2mN + m floating point operations are required for the application of T
on HX. The full matrix-matrix product would require mN 2 floating point operations.
The operation b = Ta involves the computation of the mean over the elements of a.
To obtain b ∈ RN the mean value is subtracted from each element of a. The last entry
in b is initialized by the negative value of the computed mean. The computation of b
requires 2N floating point operations.

The analysis routine of EnKF is shown as algorithm 3.5. Using the representer
formulation it is most efficient to perform the ensemble update in matrix form. That
is, the residuals {d(α)} are stored in the columns of a matrix D, then all influence
amplitudes {b(α)} are computed at once as the matrix B. Subsequently, all state
vectors in the ensemble matrix X are updated at once. This procedure requires more
computer memory, but it can be more efficiently optimized by compilers than a serial
version executing a loop in which for each single residual vector a vector of influence
amplitudes and finally a single updated ensemble state are computed. The second
application of the measurement operator in line 14 is only shown to stress the similarity
of the algorithms, but it is not required since the loop initializing the representer matrix
in line 14 to 17 can be executed directly after the initialization of T1 in lines 4 to 6.

Algorithm 3.5 shows the implementation of the analysis for large data sets when m
is not significantly smaller than the ensemble size N . In this case, the matrix P̃fHT ∈
Rn×m, given by equation (2.48), is not explicitly computed. It is more efficient to
compute the update of the ensemble states in equation (2.46) in the form

Xa = Xf + (Xf − X
f
)C (3.4)
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Subroutine EnKF Analysis(step,n,N ,X)
int step {time step counter,input}
int n {state dimension, input}
int N {ensemble size, input}
real X(n,N) {ensemble matrix, input/output}
real D,B,x,T1, t2,T3, t4,T5,T6 {local fields to be allocated}
int m {dimension of observation vector}
int i {ensemble loop counter}

1: call Get Dim Obs(step,m) {get observation dimension, user supplied}
2: Allocate fields: T1(m,N), t2(m),T3(m,m), t4(m),T5(n,N),T6(N,N),
3: B(m,N),D(m,N),x(n)

4: for i=1,N do
5: call Measurement Operator(step, n,m,X(:, i),T1(:, i)) {user supplied}
6: end for
7: t2 ← N−1

∑N
i=1 T1(:, i) {get mean of ensemble projected on observation space}

8: for i=1,N do
9: T1(:, i) ← T1(:, i) − t2

10: end for
11: T3 ← (N − 1)−1 T1 T1T {with BLAS routine DGEMM}

12: call Enkf Obs Ensemble(step,m,N ,D) {initialize ensemble of observations}
13: for i=1,N do
14: call Measurement Operator(step, n,m,X(:, i), t4) {user supplied}
15: D(:, i) ← D(:, i) − t4 {initialize ensemble of residuals}
16: end for
17: call RplusA(step,m,T3) {add matrix R to T3, user supplied}
18: solve T3 B = D for B {using LAPACK routine DGESV}

19: x ← N−1
∑N

i=1 X(:, i) {get state estimate as ensemble mean state}
20: for i=1,N do
21: T5(:, i) ← X(:, i) − x
22: end for
23: T6 ← T1T B {with BLAS routine DGEMM}
24: X ← X + (N − 1)−1 T5 T6 {with BLAS routine DGEMM}
25: De-allocate local analysis fields

Algorithm 3.5: Structure of the filter analysis routine for the EnKF algorithm using the
represented update variant for a non-singular matrix T3. Shown is the variant which
yields optimal performance if the dimension m of the observation vector is larger than
half the ensemble size N . The subroutines called in the code are the observation-
dependent operations described in section 3.3.2 and documented in appendix B. The
arrays B and t4 are only introduced for clarity. They do not need to be allocated since
their contents can be stored respectively in D and t2.
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Subroutine EnKF Analysis(step,n,N ,X)
...

1: call Get Dim Obs(step,m) {get observation dimension, user supplied}
2: Allocate fields: T1(m,N), t2(m),T3(m,m), t4(m),T5(n,N),T6(n,m),
3: B(m,N),D(m,N),x(n)

...
23: T6 ← T5 T1T {with BLAS routine DGEMM}
24: X ← X + (N − 1)−1 T6 B {with BLAS routine DGEMM}

...

Algorithm 3.6: Variant of the filter analysis routine for the EnKF algorithm using
the represented update variant for a non-singular matrix T3. This variant will yield
better performance if there are significantly less observations then ensemble members.
If n À m, this limit is at 2m < N .

Subroutine SEEK Reortho(n,r,Uinv,V)
int n {state dimension, input}
int r {rank of covariance matrix, input}
real Uinv(r, r) {inverse eigenvalue matrix, input/output}
real V(n, r) {mode matrix, input/output}
real T1,T2,T3,T4,A,B,C,D,L,U {local fields to be allocated}

1: Allocate fields: T1(r, r),T2(r, r),T3(r, r),T4(r, r),
2: A(r, r),B(r, r),C(r, r),D(r, r),L(n, r),U(r, r)

3: U ← Uinv−1 {inversion using LAPACK routine DGESV}
4: Cholesky decomposition: U = AAT {using LAPACK routine DPOTRF}
5: T1 ← VT V {with BLAS routine DGEMM}
6: T2 ← T1 A {with BLAS routine DGEMM}
7: B ← AT T2 {with BLAS routine DGEMM}

8: SVD: B = C D CT {using LAPACK routine DSYEV}
9: T3 ← C D−1/2

10: T4 ← A T3 {with BLAS routine DGEMM}
11: L ← V
12: V ← L T4 {with BLAS routine DGEMM}
13: Uinv ← D−1

14: De-allocate local analysis fields

Algorithm 3.7: Structure of the re-orthonormalization routine for the SEEK algorithm.
The matrix D holding the singular values of B is introduced here for clarity. In the
program it is allocated as a vector holding the eigenvalues of B. The matrices A, T1,
C, T3, and T4 are not allocated in the program. Their information is stored in other
arrays.
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Subroutine SEIK Resample(n,N ,x,Uinv,X)
int n {state dimension, input}
int N {ensemble size, input}
real x(n) {state analysis vector, input}
real Uinv(r, r) {inverse eigenvalue matrix, input}
real X(n,N) {ensemble matrix, input/output}
real T1,T2,T3,ΩT ,C {local fields to be allocated}
int r {rank of covariance matrix, r = N − 1}

1: Allocate local analysis fields: T1(r,N),T2(N,N),T3(n,N),ΩT (r,N),C(r, r)

2: Cholesky decomposition: Uinv = C CT {using LAPACK routine DPOTRF}
3: initialize ΩT {implemented as a subroutine}
4: solve CTT1 = ΩT for T1 {using LAPACK routine DTRTRS}
5: T2 ← T T1 {implemented with T as operator}
6: for i=1,N do
7: T3(:, i) ← X(:, i)
8: X(:, i) ← x
9: end for

10: X ← X + N1/2 T3 T2 {with BLAS routine DGEMM}
11: De-allocate local analysis fields

Algorithm 3.8: Structure of the re-orthonormalization routine for the SEEK algorithm.
The matrices C and T1 are introduced here for clarity. In the program they are not
allocated as their information is stored respectively in Uinv and ΩT .

Subroutine SEEK Reortho Block(n,r,Uinv,V)
...
int maxblksize {Maximum size for blocking}
int blklower, blkupper {Counters for blocking}

1: Allocate fields: . . . ,Lb(blkmax, r)
...

11: for i = 1, n,maxblksize do
12: blkupper ← min(blklower + maxblksize − 1, n)
13: Lb(1 : blkupper − blklower + 1, :) ← V(blklower : blkupper, :)
14: V(blklower : blkupper, :) ← Lb(1 : blkupper − blklower + 1, :) T4
15: end for

...

Algorithm 3.9: Block formulation for the part of the re-orthonormalization routine
of SEEK which initializes the new covariance modes. The block formulation replaces
lines 11 and 12 of algorithm 3.7. The lower index b denotes that only a block of size
maxblksize × r of the matrix L is allocated.
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with
C =

[
(N − 1)−1(HXf − HX

f
)T

]
B (3.5)

where X
f ∈ Rn×N denotes the matrix holding the ensemble mean state xf in all

columns. This update requires (m + n)N2 operations, without the computation of the
term in brackets in equation (3.5).

The alternative algorithm for small m is shown in algorithm 3.6. Here the ma-
trix P̃fHT is explicitly computed. Thus, nmN floating point operations are performed
for equivalent computations to equations (3.4) and (3.5). If n À m, this alterna-
tive variant performs less floating point operations than the variant shown above for
2m < N .

3.3.3 The Resampling Phase

The resampling phases of SEEK and SEIK are independent from model or observations.
The implementation of the resampling algorithms is shown as algorithm 3.7 for the
SEEK and 3.8 for the SEIK algorithm.

For SEEK the algorithm to re-orthonormalize the modes of the covariance matrix
is implemented by first computing the product VTV. This is a rather costly operation
requiring nr2 operations. The other products to complete the computation of B are
only O(r3). The resampling of the ensemble in SEIK (equation 2.71) involves again
the matrix L. As in the analysis algorithm, we do not compute this matrix explicitly.
Instead, matrix T is applied from the left to the matrix (ΩC−1)T ∈ R(N−1)×N . This
operation is analogous to the operation Ta which was discussed for the analysis algo-
rithm of SEIK. Since the application of T from the left acts on columns, the operation
in the resampling corresponds to the application to N vectors. Thus, the application
of T to a matrix is the generalization of the application to a vector.

3.3.4 Optimizations for Efficiency

The analysis and resampling phases contain several matrix-matrix and matrix-vector
products. The sequences chosen for the computation of the products minimizes the
size of the arrays to be allocated. For efficiency we implement the products using the
highly optimized BLAS library routines. Other operations, like the Cholesky factoriza-
tion in the resampling phase of SEIK, the eigenvalue decompositions, or the inversion
of U−1 in the analysis phases of SEEK and SEIK are implemented using LAPACK
library routines. The use of library functions is documented in the annotations in the
algorithms 3.3 to 3.8.

All three analysis algorithms and both resampling algorithms allow for a block
formulation of the final matrix-matrix product updating the ensemble or mode matrix.
In some situations this can reduce the memory requirements of the algorithms and
may lead to a better performance of the algorithms (if the BLAS routine itself does
not use a blocking internally). In the context of the EnKF a block formulation has
been discussed by Evensen [18]. To exemplify the block formulation we consider the
resampling algorithm of SEEK. The variant without blocking is shown as algorithm 3.7
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while the variant with blocking is displayed as algorithm 3.9. For the block algorithm
a loop is constructed running from 1 to n with a step size of the chosen blocking
size maxblksize. Within the loop, matrix L is allocated as a matrix Lb with only
maxblksize rows. The loop counter determines which rows of V are updated in a
single cycle. In each loop cycle only the corresponding rows of L are initialized in Lb

and used to update the selected rows of V. With the block formulation the required
memory allocation for L can be significantly reduced from n × r to maxblksize × r,
where maxblksize ≈ 100, . . . , 500. In addition, the performance of the algorithm may
be higher with the block formulation, since the smaller matrices may better fit into the
caches of the processor. This would reduce costly transfers between the caches and the
main memory of the computer.

3.4 Computational Complexity of the Algorithms

In most realistic filtering applications the major amount of computing time is spent for
the model evolution. This time is proportional to the size of the ensemble to be evolved.
It is equal for all three algorithms if r+1 = N where r is the rank of the approximated
covariance matrix in SEEK and SEIK and N is the ensemble size in EnKF. For efficient
data assimilation it is thus of highest interest to find the algorithm which yields the
best filtering performance, in terms of estimation error reduction, with the smallest
ensemble size. The forecast phase consists of N independent model evaluations. This
is also true for the SEEK filter if a gradient approximation of the linearized model
is used. Distributing the model evaluations over multiple processors would permit to
compute several model forecasts concurrently. Thus, the independence of the model
forecasts can be utilized by parallelization. We will examine this possibility in detail
in part 2 of this work.

The computation time spent in the analysis and resampling phases can also be non-
negligible, especially if observations are frequently available. The three filter algorithms
can show significant differences in these phases. Below we assume n À m > N . This
situation occurs if we have a large scale model. Also m can be significantly larger
than N , e.g., if data from satellite altimetry is used. Under this assumptions operations
on arrays involving the dimension n are most expensive followed by operations on arrays
involving the dimension m.

Table 3.1 shows the scaling of the computational complexity for the three filter
algorithms. Since we are only interested in the scaling, we neglect in the table the dif-
ference between r and N . We use N if some operation is proportional to the ensemble
size of the rank of the covariance matrix.

Without the explicit treatment of the model error covariance matrix Q the SEEK
filter is the most efficient algorithm. All operations which depend on the state dimen-
sion n scale linear with n. These operations occur in the update of the state estimate
in line 13 of algorithm 3.3. The matrix of weights for the state update is computed in
the error space. Thus, the complexity of several operations depends on N . Most costly
is the solver step in line 12 which scales with O(N3). The product R−1HV, which
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Table 3.1: Overview of the scaling of the computational complexity of the filter algo-
rithms. The scaling numbers only show the dependence of the three dimensions but no
constant factors. The first column shows the number of the corresponding equation.
The second column displays the corresponding rows of the algorithm which is named
above each list. The scaling numbers neglect the difference between the ensemble size
N and the rank r. Thus, the complexity is given in terms of N also for the SEEK
filters.

SEEK analysis, algorithm 3.3
equation lines O(operations) comment

2.28 3-4 m2N + mN2 + m + N · h update U−1

2.29/2.30 8-10 m + h initialize residual d
2.29/2.30 11-13 nN + n + mN + N3 + N2 update state estimate x

2.27 n2N + nN2 + N3 compute Q̂k

SEEK re-orthonormalization, algorithm 3.7
2.31 3-7 nN2 + N3 compute B

2.32 8-13 nN2 + nN + N3 + N2 compute V̂ and Û−1

SEIK analysis, algorithm 3.4
2.67 4-10 m2N + mN2 + mN + N2 + N · h compute U−1

2.68/2.69 11-14 mN + h initialize residual d
2.68/2.69 15-18 nN + n + mN + N3 + N2 + N update state estimate x

2.27 n2N + nN2 + N3 compute Q̌k

SEIK resampling, algorithm 3.8
2.71 1-5 N3 + N2 + N compute (C−1Ω)T

2.71 6-10 nN2 + nN update ensemble X

EnKF analysis, algorithm 3.5

2.49 4-11 m2N + mN + N · h compute HP̃fHT

2.47 12 m3 + m2N + mN observation ensemble Y
2.47 13-18 m3 + m2N + mN representer amplitudes B

3.4/3.5 19-24 nN2 + nN + mN 2 update ensemble X

is required in the update of U−1 in equation (2.28), is the only operation which can
be proportional to O(m2N). The full cost will only occur if different measurements
are correlated. If the measurements are independent, the observation error covariance
matrix R is diagonal. In this case, the products will scale with O(mN). Since the
product is implemented as a subroutine, it can always be implemented in the optimal
way depending on the structure of R−1.

The re-orthonormalization of the SEEK filter requires extensive operations on the
matrix V which holds the modes of the covariance matrix. The complexity of the
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computation of the product VTV (line 5 of algorithm 3.7) and the initialization of the
new orthonormal modes in line 12 scales proportional to O(nN 2). Since it is only oc-
casionally required to compute the re-orthonormalization, this operation will not affect
the overall numerical efficiency of the SEEK filter.

The numerical complexity of the analysis phase of the SEIK filter is very similar to
that of the SEEK algorithm. The computation of the ensemble mean state in line 11
of algorithm 3.4 will produce some overhead in comparison to the SEEK algorithm.
Its complexity scales with O(nN + n). Other additional operations in comparison to
the SEEK filter are applications of the matrix T. As has been discussed above, these
operations require 2mN + m + 2N floating point operations. Finally, the initialization
of the matrix G is required. This will require N2 operations, since it can be performed
directly.

The resampling phase of SEIK is significantly faster than that of SEEK, since no
diagonalization of P̌a is performed. Hence, operations on matrices involving the state
dimension n only occur in the ensemble update in lines 6 to 10 of algorithm 3.8. The
complexity of these operations scale with O(nN 2 + nN). For rather large ensembles
also the Cholesky decomposition in line 2 and the solver step in line 4 can be significant.
The complexities of both operations scale with O(N3). The cost of the initialization of
the matrix Ω can be neglected. For each resampling, the same matrix Ω can be used
in equation (2.71). Thus, Ω can be stored.

The computational complexity of the SEEK and SEIK algorithms will increase
strongly if the model error covariance matrix Q is taken into account. This is due to
the amount of floating point operations required for the projection of Q onto the error
space (cf. equation (2.27)). This projection requires n2N + 2nN2 + 3N3 operations
if Q has full rank. Due to the part scaling with O(n2N), it is unfeasible to apply
this projection. The amount of operations is significantly smaller if Q has a low rank
of k ¿ n and is stored in square root form Q = AAT with A ∈ Rn×k. In this case, the
projection requires nN2 +nkN +N2k +2N3 floating point operations. Thus, the com-
plexity of the projection is comparable to the complexity of the resampling phases of
SEEK and SEIK if the low-rank formulation for Q is used. However, also the low-rank
formulation of the projection requires a very high amount of floating point operations.
If the model errors are only poorly known it would probably be to expensive in terms
of computation time to use this projection. Alternatively the forgetting factor could
be used. The application of the forgetting factor requires N2 floating point operations.
In SEIK it is also possible to apply model errors as a stochastic forcing during the fore-
cast phase. If this forcing is applied at every time step to each element of all ensemble
states, the complexity of this technique scales with O(nN · nsteps) for each time step.

The EnKF algorithm appears appealing as it does not require an explicit resam-
pling of the ensemble. The ensemble states are updated during the analysis phase of
the filter. The complexity of the ensemble update in line 24 of algorithm 3.5 scales
with O(nN2+nN). Hence, this operation is equivalent to the ensemble update in SEIK
or the initialization of new modes in SEEK. In fact, the computation of new modes or
ensemble states amounts for all three filters to the calculation of weighted averages of
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the prior ensembles or modes. Since the EnKF uses the representer formulation which
operates in the observation space, all other operations in the analysis algorithm are de-
pendent on m. The complexity of the solver step for the representer amplitudes in line
18 of algorithm 3.5 scales with O(m3 + m2N). Thus, this operation will be very costly
if large observational data sets are assimilated. Costly will be also the computation
of the matrix HP̃fHT . The complexity of this operation is proportional to O(m2N).
Another costly operation can be the generation of an ensemble of observations. This
operation has to be supplied as a subroutine by the user of the filter. We use an im-
plementation which applies a transformation of independent random numbers. It is
described in detail in section 4.2. The transformation requires the eigenvalue decom-
position of the covariance matrix R which scales with O(m3). The complexity of the
subsequent initialization of the ensemble vectors is proportional to O(m2N). Hence,
the generation of the observation ensemble is of comparable complexity to the solver
step for the representer amplitudes. Overall, the EnKF analysis requires more floating
point operations than the SEEK and SEIK filters. This is caused by the representer
formulation used in the EnKF algorithm. Due to this, the EnKF algorithm operates
on the observation space rather than the error subspace which is directly taken into
account by the SEEK and SEIK filters.

To optimize the performance of the EnKF and its ability to handle very large ob-
servational data sets, Houtekamer and Mitchell [36] discussed the use of an iterated
analysis update. In this case, the observations are subdivided into batches of inde-
pendent observations. Each iteration uses one batch of observations to update the
ensemble states. Hence, the effective dimension of the observation vector is reduced.
Since the EnKF contains several operations which scale with O(m3) or O(m2), this
technique diminishes the complexity of the algorithm. In addition, the memory require-
ments are reduced. The iterative analysis update can also be applied with the SEEK
and SEIK filters. In contrast to the EnKF algorithm, most operations in the analysis
algorithms of SEEK and SEIK are proportional to O(m). Only the complexity of the
matrix-matrix product implemented in the subroutine RinvA will scale with O(m2)
if R−1 is not diagonal. Hence, no particular performance gain can be expected for
SEEK and SEIK when using batches of observations. The memory requirements are,
however, reduced also for these filters.

Recently, Evensen [18] proposed an efficient analysis scheme for the EnKF which is
based on a factorization of the term in parentheses in the Kalman gain equation (2.42).
This relies on an ensemble representation of the observation error covariance matrix R
and requires that the state and observation ensembles are independent. As has been
discussed in the remarks on the EnKF, this scheme can lead to a further degradation
of the filter quality. With this newer analysis scheme the complexity of operations
which scale with m3 or m2 is reduced to be proportional to m. An exception from this
is the generation of the observation ensemble which remains unchanged. Thus, apart
from the generation of the observation ensemble, the complexity of the newly proposed
EnKF analysis scheme will be similar to the complexities of SEEK and SEIK. However,
the generation of the observation ensemble will remain costly.
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3.5 Summary

The three error subspace Kalman filter algorithms introduced in chapter 2 have been
compared. The comparison focused on the capabilities of the filter algorithms for
data assimilation with large-scale nonlinear models. It became evident that the EnKF
and SEIK filters are comparable as ensemble methods. They use, however, different
initialization schemes for the ensembles. In addition, the analysis phase of the EnKF
algorithm has a higher computational complexity if the dimension of the observation
vector is larger than the ensemble size. This is due to the fact that the EnKF algorithm
operates on the observation space rather than on the error subspace spanned by the
ensemble states. The EnKF analysis also introduces noise into the state ensemble
caused by the requirement of an ensemble of observation vectors. For finite ensembles,
the observation ensemble will not exactly represent the observation error covariance
matrix. The SEEK filter is initialized similarly to the SEIK algorithm. Also the
analysis phases of both filters are rather similar. However, the SEEK filter applies a
linearized forecast of the covariance modes which is distinct from the ensemble forecast
used in the SEIK algorithm. Due to this, the error subspace predicted by the SEEK
filter can be strongly distinct from that predicted by the SEIK filter.

It has been discussed, that the initialization of the filter algorithms should be con-
sidered separately from the analysis and resampling phases. In particular, the SEIK
and the EnKF algorithm are independent from the method which is used to generate
the state ensemble. Thus, also the EnKF algorithm can be initialized with a sampling
scheme which yields a better representation of the state covariance matrix than pure
Monte Carlo sampling.

The discussion of the implementation of the ESKF algorithms showed that the filter
algorithms are relatively easy to implement since mostly algebraic operations are per-
formed. The EnKF has the plainest structure but also the SEIK filter, using the most
advanced mathematical formulation of the filters studied here, can be implemented
with a few hundred lines of source code. For the implementation, the structure of a
serial filtering framework was introduced. The framework is based on a clear separation
of the model, the filter, and the observational part of the data assimilation problem.
Main routines of the filter algorithms were implemented to control the phases of the
filters. The forecast phase is performed by a loop over all ensemble states or modes.
Subsequently the analysis and resampling routines of the filter algorithms are called.
This structure will be extended to a filtering framework for parallel data assimilation
with ESKF algorithms in chapter 8.
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Chapter 4

Filtering Performance

4.1 Introduction

The previous chapters showed that the EnKF and SEIK filters both use nonlinear
ensemble forecasting to predict error statistics. Due to the necessity of an ensemble
of observations vectors in its analysis phase, the EnKF is likely to yield less realistic
state and covariance estimates compared with the SEIK filter. This is due to noise
inserted into the ensemble states by the observation ensemble. The SEEK algorithm
re-formulates and approximates the Extended Kalman filter. This first order extension
of the classical (linear) Kalman filter is expected to show limited abilities to handle
nonlinearity.

Experimental studies of data assimilation with different filter algorithms showed
that quite different ensemble sizes are required to obtain comparable results. Heemink
et al. [31] reported that the RRSQRT filter yielded comparable estimation errors to the
EnKF for about half the number of model evaluations in a study using a 2D advection
diffusion equation. A comparison between SEEK and EnKF with an ocean general
circulation model [7] used 8 model state evaluations for the SEEK filter and an ensem-
ble size of 150 for the EnKF. With these numbers both filters obtained qualitatively
comparable estimation errors. This result is, however, difficult to interpret since both
filters where applied to slightly different model configurations and used different initial
conditions for the filters.

In this chapter identical twin experiments are performed to assess the behavior of
the SEEK , EnKF and SEIK algorithms when applied to a nonlinear oceanographic test
model of moderate size. The experiments utilize shallow water equations with nonlinear
evolution and synthetic observations of the sea surface height. Identical conditions for
the algorithms are used. This permits a direct and consistent comparison of the filtering
performances for various ensemble sizes. The experiments are evaluated by studying
the filtering performance in terms of the root mean square (rms) estimation error for a
variety of ensemble sizes. In addition, it is studied how the distinct representations of
the covariance matrix and the different analysis schemes of the filter algorithms yield
different filtering performances. This is done by a statistical examination of the quality
of the sampled state covariance matrices, and hence the error subspaces represented
by the filter algorithms.

55
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In section 4.2 the configuration of the data assimilation experiments is described.
Section 4.3 presents and discusses the results of the data assimilation experiments in
terms of the estimation errors. Subsequently, the statistical examination of the quality
of the sampled state covariance matrices is presented in section 4.4. Here additional
quantities for the examination are defined and subsequently discussed.

4.2 Experimental Configurations

To assess the filtering abilities of the different filter algorithms identical twin exper-
iments are performed with a toy model using the nonlinear shallow water equations,
see e.g. [62],1

∂t~u + (~u ∇)~u + ~f × ~u + g∇h = 0 (4.1)

∂th + ∇ · ((H0 + h)~u) = 0 (4.2)

where ~u(~r, t) = (u(~r, t), v(~r, t)) is the velocity field and h(~r, t) is the field of the sea
surface elevation (~r = (x, y) is the 2-dimensional location vector). H0(~r, t) is the sea

depth and g is the gravitational acceleration. Further, ~f = 2Ω sin θ ~k, where Ω is the
angular velocity of the Earth, θ is the latitude, and ~k is the vertical unit vector.

The shallow water equations are discretized in potential enstrophy conserving form
according to Sadourny [71] with the extension to include the Coriolis term. The model
domain is chosen as a box measuring 950 km per side with a flat bottom at 1000 meters
depth. Periodic boundary conditions are applied in zonal and meridional directions.
The Coriolis parameter 2Ω sin θ is constant over the domain with a value of 10−4 s−1.
This corresponds to a beta-plane approximation at a latitude of θ = 45◦N. The exper-
iments were performed with 30 × 30 grid points and a time step of 100s using a leap
frog scheme.

The state vector x, used in the filter algorithms, consists of the surface elevation h
and the horizontal velocity components u and v at the grid points. The state dimension
amounts to n = 2700. This number is sufficiently large to obtain meaningful filter
results also for the low-rank algorithms, but it is still small enough to allow for a direct
study of the filter-represented covariance matrices.

For the twin experiments the ’true’ state trajectory of the system is generated by
initializing with the state shown in the left panel of figure 4.1. It is in geostrophic
balance and has a shape that ensures nonlinear evolution with the shallow water equa-
tions. Synthetic observations of the surface elevation at each grid point are generated
by adding normally distributed random numbers of variance 10−4 m2 to the true surface
elevation. Using only the surface elevation as observations, the dimension of the obser-
vation vector is m = 900. The generated observations are quite accurate in comparison
to the amplitude of the true surface elevation. This is useful, since the dependence of
filtering performance on ensemble size can be better accessed for large ensembles with
accurate observations. In the twin experiments it is assumed that the model is exact,
thus no model error is simulated.

1We use the notation ~u for a spatially continuous vector field. The discretization of a field h, which
is represented as a vector, is denoted by h.
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Figure 4.1: Surface elevation and velocity field of the true initial state (left) and mean
state over 8000 time steps using each 10th step (right).

Two types of experiments are performed. For the first one, referred to as exper-
iment ’A’, the initialization of the model state estimate xa

0 and the corresponding
covariance matrix Pa

0 is performed for all three filter algorithms by applying the EOF
procedure described by Pham et al. [68] which uses a sequence of model states. The ini-
tial state estimate xa

0 is chosen as the mean state of the true model simulation over 8000
time steps using each 10th time step. It is shown in the right panel of figure 4.1. The
covariance matrix Pa

0 is computed as the variation of the true model trajectory about
this mean. This matrix does not reflect the estimated error of the initial state but
the estimated mean temporal variability of the model state. The procedure, however,
yields a consistent and simple way to obtain variance estimates together with estimates
of the covariances.

This mean and covariance matrix serve as a baseline. However, it soon turned out
that all algorithms can improve this ”state of large ignorance”. A much more enlighten-
ing setting would be to use a model state and covariance matrix that are already quite
accurate and difficult to improve. To this end, the initialization of the second type of
experiments, referred to as experiment ’B’, is conducted with the estimated state and
covariance matrix after the second analysis update from an assimilation experiment of
type A with the EnKF using a very large ensemble of N = 5000 members. This is a
very accurate state estimate whose rms deviation from the true state is two orders of
magnitude smaller than the initial estimate of type A. The structure of this state is
thus very similar that of the true initial state displayed in the left panel of figure 4.1.
In addition, the covariance matrix of type B is an estimated error covariance matrix of
the state estimate. It has a strongly different structure compared with the covariance
matrix of type A. This is obvious from the eigenvalue spectrum, displayed in figure 4.2.
For type A the covariance matrix is ill-conditioned and the ten largest eigenmodes
already explain 99% of the variance. In contrast to this, 371 eigenmodes are required
to explain 90% of the variance for type B.
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Figure 4.2: Eigenvalues for the covariance matrices for experiments of type A and B
up to eigenvalue index 500.

Decomposed low-rank approximations P̂a
0 = V0U0V

T
0 of the covariance matrix Pa

0

are required to initialize the SEEK and SEIK filters. These are computed by incom-
plete eigenvalue decompositions of Pa

0 retaining only the r largest eigenmodes. The
N ensemble states required for the EnKF algorithm have been generated from the
state estimate xa

0 and the covariance matrix Pa
0 by a transformation of independent

random numbers. For this, the eigenvalue decomposition of Pa
0 is computed, yield-

ing Pa
0 = VUVT . The eigenvectors are scaled by the square root of the corresponding

eigenvalue as L = VU1/2. For each ensemble state {xa(α)
0 , α = 1, . . . , N} each scaled

eigenvector L(i) is multiplied by a random number b
(α)
i from a normal distribution of

zero mean and unit variance and added to the state estimate xa
0:

x
a(α)
0 = xa

0 +

q∑
i=1

b
(α)
i L(i); α = 1, . . . , N (4.3)

Since the prescribed covariance matrix has a maximum rank of 799, we use only q = 799
eigenmodes in equation (4.3).

The assimilation experiments are performed over an interval of 8000 time steps for
type A and 7600 time steps for type B with an analysis phase each 200 time steps. For
a particular ensemble size N the rank in SEEK and SEIK is set to r = N − 1. In this
case the number of model evaluations is equal for all three filter algorithms and the
filtering performances can be directly related to computing time. Below the expression
“ensemble size” is used to denote the number of different model states to be evolved.
It will be equal to N for the EnKF and r + 1 for the SEEK and SEIK algorithms.
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4.3 Comparison of Filtering Performances

To evaluate the filtering performance of the three algorithms the estimation error E1,
given by the rms deviation of the assimilated state from the true state, is considered
separately for the three state fields h, u, and v. For the EnKF figure 4.3 shows
estimation errors for experiments of type A with the three ensemble sizes r =30, 100,
and 500. In addition, E1 for an experiment conducting an evolution of the initial
state estimate without assimilation is displayed. This free evolution shows only small
variations in E1 over assimilation time.

The temporal development of E1 in the experiments with assimilation is character-
ized by a large reduction at the first analysis phase. This is due to an initially large
error in the state estimate in connection with quite accurate observations. Subsequent
analyses have significantly smaller influence. The EnKF algorithm performs better
with increasing ensemble size where E1 is strongly diminished. For small ensembles,
like N = 30, E1 increases with assimilation time, showing that the filter is unstable.
As is visible in figure 4.3 the state estimate of the assimilation after 8000 time steps
with 40 analysis cycles is even worse than without assimilation. For larger ensembles
the assimilated state remains close to the true state.

Since only observations of the height field h are assimilated, the velocities are merely
updated via cross covariances between the height field and the velocities. The represen-
tation of these covariances is generally worse than that of the height field variances and
covariances as will be discussed in the following section. Due to this, the estimation
errors E1 normalized by the estimation errors of the free evolution are larger for the
velocity components u, v than for the height field.

For the SEEK and SEIK filters, the general behavior of the estimation error in
dependence on assimilation time and ensemble size is analogous to that of the EnKF.
In order to compare the performance of all three filter algorithms in a compact way we
define the normalized time integrated state estimation error by

E2 :=
1

3

∑
f=h,u,v

(
40∑

k=kmin

Eass
1 (f, tk)

Efree
1 (f, tk)

)
(4.4)

where Eass
1 (f, tk) denotes the value of E1 at time tk for the state field f ∈ {h,u,v} from

an assimilation experiment. Efree
1 (f, tk) denotes the corresponding value for the free

evolution. The summation over the analysis times excludes the initial state estimate
since it would dominate the value of E2 due to the large error decrease at the first
analysis phase. Dependent on the type of experiment the summation starts at kmin = 1
for type A and kmin = 3 for type B. E2 provides a rms measure of the decrease in
estimation error due to data assimilation which respects a possible different scaling of
the state fields.

Figure 4.4 shows E2 for the three filter algorithms in dependence on ensemble size N
for experiments of type A. For the EnKF and the SEIK algorithms mean results and
standard deviations over 20 experiments with different random numbers used in the ini-
tialization phase are shown. There are significant variations of the filtering performance
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Figure 4.3: Estimation errors E1 for experiments of type A. Shown is the time devel-
opment of E1 of the assimilated state for the EnKF for three ensemble sizes (N=30,
100, 500) and for a model simulation without assimilation.
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depending on the used set of random numbers since the computer generated random
numbers in fact do not represent the prescribed statistics exactly and do determine in
which directions of the state space the ensemble vectors point. For small N the latter
will likely lead to different qualities of the forecast ensemble. The SEEK algorithm
is deterministic in its initialization, hence only the result of a single simulation per
ensemble size is shown. As the observations are also generated using computer gener-
ated random numbers, they will also determine the filtering performance. This is of
no concern here, since the observation error is quite small in the experiments and all
three algorithms use the same observations.

Overall E2 converges in the same manner for the EnKF and SEIK filters. A differ-
ent convergence for SEIK which should be expected because of the second order exact
sampling is not visible. This is caused by the eigenvalue spectrum of the covariance
matrix Pa

0 which shows that the number of significant eigenvalues is extremely small.
For EnKF and SEIK, the convergence in the interval 100 < N < 500 can be approxi-
mated by E2 ∝ N−x with x ≈ 1.2 for the EnKF and x ≈ 1.0 for the SEIK algorithm.
Depending on the ensemble size, the mean values of E2 for the EnKF are between 1.5
and 1.85 times larger than those for the SEIK filter. This also shows that, to achieve
the same filtering performance, the ensemble for the EnKF needs to be between about
1.5 and 1.8 times larger than for the SEIK. These numbers are of course specific for
the configuration of these experiments. However, variations of the assimilation interval
and strong increase of the rms errors in the observations by a factor of 100 preserved
the relative performances of the three algorithms. The behavior for the SEEK deviates
significantly from that of the EnKF and SEIK. For N < 70 the SEEK filter shows the
best filtering performance of the three algorithms. But, with further increasing ensem-
ble size, E2 stagnates at a rather large value. The reason for this behavior is further
examined in section 4.4.

For experiments of type B with the EnKF, the estimation error E1 over time is
displayed in figure 4.6. Here the initial state approximates the true state quite well
but without assimilation the rms deviation increases by about two orders of magnitude
until the final time step. Thus, the conditions for this experiment are quite different
from those of type A in which the initial state estimate was strongly deviating from the
true state and the free evolution remained over simulation time at an almost constant
rms deviation from the true state. In the experiments of type B the assimilation of
height field observations keeps the estimates of all state fields much closer to the true
state compared with the simulation without assimilation. As for type A, the estimation
error of the velocity components is higher that for the sea level.

The error measure E2 is displayed in figure 4.5 in dependence on ensemble size for
the experiments of type B. Here mean results and standard deviations over 20 experi-
ments with different random numbers in the initialization are only shown for the EnKF.
The dependence of the SEIK filter on the random numbers used in the initialization
is negligible for this type of experiment (data not shown). The performance of SEEK
and SEIK is almost indistinguishable, with a relative difference of the values of E2

below 6 · 10−3. The values of E2 are smaller for type B than for type A which is due
to the normalization by Efree

1 when computing E2. Since Efree
1 increases strongly over
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Figure 4.4: Normalized time integrated estimation errors E2 for the three filter al-
gorithms in dependence on the ensemble size N (N = r + 1 for SEEK and SEIK)
for experiments of type A. For EnKF and SEIK mean values and standard deviations
over 20 experiments for each ensemble size are show. Each experiment used different
random numbers for the ensemble initialization.
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Figure 4.5: Normalized time integrated estimation errors E2 analogous to figure 4.4
for experiments of type B. For EnKF mean values and standard deviations over 20
experiments are shown analogous to figure 4.4. The lines of SEEK and SEIK lie on
top of each other.



4.3 Comparison of Filtering Performances 63

0 1 2 3 4 5 6 7 8

x 10
5

10
−2

10
−1

10
0

10
1

N=30 N=100 N=500 no assimilation

h

E
1(

h)
   

[m
]

time [s]

0 1 2 3 4 5 6 7 8

x 10
5

10
−2

10
−1

10
0

10
1

u

E
1(

u)
   

[m
/s

]

time [s]

0 1 2 3 4 5 6 7 8

x 10
5

10
−2

10
−1

10
0

10
1

v

E
1(

v)
   

[m
/s

]

time [s]

Figure 4.6: Estimation errors E1 for experiments of type B. Shown is the time devel-
opment of E1 of the assimilated state for the EnKF for three ensemble sizes (N=30,
100, 500) and for a model simulation without assimilation.
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time the normalization returns smaller values than in experiments of type A in which
Efree

1 remained almost constant. As for type A the value of E2 converges similarly for
the EnKF and SEIK filters. But for small ensembles (N ≤ 75) SEIK converges faster
than EnKF. Again the dependence of E2 on N can be approximated in the interval
100 < N < 500 to be E2 ∝ N−x with x ≈ 0.42 for the EnKF and x ≈ 0.44 for the
SEIK algorithm. Thus, the convergence with ensemble size is much smaller for type
B than for type A. To obtain the same filter performance, the ensemble in the EnKF
would need to be between about 1.6 and 2.2 times larger than for SEIK. This result
corresponds to that reported by Heemink et al. [31]. There the RRSQRT filter, which
is similar to the SEEK algorithm as was discussed in section 2.4.1, yielded comparable
estimation errors to the EnKF for about half the number of model evaluations.

According to the discussion on the initialization of EnKF and SEIK in section 3.2,
it is possible to interchange the methods of Monte Carlo sampling and second order
exact sampling between these two filters. Figure 4.7 shows a comparison of SEIK
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Figure 4.7: Comparison of the estimation errors E1 for SEIK and EnKF for experiments
of type B with their typical initialization and with interchanged initializations for an
ensemble size of N = 50 . The dotted line shows E1 for a model evolution without
assimilation. The behavior of E1 for the zonal velocity component v is similar to that
of u and hence not shown.
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and EnKF with interchanged initializations for experiments of type B with N = 50.
The experiments of both types yield a 5 to 10% better filtering performance for the
EnKF algorithm when the filter is initialized by second order exact sampling instead
of pure Monte Carlo sampling. The performance of the SEIK filter degrades by about
the same amount if the Monte Carlo initialization is applied. After interchanging the
initialization the SEIK filter still performs better than EnKF. This is caused by the
introduction of noise into the ensemble by the observation ensemble required in the
analysis scheme of the EnKF algorithm as will be discussed below.

4.4 Statistical Examination of Filtering Performance

To gain insight into the reasons for the different filtering performances of the three
algorithms, an examination of the sampling quality of the represented state covariance
matrices is performed in the sequel. At first, some additional analysis quantities are
defined. Based on these quantities it is then discussed how the different variants of
forecasting and different choices of ensembles can lead to estimates of the covariance
matrix, and hence the error subspace, of strongly different quality.

4.4.1 Definition of Analysis Quantities

To define analysis quantities measuring the sampling quality, let us reconsider the filter
algorithms. The SEEK filter evolves the state estimate with the nonlinear dynamic
model and the eigenmodes of the low-rank approximated state covariance matrix with
the linearized dynamic model or a gradient approximation of it. The EnKF and SEIK
filters both evolve an ensemble of model states with the nonlinear dynamic model.
The capability of the forecast phase to provide a realistic representation of the error
subspace is reflected by the sampling quality of the state covariance matrix P.

To discuss the analysis phase we consider the covariance matrix to consist of sub-
matrices as:

P =


 Phh Phu Phv

Puh Puu Puv

Pvh Pvu Pvv


 (4.5)

Here the sub-matrices {Pij = PT
ji} are n/3 × n/3 matrices with Phh, Puu, and Pvv

containing respectively the covariances of the height field and the two velocity com-
ponents. The off-diagonal sub-matrices {Pij, i 6= j} contain the cross covariances
between different state fields. The measurement operator projects a state vector onto
its height field part, thus

H = (Im×m 0m×2m) (4.6)

where I is the identity matrix and 0 the matrix containing only zeros. In the exper-
iments, all observations were assumed to be uncorrelated with variances of constant
value varhh. Thus the observation error covariance matrix is:

R = varhhIm×m . (4.7)
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With this specifications, the analysis equation for the state in SEEK and SEIK
(respectively equation (2.29) or (2.68)) simplifies to

xa = xf + var−1
hh


 Pa

hh

Pa
uh

Pa
vh


d (4.8)

with observation-state residual, sometimes also called innovation, d = yo−hf where hf

is the estimated forecast height field. For the EnKF the analysis equation (2.41) for
the ensemble states is also valid for the ensemble mean, see [17]. In the case considered
here it simplifies to

xa = xf +


 Pf

hh

Pf
uh

Pf
vh


[

Pf
hh + varhhIm×m

]−1

d =: xf + Ad . (4.9)

According to equations (4.8) and (4.9) only the covariances Phh in the height field and
the cross covariances Puh and Pvh between height field and the velocity components
are considered in the analysis update of the state estimate. The other sub-matrices are
as well updated during the analysis update of the covariance matrix and all parts of P
determine the quality of the forecast.

To compare the three filter algorithms despite their different analysis equations
we define update matrices B. For the SEEK and SEIK filters we define the ele-
ments {B(α,β), 1 ≤ α ≤ n, 1 ≤ β ≤ m} by

Ba
(α,β) := var−1

hhPa
(α,β)d(β) . (4.10)

For the EnKF the definition is analogously

Bf
(α,β) := A(α,β)d(β) . (4.11)

The update matrices B correspond to the matrix-vector products in equations (4.8)
and (4.9) without performing the summation. For the SEEK and SEIK filters this
amounts to a scaling of the covariances by the elements of the residual vector. Thus,
the update matrices take into account not only the different sampling qualities of the
state covariance matrix but also different residuals d. Accordingly, an estimate of the
analysis quality for the single state fields will be provided by the sampling quality of
the sub-matrices Bhh, Buh, and Bvh.

To quantify the sampling quality we compare the computed update matrices with
an update matrix obtained from an EnKF assimilation experiment with ensemble
size N = 5000, referred to as the “ideal” update matrix Bideal. For the comparison we
compute correlation coefficients ρB between the sampled and ideal update sub-matrices
and regression coefficients βB from the ideal to the sampled update sub-matrices. We
focus on the very first analysis phase in which for experiments of type A the largest
reduction of the estimation errors occurs.
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4.4.2 The Influence of Ensemble Size in Type A

In table 4.1 experiments of type A are examined for assimilation with an ensemble
size N = 30. Displayed are the correlation and regression coefficients ρB, βB for the
height field h and the zonal velocity component u. The coefficients for the meridional
velocity component v are similar to those for u and thus not shown. In addition the
relative estimation error

E3(f) =
Eass

1 (f, t1)

Efree
1 (f, t1)

(4.12)

after the first analysis is shown for the fields f ∈ (h,u). For comparison, the values
of E3 for the ideal experiment are much smaller with E3(h) = 0.005 and E3(u) = 0.04.
Thus, the filtering performance will increase strongly with growing ensemble size and
the improvement will be larger for the height field than for the velocity components.

The order of the values of E3 for the three filters is the same as that of the time
integrated E2 values for N = 30 displayed in figure 4.4. The SEEK has the smallest
value of E3, followed by SEIK and then EnKF. The ratio of the time integrated E2 for
the EnKF to that of the SEIK is 1.59. It is larger than the corresponding ratio of E3

values after the first analysis update which is 1.24. This is caused by the use of an
observation ensemble in the analysis of the EnKF which destabilizes the assimilation
process. This will be examined in more detail below.

The correlation and regression coefficients ρB, βB reflect the different filtering per-
formances of the first analysis update. Overall it is visible that there is a significant
correlation between the sampled and the ideal sub-matrices. The small regression coef-
ficients show in addition that the amplitudes are strongly underestimated. Using in the
experiments observations with larger errors decreases the amount of underestimation
(data not shown). The underestimation is even more pronounced when one considers
only the correlation and regression coefficients for the variance part, i.e. the diagonal,
of the height field update sub-matrix. These coefficients are also shown in table 4.1,
denoted as ρvar and βvar. For N = 30 the correlation coefficients ρvar are already very
near to unity. The regression coefficients βvar show, however, a very strong underesti-

Table 4.1: Examination of the sampling quality at first analysis phase for experiments
of type A with N = 30. Shown are relative estimation errors E3 and the correlation ρB

and regression βB coefficients between the ideal and sampled update sub-matrices for
the height field h and the zonal velocity u. In addition, the correlation ρvar and
regression βvar coefficients of the variance part for the height field are shown.

field E3 ρB βB ρvar βvar

EnKF 0.168 0.305 0.091 0.961 0.071
SEEK h 0.089 0.325 0.107 0.959 0.086
SEIK 0.135 0.320 0.107 0.959 0.084
EnKF 0.309 0.126 0.015
SEEK u 0.179 0.188 0.035
SEIK 0.273 0.130 0.017



68 4 Filtering Performance

Table 4.2: Examination of the sampling quality at the first analysis for experiments of
type A with N = 200. Shown are the same quantities as in table 4.1.

field E3 ρB βB ρvar βvar

EnKF 0.015 0.756 0.570 0.996 0.477
SEEK h 0.035 0.554 0.277 0.988 0.227
SEIK 0.012 0.756 0.598 0.995 0.503
EnKF 0.103 0.502 0.315
SEEK u 0.191 0.324 0.121
SEIK 0.081 0.496 0.332

mation of the variance. In the experiments, the structure of the update sub-matrix Bhh

corresponding to a single grid point, as well as the covariance sub-matrix Phh, consists
of noise of rather low amplitude and a significantly larger peak with a radius of about
two grid points around the location of the specified grid point. Thus the variance will
dominate the analysis while most of the noise will average out when computing the
product Phhd. For the EnKF the smaller values of ρB and βB for h point to the fact
that here the analysis is less accurate than for SEEK and SEIK. This is confirmed by
the value of E3 which is larger for the EnKF than for the two other filters. For the
difference between SEEK and SEIK this is less obvious.

For the velocity components the sampling quality of B is generally worse than for
the height field. This is due to the fact that only h is observed and u, v are updated
via the covariance sub-matrices Puh and Pvh. These have a structure with multiple
extrema and are more difficult to sample than the variance-dominated Phh (data not
shown). For all three filters the values of ρB and βB are nearest to unity in the case of
the SEEK algorithm. This is consistent with the filter’s small value of E3. In exper-
iments of type A the SEEK filter is able to sample the sub-matrices Puh and Pvh for
small ensembles significantly better than the SEIK and EnKF filters.

For N = 200 the sampling quality of the update matrices is examined in table 4.2.
Compared with N = 30 the estimation errors E3 after the first analysis are much
smaller. This decrease is minor for the velocity components than for the height field
due to the worse sampling of cross correlations between h and the velocity compo-
nents u, v. The increased regression coefficients βB show that the underestimation
of the correlations has diminished. In addition, according to the increased correlation
coefficients ρB and ρvar, covariances as well as variances are sampled much more re-
alistic. The similarity of the coefficients for SEIK and EnKF has increased compared
with N = 30, but the SEIK still shows the better sampling quality.

The estimation error measures E2 and E3 for N = 200 are larger for the SEEK
filter than for the SEIK and EnKF filters. This is consistent with the values of ρB

and βB which are smaller for the SEEK than for the two other filters. This inferior
sampling quality of SEEK is caused by the direct forecast of the eigenmodes of the state
covariance matrix P. The modes with larger index represent gravity waves. These are
impossible to control by the data assimilation in our experimental setup. Hence, these
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modes do not provide any useful information to the error subspace and the filtering
performance stagnates. For the estimated velocity components the experiments show
that this can even lead to a small decrease in the filtering performance for increasing
N .

4.4.3 Sampling Differences between EnKF and SEIK

The different sampling quality of the EnKF and SEIK filters is due to the distinct
variants to generate the ensembles in both algorithms. Interchanging the initialization
methods between the algorithms results, at the first analysis phase, in an exchange
of the values of E3, ρB, and βB. Using the same ensemble and neglecting model
errors, both filters are equivalent during the first analysis phase with respect to the
update of the state estimate since the predicted error subspaces are identical. Such
an equivalence does not exist for the update of P due to the implicit update of this
matrix in the EnKF algorithm. While the update of P for the Extended Kalman
filter is described by equation (2.16) the update of P for the EnKF algorithm is given
implicitly by

P̃a = (I − KH)P̃f (I − KTHT ) + KR̃KT + O(< δxf (δyo)T >) . (4.13)

Here R̃ is the observation error covariance matrix as sampled by the ensemble of ob-
servation vectors. P̃f , P̃a are the covariance matrices of the forecast and analysis state
ensembles. The last term O(< δxf (δyo)T >) denotes the spurious covariances between
the state and observation ensembles. In SEEK and SEIK this last term is zero and R̃
is replaced by the prescribed matrix R and P̃ denotes the rank-r approximated state
covariance matrix. For SEEK and SEIK equation (4.13) reduces to the correct KF
update equation for a covariance matrix P̃. For the EnKF the sampled matrix R̃ and
the correlations between the state and observation ensembles insert noise into the anal-
ysis ensemble which represents the state covariance matrix. Whitaker and Hamill [94]
discussed this effect in a simple one-dimensional system. In order to quantify the intro-
duction of noise the two definitions (4.10) and (4.11) of B can be examined. Without
sampling errors, both definitions are equally valid. Thus for the SEEK and SEIK filters
the update matrices computed from either equation are identical. For the EnKF the
resulting update matrices are different.

In table 4.3 the coefficients ρB and βB for update matrices computed with equa-
tions (4.10) or (4.11) are compared for the EnKF algorithm with N = 30 for experi-
ments of type A. The values of ρB computed from the forecast covariances according to
equation (4.11) are about 1.5 times larger compared with those computed with equa-
tion (4.10) from the analysis covariances. Despite this, the regression coefficients βB

remain almost unchanged. Also the coefficients ρvar and βvar show an analogous but
much smaller ratio. The introduction of noise to the ensemble states at each analysis
phase leads to more unstable forecasts in the EnKF in comparison to the SEIK. Over
the course of the assimilation process the estimation error E1 deviates increasingly for
the two filters. This leads to the values of E2 shown in figure 4.4 in which the differ-
ence in filtering performance between EnKF and SEIK is larger than just for the first
analysis.
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Table 4.3: Comparison of the sampling quality of the update sub-matrices for the
EnKF with N = 30 for experiments of type A. Shown are correlation ρB and re-
gression βB coefficients for sampled update sub-matrices computed from the forecast
covariance matrix (Bf , equation (4.11)) and from the analysis covariance matrix (Ba,
equation (4.10)). In addition, the correlation and regression coefficients (ρvar, βvar) for
the variance part of the height field update sub-matrix are shown.

B computed by field ρB βB ρvar βvar

Bf
(α,β) = A(α,β)d(β) h 0.305 0.091 0.961 0.071

Ba
(α,β) = var−1

hhPa
(α,β)d(β) h 0.207 0.093 0.937 0.072

Bf
(α,β) = A(α,β)d(β) u 0.126 0.015

Ba
(α,β) = var−1

hhPa
(α,β)d(β) u 0.082 0.014

4.4.4 Experiments with the Idealized Setup (Type B)

The sampling quality of the update matrices for experiments of type B for ensembles of
size N = 30 and N = 200 are respectively shown in tables 4.4 and 4.5. For the SEEK
and SEIK filters the values of E3, ρB, and βB for are identical for h and almost identical
for u and v for both ensemble sizes. Thus, the SEEK filter shows no problem caused
by the mode forecasts in this type of experiment. This can be related to the different
structure of the covariance matrix which leads to mode forecasts which provide realistic
directions of the error subspace even for high eigenvalue indices. For h the EnKF shows
a slightly larger estimation error E3 than SEIK. This corresponds to the smaller values
of ρB which show that the update matrices are less realistic sampled for the EnKF
compared with the SEIK. The EnKF, however, underestimates the amplitude of the
covariances to a lesser degree than SEIK does. The variance part of the update matrices
is represented better by the EnKF than by SEIK as is visible from both the values of ρvar

and βvar. The smaller regression coefficients in the case of the SEIK filter result from
the low-rank approximation of the matrix P which systematically underestimates the
overall variance. Due to the structure of P in experiments of type B, as discussed in
section 4.2, the disregarded variance is non-negligible here even for N = 200.

The velocity components are much worse filtered here than in the experiments of
type A. For N = 30 the values of E3 even increase showing that the sampled covariances
are not realistic. For N = 200 a small decrease of the estimation error is visible which
is stronger for the SEIK compared with the EnKF. Since the ideal values of E3 are 0.2
for h and 0.75 for u there will be no strong decrease in E3 any more for larger ensembles.
Over the whole assimilation period the performance of all three filters is however better
than at the first analysis phase. While the non-assimilated state diverges from the true
state, the data assimilation keeps the estimation error almost constant. This leads to
the small values of the time integrated estimation error E2 displayed in figure 4.5.



4.5 Summary 71

Table 4.4: Examination of the first analysis for experiments of type B with N = 30.
Shown are the same quantities as in table 4.1.

field E3 ρB βB ρvar βvar

EnKF 0.446 0.408 0.206 0.973 0.150
SEEK h 0.431 0.425 0.171 0.944 0.119
SEIK 0.431 0.425 0.171 0.944 0.119
EnKF 1.045 0.175 0.090
SEEK u 1.135 0.366 0.213
SEIK 1.137 0.367 0.213

Table 4.5: Examination of the first analysis for experiments of type B with N = 200.
Shown are the same quantities as in table 4.1.

field E3 ρB βB ρvar βvar

EnKF 0.273 0.802 0.703 0.996 0.630
SEEK h 0.269 0.847 0.651 0.991 0.533
SEIK 0.269 0.847 0.650 0.991 0.532
EnKF 0.981 0.519 0.559
SEEK u 0.872 0.766 0.729
SEIK 0.875 0.766 0.728

4.5 Summary

The behavior of the SEEK, EnKF, and SEIK filters has been assessed utilizing identi-
cal twin experiments. The experiments applied a shallow water equation model with
nonlinear evolution and assimilated synthetic observations of the sea surface elevation.
Two types of experiments have been performed with distinct initializations of the state
estimate and state covariance matrix. For identical initial conditions, the filter algo-
rithms showed quite different abilities to reduce the estimation error. In addition, the
filtering performances depended differently on the ensemble size.

Under some circumstances, the SEEK filter shows a distinct behavior from the
two other algorithms caused by the direct evolution of modes of the state covariance
matrix. This depends on the structure of this matrix. For the experiments of type A,
in which the covariance matrix is dominated by a small number of large-scale modes,
the performance of SEEK is different from that of EnKF and SEIK. For experiments
of type B, in which the covariance matrix is variance dominated, SEEK and SEIK
perform almost identical. The superior performance of SEEK for smallest ensemble
sizes in experiments of type A appears to be by chance but shows that a mode-oriented
filter algorithm can under some circumstances yield a superior filter performance than
the ensemble based filters. SEEK is well suited to filter rather coarse structures in
which nonlinearity is not pronounced.
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The EnKF and SEIK algorithms show similar convergence with increasing ensemble
size. The SEIK filter exhibits superior performance compared with the EnKF algorithm
due to the initialization by minimum second order exact sampling of the low-rank
approximated state covariance matrix. This sampling leads to a superior ensemble
representation of this matrix, in particular, for small ensembles. In addition, the SEIK
filter does not suffer from noise introduced into the state ensemble by an observation
ensemble as required by the EnKF.

Statistical analyses of the quality of the sampled state covariance matrices showed
how these matrices differ for the examined algorithms. The structure of the variances
is in all filters quite well represented, but their amplitudes are underestimated. De-
pendent on the structure of the covariance matrix, the low-rank initialization used in
SEEK and SEIK tends to underestimate the variances even more than the Monte-Carlo
initialization used in EnKF. The sampling of the full covariance sub-matrices for the
single state fields is inferior for all three filters in comparison to the variances. The
representation of the covariances for the height field is significantly better than that
of the cross correlations between the height field and the velocity components. This is
due to the variance dominated structure of the height field covariances. The sampling
quality of the covariances and cross correlations can be improved, at least for the SEIK
and EnKF, by increasing the ensemble size.



Chapter 5

Summary

This part of this two-part work compared three filter algorithms based on the Kalman
filter, namely the Ensemble Kalman Filter (EnKF), the Singular Evolutive Extended
Kalman (SEEK) filter and the Singular Evolutive Interpolated Kalman (SEIK) filter.
In the mathematical comparison, the unified interpretation of the filter algorithms
as Error Subspace Kalman Filters (ESKF) was introduced. This interpretation is
motivated by the fact that the three algorithms apply a low-rank approximation of
the state covariance matrix used in the Extended Kalman filter (EKF). Hence, they
approximate the error space of the EKF by a low-dimensional error subspace. In
addition, the three filter algorithms apply the analysis equations of the EKF adapted
to the respective algorithm. Thus, the analysis assumes Gaussian statistics of both the
state estimate and the observations.

The SEEK and SEIK filters are typically initialized from a state estimate and a
state covariance matrix which can be provided in some decomposed form, e.g. as a
sequence of model states. The state covariance matrix is approximated by a matrix of
low rank. This low-rank matrix is then exactly represented either by the eigenmodes
of the matrix in the case of SEEK or by a random ensemble of minimal size in SEIK.
The EnKF algorithm can also be initialized from a state estimate and a corresponding
covariance matrix. This information is typically used to generate a random ensemble
by Monte Carlo sampling. The statistics of the generated ensemble approximate the
state estimate and the state covariance matrix.

In the forecast phase, the EnKF and SEIK filters are equivalent. Both perform a
nonlinear ensemble forecast. In contrast to this, the SEEK filter forecasts explicitly the
modes of the covariance matrix by the linearized model or a gradient approximation
of it. The state estimate is explicitly evolved using the nonlinear model. It has been
shown that the ensemble forecast performed in the EnKF and SEIK algorithms is
better suited for nonlinear models than the forecast scheme used in the SEEK filter.

It has been shown that the analysis increment of all three filter algorithms is given
by a weighted average of vectors which belong to the error subspace. The analysis
phase of the EnKF algorithm is less efficient than that of the SEEK and SEIK filters
if the amount of observations is larger than the ensemble size. This is due to the fact,
that the EnKF algorithm uses the representer analysis variant which operates on the
observation space. In contrast to the EnKF algorithm, the SEEK and SEIK filters
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operate on the error subspace. Another apparent problem of the EnKF algorithm is
that the analysis phase introduces noise to the state ensemble caused by a numerically
generated ensemble of observation vectors which is required by the analysis scheme.

While the EnKF algorithm computes its new ensemble during the analysis phase,
the SEEK and SEIK filters contain a resampling phase. Its has been shown that this
will not render the latter two algorithms to be less efficient with respect to the required
computation time than the EnKF.

Overall, the mathematical comparison showed that the SEEK filter is a re-formu-
lation of the EKF for a low-rank state covariance matrix stored in decomposed form.
It has the numerically most efficient analysis scheme of the three filter algorithms
but shows only limited abilities to handle nonlinearity. The EnKF algorithm is a
Monte Carlo method which is not designed to profit from the fact that the probability
density of the model state will be at least approximately Gaussian. Thus, it is not
explicitly considered that the density can be represented by a linear error space which
can be approximated by its major directions. SEIK filter takes this into account and
approximates the covariance matrix, which characterizes the error space, by a low-rank
matrix. Hence, the SEIK filter has the same ability to treat nonlinearity as the EnKF
algorithm but a more efficient analysis scheme. The EnKF algorithm can be expected
to exhibit an enhanced filtering performance when it is initialized from a low-rank
covariance matrix analogous to the SEIK filter. The problem of noise introduction by
the observation ensemble will, however, remain.

The theoretical findings have been confirmed by numerical experiments using a
shallow water equation model with nonlinear evolution. In identical twin experiments,
synthetic observations of the sea surface elevation have been assimilated. The exper-
iments have been interpreted in terms of the estimation errors and by a statistical
analysis of the sampling quality of the state covariance matrices. The experiments
showed that the SEIK algorithm is an ensemble algorithm comparable to the EnKF
with the benefit of a very efficient scheme for analysis and resampling. In addition,
the SEIK filter does not suffer from noise introduced into the state ensemble by an
observation ensemble as required by the EnKF. As the EnKF and SEIK filters, the
SEEK algorithm is able to provide good state estimates. The SEEK filter is, however,
sensitive to the mode vectors it needs to evolve. Due to this, the SEEK filter can
exhibit a distinct filtering behavior from the EnKF and SEIK filters. In the exper-
iments this depended on the structure of the state covariance matrix. In general, it
will also depend on the physical system which is simulated. The SEEK filter will be,
however, well suited to filter rather coarse structures in which nonlinearity is not pro-
nounced. The experiments also showed that initialization methods using higher order
sampling schemes like the second order exact sampling are appealing due to the better
representation of the state covariance matrix, in particular for small ensembles.

The experiments performed here are of course highly idealized. For example, an
inclusion of model error would be desirable. But, for the EnKF and SEIK filters,
it can be expected that this will not lead to significant changes in the relative filter
performance, since both algorithms can treat the model error in the same way. Results
obtained with more realistic experiments will be discussed in chapter 9 where the filter
algorithms are applied to the three-dimensional finite element ocean model FEOM.



Part II

Parallel Filter Algorithms
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Chapter 6

Overview and Motivation

The development of error subspace filter algorithms rendered large-scale data assimi-
lation with Kalman-type filters possible. However, filters like the EnKF, SEEK, and
SEIK algorithms still exhibit a high computational complexity. The evolution of the
approximated covariance matrix still requires a vast amount of computation time, in
particular for large-scale models. Also the memory requirements are large since, be-
sides the fields required for the numerical model itself, the ensemble or mode matrix
has to be allocated. In addition, several matrices need to be allocated temporarily for
the analysis and resampling phases of the filter algorithms.

The computational and memory requirements can be alleviated by the use of
parallel computers. Using parallelization methods like the Message Passing Inter-
face (MPI) [27], the ensemble or mode matrix can be distributed over several processes.
Thus, the memory requirements of each single process can be reduced. Additionally, the
inherent parallelism of the error subspace Kalman filters (ESKF) can be exploited. The
evolution of different ensemble states is independent, as was mentioned in chapter 3.
Thus, the forecast phase can be parallelized by distributing the state ensemble over
multiple model tasks executed concurrently by different processes. The ensemble states
are then evolved concurrently by the model tasks, see e.g. [17, 74]. Most of the execu-
tion time of a filtering application is usually spent in the forecast phase, while the parts
for the model initialization and the execution of the analysis and resampling phases
require a significantly smaller amount of time. Thus, according to Amdahl’s law, the
use of independent model tasks will provide a high parallel efficiency. Hence, the time
required to compute a particular data assimilation problem will strongly decrease when
an increasing number of processes is used for the computations.

This is an advantage over the popular adjoint method which is inherently serial
due to the alternating forward and backward evolutions with the numerical model and
its adjoint, as was discussed in section 1.2. Hence, the adjoint method allows only
for a decomposition of the model domain to distribute the evolutions over multiple
processes. The value of the cost function and the gradient would then be gathered by
a single process to update the control variables according to the chosen optimization
algorithm. Trémolet and Le Dimet [82, 81] proposed to distribute also the phase in
which the control variables are updated. In this case, the cost functional J is evaluated
by each process on its local sub-domain. Further, the gradient of J is computed for
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the local cost functional. To ensure continuity of the model fields between neighbor-
ing sub-domains, the cost functional is augmented by an additional term penalizing
differences of the model fields at the boundaries of neighboring sub-domains. Thus,
this difference of the boundary values is also to be minimized by the optimization al-
gorithm. The speedup of the distributed adjoint method will not be ideal. This is
due to the exchange of data between neighboring sub-domains during the evolutions
as well as for the computation of the cost function. In addition, it is not assured that
the minimization converges with the same number of iterations on each sub-domain.

The parallelization of filter algorithms has been discussed most extensively in the
context of the EnKF algorithm [44, 45, 46, 36]. Here, different approaches have been
examined. The forecast phase can either be parallelized by exploiting its inherent par-
allelism, or by a domain-decomposition of the model grid. The analysis phase can also
be parallelized by either holding sub-ensembles of full model states on each process or
by operating on full ensembles of sub-states corresponding to a sub-domain. In the
context of a low-rank filter, the parallelization of the RRSQRT algorithm has been ex-
amined [70, 74, 73]. Here, the same parallelization strategies of domain-decomposition
and distributed ensembles as for the EnKF algorithm have been discussed.

For the implementation of filter algorithms with existing numerical models, a clear
logical separation between the filter and model parts of a data assimilation application
is valuable. In addition, a well defined interface structure for the transfer of data be-
tween the filter and model parts is required. To support a separation between these
two parts of a filtering application, the interface systems SESAM [75] and PALM [60]
have been developed. SESAM is implemented using UNIX shell scripts which con-
trol the execution of separated program executables like the numerical model and the
program computing the analysis and resampling phases of the filter. Data transfers
between the programs are performed using disk files. The structure of SESAM has
been developed with the aim of avoiding changes to the source code of the numerical
model when using it for data assimilation. Since SESAM is based on shell scripts, it
does not support multiple model tasks. The numerical efficiency of a data assimilation
application implemented with SESAM will not be optimal since the disk operations
used for data transfers are extremely slow compared with memory operations.

The coupler system PALM uses program subroutines which are instrumented with
meta information for the PALM system. The data assimilation program is assembled
using the prepared subroutines and a library of driver and algebraic routines supplied
by PALM. For a filter algorithm, the resulting program supports the concurrent evalua-
tion of multiple model tasks. In addition, a better numerical efficiency can be expected
compared with SESAM, since data transfers are performed by subroutine calls. Thus,
no disk operations will be required. For the implementation of a data assimilation
application, PALM requires, however, to assemble the algorithm from separate subrou-
tines. Since the numerical model is used as a subroutine, it must not be implemented
with a main program. Thus, the model has to be adapted to fulfill this requirement.
In addition, the control of the filtering program will emanate from the driver routine
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of PALM. The numerical model is reduced to a module in the PALM system. This
might lead to acceptance problems, since the major part of the source code for the
data assimilation program is given by the numerical model.

In the following chapters, the application of the EnKF, SEEK and SEIK algorithms
on parallel computers is studied. For the parallelization of the filter algorithms a two-
step strategy is used:

First, the parallelization of the analysis and resampling phases is considered in
chapter 7. These phases are independent from the model. Hence, the data transfer
between the filter and model parts of the program is of no concern here. Both paral-
lelization variants of distributed sub-ensembles and of domain-decomposed states are
examined for all three filter algorithms. In addition, a localization of the analysis phase
is discussed. This localization neglects observations beyond a chosen distance from a
grid point of the model domain. It is shown that the localization is only relevant for
the EnKF algorithm.

Subsequently, in chapter 8, the parallelization of the forecast phase is discussed.
This phase is parallelized within a framework for parallel filtering which is developed
in this chapter. The framework provides two levels of parallelism. The model and
filter routines can be parallelized independently. Further, multiple model tasks can be
executed concurrently. The number of processes for each model task and for the filter
routines, as well as the number of parallel model tasks, are specified by the user of the
data assimilation program. The framework defines an application program interface to
assure a well defined calling structure of the filters. This permits to combine filter al-
gorithms with existing model source codes which are not designed for data assimilation
purposes. The structure of the framework amounts to attaching the filter algorithm to
the model by adding subroutine calls to the model source code. The data assimilation
program will be controlled by user-written routines. Thus, the required parameters
can be initialized within the model source code. The framework permits to switch
between filter algorithms in the same data assimilation program by the specification of
a single parameter. In addition, the observation-related parts of the filter algorithms
are implemented in routines separated from the core routines of the filter. This allows
for a flexible handling of different observational data sets.

To assess the parallel efficiency of the filtering framework in chapter 9, it has been
implemented with the finite element ocean model FEOM which has been recently devel-
oped at the Alfred Wegener Institute [12]. First, the data assimilation experiments of
chapter 4 are extended to a more complex 3-dimensional test-case by performing twin
experiments with an idealized model configuration of FEOM. To examine the filter-
ing performance of the SEEK, SEIK, and EnKF algorithms, synthetic observations of
the sea surface height are assimilated. Subsequently to these data assimilation experi-
ments, the parallel efficiency of the filtering framework is examined. Then, the parallel
efficiency of the analysis and resampling phases of the parallel filter algorithms is stud-
ied. The results will show, that the filtering framework developed in chapter 8 exhibits
an excellent parallel efficiency. Furthermore, the framework and the filter algorithms
are well suited for application to realistic large-scale data assimilation problems.
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Chapter 7

Parallelization of the Filter
Algorithms

7.1 Introduction

To cope with their high computational complexity, the error subspace Kalman filter
algorithms share the benefit that they comprise some level of natural parallelism which
can be exploited on parallel computers. The independence of the forecasts of the en-
semble members has often been stressed for the EnKF [17], but it is also inherent in
the SEIK filter. For the SEEK filter, the forecasts of the modes are independent if the
gradient approximation is used. They are not independent if SEEK is used with the
linearized model to evolve the modes. In this case, the nonlinear forecast of the state es-
timate is required at each time step to evaluate the linearization. If the numerical model
is linear, either the modes or the columns of the state covariance matrix can be evolved
independently in parallel even with the full Kalman filter. This has been utilized by
Lyster et al. [52] to perform data assimilation with a linear 2-dimensional transport
model for atmospheric chemical constituents using the (full-rank) linear Kalman filter.
The authors compared parallelizations which either decompose the covariance matrix
into columns or apply a decomposition in which only several rows of the covariance
matrix are stored on a process. The latter method amounts to a decomposition of
the model domain. While the forecast phase showed a rather good speedup in this
study, the parallel efficiency of the analysis phase is only small. These results can
be expected since the analysis phase involves global operations on the model domain.
Hence, a parallelized analysis algorithm will contain a high amount of communication.

Applying the EnKF, Keppenne [44] exploited the inherent parallelism of the ensem-
ble forecast in data assimilation with a 2-layer shallow water model. In the forecast,
Keppenne distributed the ensemble members over the processes. (We will refer below to
this type of distribution as “mode-decomposition”.) For the analysis phase of the filter
this work decomposed the model domain into sub-domains (referred to as “domain-
decomposition”) to allow for an analysis on a regional basis. This approach was further
refined by Keppenne and Rienecker [45, 46] where the filter was applied to an ocean
genereal circulation model (OGCM) in a model configuration for the Pacific basin.
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Here, the model and the filter were parallelized by domain decomposition. In addition,
a localized analysis is performed assimilating only observations within a certain dis-
tance from a grid point. A localized analysis has also been described by Ott et al. [58].
In this work the analysis was formulated using overlapping domains. Furthermore,
only observations local to a domain are considered.

In the context of the RRSQRT filter, two parallelization approaches have been
discussed. Roest and Vollebregt [70] split their data assimilation code into parts which
are independently parallelized using different types of parallelism. Applying a mode
decomposition in the forecast phase, they also utilize the inherent parallelism of this
phase. Other operations on the covariance matrix, like a re-diagonalization analogous
to the re-orthonormalization of the modes performed in the SEEK filter, are evaluated
using distributed rows of the matrix. Segers and Heemink [74] compare mode and
domain decomposition variants of the RRSQRT filter applied to an air pollution model.
In this example both methods yield rather comparable values for the speedup. Segers
and Heemink favor the domain decomposition method, based on their experience that
the parallelization of the analysis part of the RRSQRT algorithm is easier for a domain
decomposition than for a mode decomposition. They stress that this method requires
a parallel, domain decomposed model.

In this chapter, we will examine the possibilities for the parallelization of the SEEK,
EnKF, and SEIK algorithms. The variant of using the mode decomposition of the en-
semble matrix in these filters is discussed in section 7.2. Subsequently in section 7.3
we examine the option to decompose the state vectors by a domain decomposition.
Finally, we introduce in section 7.4 a formulation for a localized analysis which permits
to assimilate observations within a certain distance from a grid point of the model
domain. We focus on the analysis and resampling phases of these algorithms. The
forecast phase is examined in connection with the development of a framework for
parallel filtering in chapter 8. For parallelization, we use the Message Passing Inter-
face (MPI) [27]. Some fundamental concepts of parallel computing are discussed in
appendix A which also contains an introduction to MPI.

7.2 Parallelization over the Modes

For now, we consider a parallelization using mode-decomposition, i.e. the ensemble
matrix X, or the mode matrix V, is distributed such that the process with rank p
owns kp < N columns of the matrix. Thus, the local column indices ip = 1, . . . , kp

correspond to the global indices i = jp, . . . , jp + kp where j0 = 1 and jp = 1 +
∑p

l=1 kp

for p > 0. This decomposition is displayed in figure 7.1 for s + 1 processes. Each
column of X represents a full state vector. Since each process has direct access only to
its kp local state vectors, operations on X are distributed, too. For efficiency, as many
computations as possible are performed in parallel during the analysis and resampling
phase. Thus, also some operations on derived matrices, which appear in the filter
algorithms, will be distributed. Some of these matrices are also stored distributed over
the processes. If data from other processes is required, data exchanges are performed
by calls to communication functions of the MPI library.
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Figure 7.1: Distribution of the global ensemble matrix X into local sub-matrices Xp

with mode-decomposition.

7.2.1 Distributed Operations

Using distributed matrices, we encounter in the filter algorithms several operations
which have to be performed in parallel. Many of them are matrix-matrix products. If
matrices were completely allocated by a single process a matrix-matrix product could
be directly computed as AB = C. For distributed matrices there are, in general,
three different ways of evaluating a matrix-matrix product depending on the type of
distribution. These parallel matrix-matrix products are explained in table 7.1.

Other distributed operations which occur in the filter analysis and resampling
phases are:

• The application of the measurement operator to the ensemble or mode matrix.
E.g., in SEEK this is HV, see equation (2.28). Only kp columns of the matrix V,
each representing a state vector, are allocated on a process. Thus, the mea-
surement operator is applied in a loop calling for each local column a subroutine
performing the application of H to this column. If the full matrix HV is required
by a single process a ’gather’ operation has to be performed.

• The solution of linear equations of type AB = C. An example of this can be
found in the representer formulation of the EnKF when solving equation (2.47).
Here only kp columns of the matrix C are allocated on a process. Thus, the
solution B will consist of kp local columns. If the full matrix B is needed by a
single process, a ’gather’ operation is required.

• The initialization of the observation vector y which has to be known by each
processes. This is performed by a subroutine call. If y is read from a file, it is
most efficient to execute the file operation only by a single process. To distribute
the vector, a ’broadcast’ operation is performed afterwards.
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Type 1: Matrix A is fully allocated on
each process. It is multiplied with matrix
B from which only kp columns are avail-
able locally. Performing the multiplica-
tion, we obtain kp columns of the product-
matrix C. These columns correspond to
the same column indices as those available
of matrix B. To obtain the full matrix C
on a process a ’gather’ operation has to be
performed.











 =







Type 2: Only kp rows of matrix A are
available locally. This occurs, e.g., for
the transpose of a column-wise distributed
matrix. Matrix B is fully allocated on
each process. The local part of the prod-
uct matrix C consists of kp rows whose
row indices correspond to those indices of
the rows of A which are available locally.
To obtain the full matrix C on the local
process, a ’gather’ operation is required as
in type 1.






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
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Type 3: Only kp columns of matrix A
and kp rows of matrix B are allocated lo-
cally. The resulting product matrix C has
the full dimension but its elements repre-
sent only a partial sum of the full matrix-
matrix product. Thus, to obtain the full
product AB on the local process, a ’re-
duce’ operation has to be performed to
sum up all partial sums distributed over
the processes.











 =







Table 7.1: The different types of matrix-matrix products for distributed matrices. The
right column sketches the differently distributed matrices.
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7.2.2 SEEK

We develop the analysis algorithm of SEEK for a mode-decomposed matrix V such that
each process will hold the updated eigenvalue matrix U−1 and the state estimate x.
This will reduce the total amount of communication, since U−1 is required by each
process for the resampling phase and x is used by each process to compute the gradient
approximation.

The parallel version of the SEEK analysis algorithm is shown as algorithm 7.1. It
can be directly compared to the serial analysis algorithm 3.3. The routine is called
by all processes each holding its local part Vp ∈ Rn×rp of the mode matrix. In the
pseudo code of the parallel algorithm the subscript p denotes an array which is private
to a process. That is, the array can have a different size and hold different values on
each process. Variables without this subscript are global, i.e. they have on all processes
the same size and hold the same values. The application of the measurement operator
on the mode matrix (lines 4-6 in algorithm 7.1) is performed only for the rp locally
allocated columns of V. Also the subsequent product R−1T1 is only computed for the
local columns. The the residual d is initialized in lines 11 to 13 equally by all processes.
This operation does, in general, require negligible computation time compared with
the other operations of the analysis. Hence, initializing d by each process will not
be problematic for the parallel efficiency. A ’broadcast’ operation is hidden in the
initialization of the observation vector, as was explained in the preceding section. The
matrix-vector product in line 14 yields the local part of a distributed vector. Although
the full vector t3 has to be initialized by a concluding ’allgather’ operation, this variant
to obtain t3 is faster than performing an ’allgather’ on the much larger matrix T2.
The following solver step (line 16) has to be performed by each process. We will
see that this operation can limit the overall parallel efficiency of the SEEK analysis
algorithm in mode decomposition. The final update of the state estimate is performed
with the local matrix Vp. We divide this operation into two parts. First we compute
the analysis increment ∆x using a matrix-matrix product of type 2 followed by an
’allreduce’ operation for the analysis increment. Finally, the increment is added to the
forecast state estimate x in order to obtain the analysis state estimate on each process.
Due to the non-parallelized solver step and the required global communications, we
can not expect that the mode-parallel SEEK analysis algorithm scales well.

In the resampling phase of SEEK, the mode vectors distributed over the processes
are re-orthonormalized. The serial algorithm is shown as algorithm 3.7. The parallel
algorithm, shown as algorithm 7.2, distributes the inversion of the matrix Uinv. Also
the computations of the matrices T1 and T2 are parallelized. However, global com-
munication is required in the algorithm to obtain the matrix B. The most expensive
communication operation will be the allgather operation of the n × r matrix V. In
contrast to this, the re-initialization of the local columns of the mode matrix V in
line 14 is performed in a distributed matrix-matrix product of type 1 which is locally a
full matrix-matrix product. Hence it is evaluated independently by all processes. The
resampling algorithm also contains some operations which are performed equally by all
processes: The Cholesky decomposition of U, the computation of B, and the singular
value decomposition (SVD) of B. We will see later that these operations, together with
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Subroutine SEEK Analysis Mode(step,n,r,x,Uinv,Vp)
int step {time step counter,input}
int n {state dimension, input}
int r {rank of covariance matrix, input}
real x(n) {state forecast, input/output}
real Uinv(r, r) {inverse eigenvalue matrix, input/output}
real Vp(n, rp) {local mode matrix, input/output}
real T1, t3, t4,d,y,∆x {fields to be allocated}
real T1p,T2p, t3p,Uinvp,∆xp {fields to be allocated}
int rp {number of local columns of Vp}
int m {dimension of observation vector}
int i {ensemble loop counter}

1: call Get Dim Obs(step,m) {by each process}
2: Allocate fields: T1(m, r), t3(r), t4(r),d(m),y(m),∆x(n),
3: T1p(m, rp),T2p(m, rp), t3p(rp),Uinvp(r, rp),∆xp(n)

4: for i=1,rp do
5: call Measurement Operator(step, n,m,Vp(:, i),T1p(:, i)) {local columns}
6: end for
7: allgather T1 from T1p {global MPI operation}
8: call RinvA(step,m, r,T1p,T2p) {operate only on local columns}
9: Uinvp ← Uinvp + T1TT2p {matrix-matrix product type 1}

10: allgather Uinv from Uinvp {global MPI operation}

11: call Measurement Operator(step, n,m,x,d) {by each process}
12: call Measurement(step,m,y) {by each process}
13: d ← y − d {by each process}

14: t3p ← T2p
Td {matrix-matrix product of type 2}

15: allgather t3 from t3p {global MPI operation}
16: solve Uinv t4 = t3 for t4 {by each Process}
17: ∆xp ← Vp t4 {local state increment, matrix-vector product of type 3}
18: allreduce summation of ∆x from ∆xp {global MPI operation}
19: x ← x + ∆x {by each process}
20: De-allocate local analysis fields

Algorithm 7.1: Structure of the parallel filter analysis routine for the SEEK algorithm.
The mode matrix V is distributed such that each process holds rp columns Vp of V.
The subscript p denotes variables which are private to a process. These can be either
the locally allocated parts of distributed fields or full-size fields which hold different
values on different processes.



7.2 Parallelization over the Modes 87

Subroutine SEEK Reortho Mode(n,r,Uinv,Vp)
int n {state dimension, input}
int r {rank of covariance matrix, input}
real Uinv(r, r) {inverse eigenvalue matrix, input/output}
real Vp(n, rp) {local mode matrix, input/output}
int rp {number of local columns of Vp}
real A,B,C,D,U,V,T2 {fields to be allocated}
real Up, Ip,T1p,T2p,T3p,T4p {fields to be allocated}

1: Allocate fields: A(r, r),B(r, r),C(r, r),D(r, r),U(r, r),V(n, r),
2: T2(r, r),Up(r, rp), Ip(r, rp),T1p(r, rp),T2p(r, rp),T3p(r, rp),T4p(r, rp)

3: Ip ← I(:, jp : jp + rp − 1) {local columns of identity matrix}
4: Solve Uinv Up = Ip for Up {get local columns of U}
5: allgather U from Up {global MPI operation}
6: Cholesky decomposition: U = AAT {by each process}
7: allgather V from Vp {global MPI operation}
8: T1p ← VT Vp {matrix-matrix product of type 1}
9: T2p ← AT T1p {matrix-matrix product of type 1}

10: allgather T2 from T2p {global MPI operation}
11: B ← T2 A {by each process}

12: SVD: B = C D CT {by each process}
13: T3p ← C D(:, jp : jp + rp − 1)−1/2 {Initialize T3p using local columns of D}
14: T4p ← A T3p {matrix-matrix product of type 1}
15: Vp ← V T4p {matrix-matrix product of type 1}
16: Uinv ← D−1 {by each process}
17: De-allocate local analysis fields

Algorithm 7.2: Structure of the parallel version of the re-orthonormalization routine
for the SEEK algorithm. Matrix D holding the singular values of T3 is introduced
here for clarity. In the program, it is allocated as a vector holding the eigenvalues of
T3. The large number of matrices of sizes r × r or r × rp is introduced in the pseudo
code for clarity. In the program itself, only two matrices of size r× rp and three of size
r × r are allocated. The index jp denotes the index of the first column of Vp in the
global matrix V.

the required communications, will limit the overall parallel efficiency of the algorithm.
An obvious drawback of the presented algorithm is that the full matrix V has to be
allocated on each process. It is, however, possible to formulate the algorithm with a
block structure allocating only several rows of V at a time. This will involve a lot of
communication operations of smaller amounts of data. The total amount of commu-
nicated data will be twice as large since the full information on V is required for the
operations in line 7 and in line 14.
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7.2.3 EnKF

The parallel analysis algorithm for the EnKF with a mode-decomposed ensemble ma-
trix X is shown as algorithm 7.3. The serial algorithm has been given as algorithm 3.5.

The routine is called by all processes each holding its local part Xp ∈ Rn×Np of
the ensemble matrix. In the parallel algorithm, the computation of the mean of the
ensemble projected onto observation space in line 7 corresponds to a matrix-matrix
product of type 3 in which the second matrix has only one column whose entries are
equal to N−1. An allreduce summation is necessary to obtain the ensemble mean on all
processes. This is analogous for the computation of the ensemble mean state in line 22.
The full matrix T1 is initialized by each process using an allgather operation in line 12.
Subsequently, the computation of T3 is performed equally by all processes. Alterna-
tively, several columns of T3 could be computed first via a matrix-matrix product of
type 1. Then the full matrix T3 would be initialized by all processes by an allgather
operation. Whether this parallelized variant is faster than computing T3 directly by
each process will depend on the ratio of computation to communication performance.

In the EnKF, an ensemble of residuals has to be computed from an ensemble of
observations. The observations are generated in the subroutine Enkf Obs Ensemble
which will involve a broadcast operation if the observation vector is read from a file.
The computation of the local residual ensemble Dp itself (lines 15 to 19) is performed
independently by each process.

The solver step for the influence amplitudes B in line 20 is distributed over the pro-
cesses. Thus, local amplitudes Bp are computed using the LAPACK routine DGESV.
The parallel efficiency of this operation is, however, limited since the LU-decomposition
of T3 ∈ Rm×m is performed by each process. The final update of the local state en-
semble Xp in line 28 is performed independently by each process. The preparations
for the update, which are performed from lines 22 to 27, include the initializations of
the ensemble mean x and the matrix T5 by communication operations. To avoid the
allocations of the matrices T5p and T5 as well as those of the vectors xp and x, we
use a block formulation for lines 22 to 28.

In the mode-decomposed EnKF analysis algorithm, the computation of T3 is not
parallelized. In addition, the solver step for the representer amplitudes can not be ex-
pected to show a good parallel efficiency. Next to these operations, several global com-
munication operations have to be performed. These properties of the mode-decomposed
algorithm will limit the parallel efficiency.

In the mode-decomposed EnKF algorithm, the global matrix T3 ∈ Rm×m is com-
puted by each process since it is required for the solver step in line 20. This requirement
presents a particular issue for the mode-decomposed EnKF filter. Next to the require-
ment to allocate this matrix, the operations involving T3 will be costly. To reduce
the operational complexity, it is possible to sequentially assimilate batches of indepen-
dent observations. This technique has been discussed in section 3.4. Indeed, it will
reduce the effective dimension of the observation vector. Accordingly, the memory
requirements are reduced. Furthermore, the number of operations is decreased, since
the complexity of the matrix-matrix product in line 13 scales with O(m2) and that of
the solver step in line 20 is O(m3 + m2N).
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Subroutine EnKF Analysis Mode(step,n,Np,Xp)
int step {time step counter,input}
int n {state dimension, input}
int N {ensemble size, input}
real Xp(n,Np) {local ensemble matrix, input/output}
real T1, t2,T3,T5,x {fields to be allocated}
real T1p, t2p, t4p,T5p,T6p,Dp,Bp,xp {fields to be allocated}
int Np {local ensemble size}
int m {dimension of observation vector}
int i {ensemble loop counter}

1: call Get Dim Obs(step,m) {by each process}
2: Allocate fields: T1(m,N), t2(m),T3(m,m),T5(n,N),x(n),T1p(m,Np),
3: t2p(m), t4p(m),T5p(n,Np),T6p(N,Np),Bp(m,Np),Dp(m,Np),xp(n)

4: for i=1,Np do
5: call Measurement Operator(step, n,m,Xp(:, i),T1p(:, i)) {local columns}
6: end for
7: t2p ← N−1

∑Np

i=1 T1p(:, i) {local mean of projected ensemble}
8: allreduce summation of t2 from t2p {global MPI operation}
9: for i=1,Np do

10: T1p(:, i) ← T1p(:, i) − t2 {local columns}
11: end for
12: allgather T1 from T1p {global MPI operation}
13: T3 ← (N − 1)−1 T1 T1T {by each process}
14: call RplusA(step,m,T3) {by each process}

15: call Enkf Obs Ensemble(step,m,Np,Dp) {get local ensemble of observations}
16: for i=1,Np do
17: call Measurement Operator(step, n,m,Xp(:, i), t4p) {local columns}
18: Dp(:, i) ← Dp(:, i) − t4p {local ensemble of residuals}
19: end for

20: solve T3 Bp = Dp for Bp {get local representer amplitudes}
21: T6p ← T1T Bp {matrix-matrix product of type 1}
22: xp ← N−1

∑Np

i=1 Xp(:, i) {local ensemble mean state}
23: allreduce summation of x from xp {global MPI operation}
24: for i=1,Np do
25: T5p(:, i) ← Xp(:, i) − x {local columns}
26: end for
27: allgather T5 from T5p {global MPI operation}
28: Xp ← Xp + (N − 1)−1 T5 T6p {matrix-matrix product of type 1}
29: De-allocate local analysis fields

Algorithm 7.3: Structure of the parallel filter analysis routine for the EnKF algorithm
using the representer update variant for a non-singular matrix T5. Matrix Bp is not
allocated individually but stored in Dp. Analogously, t4 is stored in t2. The allocation
of the full array T5 can be avoided by a block formulation for line 28.
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7.2.4 SEIK

The analysis algorithm of the SEIK filter is very similar to that of the SEEK
filter. Hence, also the parallelization is almost identical in both cases. Discussing
the parallelization of SEIK, we focus on the unique parts of it. The parallel SEIK
analysis algorithm is shown as algorithm 7.4 while the serial analysis has been shown
as algorithm 3.4.

An additional operation in the analysis algorithm of SEIK compared with SEEK
is the matrix-matrix product in line 7. Here the ensemble matrix projected onto the
observation space (T1 in the pseudo code) is multiplied with matrix T defined by
equation (2.62). As has been discussed in section 3.3, this operation is most efficiently
implemented taking into account the particular choice of T. Accordingly, this multi-
plication involves the subtraction of the global ensemble mean of T1 from each column
of this matrix. This mean is computed as the means in the EnKF, i.e. by calculat-
ing local means followed by an allreduce summation. The computed ensemble mean
is subtracted from each of the local ensemble states. In line 21, the product T t5
is computed. Following the discussion in section 3.3, the mean value of the elements
of t5 is computed and subsequently subtracted from each column. The final column
is initialized by the negative of the mean value. The product T t5 does not require
communication, since t5 is allocated on each process. Other additional operations
in the analysis phase of SEIK are the computation of the ensemble mean in line 13,
which is computed as in the EnKF, and the initialization of matrix G in line 10. This
operation is parallelized by initializing only rp local columns. These are required for
the subsequent computation of Uinv which is a matrix-matrix product of type 1 fol-
lowed by an allgather operation. Since the solver step in line 21 is not parallelized
and several global communication operations are performed, we cannot expect that
the mode-parallel SEIK analysis algorithm scales perfectly.

A particular parallelization issue of the SEIK filter is that matrix T2 consists of
only r columns, while T1 contains N = r + 1 columns. Hence, for the load-balancing
of the analysis algorithm the application of T is problematic. Since the forecast phase
usually requires the most computation time, we chose a configuration in which each
process holds the same number Np = k of ensemble states (I.e. the same number of
columns in the local matrices Xp and T1p). Computing the product T1p T reduces
the number of overall columns by one. Accordingly, one of the processes (usually
that one with the highest rank) holds only k − 1 local columns of T1p T, while all
other processes hold k local columns. Due to this, one of the processes executes less
operations than the other processes and will complete work earlier. However, this is
inevitable if the ensemble has to be distributed evenly in order to obtain the best speed
up in the forecast phase. For the parallel algorithm, this has no special implications,
as long as the number of columns in matrix T2p is not reduced to zero on one of the
processes.

In the resampling algorithm of SEIK, a new ensemble of states is computed on
the basis of the forecasted state ensemble X. The parallel algorithm is shown as
algorithm 7.5. It can be compared with the serial algorithm 3.8. The Cholesky decom-
position in line 2 is performed equally by all processes. The solver step for the local
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Subroutine SEIK Analysis Mode(step,n,N ,x,Uinv,Xp)
int step {time step counter,input}
int n {state dimension, input}
int N {ensemble size, input}
real x(n) {local state estimate, output}
real Uinv(r, r) {inverse eigenvalue matrix, output}
real Xp(n,Np) {local ensemble matrix, input/output}
real T2, t4, t5, t6,y,d,∆x, {fields to be allocated}
real T1p,T2p,T3p, t4p,Gp,Uinvp,xp,∆xp {fields to be allocated}
int r {rank of covariance matrix, r = N − 1}
int rp {number of local columns of covariance matrix}
int Np {local ensemble size}
int m {dimension of observation vector}
int i {ensemble loop counter}

1: call Get Dim Obs(step,m) {by each process}
2: Allocate fields: T2(m, r), t4(r), t5(r), t6(N),y(m),d(m),∆x(n),T1p(m,Np),
3: T2p(m, rp),T3p(m, rp), t4p(rp),Gp(r, rp),Uinvp(r, rp),xp(n),∆xp(n)

4: for i=1,Np do
5: call Measurement Operator(step, n,m,Xp(:, i),T1p(:, i)) {user supplied}
6: end for
7: T2p ← T1p T {implemented with T as operator}
8: allgather T2 from T2p {global MPI operation}
9: call RinvA(step,m, r,T2p,T3p) {operate only on local columns}

10: Gp ← (N−1(TT T)−1)p {implemented as direct initialization}
11: Uinvp ← Gp + T2TT3p {matrix-matrix product of type 1}
12: allgather Uinv from Uinvp {global MPI operation}

13: xp ← N−1
∑Np

i=1 Xp(:, i) {get local ensemble mean state}
14: allreduce summation of x from xp {global MPI operation}
15: call Measurement Operator(step, n,m,x,d) {user supplied}
16: call Measurement(step,m,y) {user supplied}
17: d ← y − d

18: t4p ← T3p
Td {matrix-matrix product of type 2}

19: allgather t4 from t4p {global MPI operation}
20: solve Uinv t5 = t4 for t5 {by each process}
21: t6 ← T t5 {implemented with T as operator}
22: ∆xp ← Xp t6(jp : jp + Np − 1) {local increment, mat.-vec. product of type 3}
23: allreduce summation of ∆x from ∆xp {global MPI operation}
24: x ← x + ∆x {by each process}
25: De-allocate local analysis fields

Algorithm 7.4: Structure of the parallel filter analysis routine for the SEIK algorithm.
The arrays T2p and t5 are introduced for clarity. Their contents are stored respectively
in T1p and t4. The index jp denotes the index of the first column of Xp in X.
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Subroutine SEIK Resample Mode(n,N ,x,Uinv,Xp)
int n {state dimension, input}
int N {ensemble size, input}
real x(n) {state analysis vector, input}
real Uinv(r, r) {inverse eigenvalue matrix, input}
real Xp(n,Np) {ensemble matrix, input/output}
real T1,T2p,C,Ωp

T ,X {fields to be allocated}
int r {rank of covariance matrix, r = N − 1}
int Np {local ensemble size}

1: Allocate fields: T1(r,N),T2p(N,Np),C(r, r),Ωp
T (r,Np),X(n,N)

2: Cholesky decomposition: Uinv = C CT {by each process}
3: initialize Ωp

T {local columns}
4: solve CTT1p = Ωp

T for T1p {local columns}
5: T2p ← T T1p {implemented with T as operator}
6: allgather X from Xp {global MPI operation}
7: for i=1,Np do
8: Xp(:, i) ← x
9: end for

10: Xp ← Xp + N1/2 X T2p {matrix-matrix product of type 1 with DGEMM}
11: De-allocate local analysis fields

Algorithm 7.5: Structure of the parallel resampling routine for the SEIK algorithm.
The matrix T1p is not allocated in the program. Its contents are stored in ΩT . To
avoid the allocation of X, lines 6 to 10 can be implemented in block formulation.

columns of T1 in line 4 and the product T T1p (line 5) are parallelized. The latter
operation is implemented as in the analysis algorithm. The initialization of the new
ensemble matrix in line 10 is executed in parallel, too. Since this operation requires
the information on all ensemble members in X ∈ Rn×N , this matrix is initialized by all
processes by an allgather operation (line 6). This operation will be very costly due to
the large dimension of X. To avoid the requirement to store the full matrix X, we use
a block formulation for the resampling. Therefore a loop is built around lines 5 to 10.
In each cycle of this loop, only a couple of rows of the global matrix X are allocated
and gathered at a time. In line 10 only the corresponding rows of Xp are updated.

7.2.5 Comparison of Communication and Memory Require-
ments

For comparison of the communication requirements of the three filter algorithms, ta-
ble 7.2 summarizes the sizes of the arrays involved in MPI operations.

The amount of communicated data in the mode-parallel analysis algorithm of SEIK
is larger than for SEEK. This is caused by the product T1p T in line 7 of algorithm
7.4 and the computation of the ensemble mean in line 14. In the resampling algorithm
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Table 7.2: Sizes of arrays involved in global MPI operations in the analysis and re-
sampling phases of the SEEK and SEEK algorithms and in the analysis phase of the
EnKF algorithm. Next to the matrix size, the name of the matrix is given as well as the
information whether the MPI operation is an allgather (g) or allreduce (r) operation.

EnKF SEEK SEIK
analysis mN (T1, g) mr (T1, g) mr (T2, g)

nN (T5, g) r2 (Uinv, g) r2 (Uinv, g)
m (t2, r) r (t3, g) r (t4, g)
n (x, r) n (∆x, r) n (x, r)

n (∆x, r)
m (in T1pT, r)

re- r2 (U, g) nN (X, g)
sampling nr (V, g)

r2 (T2, g)

of SEEK, the global mode matrix V ∈ Rn×r has to be initialized by all processes
using an allgather operation. Analogously the ensemble matrix X ∈ Rn×N has to be
initialized in resampling algorithm of SEIK. In the resampling algorithm of SEEK, also
the much smaller matrices U and T2 are gathered.

The communication requirements of the EnKF algorithm are similar to those of
the SEEK and SEIK algorithms. In the EnKF, the ensemble update is computed
within the analysis, while SEEK and SEIK have additional resampling routines. Due
to this, the EnKF includes the allgather operation on the matrix T5 ∈ Rn×N which
is the analogue to the allgather operations of V or X performed respectively in the
resampling phases of SEEK and SEIK.

Concerning memory requirements, the mode-decomposition only permits to dis-
tribute some fields which hold ensemble quantities. Other arrays, which hold ensembles
of observation-related vectors like T1 in SEEK and EnKF, are not decomposed. Thus,
the scalability of the memory requirements is limited. Next to these non-distributed
arrays, additional private arrays have to be allocated. Some of these, like T2p ∈ Rm×rp

in algorithm 7.1, involve the observation dimension. These arrays increase the overall
memory requirements. Other arrays which involve the state dimension n, are less prob-
lematic. Using block formulations, it is not necessary to allocate these arrays in their
full size. A particular memory issue is the allocation of the full mode matrix V ∈ Rn×r

in the resampling algorithm of SEEK. As has been discussed in section 7.2.2, the allo-
cation of this very large array can only be avoided by a block formulation. This will,
however, require to gather the full information on V twice. In the case of the EnKF
algorithm, the allocation of the matrix T3 ∈ Rm×m is required. If very large data sets
have to be assimilated, this memory requirement can be problematic. In this case, the
sequential assimilation of independent observation batches with smaller dimension m
will reduce the memory requirements.
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7.3 Filtering with Domain Decomposition

In the case of domain-decomposition, the ensemble matrix X, or the mode matrix V,
is distributed such that the process with rank p holds kp < n rows of the matrix.
The distribution of the ensemble matrix is sketched in figure 7.2. The local row in-
dices ip = 1, . . . , kp of the matrix owned by process p correspond to the global row
indices i = jp, . . . , jp + kp where j0 = 1 and jp = 1 +

∑p
l=1 kp for p > 0. Since each col-

umn of X represents a full state vector, each process now holds a part of each ensemble
state. This configuration arises naturally, when the domain of a model is decomposed
into several sub-domains each being located on a different process. Domain decom-
position is a frequently used strategy in parallel computing [22]. If data assimilation
is performed using a domain-decomposed model, it appears to be obvious to use a
parallelization of the filter which follows the parallelization of the model it is applied
to. This avoids possible reordering requirements of the state vectors and model fields
in the communication between filter and model.
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Figure 7.2: Distribution of the global ensemble matrix X into local sub-matrices Xp

for domain-decomposition.

As the model state is decomposed into sub-domains, also the observations should be
domain-decomposed. This allows for a better parallel efficiency of the filter analysis al-
gorithms. If the observations are distributed rather evenly in space, the decomposition
of the observations should follow that of the model state. However, the decomposition
of the observation vector does not need to follow that of the model state. This pro-
vides the freedom to choose a decomposition which yields an even distribution of the
observation vector over the processes. This can be important for the load-balancing of
the filter analysis algorithm if the observations are irregularly distributed in space.
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7.3.1 Distributed Operations

Using domain decomposed ensemble matrices, the filter algorithms will again require
distributed matrix-matrix products. As for mode-decomposition, these are of the types
described in table 7.1.

Other distributed operations occurring in the filter analysis and resampling algo-
rithms are:

• The initialization of the dimension of the observation vector which is performed
in subroutine Get Dim Obs. If the observation space is decomposed into sub-
domains, the call to Get Dim Obs has to provide the size of the local sub-domain
of the observation space.

• The application of the measurement operator H to a state vector or the ensemble
or mode matrix. In contrast to the mode-decomposition discussed above, each
process holds information on all ensemble members contained in the ensemble
or mode matrix, but only the about the local sub-domain. Due to this, the ap-
plication of the observation operator may require communications of data, e.g.
if interpolations are performed which require state information from adjacent
sub-domains. Communication operations will be also necessary if the domain-
decompositions of the observations and the model state are different.

• The initialization of the observation vector y. The call to the subroutine Mea-
surement has to initialize the part of the observation vector which lies in the
local sub-domain of the distributed observation space. If the observation vector
is read from a file, the file operation should be performed only by a single process.
Thus, the initialization of y will involve communication operations to distribute
the observation sub-vectors to other processes.

• The product of the inverse of the observation error covariance matrix R with the
ensemble matrix projected onto observation space. This operation is performed
in SEEK and SEIK by the subroutine RinvA. If R is not diagonal, the values of
all elements of the state vectors in observation space are required by each process
to compute the matrix-matrix product. Thus, global communication of data is
necessary.

7.3.2 SEEK

The analysis algorithm of SEEK for a domain-decomposed state and mode-matrix
is shown as algorithm 7.6. As has been explained above, the application of the mea-
surement operator in lines 5 and 11, as well as the subroutine RinvA, can involve com-
munication operations. In contrast to the mode-decomposed SEEK filter, no global
communication operations on the ensemble matrix itself are required in the case of
domain-decomposition. Only two allreduce summations on typically rather small ar-
rays are necessary. These are allreduce summations to initialize the increment ma-
trix ∆Uinv ∈ Rr×r and to initialize the vector t3 ∈ Rr. Matrix Uinv is updated
equally by all processes by adding the increment matrix ∆Uinv. Also the solver step
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Subroutine SEEK Analysis Domain(step,np,r,xp,Uinv,Vp)
int step {time step counter,input}
int np {state dimension on local domain, input}
int r {rank of covariance matrix, input}
real xp(np) {local state forecast, input/output}
real Uinv(r, r) {inverse eigenvalue matrix, input/output}
real Vp(np, r) {local mode matrix, input/output}
real t3, t4,∆Uinv,dp,yp,T1p,T2p, t3p,∆Uinvp {fields to be allocated}
int mp {dimension of local observation vector}
int i {ensemble loop counter}

1: call Get Dim Obs(step,mp) {get dimension for local domain}
2: Allocate fields: t3(r), t4(r),∆Uinv(r, r),dp(mp),yp(mp),
3: T1p(mp, r),T2p(mp, r), t3p(r),∆Uinvp(r, r)

4: for i=1,r do
5: call Measurement Operator(step, np,mp,Vp(:, i),T1p(:, i)) {local domain}
6: end for
7: call RinvA(step,mp, r,T1p,T2p) {operate only on local domain}
8: ∆Uinvp ← T1p

TT2p {matrix-matrix product type 3}
9: allreduce summation of ∆Uinv from ∆Uinvp {global MPI operation}

10: Uinv ← Uinv + ∆Uinv {by each process}

11: call Measurement Operator(step, np,mp,xp,dp) {project local state}
12: call Measurement(step,mp,yp) {get local observation vector}
13: dp ← yp − dp {residual for local domain}

14: t3p ← T2p
Tdp {matrix-matrix product of type 3}

15: allreduce summation of t3 from t3p {global MPI operation}
16: solve Uinv t4 = t3 for t4 {by each process}
17: xp ← xp + Vp t4 {matrix-vector product of type 2}
18: De-allocate local analysis fields

Algorithm 7.6: Structure of the parallel SEEK analysis routine for domain decomposed
states. The mode matrix V and the state vector x are distributed such that each process
holds a sub-domain of dimension np. Also the observation space is decomposed. Thus,
the observation vector y is distributed with each process holding a sub-domain of
dimension mp.
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Subroutine SEEK Reortho Domain(np,r,Uinv,Vp)
int np {state dimension on local domain, input}
int r {rank of covariance matrix, input}
real Uinv(r, r) {inverse eigenvalue matrix, input/output}
real Vp(np, r) {local mode matrix, input/output}
real T1,T2,T3,T4,A,B,C,D,Lp,U,T1p {fields to be allocated}

1: Allocate fields: T1(r, r),T2(r, r),T3(r, r),T4(r, r),A(r, r),B(r, r),
2: C(r, r),D(r, r),U(r, r),Lp(np, r),T1p(r, r)

3: Solve Uinv U = I for U {by each process}
4: Cholesky decomposition: U = AAT {by each process}
5: T1p ← Vp

TVp {matrix-matrix product of type 3}
6: allreduce summation of T1 from T1p {global MPI operation}
7: T2 ← T1 A {by each process}
8: B ← AT T2 {by each process}

9: SVD: T1 = C D CT {by each process}
10: T3 ← C D−1/2 {by each process}
11: T4 ← A T3 {by each process}
12: Lp ← Vp

13: Vp ← Lp T4 {matrix-matrix product of type 2}
14: Uinv ← D−1 {by each process}
15: De-allocate local analysis fields

Algorithm 7.7: Structure of the parallel version of the re-orthonormalization routine
for the SEEK algorithm for domain decomposed states. The matrix D holding the
singular values of B is introduced here for clarity. In the program, it is allocated as
a vector holding the eigenvalues of B. Only three matrices of size r × r need to be
allocated in the program. The other matrices of this size are only introduced in the
pseudo code for clarity.

in line 16 is performed by all processes, as in the case of mode-decomposition. Since
this operation involves the inversion of Uinv it can be rather costly. Over all, the
domain-decomposed SEEK analysis algorithm involves less communications of data
than the mode-decomposed SEEK analysis. Also less operations are executed equally
by each process. Thus, we can expect that the domain-decomposed SEEK analysis
will show a better parallel efficiency than the mode-decomposed analysis. The parallel
efficiency will of course not be optimal due to the global communication operations
and the operations which are not parallelized.

The SEEK resampling routine for a parallelization using domain decomposition is
shown as algorithm 7.7. Here only the operations on matrices which involve the high
dimension n are parallelized. These are the matrix-matrix product Vp

TVp in line 5
and the initialization of the new mode matrix Vp in lines 12 and 13. An allreduce
summation is required to fully initialize the global matrix T1. This operation is the
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only global MPI communication which is necessary in the domain-decomposed SEEK
resampling algorithm. The parts of the resampling algorithm which act on matrices of
size r × r are executed equally by all processes. This can, however, limit the overall
parallel efficiency of the resampling algorithm when, for higher numbers of processes,
the execution time for the parallel parts reaches that of the non-parallel parts. To
minimize the memory requirements of the algorithm, a block structure for the matrix-
matrix product in line 13 can be implemented. In this case, only a small number of
rows of Matrix Lp is allocated and only the corresponding rows of Vp are updated at
a time.

7.3.3 EnKF

The parallel EnKF analysis algorithm for a domain-decomposed ensemble matrix X is
shown as algorithm 7.8. In comparison to the mode-decomposed algorithm, less com-
munication operations are required in the case of domain-decomposition. In particular,
there is no need to gather the information on the full ensemble matrix. The operations
on the ensemble matrix are completely parallelized.

The information on the full matrix T1 ∈ Rm×N is required for the computation of
the matrices T3 and T6. Thus, T1 is initialized on each process using an allgather
operation in line 12. Also matrix D ∈ Rm×N , which holds the ensemble of residuals, is
fully initialized by an allgather operation (line 20). Using the gathered matrices, the
computations of T3 and T6, the call to the subroutine RplusA, and the solver step
to obtain B are performed equally by each process. These non-parallelized operations,
together with the allgather operations on T1 and B can be expected to limit the over-
all parallel efficiency of the domain-decomposed EnKF analysis algorithm. Compared
with the mode-decomposed variant given as algorithm 7.3, the amount of commu-
nicated data is smaller in the domain-decomposed variant. The computations of B
and T6, which are conducted by each process in the case of domain-decomposition are
parallelized in the mode-decomposed algorithm. Thus, it is not obvious which of the
decomposition variant will yield the better parallel efficiency. Since this depends on the
ratio of computation to communication performance, it will depend on the computer
architecture on which the algorithms will be executed.

The domain decomposition of the observation space is controlled by the user by,
e.g., providing the implementations of the measurement operator. For consistency,
the two allgather operations in the domain-decomposed EnKF analysis algorithm are
implemented as subroutines to allow the user to modify them. The ordering of matrix
rows used for the allgather operation does not need to follow that of the actual domain-
decomposition. This fact can simplify the implementation, e.g. in the case of an
irregularly decomposed grid in which the sub-states on the processes do not correspond
to single blocks in the global state vector. Despite this, the allgather operations in
lines 12 and 20 can gather the sub-vectors as single blocks. In this case, consistency is
assured by gathering the matrices T1 and D with the same ordering (This is actually
assured by performing it by the same subroutine). In addition the subroutine RplusA
has to be consistent with the gathering order. Ensuring this, the final ensemble update
in line 27 will be consistent since the line ordering in matrices T4p and B is equal.
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Subroutine EnKF Analysis Domain(step,np,N ,Xp)
int step {time step counter,input}
int np {state dimension on local domain, input}
int N {ensemble size, input}
real Xp(np, N) {local ensemble matrix, input/output}
real T1,T3,T6,D,B {fields to be allocated}
real T1p, t2p, t4p,T5p,Dp,xp {fields to be allocated}
int mp {dimension of local observation vector}
int m {dimension of global observation vector}
int i {ensemble loop counter}

1: call Get Dim Obs(step,mp) {get observation dimension, user supplied}
2: allreduce summation of m from mp {global MPI operation}
3: Allocate fields: T1(m,N),T3(m,m),T6(N,N),D(m,N),B(m,N),
4: T1p(mp, N), t2p(mp), t4p(mp),T5p(np, N),Dp(mp, N),xp(np)

5: for i=1,N do
6: call Measurement Operator(step, np,mp,Xp(:, i),T1p(:, i)) {local domain}
7: end for
8: t2p ← N−1

∑N
i=1 T1p(:, i) {mean of projected ensemble for local domain}

9: for i=1,N do
10: T1p(:, i) ← T1p(:, i) − t2p {local domain}
11: end for
12: allgather T1 from T1p {global MPI operation}
13: T3 ← (N − 1)−1 T1 T1T {full matrix-matrix product on each process}
14: call RplusA(step,m,T3) {by each process}

15: call Enkf Obs Ensemble(step,mp,N ,Dp) {local ensemble of observations}
16: for i=1,N do
17: call Measurement Operator(step, np,mp,Xp(:, i), t4p) {local domain}
18: Dp(:, i) ← Dp(:, i) − t4p {ensemble of residuals for local domain}
19: end for
20: allgather D from Dp {global MPI operation}

21: solve T3 B = D for B {Get representer amplitudes on each process}
22: T6 ← T1T B {full matrix-matrix product on each process}
23: xp ← N−1

∑N
i=1 Xp(:, i) {ensemble mean state for local domain}

24: for i=1,N do
25: T5p(:, i) ← Xp(:, i) − xp {local domain}
26: end for
27: Xp ← Xp + (N − 1)−1 T5p T6 {matrix-matrix product of type 2}
28: De-allocate local analysis fields

Algorithm 7.8: Structure of the parallel filter analysis routine for the EnKF algorithm
for domain decomposed states. It uses the representer update variant for a non-singular
matrix T5. Matrix T1p is not allocated but stored in Dp. Analogously the contents
of the arrays B and t4 is stored respectively in D and t2. Line 27 can be implemented
with a block formulation. Then only some rows of T5p need to be allocated.
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7.3.4 SEIK

As in the case of mode-decomposed ensemble and mode matrices, the analysis algo-
rithm of the SEIK filter for domain-decomposition is very similar to that of the SEEK
filter. The parallel SEIK analysis algorithm for domain-decomposition is shown as
algorithm 7.9. Again we discuss the differences to the SEEK algorithm.

For domain-decomposition, a process knows the full state ensemble for its local do-
main. Thus, the computation of ensemble means does not require any MPI operations.
Accordingly, the product of matrix T1p with matrix T in line 7 involves no communi-
cations of data. The same is true for the computation of the ensemble mean in line 13
and the application of T to t5 in line 20. Due to this, the amount of communicated
data is equal for the analysis algorithms of SEEK and SEIK in the case of domain-
decomposition. The algorithm contains several operations which are executed without
parallelization. These are the initializations of G and Uinv, the solver step for t5,
and the computation of t6. Most costly will be the solver step for t5 in line 19, since
it involves the inversion of Uinv ∈ Rr×r. These operations, together with the required
communication operations, will limit the parallel efficiency of the domain-decomposed
analysis. The parallel efficiency will be, however, better than in the case of mode-
decomposition, since there the amount of communicated data is much higher than for
domain-decomposition.

For domain-decomposed states, the resampling algorithm of SEIK, shown as algo-
rithm 7.10, has the benefit that no communication operations are required at all. The
operations on the small r × r and r × (r + 1) matrices are performed equally by all
processes. They can be expected to require negligible time compared with the com-
putation of the new ensemble states. The operations on the ensemble matrix are fully
parallelized. Hence, the domain-decomposed resampling algorithm of SEIK can be ex-
pected to show a nearly ideal speedup. To reduce the required memory, we implement
the ensemble transformation in line 11 using a block formulation. It is analogous to
the block structure described for the SEEK resampling algorithm.

7.3.5 Comparison of Communication and Memory Require-
ments

Table 7.3 summarizes the size of the communicated arrays in the domain-decomposed
filter algorithms. The numbers assume that no communication is performed in the
implementation of the measurement operator and in the subroutine RinvA.

Since we have usually n À m > N, r for realistic large scale models, it is obvi-
ous from table 7.3, that with domain decomposition significantly less data has to be
communicated between processes. The smallest amount is in the SEIK algorithm. Its
analysis algorithm communicates only two arrays of sizes r × r and r. The resampling
algorithm of SEIK is even executed without any communication of data. The largest
amount will be in the EnKF algorithm, since here arrays involving the dimension m
are communicated.

Comparing the mode-decomposed algorithms (7.1 to 7.5) with the algorithms using
domain decomposition (7.6 to 7.10), the smaller memory requirements of the domain-
decomposed filter algorithms become visible. Using domain-decomposition, all arrays
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Subroutine SEIK Analysis Domain(step,np,N ,xp,Uinv,Xp)
int step {time step counter,input}
int np {state dimension on local domain, input}
int N {ensemble size, input}
real xp(np) {local state estimate, output}
real Uinv(r, r) {inverse eigenvalue matrix, output}
real Xp(np, N) {local ensemble matrix, input/output}
real t4, t5, t6,G,∆Uinv,yp,dp, {fields to be allocated}
real T1p,T2p,T3p, t4p,∆Uinvp {fields to be allocated}
int mp {dimension of local observation vector}
int i {ensemble loop counter}
int r {rank of covariance matrix, r = N − 1}

1: call Get Dim Obs(step,mp) {get observation dimension, user supplied}
2: Allocate fields: t4(r), t5(r), t6(N),G(r, r),∆Uinv(r, r),yp(mp),dp(mp),
3: T1p(mp, N),T2p(mp, r),T3p(mp, r), t4p(r),∆Uinvp(r, r)

4: for i=1,N do
5: call Measurement Operator(step, np,mp,Xp(:, i),T1p(:, i)) {local domain}
6: end for
7: T2p ← T1p T {implemented with T as operator}
8: call RinvA(step,m, r,T2p,T3p) {operate only on local domain}
9: G ← (N−1(TT T)−1) {by each process; implemented as direct initialization}

10: ∆Uinvp ← T2p
TT3p {matrix-matrix product of type 3}

11: allreduce summation of ∆Uinv from ∆Uinvp {global MPI operation}
12: Uinv ← G + ∆Uinv {by each process}

13: xp ← N−1
∑N

i=1 Xp(:, i) {get ensemble mean state for local domain}
14: call Measurement Operator(step, np,mp,xp,dp) {user supplied}
15: call Measurement(step,mp,yp) {user supplied}
16: dp ← yp − dp

17: t4p ← T3p
Tdp {matrix-matrix product of type 3}

18: allreduce summation of t4 from t4p {global MPI operation}
19: solve Uinv t5 = t4 for t5 {by each process}
20: t6 ← T t5 {implemented with T as operator}
21: xp ← xp + Xp t6 {matrix-vector product of type 2}
22: De-allocate local analysis fields

Algorithm 7.9: Structure of the parallel filter analysis routine for the SEIK algorithm
for domain decomposed states. The arrays T2p and G are not allocated but stored
respectively in T1p and Uinv. Analogously, the contents of t5 are stored in t4.
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Subroutine SEIK Resample Domain(np,N ,xp,Uinv,Xp)
int np {state dimension on local domain, input}
int N {ensemble size, input}
real xp(np) {state analysis vector, input}
real Uinv(r, r) {inverse eigenvalue matrix, input}
real Xp(np, N) {ensemble matrix, input/output}
real T1,T2,ΩT ,C,T3p {fields to be allocated}
int r {rank of covariance matrix, r = N − 1}

1: Allocate fields: T1(r,N),T2(N,N),ΩT (r,N),C(r, r),T3p(np, N)

2: Cholesky decomposition: Uinv = C CT {by each process}
3: initialize ΩT {by each process}
4: solve CTT1 = ΩT for T1 {by each process}
5: T2 ← T T1 {implemented with T as operator}
6: for i=1,N do
7: T3p(:, i) ← Xp(:, i)
8: Xp(:, i) ← xp

9: end for
10: Xp ← Xp + N1/2 T3p T2 {matrix-matrix product of type 2}
11: De-allocate local analysis fields

Algorithm 7.10: Structure of the parallel resampling routine for the SEIK algorithm
for domain decomposed states. The matrix T1 is never allocated in the program. Its
contents are stored in ΩT . Lines 6 to 10 can be implemented with a block formulation.
Then only some rows of T3p are allocated.

Table 7.3: Sizes of arrays involved in global MPI operations in the analysis and re-
sampling phases of the SEEK and SEEK algorithms and in the analysis phase of the
EnKF algorithm for domain-decomposed states. Next to the matrix size, the name
of the matrix is given as well as the information whether the MPI operation is an
allgather (g) or allreduce (r) operation.

EnKF SEEK SEIK
analysis mN (T1, g) r2 (∆Uinv, r) r2 (∆Uinv, r)

mN (D, g) r (t3, r) r (t4, r)
1 (m, r)

resampling r2 (T1, r)
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involving the state dimension n are distributed for all three filters. In SEEK and SEIK
also all arrays involving the dimension m are distributed. In contrast to this, there are
only small memory overheads. They are caused by arrays involving the ensemble size
N which have to be added in comparison to the serial algorithms discussed in section
3.3. Since the ensemble size is typically much smaller than the dimensions n and m,
the domain-decomposed SEEK and SEIK algorithms are scalable in terms of memory
requirements. In the EnKF, the situation is more problematic. The arrays T1 ∈ Rm×N ,
D ∈ Rm×N , and T3 ∈ Rm×m are fully allocated on each process. Also one array of
size mp × N (Dp) has to be added in comparison to the serial algorithm. If large
observational data sets have to be assimilated, matrix T3 will dominate the memory
requirements.

7.4 Localized Filter Analyses

The parallelization schemes presented above are solely based on a reformulation of the
serial algorithms to distribute fields and work over the available processes. Thus, no
approximations are involved. Slightly different results in the analysis might occur due
to numerical reasons caused by a different order in parallelized summations compared
with a sum computed by a single process. The analyses algorithms of the filters are
spatially global, since long range covariances might exist. In addition, the analysis and
resampling phases are global over the state or mode ensembles, since weighted averages
of the ensemble members are computed. Due to this, several global MPI operations
are performed in the analysis and resampling phases of the filter algorithms. These
global communication operations will always limit the parallel efficiency of the filter
algorithms.

When we consider the filter algorithms developed for domain decomposed states,
the amount of communicated data is smaller than their mode-decomposed counter-
parts. The amount of data communicated in the SEEK and SEIK filters is much lower
than in the EnKF. The analysis and resampling algorithms of SEEK and SEIK are
formulated such that all operations on the state space and the observation space are
decomposed. These algorithms are global only in the error space of dimension r. Hence,
with domain-decomposed states, communication operations are required only for fields
in the error space. Since all operations in the state space and the observation space are
parallelized without communication of data, a further localization of the SEEK and
SEIK algorithms does not appear to be necessary.

The situation is different for the EnKF with domain-decomposition. The EnKF
computes the weights for the ensemble update in the observation space of dimension
m. In particular, the computation of T3 in line 13 of algorithm 7.8 and the solver step
for the representer amplitudes B in line 25 are costly. These operations are especially
problematic since they are not parallelized and therefore executed by each process.
Thus, they reduce the parallel efficiency of the algorithm. The efficiency is further
diminished by the allgather operations in lines 12 and 20.

To reduce the dimension of the observation vector in the analysis algorithm, it is
possible to formulate a localized analysis algorithm. This is based on the assumption
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that observations have negligible influence for the analysis update of a certain grid
point if they have a large distance to this grid point. In this case, only observations
within a certain distance from the grid point need to be taken into account for the anal-
ysis of the state of this location. The local analysis is an approximation to the global
analysis, but it is motivated by the fact that long range covariances in the matrix P̃,
which is represented by the ensemble, are very noisy and their information contents
will be negligible. This topic has been discussed, e.g., by Houtekamer and Mitchell [34].
To perform the localization, Houtekamer and Mitchell [36] filtered the covariance ma-
trix P̃ by a Schur product, i.e. an element-wise product, with a matrix representing
correlations of local support. This technique has also been used by Keppenne and
Rienecker [45] who apply the localization for data assimilation in an parallelized ocean
general circulation model.

The effect of the introduced smoothing and down-weighting of observations at inter-
mediate distances and neglecting of remote observations has been examined by Hamill
et al. [30]. Their results showed that for small ensembles the cut-off radius for the
observations should be rather small to obtain a minimal estimation error. Typically an
optimal radius which minimizes the estimation error can be determined. On the other
hand Mitchell and Houtekamer [56] showed that the localization causes imbalance in
the analysis state of a primitive equation model. This imbalance increases with de-
creasing cut-off radius. Evensen [18] also argued against a filtering of the covariances,
since this will introduce spurious and nondynamical modes in the analysis. Evensen,
on the other hand argues in favor of a local analysis since this increases the degrees of
freedom in the update of the ensemble states. I.e. each local domain will be updated
using a different combination of the ensemble states. This will eventually lead to a
state estimate with smaller estimation errors than a global analysis update.

We will derive equations for the local analysis which do not use a Schur product to
filter and localize the covariances. Our formulation just neglects observations beyond
the cut-off radius. For the filtering by a Schur product this would correspond to a step
function of the correlations. In this respect, our formulation follows that suggested by
Evensen [18]. Figure 7.3 visualizes the domain decomposition for a localized analysis
in a structured rectangular grid. We intent to update the sub-domain S. When we
assume direction dependent cut-off radii (r1, r2), the influence region of observations
for the upper right edge of S is given by the ellipse C. The region D shaded in light
grey is the observation influence region for the whole sub-domain S. In finite difference
models with structured grids, for simplicity the rectangular region D̃ could be chosen
as influence region. This localization differs from that suggested by Ott et al. [58].
While Ott et al. use coinciding domains for the sub-domain S in which the state is
updated and the observation domain D we assume that D contains all observations
within a certain distance from the grid points in S.

To obtain a mathematical formulation for the localization, we consider the basic
analysis equations 2.41 and 2.42 of the EnKF algorithm. Omitting the time index k,
the global analysis equations for each ensemble state {x(α), α = 1, . . . , N} are:

xa(α) = xf(α) + K̃
(
yo(α) − Hxf(α)

)
(7.1)
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Figure 7.3: Domain decomposition for a localized analysis in a structured rectangular
grid (Following the representation by Keppenne and Rienecker [45]). Region S is the
sub-domain in which the state is updated. The ellipse C marks the influence region of
observations for the grid point at the upper right edge of region S. C is defined by the
cut-off radii r1 and r2. The region D shaded in light grey marks the influence region
of the observations for the whole region S.

with

K̃ = P̃fHT
(
HP̃fHT + R

)−1

. (7.2)

Now let Sσ be a linear operator which reduces a global state vector x of dimension n
to its local part xσ of dimension nσ < n in the sub-domain Sσ . The subscript σ denotes
the set of parameters which specify the sub-domain. For simplicity, we assume here
that the sub-domain is specified by the spatial position l of its center as well as its
extent rσ in the spatial directions. Then we can write the analysis of the local state as

xa(α)
σ := Sσx

a(α) = Sσx
f(α) + SσK̃

(
yo(α) − Hxf(α)

)
. (7.3)

Let Dδ be a linear operator which reduces a global observation vector y of dimen-
sion m to its local part yδ in the sub-domain Dδ. The subscript δ denotes the set
of parameters which specify the sub-domain in the global observation domain. We
assume that Dδ is centered at the same spatial location l as the state sub-domain Sσ

but the extent of Dδ will be different from that of Sσ . Now we can write the analysis
for the local state using only observations from domain Dδ as

Sσx
a(α) = Sσx

f(α) + K̃σδ

(
Dδy

o(α) − DδHxf(α)
)

(7.4)

with

K̃σδ = SσP̃
f
HTDδ

T
(
DδHP̃fHTDT

δ + DδRDT
δ

)−1

. (7.5)
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The application of the operator Dδ amounts to the neglect of observations which are
beyond the sub-domain Dδ.

Now we define the measurement operator Hδ := DδH which projects a (global) state
vector onto the local observation domain Dδ. In addition, we define the observation
error covariance matrix in Dδ as Rδ := DδRDT

δ . With these definitions the local
analysis equations for the EnKF are

xσ
a(α) = xσ

f(α) + K̃σδ

(
yδ

o(α) − Hδx
f(α)

)
(7.6)

with

K̃σδ = SσP̃
f
Hδ

T
(
HδP̃

fHT
δ + Rδ

)−1

. (7.7)

For the local analysis these equations replace equations (2.41) and (2.42) of the
global analysis. The local representer formulation follows as the local alternative to
equations (2.46) and (2.47) as

xa(α)
σ = xf(α)

σ + SσP̃
f
HT

δ b(α)δ (7.8)

and
(HδP̃

fHδ
T + Rδ)b

(α)
δ = y

o(α)
δ − Hδx

f(α) . (7.9)

Based on equations (7.6) and (7.7, we can also reformulate) the ensemble compu-
tation of the matrices P̃fHT and HP̃fHT (equations (2.48) and (2.49)) for the local
analysis. These are:

SσP̃
f
HT

δ =
1

N − 1

N∑
α=1

((α)xf
δ − xf

δ )[Hδ(
(α)xf − xf )]T , (7.10)

HδP̃
fHT

δ =
1

N − 1

N∑
α=1

Hδ(
(α)xf − xf )[Hδ(

(α)xf − xf )]T (7.11)

These equations can be implemented using the same optimization strategy as for
the other parallelized EnKF analysis algorithms. The Algorithm 7.11 shows the al-
gorithm in pseudo code. Apart from the distinction of private and global variables,
it is identical to the structure of the serial program shown in algorithm 3.5. In par-
ticular, no communications are performed in the analysis routine itself. However, the
called subroutines are different from their serial variants. Get Dim Obs now provides
the dimension of the local observation vector yo

δ and EnKF Obs Ensemble initializes
the local observation ensemble Yo

δ . Also, RplusA adds the local observation error co-
variance matrix Rδ. Analogously, the routine Measurement Operator provides a state
vector projected on the local observation space on the basis of the global state vec-
tor. This routine has as input only a state vector for the local domain. Thus the
routine Measurement Operator will involve communications of data from other state
sub-domains if the domains Sσ and Dδ do not coincide. As long as the local observation
domain is smaller than the global observation domain, these communication operations
will not involve all processes. The implementation of the localized analysis algorithm
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Subroutine EnKF Analysis Local(step,np,N ,Xp)
int step {time step counter,input}
int np {state dimension on local domain, input}
int N {ensemble size, input}
real Xp(np, N) {local ensemble matrix, input/output}
real T1p, t2p,T3p, t4p,T5p,T6p,Dp,xp {fields to be allocated}
int mp {dimension of observation vector in the local domain}
int i {ensemble loop counter}

1: call Get Dim Obs(step,mp) {dimension for local observation domain Dδ}
2: Allocate fields: T1p(mp, N), t2p(mp),T3p(mp,mp), t4p(mp),
3: T5p(np, N),T6p(N,N),Bp(mp, N),Dp(mp, N),xp(np)

4: for i=1,N do
5: call Measurement Operator(step, np,mp,Xp(:, i),T1p(:, i)) {in domain Dδ}
6: end for
7: t2p ← N−1

∑N
i=1 T1p(:, i) {in domain Dδ}

8: for i=1,N do
9: T1p(:, i) ← T1p(:, i) − t2p {in observation domain Dδ}

10: end for
11: T3p ← (N − 1)−1 T1p T1T

p {full matrix-matrix product in Dδ}
12: call RplusA(step,mp,T3p) {in domain Dδ}

13: call Enkf Obs Ensemble(step,mp,N ,Dp) {ensemble of observations in Dδ}
14: for i=1,N do
15: call Measurement Operator(step, np,mp,Xp(:, i), t4p) {in domain Dδ}
16: Dp(:, i) ← Dp(:, i) − t4p {ensemble of residuals for domain Dδ}
17: end for

18: solve T3p Bp = Dp for Bp {in domain Dδ}
19: xp ← N−1

∑N
i=1 Xp(:, i) {ensemble mean state for local domain Sσ}

20: for i=1,N do
21: T5p(:, i) ← Xp(:, i) − xp {in domain Sσ}
22: end for
23: T6p ← T1T

p Bp {in domain Dδ}
24: Xp ← Xp + (N − 1)−1 T5p T6p {full matrix-matrix product in Sσ}
25: De-allocate local analysis fields

Algorithm 7.11: Structure of the local filter analysis routine for the EnKF algorithm
using domain decomposed states. This routine applies the representer update variant
for a non-singular matrix T5p. Matrix T1p is not allocated but stored in Dp. Analo-
gously, the contents of Bp and t4p is stored respectively in Dp and t2p. To avoid the
allocation of the full array T5p, line 24 can be implemented in block formulation.
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is independent of the model grid. Thus, it can be also applied for unstructured grids
like those which can appear with finite element models.

The local formulation has the benefit that no arrays involving the full observation
dimension m need to be allocated. The Matrices T1p and Dp are now of size mp × N
and matrix T3p has only dimension mp × mp. The amount of computations is as
well reduced in comparison to the domain-decomposed global analysis algorithm 7.8.
The matrix-matrix products to compute T3p (line 11) and T6p (line 23) involve now
the dimension mp instead m. Also, the solver step to obtain the representer ampli-
tudes Bp (line 18) is computed in the domain Dδ.

As long as the domains Sσ and Dδ do not coincide, the local analysis formulation still
requires communication of data. These communication operations are, however, not
global and involve less amount of data than the global domain-decomposed formulation
of the algorithm. In addition, the localization permits to distribute all computations
on observation-related matrices including, e.g., the solver step for the representer am-
plitudes. Thus, the local algorithm can be expected to show a much better scalability
and parallel efficiency than the global algorithm.

7.5 Summary

In this chapter, we examined strategies to parallelize the analysis and resampling phases
of the SEEK, EnKF, and SEIK filter algorithms. There are two different parallelization
strategies:

1. Mode-decomposition – The filter can be parallelized over the modes of the ensem-
ble matrix X or the mode matrix V. In this case, the matrix is decomposed such
that each process holds several columns of X or V. Since each column of the
matrix represents a full model state vector, the filter operates on sub-ensembles
of model states. This parallelization strategy of the filter is independent from
a possible parallelization of the numerical model used to compute the forecast.
Since each ensemble state can be evolved independently from the other states,
this parallelization exploits the inherent parallelism of the ensemble forecast.

2. Domain-decomposition – The filter can be parallelized by a decomposition of
the model domain. In this case each process holds several rows of the matri-
ces X or V. Thus, each process operates on a full ensemble of model sub-states
for the domain owned by this process. With this parallelization strategy, the
filter typically applies the same domain-decomposition as the numerical model.
Different decompositions for model and filter are possible, but will yield an over-
head when the state information is transferred between filter and model. This is
due to the reordering of the state information.

We also discussed the implementation of a localized filter analysis for the situation
of domain-decomposed states. This localization neglects observations beyond some
distance from a model sub-domain. Thus, it reduces the effective dimension of the ob-
servation vector. It became evident that a localization is only useful for the EnKF. The
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SEEK and SEIK filters operate globally only on the error subspace which is spanned
by the ensemble states. Since the error subspace is typically of much lower dimension
than the local model domain, the global operations will not significantly limit the par-
allel efficiency of the algorithms. For the EnKF, the localization reduces the amount of
communicated data. In addition, the computations are distributed more evenly among
the processes than in the global formulation of the analysis. Thus, the localization will
provide a better scalability of the EnKF algorithm compared with a global analysis.
We obtained a particularly simple formulation for the implementation of the EnKF
analysis routine. The analysis routine is formulated like the serial algorithm discussed
in section 3.3 while the localization is entirely handled in the observation-dependent
routines which are provided by the user of the algorithm.

For the global algorithms, tables 7.2 and 7.3 showed that significantly less data
is communicated if the variant with domain-decomposed states is used. The least
amount of communication is necessary for the SEIK filter. In addition, the memory
requirements are smaller for the variant with domain-decomposition than with decom-
position over the modes of the ensemble matrix. Using domain-decomposed states,
all matrices involving the state dimension n or the dimension m of the observation
vector are decomposed in the SEEK and SEIK algorithms. This provides scalability
of the memory requirements. In the EnKF, all matrices involving the state dimension
n are decomposed, too. It is, however, still required to allocate matrices involving the
observation dimension m. Thus, the EnKF requires more memory than the SEEK and
SEIK algorithms. In addition, the memory requirements do not scale with the number
of processes. Scalability of the memory requirements is assured if the localized analysis
algorithm is used. In this case, all matrices involving the observation dimension are
decomposed and refer only to the local observation domain.

Since the state or ensemble updates of the filter analysis and resampling phases cor-
respond to the computation of weighted averages of the ensemble members, it is much
more efficient to store whole ensembles of sub-states on each process than to store
sub-ensemble of whole states. Thus, from the algorithmic point of view, the domain-
decomposed filter algorithms are superior to the mode-decomposed filters. Most effi-
cient is the domain-decomposed SEIK filter. It decomposes all matrices involving the
larger dimensions n and m. Communication operations are only necessary on matri-
ces involving the dimension r of the error subspace. The localized EnKF algorithm
will also be efficient. However, this algorithm approximates the analysis by neglecting
observations beyond a certain distance.

The different parallel efficiencies of the algorithms, however, will be less important
in data assimilation applications if the forecast phase dominates the computation time.
In this case, it is important that the ensemble forecast exhibits good parallel efficiency.
This issue is discussed in the next chapter in conjunction with the development of a
parallel filtering framework.
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Chapter 8

A Framework for Parallel Filtering

8.1 Introduction

As we have discussed above, the forecast phase of the EnKF and SEIK filters consists of
an evolution of N independent model states. In addition, the evolutions of the modes
in the SEEK filter are independent, if a gradient approximation for the linearized model
is used. To utilize this natural parallelism of the forecast phase and the parallelization
possibilities of the analysis and resampling phases discussed in chapter 7, we develop
a framework for parallel data assimilation based on filter algorithms. The framework
defines an application program interface (API) which permits to combine a filter al-
gorithm with a numerical model. The filter algorithm is attached to the model with
minimal changes of the model source code itself. The API permits to switch easily
between different filter algorithms. Parts of the data assimilation program which are
specific to the model or refer to observations are hold in separate subroutines. These
have to be provided by the user of the framework such that they can be called in the
filter routines via the API. Accordingly, no changes to the filter routines themselves are
required when a data assimilation system is implemented utilizing the filter framework.
Thus, it is possible to compile the filter routines separately from the data assimilation
program and to distribute them as a program library.

Existing interface structures are the programs SESAM [75] and PALM [60]. SESAM
is based on UNIX shell scripts which control the execution of separated program exe-
cutables. This structure requires that all data transfers between different programs in
the data assimilation system are performed using disk files. SESAM has the benefit
that no changes to the model source code are required, since the structure of the data
assimilation system is defined externally to the model. The problem of data exchanges
between the model and the filter program, i.e. the analysis and resampling phases, is
shifted to the problem of a consistent format of the data files. Eventually the disk
read/write routines have to be changed in the model or file transformation programs
are required. The system does not allow for parallel model tasks, as it is based on shell
scripts. Furthermore, the overall performance in terms of computation time will not be
optimal, since disk operations are extremely slow in comparison to memory operations.

111
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The concept of the PALM system is quite different. This coupler is based on an
abstract flow chart representation of data assimilation systems [48]. PALM provides
a graphical user interface (GUI) in which the data assimilation system is assembled
from separated subroutines following the flow chart representation. In addition, PALM
provides a library of algebraic routines. These are prepared for the PALM system and
can be used directly in the GUI. Subsequently, an executable program is compiled
within the PALM framework according to a structure file written by the GUI. The
structure of PALM is highly flexible. It requires, however, that subroutines are prepared
to be used with PALM. For this, the routines are extended by a definition header. In
addition, subroutine calls for data transfers are added. In PALM, the construction of
the whole program including the data assimilation algorithm is shifted to the GUI.

The data assimilation framework which we present in this chapter is less abstract
and flexible than PALM. On the other hand, the chosen structure gives more control to
the user who attaches the filters to the model source code. The calls to the filter inter-
face routines are added directly to the source code of the model. The filter algorithms
are fully implemented and optimized using library routines for algebraic operations.
We use the BLAS and LAPACK libraries which are provided by the computer vendor,
since these are typically highly optimized for the used computer system. There is no
need to modify the filter algorithms or to assemble single routines to obtain a working
data assimilation algorithm. In addition, the execution of the program is controlled
from within the model source code, which is extended to perform data assimilation.
The control is not shifted to an exterior environment as in PALM. In discussions with
oceanographers, these future users apparently prefer a structure in which the physical
model remains the essential part of the data assimilation program and the filter is at-
tached to the model. A structure which passes the model to a coupler interface which
controls the program execution appeared to be accepted less. Such a structure was
also used for the implementation which we presented in section 3.3. There the control
was given to the filter routines after initializing the model. The time stepper of the
model itself was called as a subroutine.

There are two different process configurations for the framework. The filter routines
can be either executed by (some of) the model processes or disjoint process sets for the
filter and model routines can be used. Thus, after introducing the general structure
of the framework in section 8.2, we discuss separately the framework structures for
two different process configurations in sections 8.3 and 8.4. In both cases, we introduce
the API. Further, we discuss possible configurations of the required MPI communicators
and explain the execution structures of the framework. Subsequently, we consider in
section 8.5 the issue to define the transition between the state vector notation of the
filter routines and the physical fields of the model.

8.2 General Considerations

For the development of the framework, we base on the following considerations:

• The numerical model is independent from the routines of the filter algorithms.
The model source code should be changed as little as possible when combining
the filters with the model.
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Figure 8.1: Logical parts of the data assimilation problem.

• The filter source code is independent from the model. It solely operates on model
state vectors, not on the physical fields of the model.

• The observations are independent both from the numerical model and from the
filter. The filter routines require information on the observations (observation
vector, measurement operator, observation error covariance matrix) in the anal-
ysis phase. The model does not need information about the observations. To im-
plement the measurement operator, however, information on the structure of the
state vector is necessary. The physical meaning of the entries (velocities, temper-
atures, etc.) and their spatial location in the model mesh has to be known. Since
the routines which initialize the state ensembles also require this information, it
can be shared between the ensemble initialization routines and the implementa-
tion of the measurement operator using Fortran modules. The framework can be
logically partitioned into three parts as is sketched in figure 8.1. The transfer of
information between the model and the filter as well as between the filter and
the observations is performed via the API.

• The framework has to allow for the execution of multiple concurrent model evo-
lutions, each of these can be parallelized itself and thus be executed by multiple
processes. Both, the parallelization of the model itself and the number of parallel
model tasks have to be specified by the user.

• Like the model, the filter routines can be executed in parallel, too. We have
discussed the parallelization of the filter routines in chapter 7.

• The filter routines can either by executed by (some of) the processes used for the
model evolutions or by a set of processes which is disjoint from the set of model
processes.

To combine a filter algorithm with a numerical model in order to obtain a data
assimilation program, we consider the ’typical’ structure of a model which computes
the time evolution of several physical fields. These can be, for example, the temper-
ature and salinity fields in a modeled ocean. The ’typical’ structure is depicted in
figure 8.2a. In the initialization phase of the program, the mesh for the computations
is generated. Also the physical fields are initialized. Subsequently, the evolution is
performed. Here nsteps time steps of the model fields are computed. These take into
account boundary conditions as well as external forcing fields, like e.g. wind fields over
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the ocean. At certain time-step intervals, some fields are typically written into disk
files and diagnostic quantities are computed. Having completed the evolution some
post-processing operations can be performed.

The structure of the data assimilation program with attached filter is shown in
figure 8.2b. To initialize the filter framework, a routine Filter Init is added to the
initialization part of the program. Here the arrays required for the filter, like the en-
semble matrix X, the mode matrix V or matrix U of the SEEK filter are allocated.
Subsequently, the state estimate xa

0 and the state ensemble or mode matrices are ini-
tialized. The major logical change when combining a filter algorithm with the model
source code is that a sequence of independent evolutions has to be computed. This can
be achieved by enclosing the time stepping loop by an unconditioned outer loop which
is controlled by the filter algorithm. For each evolution the model obtains a model
state from the filter algorithm together with the number of time steps to be performed.
To enable the consistent application of time dependent forcing in the model the filter
also provides the model time at the beginning of the evolution phase. The user has
to assure that the evolutions are really independent. Thus, any re-used fields must
be newly initialized. In the framework, the model state, the model time (t), and the
number of time steps (nsteps) are provided by calling a subroutine Get State before
the time stepping loop is entered. A value of nsteps = 0 uniquely determines that no
stepping has to be performed. Thus, this setting is used as an exit-condition within
the unconditioned outer loop. After the time stepping loop a subroutine Put State is
inserted into the model source code. In this routine the evolved model fields are stored
back as a column of the ensemble state matrix of the filter. If the ensemble forecast
has not yet finished, no further operations are performed in the routine Put State.
When all model states of the current forecast phase are evolved, Put State executes
the analysis and resampling phases of the chosen filter algorithm.

For the parallelized version of the data assimilation program, a further change to
the model source code concerning the configuration of MPI communicators is required.
For MPI-parallelized models there is typically a single model task which operates in the
global MPI communicator MPI COMM WORLD. To allow for multiple model tasks
which are executed concurrently, the global communicator has to be replaced by a
communicator of disjoint process sets in which each of the model tasks operates. Thus,
a communicator COMM MODEL consisting of Nm disjoint process sets has to be gen-
erated. In the model source code, the reference to MPI COMM WORLD has to be
replaced by COMM MODEL. Next to the communicator for the model a communica-
tor COMM FILTER has to be created defining the processes which execute the filter
routines. To couple the filter processes with the model tasks another communicator
COMM COUPLE is required. Using this communicator, data is transfered between
the filter and model parts of the data assimilation framework.

The configuration of the MPI communicators is dependent on the choice whether
the filter routines are executed by some of the model processes or on a set of processes
which is disjoint from the set of model processes. In addition, the API for calling the
subroutines Filter Init, Get State, and Put State depends on this choice of the process
configuration. For this reason, we discuss the two different configurations separately
in the following sections.
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Figure 8.2: Flow diagrams: a) Sketch of the typical structure of a model performing
time evolution of some physical fields. b) Structure of the data assimilation configura-
tion of the model with attached filter. Added subroutine calls and control structures
are shaded in gray.
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The implementation of the filter routines has been discussed in chapter 7. The
names of user supplied subroutines are handled in the framework as subroutine argu-
ments in the filter routines and have thus to be specified in the API. This allows the
user to choose the subroutine names flexibly.

8.3 Framework for Joint Process Sets for Model

and Filter

First we consider the situation that the filter routines are executed by some of the
processes which are used for the model evolutions. In this case, the internal variables
of the filter algorithms are mainly stored using Fortran modules. With this, e.g., the
ensemble matrix X or the counter for the ensemble member to be evolved can be shared
between the different subroutines of the filter. The names of user supplied subroutines
cannot be handled via modules. For this reason, the subroutine names have to be used
as arguments in the call to each routine using the particular subroutines.

8.3.1 The Application Program Interface

The three subroutines Filter Init, Get State, and Put State provide a defined interface
to the filter algorithms. In addition, the user-supplied routines like the observation-
related subroutines and the user analysis routine are called using a defined interface.
We discuss here the interface to the three routines of the framework which are called
from the model. The interfaces of the user supplied routines which are called by
the filter are described in appendix B. The interfaces of these routines are equal for
both process configurations. The implementation of the operations performed in these
routines depend, however, on the choice whether a parallelization on basis of mode-
decomposition or domain-decomposition is used.

The interface of the routine Filter Init is shown as algorithm 8.1. This routine is
called in the model source code by all processes. For the initialization several variables
are passed to the filter. With the integer argument type ass the user chooses the filter
algorithm to be used. For flexibility, subtype ass defines a sub-type of the filter. This
might be, e.g., a variant of SEEK in which the modes in matrix V are not evolved [33].
The array param int is a vector of variable size dim pint. It holds integer parameters
for the filters. In the current implementation of the filters dim pint = 3 is set if the
SEEK or SEIK filters are used. For EnKF, it is dim pint = 4. The first entry of
param int holds the dimension n of the state vector. The second entry specifies the
ensemble size N for EnKF or the rank r of the approximated state covariance matrix
for SEEK and SEIK. The third entry specifies whether a parallelization with domain-
decomposition or a decomposition over the modes of the ensemble matrix is used. For
the EnKF the fourth entry is used to specify the rank of the inverse on the left hand side
of equation (2.47) if a pseudo inverse has to be computed. A value of zero specifies that
the solution of equation (2.47) is computed using the LAPACK routine DGESV. The
array param real of size dim preal defines a vector of floating point parameters which
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Subroutine Filter Init(type ass,subtype ass,param int,dim pint, param real,
dim preal,COMM MODEL,COMM FILTER,COMM COUPLE,
modeltask,n modeltasks,filterpe,Init Ensemble,verbose,status)

int type ass {Type a filter algorithm, input}
int subtype ass {Sub-type of filter, input}
int param int(dim pint) {Array of integer parameters, input}
int dim pint {Size of param int, input}
real param real(dim preal) {Array of floating point parameters, input}
int dim preal {Size of param real, input}
int COMM MODEL {Model communicator, input}
int COMM FILTER {Filter communicator, input}
int COMM COUPLE {Coupling communicator, input}
int modeltask {Model task the process belongs to, input}
int n modeltasks {Number of parallel model tasks, input}
int filterpe {Whether the process belongs to the filter processes, input}
external Init Ensemble {Subroutine for ensemble initialization, input}
int verbose {Whether to print screen information, input}
int status {Output status flag of filter, output}

Algorithm 8.1: Interface to the subroutine Filter Init in the case of joint process sets
for model and filter.

are be required for some of the filters. For SEIK and EnKF param real has a size of 1
and contains only the value of the forgetting factor ρ. For SEEK it is dim preal = 2.
While the first entry of param real specifies the forgetting factor ρ, the second entry
sets the value of ε for the gradient approximation of the forecast. The flexible sizes
of param int and param real allow for future extensions of the functionality. Next to
these variables, the three communicators are handed over to the filter initialization rou-
tine. Further, the index modeltask of the model task of the process calling Filter Init
and the total number n modeltasks of parallel model tasks is passed to the filter ini-
tialization routine. The argument filterpe specifies whether a process belongs to the
filter processes. The name of the subroutine performing the ensemble generation is the
next argument. The interface is completed by an argument which defines whether the
filter routines will print out screen information and a final argument which serves as a
status flag. It will have a non-zero value if a problem occurred during the initialization.

The subroutine Get State is called in the model source code before the time stepping
loop is entered. Get State initializes the state fields of the model and provides the infor-
mation on the current model time and the number of time steps to be computed, The
interface to this routine is shown as algorithm 8.2. All parameters which are required
by the filters have already been specified in the filter initialization. Accordingly, the
interface of Get State contains only names of subroutines and output variables which
are initialized for the model time stepper. The variables nsteps and time, as well as
the status flag status are outputs of the routine. In addition, the names of three sub-
routines are specified. The routines Next Observation and User Analysis have already
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Subroutine Get State(nsteps,time,Next Observation,Distribute State,
User Analysis,status)

int nsteps {Number of time steps to be performed, output}
real time {Model time at begin of evolution, output}
external Next Observation

{Subroutine to get number of time steps and current time, input}
external Distribute State

{Subroutine to distribute state in COMM MODEL, input}
external User Analysis {Subroutine for user analysis, input}
int status {Output status flag of filter, output}

Algorithm 8.2: Interface to the subroutine Get State in the case of joint process sets
for model and filter.

been described in section 3.3.1. The routine Distribute State transfers a state vector to
model fields and distributes these within the model task defined by COMM MODEL.
In the variant with mode-decomposition, the framework itself only initializes a state
vector on a single process in each model task. The model-dependent operations are
then performed by the routine Distribute State which is described in section 8.5.

Having computed the evolution of a model state, this forecast is stored back in
the ensemble or mode matrix of the filter algorithm. This is performed in the rou-
tine Put State. If Put State is called after the filter forecast phase has been com-
pleted, the analysis and resampling phases are executed by this routine. In its in-
terface, the names of several subroutines which are called by the filter analysis and
resampling algorithms have to be specified. The observation-related routines Mea-
surement Operator, Measurement , RinvA, RplusA, and Get Dim Obs have already

Subroutine Put State(Collect State,Get Dim Obs,Measurement Operator,
Measurement,Measurement Ensemble,User Analysis,RinvA,RplusA,status)

external Collect State
{Subroutine to collect state vector in COMM MODEL, input}

external Get Dim Obs
{Subroutine to provide dimension of observation vector, input}

external Measurement Operator
{Subroutine with implementation of measurement operator, input}

external Measurement {Subroutine to initialize observation vector, input}
external Measurement Ensemble

{Subroutine to initialize ensemble of observation vectors, input}
external User Analysis {Subroutine for user analysis, input}
external RinvA {Subroutine for product of R−1 with some matrix, input}
external RplusA {Subroutine to add R to some matrix, input}
int status {output status flag of filter, output}

Algorithm 8.3: Interface to the subroutine Put State in the case of joint process sets
for model and filter.
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been discussed in section 3.3.2. The routine Measurement Ensemble is required in
the EnKF. It provides the observation ensemble according to the observation error co-
variance matrix R. Collect State performs the operation inverse to that of the routine
Distribute State. That is, the ensemble fields in a model task are gathered in a state
vector. For mode-decomposed ensemble matrices, the state vector is gathered by a
single process of this task. Next to the names of subroutines, the interface of Put State
contains again the status flag status as an output variable.

The routine Put State is generic for all three filter algorithms. Due to this, the
interface requires the specification of all possible subroutine names, even if they are
not required for all filters. For example, SEEK and SEIK only require the routine
RinvA but not RplusA. The latter routine is required by the EnKF analysis while the
former one is not used by this filter. To generate an executable program all three
routines must be present (possibly as an empty routine, if it is not called by the chosen
filter), since they are required for the linker step. To facilitate the implementation if
only one filter type is used, we have implemented specific routines like Put State SEEK
for the SEEK filter. The interface of the specific put-routines contains only the names
of the subroutines relevant for the chosen filter.

It would be possible to avoid the names of subroutines in the calling interfaces
to Filter Init, Get State, and Put State. This would simplify the API considerable.
On the other hand this would disable the possibility to use arbitrary names for the
subroutines. We prefer this flexibility, since the user is not urged to use specific names
for his subroutines.

8.3.2 Process Configurations for the Filtering Framework

Before we explain the functionality of the filter interface routines and the communica-
tion of data between the filter and the model part of the data assimilation program, we
discuss the configuration of the MPI communicators. These define the process topol-
ogy for the data assimilation framework. In general, the data assimilation framework
requires that the user initializes the communicators and provides the names of these
communicators to the routine Filter Init. To facilitate the initialization of the commu-
nicators, the framework includes templates for these operations. These templates can
be used in most situations without changes, but can be adapted when necessary. The
communicator configurations use simple 1-dimensional process topologies. Dependent
on the model, it might be useful to apply other topologies inside the process sets of
COMM MODEL, e.g., to obtain optimal performance for 2-dimensional domain de-
compositions.

A possible process configuration for mode-decomposition is shown in figure 8.3.
In this figure each row corresponds to the communicator which is given on the right
hand side. The processes are ordered from left to right according to their logical
process number which is given by the rank of the processes in the communicator
MPI COMM WORLD. Thus, the entries in a single column refer to the same process.
The number entries denote the rank of the process in the communicator. If no rank is
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−→ logical process number (= rank in MPI COMM WORLD)

[0 1 2 3 4 5 6 7] MPI COMM WORLD

[0 1] [0 1] [0 1] [0 1] COMM MODEL

[0 1] [0 1] COMM COUPLE

[0 1] COMM FILTER

Figure 8.3: Example communicator configuration for the case that the filter is executed
by some of the model processes and the filter routines use a parallelization of the modes.

given for a process in the context of some communicator, this process does not attend
in communications within this communicator. The brackets enclose processes which
build together a process set on the communicator.

In the example the program is executed by a total of 8 processes. These are dis-
tributed into four parallel model tasks each executed by two processes in the context
of COMM MODEL. The filter routines are executed by two processes. These are the
processes of rank 0 and 4 in the context of MPI COMM WORLD. In the context of
COMM MODEL the filter processes have rank 0. Each filter process is coupled to
two model tasks. Thus, there are two disjoint process sets in COMM COUPLE each
consisting of two processes. With this configuration, the filter initialization will divide
the ensemble or the mode matrix into two matrices which are stored on the two filter
processes. Each matrix holds a sub-ensemble of model states. For the utilization of all
four model tasks, each filter process will again distribute its sub-ensemble to the two
model tasks which are coupled to it by COMM COUPLE.

A simpler configuration which will be sufficient for most applications is shown in
figure 8.4. Again there are four parallel model tasks each containing two processes.
The filter is executed in this configuration by each process which has rank 0 in the
context of COMM MODEL. With this configuration, the communication scheme is
simplified since no communication via COMM COUPLE is required. Each process set
in COMM COUPLE contains only a single process and the filter processes can directly
provide data to the model tasks. Using this configuration, the state or mode ensemble
is distributed into sub-ensembles in the routine Filter Init. In contrast to the configu-
ration in figure 8.3, no further distribution of the ensemble is necessary.

−→ logical process number (= rank in MPI COMM WORLD)

[0 1 2 3 4 5 6 7] MPI COMM WORLD

[0 1] [0 1] [0 1] [0 1] COMM MODEL

[0] [0] [0] [0] COMM COUPLE

[0 1 2 3] COMM FILTER

Figure 8.4: Example communicator configuration analogous to that in figure 8.3. Here
the filter is executed by all processes which have rank 0 in COMM MODEL.
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−→ logical process number (= rank in MPI COMM WORLD)

[0 1 2 3 4 5] MPI COMM WORLD

[0 1 2] [0 1 2] COMM MODEL

[0 1]

[0 1]


COMM COUPLE

[0 1]

[0 1 2] COMM FILTER

Figure 8.5: Example communicator configuration for the case of domain-decomposed
states. The filter is executed by some of the model processes.

If a domain-decomposition is used for the parallelization of the model and the
filter parts of the program, the configuration of the processes is distinct from the
case of mode-decomposition. considered is the situation that the filter uses the same
domain-decomposition of the states as the model. Figure 8.5 shows a possible process
configuration. Here the program is executed by six processes in total. These are
distributed into two model tasks each consisting of three processes. The filter routines
are executed by all processes of one of the model tasks. Hence, the sub-state from
this model task can be directly transfered between the local ensemble matrix and the
model fields. The second model task is connected to the filter via COMM COUPLE.
With domain-decomposition, the initialization of the sub-states is performed in the
initialization phase of the filter. The filter operates on the whole ensemble of local sub-
states. To use multiple model tasks the ensemble is distributed into sub-ensembles.
These are sent to the model tasks via COMM COUPLE.

A simplified configuration is possible which uses only a single domain-decomposed
model task. This would lead to a trivial coupling communicator which consists of pro-
cess sets containing a single process each. Thus, no communication in COMM COUPLE
would be necessary and the overall MPI communication would be minimized. This con-
figuration would, however, require a model with very efficient parallelization. On the
other hand, overall scalability would be limited, since only a single model evolution is
computed at a time.

8.3.3 The Functionality of the Framework Routines

To gain further insight in the functionality of the data assimilation framework, we
discuss here the operations which are performed in its main routines. The filter algo-
rithms are hidden behind the three subroutines Filter Init, Get State, and Put State.
Due to this, the filter main routine, which was discussed in section 3.3.1, is split into
two parts. These parts reside in Get State and Put State. Some additional operations
are contained in these routines which are required for the parallel execution of the data
assimilation framework.

The interface to the routine Filter Init has been shown in algorithm 8.1. Al-
gorithm 8.4 sketches the operations which are performed in this routine when the
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SEIK filter is used with a mode-decomposed ensemble matrix. The routine is called by
all processes. Here several parameters are initialized, like the chosen filter algorithm
or the ensemble size. These parameters are shared between the filter routines using
Fortran modules. All subsequent operations in Filter Init are only performed by the
filter processes. First, the sizes of sub-ensembles are computed. Subsequently, the
arrays required for the filter are allocated. These are the state vector x and the local
ensemble matrices Xp. In addition, the full ensemble matrix X is allocated on the fil-
ter process with rank 0. After the allocation of the fields, the user-supplied subroutine
Init Ensemble is called. For the SEIK filter, this routine initializes the ensemble ma-
trix. If a parallelization with mode-decomposition is used, Init Ensemble is only called
by the process with rank 0. Here the full ensemble matrix is initialized. Subsequently,
it is necessary to distribute sub-ensembles to all filter processes. This is performed by
MPI communication operations.

In the case of domain-decomposed states, the routine Init Ensemble is called by all
filter processes. The routine has to provide the full state ensemble for the local domain
of each process. Since the state ensembles are readily initialized by all filter processes
no further distribution of the ensembles is performed in Filter Init. A similar technique
could be used for a mode-decomposed ensemble matrix. That is, Init Ensemble is called
by each filter process with the local sub-ensemble as argument. Then Init Ensemble
initializes only this local sub-ensemble. Since the sub-ensembles are readily initialized
on the filter processes, no distribution of sub-ensembles would be required in Filter Init.
Using this variant would avoid the storage of the full ensemble matrix on a single pro-
cess. On the other hand the user would be obliged to implement Init Ensemble such
that all sub-ensembles are initialized correctly. From this point of view, the first vari-
ant, which initializes the full ensemble matrix on a single process, is simpler to use.
If memory limitations render the allocation of the full ensemble matrix on a single
process impossible, the initialization should directly operate on the sub-ensembles. To
allow for this flexibility, Filter Init contains both variants.

The subroutine Get State is called prior to each model state evolution. Its structure
is sketched in algorithm 8.5 for the SEIK and EnKF filters. If the routine is called
for the very first time, it calls the user analysis routine User Analysis. This permits
to analyze the initial ensemble consistently with the calls to User Analysis which are
performed during the assimilation. Also the ensemble counter member is set to one at
the very first call to Get State. For the remainder of the routine, this signals that a
new forecast phase has to be performed.

If Get State is called in the beginning of a forecast phase (i.e., with member = 1),
the routine Next Observation is called by the process of rank 0 in COMM FILTER.
Next Observation initializes the number of time steps nsteps for the next forecast
phase and the current model time time. Subsequently, the value of nsteps is distributed
to all processes. If nsteps > 0, also the variable time is distributed to all processes
by a broadcast operation. If the number of filter processes is smaller than the number
of model tasks, as was the case in figure 8.3, the sub-ensemble of each filter process is
further distributed such that each model task holds several ensemble members. This
concludes the initialization of a forecast phase.
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Subroutine Filter Init(. . .)
...
int mype filter {Rank of process in COMM FILTER}
int npes filter {Number of processes in COMM FILTER}
...

1: initialize parameters
2: if filterpe == 1 then
3: initialize local ensemble sizes Np

4: allocate fields: Xp(n,Np), x(n)
5: if mype filter == 0 then
6: allocate ensemble matrix X(n,N)
7: call Init Ensemble(X) {Initialize full ensemble matrix}
8: for i = 1, npes filter do
9: send sub-ensemble X(jp : jp + rp − 1) to filter process i {With MPI Send}

10: end for
11: deallocate field X
12: else if mype filter > 0 then
13: receive sub-ensemble Xp {With MPI operation MPI Recv}
14: end if
15: end if

Algorithm 8.4: Sketch of the operations which are executed in the routine Filter Init for
the case of mode-decomposition. The interface to this routine is shown as algorithm 8.1

When Get State is called during a forecast phase, it calls the user-supplied routine
Distribute State. Here the model fields are initialized from the state vector which is
provided to Distribute State as a subroutine argument. Since the state vector is only
initialized on a single process of a model task, it might also be necessary to distribute
the state information to the other processes of the model task.

Distribute State is not called directly by the model routines. Accordingly, the model
fields or information on the model grid cannot be supplied as subroutine arguments.
Thus, Distribute State requires that the model fields are available via Fortran modules
or ’common’ blocks. We will discuss this issue in section 8.5.

The routine Put State is called after a model state has been evolved by the model
time stepper. Algorithm 8.6 sketches the operations which are performed in this routine
for the SEIK filter. During the forecast, the user-supplied routine Collect State is called
with the current ensemble state vector as argument. Also the ensemble counter member
is incremented. Collect State initializes the forecasted state vector from the evolved
model fields. This is the inverse operation to that performed by Distribute State. We
will discuss Collect State in section 8.5.

If the forecast of all ensemble members is not yet finished, the program exits
Put State and loops back to Get State in order to evolve the next ensemble member.
If the ensemble forecast is completed, the filter processes proceed in routine Put State
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Subroutine Get State(. . .)
...
int firsttime {Flag whether routine is called the very first time}
int member {ensemble counter; shared using Fortran module}
...

1: if firsttime == 1 then
2: call User Analysis(. . .)
3: firsttime ← 0
4: member ← 1
5: end if
6: if member == 1 then
7: if mype filter == 0 then
8: call Next Observation(step,nsteps,time) {User supplied routine}
9: end if

10: broadcast nsteps to all processes {With operation MPI Bcast}
11: if nsteps > 0 then
12: broadcast time to all processes {With operation MPI Bcast}
13: distribute sub-ensembles {With operations MPI Send and MPI Recv}
14: end if
15: end if
16: if nsteps > 0 then
17: call Distribute State(n,Xp(:,member)) {User supplied routine}
18: end if

Algorithm 8.5: Sketch of the operations which are executed in the routine Get State.
The interface to this routine is shown as algorithm 8.2

to perform the analysis and resampling phases of the filter algorithm. If there are less
filter processes than model tasks, all ensemble members are gathered by the filter pro-
cesses. Consecutively, the filter update phases are performed by calling SEIK Analysis
and SEIK Resample and the user supplied analysis routine User Analysis. After the
update, the ensemble counter member is reset to one and the filter processes exit
Put State. Only the filter processes perform the update. The remaining processes re-
set the ensemble counter and proceed directly to the routine Get State. Here, they
wait to receive the variable nsteps which is send from the filter process with rank 0 in
COMM FILTER to all processes by a broadcast operation (line 10 of algorithm 8.5).

8.4 Framework for Model and Filter on Disjoint

Process Sets

The variant of executing the model and the filter parts of the data assimilation pro-
gram on disjoint process sets permits a very clear separation between these to parts
of the program. All processes will call the filter initialization routine. Then, the filter
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Subroutine Put State(. . .)
...
int member {ensemble counter; shared using Fortran module}
int Np {local ensemble size; shared using Fortran module}
...

1: call Collect State(n,Xp(:,member))
2: member ← member + 1
3: if member = Np + 1 then
4: gather sub-ensembles {With operations MPI Send and MPI Recv}
5: if filterpe == 1 then
6: call User Analysis(. . .) {User supplied routine}
7: call SEIK Analysis(. . .) {Perform filter analysis}
8: call SEIK Resample(. . .) {Perform resampling}
9: call User Analysis(. . .) {User supplied routine}

10: end if
11: member ← 1
12: end if

Algorithm 8.6: Sketch of the operations which are executed in the routine Put State.
The interface to this routine is shown as algorithm 8.3

processes proceed directly to the filter main routine. The model processes will exit the
initialization routine and proceed to the model time stepper loop. During the data
assimilation phase, the model and filter parts of the program are connected only by
MPI communication.

8.4.1 The Application Program Interface

The application program interface in the case of disjoint process sets for model
and filter consists again of the three routines Filter Init, Get State, and Put State.
In addition, the observation-related subroutines and the routines Distribute State and
Collect State are required. These routines can be identical to those routines which are
used in the framework discussed in section 8.3.1. Finally, the user analysis routine
User Analysis is required. The interface for this routine is identical to that of the
joint-process case.

The interface of Filter Init is shown as algorithm 8.7. It is called by all processes, to
allow also for the initialization of parameters for the routines Get State and Put State
which will only be executed by the model processes. The required parameters in the
interface of Filter Init are the same as in the case of joint process sets for model and
filter. These parameters have been documented in section 8.3.1. Also the name of the
subroutine performing the ensemble initialization has to be provided. In the call to
Filter Init the API for disjoint process sets requires, in addition, the specification of
the observation-related subroutines and the user analysis routine. This is necessary
since the filter processes directly call the main filter routine in Filter Init.
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Subroutine Filter Init(type ass,subtype ass,param int,dim pint, param real,
dim preal,COMM MODEL,COMM FILTER,COMM COUPLE,
filterpe,Init Ensemble,Get Dim Obs,Next Observation,Measurement Operator,
Measurement,Measurement Ensemble,User Analysis,RinvA,RplusA,
verbose,status)

int type ass {Type a filter algorithm, input}
int subtype ass {Sub-type of filter, input}
int param int(dim pint) {Array of integer parameters, input}
int dim pint {Size of param int, input}
real param real(dim preal) {Array of floating point parameters, input}
int dim preal {Size of param real, input}
int COMM MODEL {Model communicator, input}
int COMM FILTER {Filter communicator, input}
int COMM COUPLE {Coupling communicator, input}
int modeltask {Model task the process belongs to, input}
int n modeltasks {Number of parallel model tasks, input}
int filterpe {Whether the process is a filter process, input}
external Init Ensemble {Subroutine for ensemble initialization, input}
external Get Dim Obs

{Subroutine to provide dimension of observation vector, input}
external Next Observation

{Subroutine to get number of time steps and current time, input}
external Measurement Operator

{Subroutine with implementation of measurement operator, input}
external Measurement {Subroutine to initialize observation vector, input}
external Measurement Ensemble

{Subroutine to initialize ensemble of observation vectors, input}
external User Analysis {Subroutine for user analysis, input}
external RinvA {Subroutine for product of R−1 with some matrix, input}
external RplusA {Subroutine to add R to some matrix, input}
int verbose {Whether to print screen information, input}
int status {Output status flag of filter, output}

Algorithm 8.7: Interface to the subroutine Filter Init in the case of disjoint process
sets for model and filter.
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Filter Init is generic for all three filter algorithms. As for the routine routine
Put State in the case of joint processes in section 8.3.1, all subroutine names have
to be specified in the interface, even if they are not required for all filters algorithms.
To facilitate the implementation, the framework also provides specific initialization
routines for the filters. These routines require only the specification of the subroutines
which are used for the particular filter.

Algorithms 8.8 and 8.9 show respectively the routines Get State and Put State. As
these routines are called from the model routine, they are only executed by the model
processes. The routines receive and send the state vectors. Furthermore, Get State re-
ceives the time stepping information. In addition, both routines control the transition
between the state vector and the model fields. Direct outputs of Get State are again
the number of time steps (nsteps) and the model time at begin of the evolution (time).
Next to these variables and the status flag status, only the subroutine Distribute State
has to be specified. The functionality of Distribute State is the same as in the case of
joint processes for model and filter. The interface of Put State is considerably simpler
here than in the configuration with joint processes. Only the subroutine Collect State
has to be specified since the update routines of the filter are not directly called by
Put State. The status flag is given as the second argument of the interface.

8.4.2 Process Configurations for the Filtering Framework

A possible process configuration for mode-decomposed ensemble matrices is shown in
figure 8.6. The program is executed by six processes. There are two model tasks
which are executed by two processes each. The remaining two processes are used to
execute the filter. Each filter process is coupled to one model task by the communicator
COMM COUPLE. Here, the communication in COMM COUPLE is always necessary,
since it couples the disjoint process sets of filter and model. During the forecast phase
each filter process sends the states of its sub-ensemble to the model task connected
to it and receives forecasted state vectors. The model evaluations are performed only
by the model processes while the filter processes wait for data. The filter analysis
and resampling are computed only by the two filter processes. Meanwhile, the model
processes idle.

Figure 8.7 shows a possible configuration for domain-decomposed states. As before,
six processes are used in total. Two processes are again used for the filter. The forecasts
are evaluated on two model tasks, each consisting of two processes. The communicator
COMM COUPLE now couples each filter process with respectively one process of both
model tasks. Thus, during the forecast phase, a filter process sends local state vectors
to both model tasks. When all processes of a model task have received a sub-state,
they start with the model evaluations.
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Subroutine Get State(nsteps,time,Distribute State,status)
int nsteps {Number of time steps to be performed, output}
real time {Physical time at begin of evolution, output}
external Distribute State

{Subroutine to distribute state in COMM MODEL, input}
int status {Output status flag of filter, output}
int n {Model state dimension}
real x(n) {State vector}
int mype model {Process rank in COMM MODEL}

1: if mype model == 0 then
2: receive nsteps in COMM COUPLE {With operation MPI Recv}
3: end if
4: broadcast nsteps in COMM MODEL {With operation MPI Bcast}
5: if nsteps > 0 then
6: if mype model == 0 then
7: receive time in COMM COUPLE {With operation MPI Recv}
8: receive x in COMM COUPLE {With operation MPI Recv}
9: end if

10: broadcast time in COMM MODEL {With operation MPI Bcast}
11: call Distribute State(n,x)
12: end if

Algorithm 8.8: Pseudo code of the subroutine Get State in the case of disjoint process
sets for model and filter.

Subroutine Put State(Collect State,status)
external Collect State

{Subroutine to collect state vector in COMM MODEL, input}
int status {output status flag of filter, output}
int n {Model state dimension}
real x(n) {State vector}
int mype model {Process rank in COMM MODEL}

1: call Collect State(n,x)
2: if mype model == 0 then
3: send x in COMM COUPLE {With operation MPI Send}
4: end if

Algorithm 8.9: Pseudo code of the subroutine Put State in the case of disjoint process
sets for model and filter.
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−→ logical process number (= rank in MPI COMM WORLD)

[0 1 2 3 4 5] MPI COMM WORLD

[0 1] [0 1] COMM MODEL

[0 1]

[0 1]

}
COMM COUPLE

[0 1] COMM FILTER

Figure 8.6: Example communicator configuration for the case that model and filter are
executed by disjoint process sets and the filter routines use a parallelization over the
modes of the ensemble matrix.

−→ logical process number (= rank in MPI COMM WORLD)

[0 1 2 3 4 5] MPI COMM WORLD

[0 1] [0 1] COMM MODEL

[0 1 2]

[0 1 2]

}
COMM COUPLE

[0 1] COMM FILTER

Figure 8.7: Example communicator configuration for the case of domain-decomposed
states and execution of model and filter parts by disjoint process sets. The example is
analogous to that in figure 8.6. In contrast to the mode-decomposed case, each filter
process is coupled to respectively one process of both model tasks.

8.4.3 Execution Structure of the Framework

The data assimilation for disjoint process sets for model and filter exhibits a clear
separation between the model and filter parts. Both are executed concurrently on
their respective processes. A flow diagram for the framework which exemplifies the
SEIK filter is shown in figure 8.8. The thick green lines symbolize communication.

On execution of the program, the MPI communicators are initialized by all processes
in global operations. Since in this phase of the program all processes are available, the
user has to take care that the subsequent model initialization is performed only by the
model processes. The allocation and initialization of model fields is not required by the
filter processes. After the model initialization, the filter initialization routine Filter Init
is called by all processes. In this routine, the model processes store the information on
the communicators COMM MODEL and COMM COUPLE while the filter processes
store the information on COMM COUPLE and COMM FILTER. Subsequently, the
model processes exit the filter initialization routine. The filter processes proceed in
Filter Init by allocating the arrays which are required for the chosen filter. Then the
state vector x and the ensemble matrix X or the mode matrix V are initialized and
sub-ensembles are distributed to all filter processes. Finally the filter processes call the
filter main routine whose components are shown on the right hand side of figure 8.8.
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User_AnalysisPut_State
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Figure 8.8: Flow diagram for the framework when filter and model are executed by
disjoint process sets. Exemplified is the program flow for the SEIK filter. Shaded in
gray are the routines of the filter framework. The thick green lines denote communi-
cation. The parts of the program which are horizontally centered are executed by all
processes. After the initialization, the program splits into the model part displayed on
the left hand side and the filter part on the right hand side. Both parts are connected
by communication operations.
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Having left the routine Filter Init, the model processes proceed to the forecast loop
shown on the left hand side of figure 8.8. In Get State (see algorithm 8.8), the processes
wait to receive the value of nsteps which is sent by the filter. If nsteps = 0, no forecast
has to be performed. Thus, no further operations are necessary in Get State and the
forecast loop is exited. If nsteps > 0, the processes also receive the variable time and
the state vector x to be evolved. Subsequently, the routine Distribute State is called
which initializes the model fields on the basis of the state vector x. Then the evolution
of the state is performed by the model time stepper. After the evolution, the routine
Put State is called. This routine is shown as algorithm 8.9. Here Collect State is called
to initialize the forecasted state vector from the model fields on the model process with
rank 0. Subsequently, this process sends the state vector x to the filter. This com-
pletes the forecast loop and the processes return to the begin of the unconditioned loop.

The structure of the filter main routine on the right hand side of figure 8.8 is essen-
tially the same as that of the serial algorithm which we have discussed as algorithm 3.1.
An addition to this algorithm is the subroutine Finalize Model. It is required in the
parallel program to send nsteps with a value of zero to the model tasks. As discussed
above, this signalizes to the model tasks to exit the forecast loop.

The subroutine Forecast controls the loop over all ensemble members to be evolved.
It is shown as algorithm 8.10. In the configuration with disjoint processes for filter
and model, an algorithm is used which sends a only single ensemble state vector to
the available model tasks. The filter part of the algorithm uses non-blocking MPI
operations. These only post the communication operation and immediately return from
the function even if the communication operation is not yet completed. In contrast to
this, the routines Get State and Put State apply blocking MPI operations to ensure
that the data has been received or send completely. Sending and receiving single
state vectors permits a flexible handling of the forecast phase. If a forecasted state
vector is received back from some model task, a new ensemble state vector can be
send immediately to this task if there are any ensemble states left. For sufficiently
large ensembles, this ensures a good load balancing since faster model tasks can evolve
more ensemble states than slower model tasks. This algorithm is more flexible than
the configuration used for joint process sets for filter and model. There the sizes of
sub-ensembles are set during the initialization phase of the framework. In addition, the
memory requirements are smaller here. In the case of mode-decomposition, a single
state vector is allocated on the model processes with rank 0 in COMM MODEL. No
filter-related memory allocations are required on the remaining model processes. For
domain-decomposition a single sub-state is allocated on each model process. For the
configuration using joint process sets for filter and model, it is required to allocate
sub-ensembles of state vectors.
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Subroutine Forecast(step,nsteps,time)
int step {Current time step, input}
int nsteps {Number of time steps to be computed, output}
real time {Current model time, output}
int n {Model state dimension}
int Np {Size of local state ensemble}
real Xp(n,Np) {Local state ensemble}
int npes {Number of processes in COMM COUPLE}
int status(npes − 1) {Status array; idle: 0, working: 1}
int send ens {Counter for ensemble member to become evolved}
int get ens {Number of received state vectors}

1: status(1 : npes − 1) ← 0 {Set status to idle for all tasks}
2: send ens ← 1 {Send first ensemble member}
3: get ens ← 0 {No state received yet}

4: loop
5: for task = 1, npes − 1 do
6: if status(task) == 1 then
7: Test whether receiving from task has been completed

{With operation MPI Test}
8: if receiving of task completed then
9: get ens ← get ens + 1 {Increase counter of received states}

10: status(task) ← 0 {Set task to idle}
11: end if
12: end if
13: if status(task) == 0 then
14: send nsteps to task {With operation MPI ISend}
15: send time to task {With operation MPI ISend}
16: send Xp(:, send ens) to task {With operation MPI ISend}
17: post receiving of Xp(:, send ens) from task {Operation MPI IRecv}
18: send ens ← send ens + 1 {Increase index of member to send}
19: status(task) ← 1 {Set task to working}
20: end if
21: end for
22: if get ens == Np then
23: Exit loop
24: end if
25: end loop

Algorithm 8.10: Structure of the routine of the filter framework which controls the
ensemble forecast in the case of SEIK and EnKF. (For SEEK, the state estimate itself
is also evolved. Hence, the forecast routine for SEEK contains an extension for evolving
the state estimate.) The used MPI operations are non-blocking. Thus, the algorithm
directly proceeds after posting a MPI ISend or MPI IRecv operation.
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Figure 8.9: Transition between the abstract state vector (left hand side) and the model
fields (right hand side). Shown is an example of three model fields of equal sizes. This
example originates from the experiments with the shallow water model discussed in
chapter 4. u and v are the two horizontal velocity components while h is the surface
elevation.

8.5 Transition between the State Vector and Model

Fields

The filter algorithms operate solely on the abstract state vectors. All operations which
require information on the physical nature of an element of the state vector are per-
formed in user-supplied routines. The arrangement of elements in the state vector
is defined in the initialization routine Init Ensemble. Here the user choses how to
order the information on different physical quantities and from different physical loca-
tions. The observation-dependent routines have to consider this ordering to allow for
a consistent implementation, e.g., of the measurement operator or the initialization of
the observation vector. The arrangement of the elements in the state vector is also
important in the routines Distribute State and Collect State. These routines are ex-
ecuted by all model processes. In contrast to this, the other user-supplied routines,
are executed only by the filter processes. Figure 8.9 exemplifies the transition between
the abstract state vector and model fields for the experiment using the shallow water
equations which has been considered in chapter 4. The model consists of three fields,
namely, the two velocity components u, v and the sea surface elevation h. Each of
these fields is 2-dimensional. For the filter, the model fields are stored successively in
the 1-dimensional state vector.

The routine Distribute State is shown as algorithm 8.11. It is called from the routine
Get State. The purpose of Distribute State is to initialize the model fields from the
state vector such that the state information is sufficiently initialized for the model time
stepper.
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Subroutine Distribute State(n,x)
int n {State dimension, input}
int x(n) {State vector to be distributed, input}

. . . Initialize and distribute model fields . . .

Algorithm 8.11: Interface of the subroutine Distribute State which performs the tran-
sition from the state vector of the filter and the model fields.

If Distribute State is called in the case of a mode-decomposed ensemble matrix,
a full state vector x of dimension n is initialized by a single process of the model
task. If the model task consists of a single process, the model fields can be directly
initialized, e.g., by copying the data into the model fields. If the model task consists of
multiple processes, the required operations depend on the type of the parallelization.
For example, the finite element model which will be used in the experiments in chapter 9
requires that the model fields are fully initialized on all processes. Thus, the model
fields are first initialized in Distribute State on the process which holds the state vector.
Subsequently, the model fields are distributed to the other processes in the model task
by MPI operations.

If Distribute State is called in the case of domain-decomposed states, each model
process holds that part xp of the state vector which corresponds to its local domain.
Hence, Distribute State will perform only the initialization of the model fields in the
local domain. As long as the domain-decomposition of model and filter coincide, no
communication operations are necessary.

The routine Collect State is shown as algorithm 8.12. It performs the inverse op-
erations to those of Distribute State. If domain-decomposition is used, the local state
vector is initialized on each model process. For mode-decomposition, the state vector,
which is allocated on one of the model processes, is initialized using the evolved model
fields. If the state information is distributed over the model processes, it is necessary to
gather them with communication operations on the process holding the state vector.
With the finite element model used in chapter 9, the evolved model fields are fully
initialized on all processes of the model task. Hence, no communication operations are
required.

Subroutine Collect State(n,x)
int n {State dimension, input}
int x(n) {State vector to be distributed, input}

. . . Initialize state vector from model fields . . .

Algorithm 8.12: Interface to the subroutine Collect State which initializes a state vector
from the model fields.

A particular issue of the routines Distribute State and Collect State is that they
are not directly called by the model routines. This structure of the interface permits
to hide these filter-related operations from the model. It has, however, the drawback
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Subroutine Get State Alt(nsteps,time,n,x,status)
int nsteps {Number of time steps to be performed, output}
real time {Physical time at begin of evolution, output}
int n {Model state dimension,input}
real x(n) {State vector,output}
int status {Output status flag of filter, output}

Algorithm 8.13: Alternative interface of the subroutine Get State in the case of disjoint
process sets for model and filter. The initialization of model fields is not performed in
the subroutine, but the state vector x is an argument of the interface. This permits to
initialize the model fields directly in the model routines.

that model-specific variables and arrays cannot be used as subroutine arguments. In
particular, the arrays holding model fields and variables with specifications of the model
grid cannot be provided as subroutine arguments. Hence, it is necessary to use Fortran
modules or common blocks to provide the routines Distribute State and Collect State
with model fields and specifications of the model grid. For models fulfilling these
implementation issues, the framework can be used with the clear separation between
model and filter. If, however, a model does not support this type of storage, an
alternative implementation of the routines Get State and Put State is necessary.

Algorithm 8.13 shows the alternative variant of Get State for the configuration
using disjoint process sets for model and filter. The algorithm is comparable with the
original implementation shown as algorithm 8.8. The routine Distribute State is not
called in the alternative implementation. In addition, the interface is changed to include
the state dimension n and an array x(n) for the state vector. This array has to be
allocated in the model source code. In Get State Alt, the state vector x is initialized on
a single process if mode-decomposition is used. For domain-decomposition, a sub-state
for the local domain is initialized on all processes. Since the state vectors are known
in the model context in this alternative implementation, it is possible to initialize the
model fields without using Fortran modules or common blocks.

8.6 Summary and Conclusions

A framework for parallel data assimilation based on Kalman filter methods was intro-
duced. The framework is based on a clear separation between the model, the filter, and
the observational parts. This allows for a structure which requires only minimal changes
in an existing model source code when a data assimilation system is implemented using
the filter framework. With the framework, an application program interface was intro-
duced which defines the calling structure of the framework routines which are called by
the model. Also the interfaces to user-supplied routines are defined. These are, e.g.,
routines which are related to the observations or routines to transfer the state vectors
used in the filter algorithms to model fields and vice versa. The interface permits to
switch easily between different filter algorithms. In addition, changes to the model and
filter source codes can be conducted independently.
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Table 8.1: Advantages (+) and drawbacks (−) of the frameworks for the two different
process configurations.

one process set for filter and model disjoint process sets
− allocation of sub-ensemble on one

process of each model task
+ allocation of a single state vector on

one process of each model task
− allocation of filter fields on those

model processes which are also filter
processes

+ allocation of filter fields on processes
separate from the model processes

+ no additional processes required for
the filter part

− processes additional to the model
processes are necessary for the filter
part

+ reduced amount of communication
if the number of model tasks equals
the number of filter processes

− high amount of communication,
since each model state vector has to
be communicated between filter and
model processes

+ model grid information allocated
also on filter processes

− model grid information not allocated
on filter processes

− load balancing of the forecast by a
priori specification of sub-ensemble
sizes

+ flexible load balancing due to com-
munication of single model state vec-
tors

− inflexible possibilities of process con-
figurations to achieve good load bal-
ance

+ flexible choice of process configura-
tions; model and filter can even be
executed on different computers

The framework was introduced for two different process configurations. The filter
can either execute by some of the model processes (which is denoted below as joint
process sets) or the filter and model parts are executed by disjoint process sets. Both
variants permit to handle domain-decomposed state vectors as well as a parallelization
which decomposes of the ensemble or mode matrices over the modes. To compare the
two different process configurations of the framework, advantages and drawbacks of
the two configurations are summarized in table 8.1.

A major drawback of the configuration using joint process sets is that at least a
part of the ensemble or model matrix has to be allocated on one process of each model
task. This can considerably increase the memory requirements of these processes,
which also hold fields needed by the model. In addition, fields which are required for
the analysis and resampling phases of the filters are allocated on those processes which
are also filter processes. These memory requirements can be critical if the computer
used for the data assimilation computations poses strong memory limitations. The
issue of memory requirements is minor for the case of disjoint process sets. Here only
a single state vector is allocated on a single process of each model task. The fields
which are required for the filter operations are allocated on the filter processes which
are separated from the model processes.



8.6 Summary and Conclusions 137

An advantage of the configuration using joint process sets is that the execution of
the filter does not require additional processes. All processes of the program are used
for model evaluations. In contrast to this, additional processes for the filter part of the
program, besides the processes performing the model evaluations, are required for the
configuration using disjoint process sets. During the forecast phase, these processes
only send control information for the forecast, and communicate state vectors. For
large-scale ocean models, the forecast of a state vector takes significantly longer than
the communication between the filter and model processes. Due to this, the filter
processes will idle most of the time.

Besides the requirement of additional processes for the filter, the configuration with
disjoint process sets communicates more data than the variant using joint process sets.
This is due to the fact that all ensemble state vectors, which have to be evolved, need
to be send from the filter processes to the model processes and vice versa. For a
parallelization using mode-decomposed matrices, the least amount of communication
is required in the case of joint process sets if the number of filter processes equals the
number of model tasks. In this situation, a sub-ensemble is allocated on each filter
process. The communication reduces to that amount which is necessary to distribute
the state information to all processes in a model task. For domain-decomposed states,
the amount of communications between filter and model can be reduced to zero if the
configuration of joint process sets and a single model task is used.

A further potential advantage of the configuration using joint process sets lies in
the fact that the information on the model grid is also allocated on the filter processes.
This can be beneficial, e.g., for the implementation of the measurement operator if it
requires information on the spatial positions of observations and the elements of the
state vector. In the case of disjoint process sets, this information has to be initialized
separately from the model.

In addition to reduced memory requirements, the configuration using disjoint pro-
cess sets is significantly more flexible in the configuration of the MPI communicators.
Since only single model states are communicated between filter and model tasks, pos-
sible deviations in the speed of different model tasks are easily balanced by evolving
more states with the faster model tasks than with the slower ones. This flexibility
cannot be achieved with joint process sets. Due to the strong separation of filter and
model, the configuration using disjoint process sets even permits to execute the filter
part of the program on a different computer than the model tasks. Also it is possible
to execute model tasks on different computers or to compute forecasts concurrently
using different models.

Concluding, this comparison showed, that neither the configuration with joint pro-
cess sets nor the configuration using disjoint process sets for the filter and model parts
of the program is clearly preferable. The variant with joint process sets should be
preferred if the computer memory permits to store sub-ensembles as well as the fields
required for the filter analysis and resampling algorithms on the same processes as the
model fields. Joint process sets permit to use all available processes for the model eval-
uations and reduces the amount of communicated data. If it is not possible to store
the filter fields on the same processes as the model fields, the variant using disjoint
process sets for filter and model is preferred. This variant should also be chosen if the
use of multiple computers is desired to solve the data assimilation problem.
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Chapter 9

Filtering Performance and Parallel
Efficiency

9.1 Introduction

The parallel filtering framework developed in the preceding chapter 8 has been im-
plemented with the Finite Element Ocean Model (FEOM) [12]. The implementation
also includes the parallelized filter algorithms developed in chapter 7. FEOM is par-
allelized using MPI. Mainly the solver step, required for the implicit time stepping
scheme of FEOM, is performed in parallel. The model state fields have to be fully
allocated and initialized by all model processes.

The data assimilation system, which is obtained by combining FEOM and the
filtering framework, is used to study the parallel efficiency of the framework and of
the filter algorithms. In addition, the filtering performance of the three error subspace
Kalman filters is analyzed on the basis of twin experiments. These experiments extend
the twin experiments performed in chapter 4 to a 3-dimensional test-case. The data
assimilation experiments are performed with an idealized configuration of FEOM using
a rectangular grid. Assimilated are synthetic observations of the sea surface height.

The major properties of the finite element model FEOM are described in section 9.2.
Subsequently, in section 9.3, the configuration of the twin experiments is described in
detail. The filtering performance of the three error subspace Kalman filters SEEK,
EnKF and SEIK is examined in section 9.4. Here the abilities of the filter algorithms
accurately estimate the 3-dimensional model fields is studied. The parallel efficiency
of the framework and the filter algorithms is finally assessed in section 9.5.

9.2 The Finite Element Ocean Model FEOM

The finite element ocean model FEOM has been developed recently at the Alfred We-
gener Institute [12]. It is a three-dimensional model designed to study the thermohaline
circulation of the ocean on basin to global scales for periods from years to decades.
The data assimilation framework introduced in chapter 8 permits to use this model as
a ’black box’ to perform the required model forecasts. In particular, the filter routines

139
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are independent from the discretization method – finite elements, finite differences, or
others – used to compute the forecasts.

A detailed description of FEOM has been given by Danilov et al. [12]. Here
only the major properties of this model are summarized. FEOM is based on the
primitive equations, see e.g. [72], which describe the thermo-hydrodynamics of the
ocean. Namely, the primitive equations govern the velocity field (~u, w) = (u, v, w), the
sea surface height ζ, and the baroclinic pressure anomaly p. Further, the sea water
density ρ0 + ρ, where ρ0 is the mean density, the temperature field T , and the salinity
field S are described in the spherical coordinate system (λ, θ, z) by the equations

∂t~u + f(~k × ~u) + g∇ζ −∇ · Al∇~u − ∂zAv∂z~u = − 1

ρ0

∇p + (~u∇ + w∂z)~u , (9.1)

∂zw = −∇ · ~u , (9.2)

∂tζ + ∇ ·
∫ z=ζ

z=−H0

~udz = 0 , (9.3)

∂zp = −gρ , (9.4)

∂tT + ∇ · (~u T ) −∇ · κT
l ∇T − ∂zκ

T
v ∂zT = 0 , (9.5)

∂tS + ∇ · (~u S) −∇ · κS
l ∇S − ∂zκ

S
v ∂zS = 0 , (9.6)

ρ − %(T, S, p) = 0 . (9.7)

Here, f is the Coriolis parameter and ~k is the vertical unit vector. Al, Av are the lateral
and vertical momentum diffusion coefficients. g is the gravitational acceleration. κT

l

and κT
v are the lateral and vertical diffusion coefficients for the temperature. The

corresponding coefficients for the salinity are κS
l and κS

v . The bottom of the ocean is at
−H0(λ, θ). %(T, S, p) denotes the equation of state. It is used to compute the density ρ
from the temperature, salinity, and pressure fields.

The primitive equations are discretized on an unstructured grid with variable res-
olution. This 3-dimensional grid is built by tetrahedral elements. It is generated from
a 2-dimensional triangular grid at the ocean surface which defines vertical prisms. Ele-
mentary prisms are obtained by subdividing the vertical prisms by level surfaces. The
elementary prisms are split into tetrahedrons. The model fields are approximated us-
ing linear basis functions on these elements. A backward Euler method is used for the
time stepping. The system of linear equations, which results from the finite element
discretization, is solved by algorithms which are implemented in FEOM using the Fam-
ily of Simplified Solver Interfaces (FoSSI) by Frickenhaus et al. [23]. FoSSI provides
common interfaces to various solver libraries for sparse systems of linear equations
like PETSc [64] or the solver PILUT by Karypis and Kumar [43].

Danilov et al. [12] tested the model performance in a configuration for the North
Atlantic. Due to the size of 86701 nodes of the 3-dimensional grid, it is not feasible
to use this configuration for the data assimilation and speedup experiments performed
here. For this reason, the experiments employ an idealized configuration of FEOM. The
configuration uses linear density stratification and a linear equation of state %(T, S, p).
Further, convection is neglected and the rigid-lid approximation is used. The model
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domain is given by a rectangular box geometry with a structured grid. It is shown in
figure 9.1. The box is centered at 44.5◦ north and occupies an area of 9 by 9 degrees. It
has a depth of 4000m. The discretization comprises 11 vertical levels and a horizontal
grid of 31 by 31 points. This amounts to 10571 nodes of the 3-dimensional grid and 961
surface nodes. The time evolution is performed with a time step of 3 hours. The salinity
field is chosen to be constant over the model domain. The state vector for the filters
consists of the zonal and meridional velocity components u, v, the temperature T, and
the sea surface height ζ. Apart from the 2-dimensional sea surface height, all of these
are 3-dimensional fields. Hence, the state dimension amounts to n = 32674.

9.3 Experimental Configurations

To extend the examination of filtering performance presented in chapter 4 and to
study the parallel efficiency of the filter algorithms, identical twin experiments are
performed with the idealized configuration of FEOM. Synthetic observations only of
the sea surface height are assimilated. The physical process which is simulated in the
assimilation experiments is the propagation of interacting baroclinic Rossby waves. The
waves are initialized with two horizontally localized columnar temperature anomalies
of the same amplitude but opposite sign. This initialization is shown in figure 9.2.
Propagating westward, the anomalies become deformed. They tilt toward each other
via the induced velocity field. That is, a negative temperature anomaly produces a
counterclockwise rotation in the upper levels and a clockwise rotation in the lower
levels. The rotation of a positive temperature anomaly is vice versa. These opposing
rotations introduce non-linearity which is necessary to test the filtering performance of
the error subspace Kalman filters.

The data assimilation experiments are conducted over a period of 40 days. The
interval between subsequent analyses is set to 2.5 days. For the twin experiments
the “true” state trajectory is generated by integrating the initialization displayed in
figure 9.2 over a period of 45 days. To generate synthetic observations of the sea
surface height, Gaussian noise with constant variance of 0.01 m2 is added at each
time step to the sea surface height field of the true state sequence. The amplitude of
the temperature anomalies, and thus of the sea surface height, decreases over time.
This is caused by diffusion. Hence, the relative noise amplitude of the observations
increases during the assimilation period. Initially the standard deviation of the noise
in the observations is at about 20 percent of the amplitude of the true surface height.
After 45 days, the errors in the observations increased to about the same level of the
surface height itself. The generated observations are used with an offset of 5 days in
model time. Assimilating only observation of the sea surface height, the dimension
of the observation vector amounts to m = 961. Figure 9.3 compares the observed
sea surface height field with the true one at the initial time of the experiments. The
observation errors are clearly visible, but also the observed information is apparent.

To initialize the filter in the twin experiments, the covariance matrix of 2268 state
vectors is computed. These vectors are generated by 28 model forecasts using different
initial locations of the temperature anomalies. Further, an additional variance of the
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Figure 9.1: FEOM model grid used for the data assimilation experiments. It consists
of 10571 nodes. Vertical levels are at the surface and in the following depths: 7.5, 20,
50, 100, 500, 1000, 2000, 3000, 3800, and 4000 meters. The coloring shows the linear
temperature stratification.
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Figure 9.2: Cut into the model grid showing the temperature anomalies.
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Figure 9.3: Comparison of the true (left) and the observed (right) sea surface height
field ζ at the initial analysis update.

sea surface height fields of 0.1m is assumed. The obtained covariance matrix, which
describes the temporal variations and correlations of the model fields, is used as the
initial error estimate in the filter experiments. The initial state estimate for the twin
experiments is chosen as the mean state of the 28 model runs. The generation of the
state ensembles for SEIK and EnKF and the initialization of the mode matrix for SEEK
is performed as described for the experiments with the shallow-water-equation model
in chapter 4. To examine the abilities of the filter algorithms to estimate the true state
from the chosen initial state, an evolution of the initial state estimate is performed
without assimilating observations. This state sequence is denoted the “free” state
trajectory.

To simulate model errors in the application of the EnKF and SEIK filters, a wind
forcing field of two gyres is applied whose shape and amplitude are controlled by two
parameters. To obtain a stochastic forcing, these parameters are initialized by ran-
dom numbers. Each ensemble member was forced by a different wind field which was
constant over the forecast period. To retain comparability, the SEEK filter was used
without a forgetting factor, since this could be applied to all three filters, or explicit
treatment of a model error covariance matrix. Thus, the twin experiments using SEEK
are performed without consideration of model errors.

Most of the computation time is spent in evolving the model states. Since the
computation time is usually a limiting factor in data assimilation problems, results for
assimilation experiments are compared in which all filters perform the same number
of model evaluations. This configuration provides also comparable execution times for
assessing the parallel efficiency of the three filter algorithms. To obtain configurations
with equal numbers of model evaluations, the rank r used in SEEK and SEIK is set
to r = N − 1 where N is the ensemble size of the EnKF.
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The experiments have been performed on a Sun Fire 6800 server with 24 proces-
sors, each having a frequency of 1050 MHz. The experiments in section 9.4 used the
solver PILUT while the experiments in section 9.5 used PETSc. This different choice
was motivated by the fact that the use of PILUT resulted in inferior speedup values
than PETSc. In contrast to this, the assimilation experiments with the PILUT solver
provided a better filtering performance than those using PETSc. Since this work is not
aimed at the optimization of the model, the solver was chosen depending on the best
results either in terms of filtering performance or in terms of speedup.

9.4 Filtering Performance

Before the parallel efficiency of the filter algorithms is studied in section 9.5, the filtering
performance of the SEEK, SEIK, and EnKF algorithms is assessed for their application
to the configuration of FEOM described in the preceding sections. These experiments
extend the 2-dimensional experiments of chapter 4 to a 3-dimensional test-case.

9.4.1 Reduction of Estimation Errors

For an ensemble size of N = 60, figure 9.4 shows the rms deviation E1 of the assimilated
state from the true state normalized by the rms deviation of the free state from the
true state. The deviation is computed over all grid nodes with equal weights for all
nodes. Thus, no volume-normalization is performed which would consider the different
distances between neighboring levels of the model. The relative estimation error is
displayed separately for the four state fields. For N = 60, the EnKF and SEIK filters
yield comparable results. For smaller ensembles, the difference of E1 for the two filters
is larger, with the EnKF performing worse than the SEIK filter (not shown). This
can be expected because of the inferior sampling quality of the Monte Carlo sampling
applied to initialize the EnKF algorithm. Since the difference of the sampling quality
decreases for larger ensembles, the results of EnKF and SEIK become almost identical
for larger ensembles. The SEEK filter shows a behavior distinct from the two other
algorithms. This behavior is caused by the forecast scheme of the SEEK filter which
applies a gradient approximation of the linearized forecast of the covariance modes. For
all model fields the relative estimation errors tend to increase toward the end of the
assimilation period. This is due to the growing relative error level in the observations
which is discussed in section 9.3.

The largest error reduction is obtained for the sea surface height ζ. As observations
of the sea surface height are assimilated, this field is expected to show the smallest
normalized estimation error of the four model fields. To get an idea of what represents
the achieved reduction of the relative estimation error to about 0.27 for the sea surface
height, the left hand side of figure 9.6 shows in the uppermost panel the true sea sur-
face height at the end of the assimilation period. In the middle panel, ζ is shown as
estimated by the EnKF filter with N = 60. The sea surface height which is obtained
from the free evolution, i.e. when the initial state estimate is evolved without assim-
ilation, is displayed in the lowermost panel. The sea surface height estimated by the



9.4 Filtering Performance 145

EnKF algorithm reproduces accurately the shape of the true ζ. The locations of the
minimum and the maximum are well estimated. The amplitudes are underestimated
by about 10%. In contrast to this, the sea surface height without assimilation deviates
strongly from both the true and SEIK-estimated ζ.

The velocity components u and v are updated via the estimated cross correlations
between the sea surface height and the velocity components. Despite this, the relative
estimation errors of the meridional velocity component u are of comparable size to
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Figure 9.4: Time dependence of the relative estimate errors E1 for experiments with
N = 60. Shown is E1 separately for the sea surface height ζ (top left), the temperature
field T (top right), and the two components u, v (respectively on the left and right
hand sides of the bottom row) of the velocity fields.
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those of the sea surface height in the case of EnKF and SEIK. This relation shows, that
the cross covariances are estimated quite well by the nonlinear ensemble forecast. In
contrast to this, the linearized forecast performed in SEEK yields much worse estimates
of the cross covariances. This can be deduced from the much larger estimation errors
for u obtained with SEEK.

The estimate of the zonal velocity component v is less precise than the estimate
of u for all three filters. After the first analysis phase, the estimation error of both
velocity components is of comparable size. While the estimation error for u decreases
during the course of the assimilation experiment, the estimation error for v remains
at a level of about 0.4 when using the EnKF or the SEIK filter. Thus, the cross co-
variances are not estimated sufficiently precise to further decrease the error level for
this velocity component. During some analysis updates, e.g. at day 25, the estimation
error increases. In this case the estimated cross covariances have the wrong sign.

The relative estimation error of the temperature field T shows a behavior distinct
from the other model fields. The error reduction at the first analysis update is smaller
for T than for the other fields. For the EnKF and SEIK filters, the relative estimation
error of the temperature field increases immediately after the first analysis update.
Further, the estimation error remains almost unchanged during the analysis update.
Thus, no useful estimates of the cross correlations are available after the first analy-
sis update. The estimates of variances and correlations within some model field are
typically much more precise than estimated cross correlations. Thus, even a limited
number of temperature measurements would enhance the estimation quality of the
temperature field for all three filters.

9.4.2 Estimation of 3-dimensional Fields

To examine the ability of the filter algorithms to estimate the 3-dimensional model fields
by assimilating only surface measurements profiles of the relative estimation errors at
the end of the assimilation period are shown in figure 9.5. The values displayed in the
diagrams are the normalized rms estimation errors computed over single levels of the
model.

The profiles for the two velocity components u and v, displayed on the left and
middle panels, show a small relative estimation error from the surface to -1000m depth.
Below -3000m the estimation error is a also small, but it increases toward the bottom.
At the depth of -2000m the estimation error shows a maximum. For the experiments
with SEIK and EnKF, this maximum is even larger than one. The estimation errors
obtained with SEEK are of similar size to those achieved by the EnKF and SEIK
filters. They are, however, larger at all depths, except at -2000m. For all three filters,
the relative estimation errors are smaller for the meridional velocity component u than
for the zonal velocity v.

The peak in the relative estimation error at the depth of -2000m is due to the
normalization by the estimation error of the evolution without assimilation. As has
been described in section 9.3, the temperature anomalies generate a counterclockwise
rotation in the upper levels and a clockwise rotation in the lower levels. The turning
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point of these rotations is approximately at the depth of -2000m. Due to this, the
velocities are minimal at this depth in the true state, the free state and the assimilated
states. This causes minimal rms deviations of the velocities of the free evolution from
the velocities of the true evolution. Without normalization, the estimation errors of the
assimilated velocities are of comparable size to those of the non-assimilated velocities
at -2000m depth. Due to the normalization, the estimation errors appear larger than
their absolute value.

The increase of the relative estimation error below -3000m is not due to the normal-
ization, as the absolute estimation errors also increase below -2000m depth. Thus, the
quality of covariances between the sea surface height and the velocity fields is worse in
the deep ocean than for the upper levels. Overall, all three filters show good abilities
to reduce the estimation error of the velocity field also in the lower levels of the model.
The level -2000m appears to be a rather pathological situation which the algorithms
cannot handle well.

The profile of the relative estimation errors of the temperature field, shown on
the right hand side of figure 9.5, exhibits a different dependence on depth than the
estimation errors of the velocity field. In the uppermost levels the estimation error of
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Figure 9.5: Profiles of the rms estimation errors of single layers normalized by the
corresponding rms deviation of the free state from the true state for N = 60. Shown
are the two components u, v of the velocity fields and the values for the temperature
field T at the end of the assimilation period.
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the temperature field is not reduced by the SEIK and EnKF algorithms. In contrast to
this, the relative estimation error is decreased to a level of about 0.8 when the SEEK
filter is applied. Between -100m and -2000m all three filters reduce the estimation error
to similar level of about 0.85. Below -2000m the relative estimation error increases for
all three filter algorithms to a level around unity.

The large relative estimation errors in the uppermost 100 meters are misleading.
This becomes apparent from the panels on the right hand side of figure 9.6. The
uppermost panel shows the true temperature field at a depth of -50m. The panel
in the middle shows the temperature field as estimated by the EnKF with N = 60.
For comparison, the free temperature field is displayed in the lowermost panel. The
shape of the estimate from the EnKF reproduces the shape of the true temperature
field rather well. The amplitude of the positive temperature spot is, however, over-
estimated. The free temperature field is distinct by showing only a single positive
temperature anomaly.

In the level at -500m and below the temperatures are generally over-estimated
by about 0.1◦C. This is displayed in figure 9.7 which shows the temperature fields
analogous to the right hand side of figure 9.6 for the levels at -1000m and -3800m.
While the shape of the estimated temperature field is still reasonable at -1000m, this
is no more the case for the level at -3800m. Here, the estimate resembles the shape of
the free temperature field which is obtained from the evolution of the state estimate
without assimilating observations. The assimilation has only a small influence on the
temperature field at -3800m. Namely, the warm area with temperatures above 6.3◦C
is shifted further to the north-east. In addition, the temperature is decreased around
(44◦N, 7◦E).

Overall, the three filter algorithms show a very limited ability to estimate the tem-
perature correctly when only measurements of the sea surface height are assimilated.
The shape of the temperature field is reproduced by the estimates in the upper 1000
meters. However, there is a bias in the temperature estimates. Due to this, addi-
tional temperature measurements, also in the depth, would be useful to obtain better
estimates of the temperature field.

9.5 Parallel Efficiency of Filter Algorithms

Based on of the idealized configuration of FEOM, the parallel efficiency and the speedup
of the parallel filtering framework is now examined. First, data assimilation experi-
ments with a limited ensemble size are considered to assess the efficiency of the complete
filtering framework. Subsequently, the parallel efficiency of the filter part is studied.
For this experiments are conducted without time stepping. This reduces the computa-
tion time and hence permits to perform more experiments. In addition, the neglect of
time stepping permits to examine also the efficiency of the domain-decomposed filter
algorithms, while FEOM is not based on domain decomposition.
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Figure 9.6: Comparison of true, estimated, and free model fields (from top to bottom)
at the end of the assimilation period. The estimated field is shown for the EnKF
with N = 60. The left hand side shows the sea surface height ζ. The temperature field
T at a depth of -50m is shown on the right hand side.
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Figure 9.7: Comparison of true, EnKF-estimated, and free temperature fields (from
top to bottom) at the end of the assimilation period. The right hand side shows the
temperature field at a depth of -1000m; the left hand side just above the bottom at a
depth of -3800m.
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9.5.1 Efficiency of the Framework

To study the parallel efficiency and the speedup of the data assimilation framework,
data assimilation experiments are performed with the three ESKF algorithms using
different numbers of parallel model tasks. Since FEOM does not apply domain-
decomposition, a configuration with mode-decomposed filters is applied. To reduce
the computation time of the experiments in comparison to those in the preceding sec-
tion, the data assimilation experiments are performed over a time period of 10 days.
The interval between subsequent analyses is set to 12 hours. To compute the speedup,
the state ensemble has to be divided evenly over the available model tasks. For this
reason, an ensemble size of N = 36 (r = 35) is chosen. This ensemble size has the
following properties:

• The ensemble is sufficiently large to provide a realistic data assimilation exper-
iment. On the other hand, the ensemble is small enough to perform a large
number of experiments.

• To assess the speedup, a large variety of different numbers of model tasks is
required. To ensure that each model task evolves the same numbers of ensemble
states, the chosen numbers of model tasks need to be divisors of the ensemble
size. In addition, the number of possible parallel model tasks is limited due to a
limited number of processors in the computer system used for the experiments.
Using N = 36, the experiments can be executed with 1, 2, 3, 4, 6, 9, 12, 18, and
36 parallel model tasks. This enables efficient use of the available 24 processors
of the Sun Fire 6800.

Using the configuration described above, the execution time for a single-processor,
i.e. serial, experiment is about 9 hours on the Sun Fire 6800. The execution time
decreased to about 35 minutes when 18 parallel model tasks are used. Using a single
processor, the execution time for the EnKF algorithm was about 18 seconds. The
analysis and the resampling phases of SEEK lasted respectively about 0.2 and 2.2 sec-
onds. The analysis phase of SEIK took 0.4 seconds while the resampling phase lasted
about 1 second. Thus, the analysis phase of SEIK is slower than that of SEEK, but
the resampling phase is faster. This is consistent with the computational complexity
of the algorithms which was discussed in section 3.4.

Figure 9.8 shows speedup and parallel efficiency for filtering experiments using the
configuration of the framework where the filter is executed by one process of each
model task. The speedup is computed from the total execution time of one series
of experiments. Thus, the time for the initialization of the model and the filter are
included as well as the time for the user analysis routines. The user analysis routines
compute the filter-estimated variances and write the estimated state to a disk file. Each
model task is executed by a single process. Hence, the total number of processes for an
experiment equals the number of model tasks and the number of filter processes. This
configuration has been chosen to allow for a maximal number of parallel model tasks.
This choice does not limit the significance of the results when the speedup in relation
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Figure 9.8: Speedup (left hand side) and parallel efficiency (right hand side) in depen-
dence on the number of parallel model tasks for the framework with a filter process on
each model task.
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Figure 9.9: Speedup (left hand side) and parallel efficiency (right hand side) in depen-
dence on the number of parallel model tasks for the framework with disjoint process
sets for filter and model. The filter part is computed by a single process.



9.5 Parallel Efficiency of Filter Algorithms 153

to the used number of model tasks is considered. Since here the number of processes
in a model task does not change, the computation time for the forecast of a single
state is independent of the number of parallel model tasks. Using a filter process on
each model task minimizes the amount of communication between model and filter
(see section 8.3.1). In fact, since each model task is executed by a single process, no
communication between model and filter is conducted. Thus, the parallel efficiency of
the program is limited only by the serial parts of the model and the filter algorithms,
by the communication performed within the filters, and by possible different times to
compute the forecast of different model states.

The speedup in figure 9.8 is excellent for all three filter algorithms. The small
differences between the filters are not statistically significant. The sensitivity of the
results was examined using 10-fold experiments with the same number of model tasks.
Due to variations in the total execution time of the experiments, a standard deviation
of about 3% results for the speedup. Thus, the filter framework yields equal values of
the speedup for the three ESKF algorithms. The parallel efficiency of the data assim-
ilation system decreases slightly when the number of parallel model tasks is increased.
With 18 model tasks an efficiency of about 85% is obtained.

For comparison, figure 9.9 shows speedup and parallel efficiency for experiments
using disjoint process sets for the model and filter parts of the program. In these ex-
periments the filter is executed on a single process only. Thus, the parallel efficiency
is limited by the serial operations of the filter, serial parts of the model, and by the
communication required to exchange the state vectors between filter and model. Fur-
ther, different computation times for the forecasts can limit the efficiency when other
processes have to wait for one of the model tasks to complete its work.

Using disjoint process sets, the speedup is very similar to the speedup obtained
by the configuration with a filter process on each model task. The small differences
are again not statistically significant. The standard deviation of the speedup amounts
again to about 3%. Due to these uncertainties no more detailed results can be drawn
from the values of the speedup. In particular, it is not possible to determine which
of the two process configurations, filter processes joint with the model processes or
disjoint process sets for model and filter, is more efficient.

The deviation from an optimal parallel efficiency of the data assimilation system
is caused by varying execution times of the state evolutions on different model tasks.
Since the processes are synchronized at the end of a forecast phase, this desynchro-
nization reduces the speedup of the forecast phase. The influence of the analysis and
resampling phases are negligible. For the EnKF, which is the most costly of the three
filter algorithms, the execution time for the analysis and resampling phases amounts
to less than 0.1% of the total execution time for the serial experiment. In addition,
the influence of the serial model initialization and the execution of the user analysis
routine are negligible. These phases last respectively about 6 and 10 seconds in the
serial experiment.
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9.5.2 Speedup of the Filter Part for Mode-decomposition

Despite the fact that in the experiments conducted in the preceding section with the
idealized configuration of FEOM the computation times for the filters were negligible,
it is instructive to examine the speedup of the filter routines. It will be important
when the computation time for the model is less dominant. This can occur, e.g., if
observational data is frequently available causing the time interval between successive
analysis phases to by very small.

To assess the parallel efficiency of the filter routines, data assimilation experiments
without time stepping are performed. For this the call to the time stepper routine of
FEOM is out-commented in the source code of the program used for the experiments
in section 9.5.1. Apart from the time stepping, the experiments are analogous to the
filtering experiments discussed in the preceding section. To obtain sufficiently large
execution times of the filter routines, the analysis phase is performed 20 times. This
corresponds to an interval of three hours between subsequent analyses in the exper-
imental configuration with time stepping. To study the dependence of the parallel
efficiency on the ensemble size, experiments with N = 60 and N = 240 are performed.

Figure 9.10 compares the execution time and the speedup for two different ensemble
sizes for the update phase of the filters for mode-decomposed filter algorithms. The
left hand side corresponds to an ensemble size of N = 60; the right hand side was
computed with N = 240. For the SEEK and SEIK filters the timing includes the time
for the analysis and the resampling phases. The serial experiments have also been
performed with the parallel filter routine. Thus, the used routines were not optimized
for serial computations. The MPI operations were called also in the serial experiments.
The execution time for these operations is much shorter in this case, but still there is
a small overhead due to these redundant operations.

For N = 60, the SEEK and SEIK filters are much faster than the EnKF algorithm.
The fastest algorithm is the SEIK filter. This is due to the much faster resampling
phase of SEIK compared with SEEK. In the serial experiments, the analysis phase of
SEEK takes about 0.6 seconds while the resampling lasts about 10.5 seconds. The
analysis phase of SEIK is longer than that of SEEK taking 0.9 seconds. However, the
resampling phase of SEIK lasts only 4.3 seconds. In these experiments, the resam-
pling phase of the SEEK filter is executed after each analysis. As was discussed in
section 2.4.1, this is actually not necessary. Thus, performing the resampling in SEEK
less frequently could significantly speed up this algorithm. The small speedup of EnKF
is partly due to the generation of the observation ensemble. Since only a single obser-
vation vector is read from a file, the observation ensemble has to be generated by the
transformation of independent random numbers which was discussed in section 4.2.
The generation of the observation ensemble took about 26 seconds for N = 60. The
algorithm itself lasted about 17 seconds. But, even if the time required for the initial-
ization of the observation is neglected, the EnKF algorithm would remain the slowest
algorithm. This is caused by the solver step for the representer amplitudes (line 20
in algorithm 7.3). The complexity of this operation scales with O(m3 + m2N) as was
discussed in section 3.4. Other influences on the speedup of the EnKF algorithm will
be discussed below.
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Figure 9.10: Execution time and speedup for the filter update phases in dependence
on the number of processes. In the experiments, the mode-decomposed filter was
applied. Displayed are mean values and standard deviations over ten experiments for
each combination of filter algorithm and number of processes. The left hand side shows
results for N = 60, the right hand side for N = 240.

The relative differences in the execution times are smaller for N = 240 than
for N = 60. Using the larger ensemble size, the SEIK filter remains the fasted al-
gorithm while the EnKF algorithm is still the slowest filter, even if the generation of
the observation ensemble is neglected. The execution time for the EnKF triples while
that for SEEK and SEIK increases tenfold. The small increase in the execution time
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for the EnKF is due to the fact that the time for the initialization of the observation
ensemble only approximately doubles since here several operations do not dependent on
the size of N . The time for the remaining part of the EnKF quadruples. The increase
in the execution time of SEIK is dominated by the computation of the new ensemble
matrix in line 10 of the resampling algorithm 7.5. For SEEK, the increase in time is
also dominated by the resampling phase. Here most of the time is spent in the compu-
tation of T1p in line 8 of algorithm 7.2 and the computation of the new modes in line 15.

The speedup of the mode-parallel filter algorithms is rather disappointing. This
becomes apparent from the bottom row of figure 9.10 which shows the speedup for the
experiments with N = 60 and N = 240. The fluctuations in the speedup are mainly
due to cache-effects of the computer used for the experiments. Therefore, the numerical
efficiency of matrix-operations like matrix-matrix products depends on the dimensions
of the involved matrices. For N = 60, the best speedup is obtained with the SEEK
filter. Using 12 processes, a speedup of about 3.2 is obtained which corresponds to a
parallel efficiency of 27%. The worst speedup is exhibited by the EnKF algorithm. It
stagnates at a value of about 1.2 when 12 processes are used. This corresponds to a
parallel efficiency of 10%. The speedup is slightly better for the large ensemble size
of N = 240. Here the speedup for SEEK and SEIK reaches respectively 4.4 and 4.7.
Thus an efficiency between 37% and 39% is obtained with 12 processes. The speedup
of EnKF is twice as large as for N = 60 stagnating at a value of about 2.4 with 12
processes.

The low parallel efficiency of SEEK and SEIK is mainly due to the extended com-
munication which is needed in the algorithms. For increasing ensemble size, the time
for computations increases relative to the time for communications. Thus the parallel
efficiency increases for larger ensembles. The distinct efficiency of SEEK and SEIK
for N = 60 is due to the different number of operations performed in their resampling
phases. The amount of communication in the resampling phases of both algorithms is
practically equal for N = 60. Since SEIK performs less operations, the allgather oper-
ation for X in line 6 of algorithm 7.5 is more dominant for the execution time than the
allgather operation performed for V in SEEK. Since the time to perform the allgather
operation increases with an increasing number of processes, the efficiency decreases for
a larger number of processes. Using more than 6 processes, the allgather operation in
SEIK lasts even longer than the computation of the new ensemble states. Therefore,
the execution time of SEIK increases if the number of processes exceeds a value of 8.
Hence, the speedup of SEIK decreases for the experiments using more than 8 processes.

For models with larger state dimension n, the speedup of the SEEK and SEIK filters
will also be limited by the required initialization of the full ensemble or mode matrix
by allgather operations. Also the differences between SEEK and SEIK will remain
for increasing n, since the amount of communication and the complexity of the most
expensive floating point operations in the resampling algorithm scale both with O(n).

The minor speedup of the EnKF filter is due to several factors. To examine the
reasons in detail, the execution time and the speedup of different groups of operations
are displayed in figure 9.11 for the EnKF with N = 240. In the serial experiment,
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Figure 9.11: Execution times and speedup for the groups of operations in the EnKF
analysis algorithm for N = 240. Shown are means and standard deviations analogous
to figure 9.10. The line numbers given in the legend of the diagrams refer to those in
algorithm 7.3.

the generation of the observation ensemble and the initialization of the residual matrix
(lines 15 to 19 in algorithm 7.3) take together about the same time as the ensemble
update with its preparations (lines 21 to 28). The the ensemble update shows a better
speedup than the initialization of the residuals. The speedup for the ensemble up-
date does, however, stagnates at a value of about 3.5. This is due to the allgather
operation performed to initialize the matrix T5 ∈ Rn×N . The generation of the ob-
servation ensemble does also show a limited speedup since this operation requires the
eigenvalue decomposition of the observation error covariance matrix R ∈ Rm×m. The
decomposition is independent of the local ensemble size and is not parallelized. The
speedup of the other parts of the EnKF algorithm is worse than the ensemble update
and the initialization of the residual matrix. The computation of matrix T3 ∈ Rm×m

in line 13 takes about 97% of the execution time of the operations in lines 4 to 14.
Since this operation is not parallelized, the speedup for this part of the algorithm will
be approximately constant with a value of one. The complexity of the solver step for
the representer amplitudes in line 20 is O(m3 + m2N). It is dominated by the LU-
decomposition of the matrix T3 which is performed by the LAPACK routine DGESV.
Thus, the achievable speedup of the solver step is very small.

Overall, this discussion showed that the small speedup for the EnKF is caused by
a combination of high amounts of communication and operations which are performed
serially or do not have a good scalability in terms of performance. The speedup of
the ensemble update could be major if the communication was faster relative to the
computations. The solver step in line 20 and the computation of T3 in line 13 will,
however, remain a limiting factor for the parallel efficiency of the EnKF algorithm. The
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speedup will be major if the dimension of the observation vector relative to the state
dimension is smaller. This can be achieved by using a EnKF analysis algorithm which
sequentially assimilates batches of observations as has been discussed in section 3.4.
In addition, a better speedup can be expected for larger models if the amount of
observational data remains constant.

9.5.3 Speedup of the Filter Part for Domain-decomposition

The experiments of the preceding section have been repeated using the domain-decom-
posed filter algorithms developed in section 7.3. Figure 9.12 shows execution time and
speedup for the update phase of the filters. As in figure 9.10, results for N = 60 are
displayed on the left hand side and results for N = 240 are shown on the right hand
side.

The execution times for domain-decomposed filters look rather similar to those
for the mode-decomposed filters. For the serial experiments, the times are about the
same size. There are small differences due to the different number of communication
operations which are even called if the filters are executed by a single process. A
relevant difference to the experiments with mode-decomposed filters is the stronger
decrease of the execution times with an increasing number of processes which is visible
for SEEK and SEIK.

This behavior is quantified by the speedup. For N = 60 the SEEK and SEIK filters
show an ideal, even slightly super-linear speedup. The super-linear speedup is caused
by some operations which exhibit super-linear speedup. An example is the computation
of the matrix T1p in the SEEK resampling algorithm 7.7. This operation reaches a
speedup of 14.8 with 12 processes. The super-linear speedup is caused by the effect
that the local part of a decomposed matrix might fit better into the processor caches
of the computer than the full matrix. Thus, the caches can be used more efficiently
if the matrix is decomposed. In this case, the parallel efficiency of the operation will
by larger than one. Whether a super-linear speedup occurs is dependent on the cache
sizes of the computer system used for the experiments.

For N = 240 the speedup of SEEK and SEIK is not ideal. It is, however, much bet-
ter than for the mode-decomposed filters. The speedup for SEEK and SEIK reaches
respectively 7.6 and 10.6 with 12 processes but is not yet stagnating. The speedup
corresponds respectively to a parallel efficiency of 63% and 88%. The speedup of the
two filters is smaller for the larger ensemble size since the filter algorithms have been
parallelized such that several operations acting on matrices of size (N − 1) × (N − 1)
remained serial. For the smaller ensemble size, the computation time of these opera-
tions was negligible. But, with increasing ensemble size, the execution time of these
operations increases strongly, since the complexity of the matrix-matrix operations is
proportional to (N−1)3 or (N−1)2. Hence, the execution time for the serial operations
can become relevant for larger ensembles. Then, the speedup will be limited by the
serial parts according to Amdahl’s law.

To exemplify the influence of the serial parts, the resampling phase of SEEK is
considered. The execution time and the speedup for the resampling phase of SEEK
with N = 240 are shown in figure 9.13. The computation of the matrix T1p in
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Figure 9.12: Execution time and speedup for the filter update phases for domain-
decomposed filter algorithms. Displayed are means and standard deviations analogous
to figure 9.10. The left hand side shows results for N = 60, the right hand side for
N = 240. The dotted line shows the ideal speedup.

line 5 of algorithm 7.7 together with the allreduce summation to initialize the global
matrix T1 (line6) shows a slightly super-linear speedup. In addition, an almost ideal
speedup is visible for the operations in lines 10 to 14. When the filter is executed by a
single process, the operations in lines 5 and 6 together with the operations in lines 10
to 14 take about 95% of the total execution time of the resampling algorithm. Thus,
the time for the serial parts of the algorithm is about 5% of the total time. Most of
this remaining time is spend in the computation of the singular value decomposition
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Figure 9.13: Execution time and speedup for the groups of operations in the SEEK
resampling algorithm for N = 240 for domain-decomposition. Analogous to figure 9.10
means and standard deviations are shown. The line numbers given in the legend of the
diagrams refer to those in algorithm 7.7. The dotted line shows the ideal speedup.

of T1 ∈ R(N−1)×(N−1) in line 9. Since this operation is not parallelized, its influence
on the total execution time grows with the number of processes. Using 12 processes,
the singular value decomposition takes about 25% of the computation time. Thus, the
serial parts of the algorithm reduce the parallel efficiency of the resampling algorithm.
It reaches only 65% with 12 processes which is consistent with Amdahl’s law. The
resampling phase dominates the execution time for the full update phase of SEEK.
The analysis phase requires only about 6% of the total execution time for the update.
Since the efficiency of the analysis algorithm is even minor than that of the resampling
algorithm, an efficiency of 63% is obtained for the update phase of SEEK as was
mentioned above.

The SEIK algorithm exhibits for N = 240 a parallel efficiency superior to the
SEEK algorithm. The resampling algorithm of SEIK shows an almost ideal speedup.
Its parallel efficiency reaches 95% with 12 processes. The efficiency is influenced by
the serial operations in lines 2 to 5 of algorithm 7.10. The efficiency of the full update
phase is reduced to 88% by the smaller efficiency of the analysis phase. With a single
process, the analysis takes about 15.5% of the total time for the update phase. The
efficiency of the analysis phase is limited by serial operations and some communication
operations. The most costly serial operation of the analysis phase is the solver step in
line 19 of algorithm 7.9. It requires about 6.5% of the execution time for the analysis.
There are some other serial and also communication operations like the operation of
the matrix T on some vector (line 20) or the allreduce summation of the matrix Uinv
in line 11. Together, the serial and communication operations reduce the efficiency of
the analysis phase to about 50% with 12 processes.
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Figure 9.14: Execution time and speedup for the groups of operations in the EnKF
analysis algorithm for N = 240 for domain-decomposition. Displayed are means and
standard deviations as in figure 9.10.The line numbers given in the legend of the dia-
grams refer to those in algorithm 7.8. The dotted line shows the ideal speedup.

For models of larger dimension n, the influence of the serial operations in the SEIK
and SEEK algorithms will be minor. In addition, the amount of communication is
independent of the dimension n. Hence, the speedup of the update phases of SEEK an
SEIK can be expected to be nearly ideal for larger state dimensions.

The speedup of the domain-decomposed EnKF filter algorithm is very similar to
that of the mode-decomposed algorithm. It stagnates at a value of 1.2 for N = 60
and 2.2 for N = 240.

The reasons for the small speedup are similar to those for the mode-decomposed
EnKF. The problem is again exemplified for an ensemble size of N = 240. Figure 9.14
shows the execution time and the speedup for operation groups of the domain-decom-
posed EnKF analogous to figure 9.11. In the domain-decomposed EnKF, the ensemble
update with its preparations (lines 22 to 27 in algorithm 7.8) shows a adequate speedup
without stagnation. With 12 processes a speedup of 9.1, corresponding to an efficiency
of 76%, is reached. The other parts of the algorithm exhibit, however, a much worse
speedup. The generation of the observation ensemble together with the initialization
of the residual matrix (lines 15-20) requires about 42% of the total execution time
if one process is used. For these operations, the speedup stagnates at a value of
approximately 2. The operations in lines 5 to 14 are dominated by the computation
of T3 in line 13. This operation is executed serially and requires about 5% of the
execution time in the serial case. The solver step for the representer amplitudes B in
line 21 is not parallelized either. With a single process, it requires approximately 14%
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of the total execution time for the EnKF analysis. Overall, a maximal speedup of
about 2.2 is obtained for the EnKF analysis algorithm due to the combination of the
high amount of serial operations and the small speedup displayed by the generation of
the observation.

The speedup achieved for the domain-decomposed EnKF algorithm is even slightly
below that for the mode-decomposed algorithm. This is due to the fact that the
generation of the observation ensemble exhibits a smaller speedup in the case of domain-
decomposition. Additionally, the solver step for the representer amplitudes is serial for
domain-decomposition while it is parallelized for mode-decomposition. The routine
Enkf Obs Ensemble is supplied by the user. Case dependent, it might be possible to
implement this routine more efficiently. However, even if the time for generating the
observation ensemble could be neglected, the total speedup of the EnKF algorithm is
limited by the serial operations involving the matrix T3. As for the mode-decomposed
EnKF algorithm, the speedup will be major if the dimension m of the observation vector
relative to the state dimension n is smaller, since the relevance of the serial operations
with diminish. This will be, e.g. fulfilled for models of larger state dimension if the
amount of observational data remains constant.

9.6 Summary

In this chapter, the parallel filtering framework developed in chapter 8 was implemented
and tested with an idealized configuration of the finite element ocean model FEOM.
The filtering framework includes the parallel filter algorithms developed in chapter 7.

Data assimilation experiments using synthetic observations of the sea surface height
showed a good ability of the filter algorithms to estimate the velocity field. The infor-
mation provided by surface observations is successfully transported to the lower levels
of the model by the estimated covariances between the sea surface height and the veloc-
ity field. In contrast to the velocity field, the temperature field is not well estimated.
While in the uppermost levels of the model the shape of the true temperature field
was accurately estimated, this was not the case for the lower levels. In addition, the
temperature was over-estimated in the model levels below a depth of -500 meters.

Experiments assessing the parallel efficiency of the filter framework have been per-
formed with all three ESKF algorithms. The two different process configurations of
the framework have been tested. For this, the filter algorithms are either executed by
processes which evaluate also the model forecasts or the filter and model parts of the
parallel program are executed on disjoint process sets. Both configurations exhibited
statistically equal speedups. In addition, the speedup for all three ESKF algorithm
is identical within the accuracy of the measurements. The speedup reached a value
of about 15 with 18 processes. This corresponds to a parallel efficiency of approxi-
mately 83%. The deviation from an optimal parallel efficiency resulted from the fact
that different model tasks required slightly different execution times to evaluate the
forecasts. This desynchronization yields an overhead in the total execution time which
reduces the parallel efficiency.
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To assess the speedup of the parallelized filter algorithms, experiments have been
performed without time stepping. The experiments included the mode-decomposed
and the domain-decomposed filter algorithms. The experiments showed that the model-
decomposed SEEK and SEIK filters exhibit a much smaller parallel efficiency than their
domain-decomposed counterparts. This is due to a high amount of communication
which limits the speedup of the mode-decomposed algorithms. In the experiments
the speedup stagnates for the mode-decomposed filters for rather small numbers of
processes. The speedup of the domain-decomposed SEEK and SEIK filters did not
stagnate for the tested process numbers. For the smaller ensemble size of N = 60, the
speedup was even super-linear. For the larger ensemble size of N = 240, the efficiency
of the SEEK and SEIK filters was limited due to serial operations on matrices involving
the dimension r = N − 1 of the error subspace. The EnKF algorithm exhibited an
almost equal parallel efficiency for both parallelization variants. The speedup stagnated
at values which are significantly smaller than the speedup obtained with the SEEK and
SEIK filters. The limited speedup of the EnKF algorithm is due to serial operations
on matrices involving the dimension of the observation vector.

The results for the parallel efficiency obtained in this chapter are specific for the
computer system used for the experiments and for the experimental configurations.
However, some general conclusions can be drawn. The stagnation of the speedup in
the EnKF algorithm will occur independently from the used computing platform if
the observation dimension is sufficiently large compared with the ensemble size. The
obtained value of the speedup will vary from computer to computer and will depend
on the dimensions involved in the data assimilation problem. Similarly one can expect
always a decreasing parallel efficiency for the domain-decomposed SEEK and SEIK
filters when the ensemble size increases. This is due to serial operations on matrices
involving the dimension of the error subspace. The speedup which can be obtained with
the mode-decomposed SEEK and SEIK filters is controlled by the ratio of floating point
performance to communication performance depending on the computing platform and
the dimension of the data assimilation problem.

If the filter framework is used with models of larger state dimension n, a parallel
efficiency of the data assimilation system similar to the current experimental results
can be expected. In addition, the speedup of the domain-decomposed SEEK and
SEIK filters can be expected to be excellent. The speedup of the mode-decomposed
variants of these filters will be limited by the high amount of communication which
is performed in the algorithms. The speedup of the EnKF algorithms will be limited
for both parallelization variants. However, if the state dimension n increases while the
amount of observational data remains constant, the speedup of the EnKF algorithms
will increase, too.
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Chapter 10

Summary and Conclusion

In the second part of this work the application of Error Subspace Kalman Filters (ESKF)
on parallel computers was studied. The implementation of the parallel data assimi-
lation system using the ESKF algorithms was conducted in two steps. First, the
parallelization of the analysis and resampling phases was discussed. Subsequently, the
parallelization of the forecast phase was considered. The latter was included in the
development of a framework for parallel filtering. To assess the parallel efficiency of
both the filter framework and the parallel filter algorithms, the framework was used to
implement a data assimilation system based on the finite element ocean model FEOM.
The obtained data assimilation system was tested in experiments with an idealized
configuration of FEOM.

With regard to the analysis and resampling phases, the filter algorithms allow for
two different parallelization strategies. On the one hand, the ensemble or mode matrix
can be decomposed over the processes such that each process holds several columns, i.e.
full ensemble states, of the matrix. This strategy is referred to as mode-decomposition.
On the other hand, the model domain can be decomposed into sub-domains. Hence,
each process holds only the part of a model state which corresponds to its local sub-
domain. Using domain-decomposition, the ensemble or mode matrix is decomposed
such that each process holds a full ensemble of local sub-states.

The comparison of communication and memory requirements for both paralleliza-
tion variants showed that the domain-decomposed filters are preferable. The size of
communicated matrices is smaller in the case of domain-decomposition. The differ-
ence is most significant for the SEEK and SEIK filters. With mode-decomposition,
several matrices involving the state dimension n or the dimension m of the observa-
tion vector are communicated. In contrast, only communications of matrices involv-
ing the typically much smaller dimension r of the error subspace are necessary when
the domain-decomposition is applied. In addition, the memory requirements for the
domain-decomposed filters are smaller than for the mode-decomposed algorithms. The
domain-decomposed variants allow for a better distribution of the large matrices. The
memory overhead due to additional matrices which are introduced for the paralleliza-
tion is also smaller for the domain-decomposed filters. The benefit of the smaller
communication requirements with domain-decomposition was confirmed by numerical
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experiments. In these, the speedup of the mode-decomposed SEEK and SEIK filters
stagnates already for less than 12 processes. The obtained speedup values are below 5.
In contrast, no stagnation of the speedup was observed in the experiments applying
the domain-decomposed SEEK and SEIK filters.

The EnKF algorithm is problematic concerning communication and memory re-
quirements. With both parallelization strategies, it requires full allocation of matrices
involving the dimension m of the observation vector on each process. For large ob-
servational data sets, this memory requirement can become critical. Additionally, the
EnKF algorithm involves ensemble matrices on the observation space, namely of di-
mension mN with N being the ensemble size, in communication operations even for
the domain-decomposed variant. While for mode-decomposition, the communication
requirements of all three filters are of comparable size, the domain-decomposed EnKF
algorithms communicate much more data than the domain-decomposed SEEK and
SEIK filters. Besides the issue of communication and memory requirements, some op-
erations on matrices involving the dimension m of the observation space are performed
serially in EnKF algorithm. In the numerical experiments, the EnKF algorithm exhib-
ited a comparable speedup for both parallelization variants. The speedup stagnated at
very small values between 1.2 and 2.4 which was mainly caused by the serial parts of
the algorithm.

To obtain a more efficient EnKF algorithm a localized filter analysis was derived.
The localization neglects observations beyond some distance from a model sub-domain
motivated by the fact that the sampled long-range covariances are in general very noisy.
Since, in addition, the true long-range covariances are typically very small, the infor-
mation content of the sampled long-range covariance is negligible. The localization is,
however, an approximation which can cause the model forecasts to become unstable.
The localization reduces the effective observation dimension of the analysis algorithm.
Hence, the memory as well as the communication requirements of the analysis algo-
rithms are reduced. Accordingly, the parallel efficiency of the algorithm will increase.

A framework for parallel filtering was developed which includes the parallelization
of the forecast phase of the filter algorithms. This framework is designed to permit
the combination of an existing model with the parallel filter algorithms requiring only
minimal changes in the model source code. The framework includes an application
program interface. This interface defines the structure of the subroutine-calls which
have to be added to the model source code. In addition, the interface to observation-
related routines which are called from the filter routines is defined. The organization
of the framework uses a clear separation between model and filter routines. In addi-
tion, operations related to observations are distributed into separate routines. With
this structure, the core routines of the filter algorithms are completely independent of
both the model and the observations. For combining the framework with an existing
numerical model, the major work will consist in the implementation of the observation-
related routines. In addition, routines have to be implemented which perform the
model-dependent transition between the state vector required for the filter part and
the state fields used in the model.
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The framework permits to execute multiple model tasks concurrently. Each of these
tasks can be individually parallelized. The required communication of data between
filter and model parts of the data assimilation program is performed by the frame-
work. Two different process configurations are supported by the framework. Either
the processes which execute the filter routines are also involved in the computation of
the model forecasts (denoted as joint process sets) or the filter part of the program is
executed on a set of processes which is disjoint from the processes used to compute the
model forecasts.

The theoretical examination of the different process configurations showed that
none of them is clearly preferable. The configuration with joint process sets permits,
on the one hand, to use all processes of the program to compute the model forecasts. In
addition, the amount of communication will be smaller than with disjoint process sets.
On the other hand, this configuration requires that a matrix holding a sub-ensemble
of model states is allocated on one process of each model task. This can increase the
memory requirements considerably.

The configuration with disjoint process sets requires only the allocation of a single
model state vector on one process of each model task. Further, the possible configura-
tions of the model tasks are more flexible than those for joint process sets. While for
joint process sets the sizes of the sub-ensembles which are evolved by the model tasks
are to be determined in advance, this is not required for the case of disjoint process
sets. Here, the framework sends an ensemble state vector to each idle model task. This
technique can be useful if the model tasks have strongly different performances. The
number of ensemble members evolved by each model task is dynamically controlled by
its performance. The automatic adaption to different performances of the model tasks
will, however, only work if ensemble size and performance differences are sufficiently
large.

The numerical experiments with FEOM yielded equal speedup values for both pro-
cess configurations. The speedup was not ideal due to varying execution times of
the model forecast on different model tasks. The time required for the analysis and
resampling phases of the filters was negligible in these experiments.

Overall, the configuration of the framework with joint process sets should be pre-
ferred if the memory requirement of the sub-ensembles on processes which execute also
the model is not problematic with the used computer architecture. If memory limi-
tations are too strong, the configuration of the framework with disjoint process sets
should be used. This configuration should also be used if there are significant perfor-
mance differences of the model tasks or if one considers to execute the data assimilation
program such that model forecasts are computed concurrently on multiple computers.

Considering the framework and the parallel filters together, the parallelization strat-
egy for the filter routines is independent from the process configuration of the frame-
work. Thus, the framework supports a parallelization strategy on two levels. First, the
numerical model and the analysis and resampling phases of the filters can be parallelized
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independently. Second, the framework permits to perform the forecast with multiple
model tasks which are executed concurrently. In this case, one parallel filter task is
coupled with several model tasks by the framework.

The parallelization strategy using mode-decomposition amounts to a parallelization
of the filter which is independent from a possible parallelization of the model. In con-
trast, the strategy using domain-decomposition is most efficient for models which are
themselves domain-decomposed. In this case, the decompositions used for the model
and the filter should coincide to obtain optimal performance. Distinct decompositions
of the domains for model and filter are supported by the framework. They will, how-
ever, result in an overhead due to the required reordering of the state information.

Concluding, the study showed that the EnKF algorithm exhibits several problems.
These are due to the communication and memory requirements of the filter. In addition,
the parallelized EnKF algorithms contain several serial operations on matrices which
involve the dimension of the observation vector. If the a large amount of observational
data is assimilated, these operations will strongly limit the parallel efficiency of the
algorithms. Thus the parallel efficiency of the EnKF algorithm is limited in addition
to the inferior serial numerical efficiency in comparison to the SEEK and SEIK filters
which has been discussed in part 1 of this work.

The SEEK and SEIK filters show a very good parallel efficiency for domain-decom-
posed states if the rank r of the approximated state covariance matrix is significantly
smaller than the dimension of the observation vector and the state dimension. In this
situation, the SEIK filter is the algorithm with the highest parallel efficiency. Using
mode-decomposition, the parallel efficiency of both filter algorithms is limited by a
large amount of data which has to be communicated by global MPI operations.

The differences between the parallel efficiencies of the analysis and resampling phase
of the three ESKF algorithms are less important if the computation time for the forecast
phase dominates the full execution time of the data assimilation application. In this
case a very good parallel efficiency of the data assimilation system is obtained since
the evolution of different model states can be performed independently. The efficiency
can be limited by varying execution times for different model tasks. Furthermore serial
parts of the program like the model initialization or the output of fields to disk files
can be limiting for efficiency.

The parallel filtering experiments showed that the filter framework introduced in
this work including the implemented parallel filter algorithms is well suited for realistic
large-scale data assimilation applications.
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Parallel Computing

A.1 Introduction

This appendix provides an introduction to parallel computing. Section A.2 summarizes
the fundamental concepts of parallel computing. Subsequently, in section A.3, quan-
tities for the performance analysis of parallel programs are introduced. In addition,
an introduction to the Message Passing Interface (MPI) [27] is given in section A.4.
The descriptions summarized here follow those by Foster [22] and Pacheco [59]. Some
expressions have been taken from these books.

A.2 Fundamental Concepts

Parallel computing bases on several fundamental concepts and methods. We summa-
rize here the fundamental terms which are used in the main part of this work.

Process
A process can be, intuitively, considered as an instance of a program that is executing
more or less autonomously on a physical processor. It is fundamental building block
of a parallel program which comprises multiple processes.

Parallelism
Parallelism is the possibility to distribute instructions of some operation over multiple
processes to perform the parts of the operation concurrently by the processes. An
example is the addition of two vectors a, b ∈ Rn. The additions of the components

{ci = ai + di, i = 1, . . . , n} (A.1)

are mutually independent. Hence, they can be performed concurrently by different
processes.

Communication
Communication is the operation to exchange data between different processors. Com-
munications will result in an overhead since the participating processor will not perform
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productive work during the communication operation. Communication can be per-
formed either collective or point-to-point. Collective communication involves a group
of processes. It is, e.g., used for global summations or broadcast operations. Point-to-
point communication operations exchange data between pairs of processes.

Synchronization
Synchronization of the execution of a parallel program is required if the following oper-
ations of the program base on the results of previous operations performed by parallel
processes. Synchronization yields an overhead which is either due to the required com-
munication or due to processes which idle until the synchronization is completed.

Overhead
The overhead describes the excess of execution time of a parallel program in compari-
son to a sequential program. The overhead is due to communication, synchronization,
and the start-up time of parallel processes.

Granularity
Granularity is the ratio of the time for productive work to the time spent for com-
munication or the start-up of parallel processes. Coarse granularity is obtained if the
distributed work consists of a large amount of instructions but only few communica-
tions. In this case, the time during which the processors work independently is much
larger than the communication time.

Load balancing
To obtain an optimal parallel efficiency of a parallel program, the operational load has
to be distributed equally over all processes, denoted as load balancing. Dependent
on the problem, the distribution of the operations can either be statically (for regular
problems), or dynamically (for irregular or adaptive problems).

Program paradigms
A parallel program paradigm describes the general way in which a program is paral-
lelized. Of the many existing paradigms we describe those two which are the most
widely used:
Shared-memory programming utilizes the possibility to use a global address space for
the memory of all processes of a parallel program. This can be either achieved by a
direct access to all memory locations by all processes or by a virtual global address
space of distributed memory. Shared-memory programs can be implemented using the
Open-MP standard [57].
Message Passing is used to implement parallel programs on computer systems with
distributed-memory. The processes of the parallel program share data by explicitly
sending and receiving messages. These communication operations are explicitly im-
plemented, e.g. by calling routines of the Message passing Interface (MPI) [27]. An
introduction to MPI is provided in section A.4.
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A.3 Performance of Parallel Algorithms

The performance of parallel algorithms can be expressed by several measures which
are summarized here.

Performance
The performance of a program is defined as the number of operations performed per
time unit. In numerical applications, the performance is usually expressed by floating
point operations (flops) per second.

Execution Time
The time that elapses between the startup of the first processor executing a parallel
program and the time when the last processor completes execution defines the execu-
tion time T of the parallel program.
The execution time will generally depend on the computer being used. I.e., the hard-
ware (processors, memory, network, etc.) as well as the compiler used to generate the
program executable will influence the execution time.

Speedup
The speedup S(p, n) of a program which is executed on p processors with some problem
size of n is defined by

S(p, n) =
T (1, n)

T (p, n)
. (A.2)

The speedup describes the factor by which the execution time of a parallel program is
reduced with p processors, relative to the execution with a single processor.

Parallel Efficiency
The parallel efficiency E(p, n) measures the process utilization in a parallel program
relative to a serial program. It is defined by

E(p, n) =
T (1, n)

p · T (p, n)
. (A.3)

A parallel efficiency of 1 (or 100%) shows an ideal parallelization. Since the parallel
program will not be free of overhead and will usually contain also serial phases, it
is E(p, n) < 1.

Amdahl’s Law
Typically, not all operations in a program can be parallelized. Thus, there will be some
fraction α, (0 ≤ α ≤ 1) of serial operations. The total execution time of a parallel
program is then given by the sum of the execution times Tp for the parallel and Ts for
the serial fractions of the program:

T (p, n) = Ts(1, n) + Tp(p, n) =

(
α +

1 − α

p

)
T (1, n) (A.4)
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Serial parts of a parallel program will limit the speedup, since, according to equa-
tion (A.4),

S(p, n) =
T (1, n)

T (p, n)
=

1

α + 1−α
p

. (A.5)

Thus, the asymptotic speedup is

S(p, n) → 1

α
for p → ∞ . (A.6)

Scalability
A parallel program is scalable if its execution time is inversely proportional to the num-
ber of processors used to execute the program. This behavior is denoted as scalability
with fixed problem size. Scalability with scaled problem size describes the property of
an algorithm to allow for an increase rate of the problem size which keeps the efficiency
constant when increasing the number of processors.

A.4 The Message Passing Interface (MPI)

Using the message-passing library MPI the parallel program is written by augmenting
standard Fortran or C/C++ source code with calls to library functions for sending and
receiving messages.

The MPI-1 standard [27] comprises 129 functions. We describe here fundamental
concepts of MPI. In the course of this, we describe the functions which are used for the
parallelization of the filter algorithms and for the implementation of the parallel filter
framework.

Message Passing
MPI is based on message passing. That is, communication is performed by the explicit
sending and receiving of messages which contain the data to be exchanged.

Message
A message consists of the data to be exchanged and an envelope enclosing the message.
The envelope contains the information which is necessary to identify a message and to
send it to the right process. The identifying information are the rank of the receiving
process, the rank of the sending process, a tag, and a communicator. The tag identifies
a message if several messages of the same type are sent by the same process.

Initialization of a MPI Program
Before any other MPI functions can be called, the library must be initialized by call-
ing the function MPI Init. After a program has finished using the MPI library, each
process must call MPI Finalize. This function ensures a clean termination of MPI, e.g.
by freeing memory allocated by the MPI library.

Communicator
A communicator defines a set of processes which can send messages to each other. All
communication operations in MPI are performed within a communicator. Accordingly,
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a communicator must be specified in the calling interface of all MPI functions which
are related to communication or the communicator itself.

The communicator is useful to define subgroups of processes which participate in col-
lective communication operations. After the initialization of a program which is paral-
lelized using MPI, the communicator MPI COMM WORLD exists which contains all
processes of the program. Other communicators can be defined, e.g., by splitting the
set of processes in an existing communicator with the function MPI Comm split.

Rank of a Process
The rank of a process in a communicator is provided by the function MPI Comm rank.
The total size of a communicator in terms of processes is provided by the function
MPI Comm size.

Point-to-Point Communication
The basic point-to-point communication operations of MPI are the functions MPI Send
and MPI Recv. These operations are blocking, i.e., a process which calls e.g. MPI Recv
remains idle until the message it has to receive is available.

The MPI library provides also non-blocking operations. These are, e.g., the functions
MPI ISend and MPI IRecv, which are the non-blocking counterparts of the basic send
and receive operations. When a non-blocking function is called, the process posts the
communication operation and returns immediately from the function without waiting
for the completion of the communication operation. To query the completion of a
non-blocking operation, the function MPI Test is called.

Broadcast
A broadcast is a collective operation in which a single process sends the same data to
every process of a communicator. The broadcast is conducted by calling the function
MPI Bcast.

Reduction
A reduction operation is a collective communication operation in which all processes
of a communicator contribute data that is combined using a binary operation. Typical
operations are addition or the determination of the maximum value of a variable. The
combined result is provided to a single process if the function MPI Reduce is called.
If the result of the reduction operation is required by all processes of a communicator,
the function MPI Allreduce is called.

Gather
To gather an array which is distributed over the processes of a communicator on a
single processor, the function MPI Gather is called. The function MPI Allgather pro-
vides the gathered array to all processes.

Barrier
To synchronize the processes, the function MPI Barrier can be called. This function
causes each process to block until every process of the communicator has called it.
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Appendix B

Documentation of Framework
Routines

In this appendix, those routines of the filter framework are documented which have not
been shown in the main part of this work. The interfaces of these routines are iden-
tical for mode and domain-decomposition The description refers to the variant using
mode-decomposition.

Subroutine Next Observation(step,nsteps,time)
int step {Current time step, input}
int nsteps {Number of time steps to be computed, output}
real time {Current model time, output}

. . . Initialize nsteps and time . . .

Algorithm B.1: Initialize the number of time steps for the next forecast phase and the
current model time. Called from the Get State for joint process sets or the filter main
routine for disjoint process sets.

Subroutine Distribute State(n,x)
int n {State dimension, input}
int x(n) {State vector to be distributed, input}

. . . Initialize and distribute model fields . . .

Algorithm B.2: Initialize the model fields for a model task from a state vector. Called
by Get State.
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Subroutine Collect State(n,x)
int n {State dimension, input}
int x(n) {State vector to be initialized, output}

. . . Initialize state vector from model fields . . .

Algorithm B.3: Initialize the state vector from the model fields of a model task after a
state has been forecasted. Called by Put State.

Subroutine Get Dim Obs(step,m)
int step {current time step, input}
int m {dimension of observation vector, output}

. . . Initialize m . . .

Algorithm B.4: Provide dimension of the observation vector. Called from the filter
analysis routines.

Subroutine Measurement(step,m,y)
int step {current time step, input}
int m {dimension of observation vector, input}
real y(m) {observation vector, output}

. . . Initialize y . . .

Algorithm B.5: Provide the observation vector. Called from the filter analysis routines.

Subroutine Measurement Ensemble(step,m,Np,Yp,y)
int step {current time step, input}
int m {dimension of observation vector, input}
int Np {local ensemble size, input}
real Yp(m,Np) {matrix holding local observation ensemble, output}
real y(m) {observation vector, output}

. . . Initialize y and Yp . . .

Algorithm B.6: Provide an ensemble of observations. Called from the EnKF analysis
routine.
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Subroutine Measurement Operator(step, n,m,x,y)
int step {current time step, input}
int n {state dimension, input}
int m {dimension of observation vector, input}
real x(n) {state vector, input}
real y(m) {state vector projected on observation space, output}

. . . operate with H on x to obtain y . . .

Algorithm B.7: Implementation of the measurement operator. Called from the filter
analysis routines.

Subroutine RinvA(step,m,r,A,B)
int step {Current time step, input}
int m {Dimension of observation vector, input}
int r {Rank of approx. covariance matrix, input}
real A(m, r) {Matrix to be multiplied by R, input}
real B(m, r) {Computed product matrix, output}

. . . B ← R−1A . . .

Algorithm B.8: Multiply the inverse of the observation error covariance matrix R with
some matrix. Called form the analysis routines of SEEK and SEIK. Since the matrix
A is still required in the algorithms, it must not be modified in the routine.

Subroutine RplusA(step,m,A)
int step {Current time step, input}
int m {Dimension of observation vector, input}
real A(m,m) {Input matrix and result of addition, input/output}

. . . A ← R + A

Algorithm B.9: Add the observation error covariance matrix R to some matrix. Called
by the analysis routine of the EnKF. Since the input matrix A is not further used in
the algorithm, it is overwritten by the sum.

Subroutine Init Ensemble SEEK(n, r,x,Uinv,V, status)
int n {state dimension, input}
int r {rank of approximated covariance matrix, input}
real x(n) {state estimate, output}
real Uinv(r, r) {inverse eigenvalue matrix, output}
real V(n, r) {mode matrix, output}
int status {status flag, input/output}

. . . Initialize x, Uinv, and V . . .

Algorithm B.10: Initialize filter fields for SEEK. Called from filter initialization rou-
tines.
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Subroutine Init Ensemble SEIK(n,N,x,X, status)
int n {state dimension, input}
int N {ensemble size, input}
real x(n) {state estimate, output}
real X(n,N) {ensemble matrix, output}
int status {status flag, input/output}

. . . Initialize x and X . . .

Algorithm B.11: Initialize filter fields for SEIK. Called from filter initialization routines.

Subroutine Init Ensemble EnKF(n,N,x,X, status)
int n {state dimension, input}
int N {ensemble size, input}
real x(n) {state estimate, output}
real X(n,N) {ensemble matrix, output}
int status {status flag, input/output}

. . . Initialize x and X . . .

Algorithm B.12: Initialize filter fields for EnKF. Called from filter initialization rou-
tines.

Subroutine User Analysis SEEK(step, n, r, rp,m,x,Uinv,Vp)
int step {current time step, input}
int n {state dimension, input}
int r {rank of approximated covariance matrix, input}
int rp {local rank of approx. covariance matrix, input}
int m {dimension of observation vector, input}
real x(n) {state estimate, input}
real Uinv(r, r) {inverse eigenvalue matrix, input}
real Vp(n, rp) {mode matrix, input}

. . . User treatment of filter fields . . .

Algorithm B.13: User analysis routine for SEEK. Called from filter main routines. The
provided input fields should not be changed.
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Subroutine User Analysis SEIK(step, n,N,Np,m,Xp,x)
int step {current time step, input}
int n {state dimension, input}
int N {ensemble size, input}
int Np {local ensemble size, input}
int m {dimension of observation vector, input}
real x(n) {state estimate, input}
real Xp(n,Np) {ensemble matrix, input}

. . . User treatment of filter fields . . .

Algorithm B.14: User analysis routine for SEIK. Called from filter main routines. The
provided input fields should not be changed.

Subroutine User Analysis EnKF(step, n,N,Np,m,Xp,x)
int step {current time step, input}
int n {state dimension, input}
int N {ensemble size, input}
int Np {local ensemble size, input}
int m {dimension of observation vector, input}
real x(n) {state estimate, input}
real Xp(n,Np) {ensemble matrix, input}

. . . User treatment of filter fields . . .

Algorithm B.15: User analysis routine for EnKF. Called from filter main routines. The
provided input fields should not be changed.
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[82] Y. Trémolet, F.-X. Le Dimet, and D. Trystram. Parallelization of scientific appli-
cations: Data assimilation in meteorology. In High Performance Computing and
Networking, Lecture Notes in Computer Science in Meteorology. Springer, 1994.

[83] G. Triantafyllou, I. Hoteit, and G. Petihakis. A singular evolutive interpo-
lated Kalman filter for efficient data assimilation in a 3-D complex physical-
biogeochemical model of the Cretan sea. J. Mar. Syst., 40-41:213–231, 2003.



BIBLIOGRAPHY 187

[84] P. J. van Leeuwen. Comment on ”data assimilation using an Ensemble Kalman
Filter technique”. Mon. Wea. Rev., 127:1374–1377, 1999.

[85] P. J. van Leeuwen. A variance-minimizing filter for large-scale applications. Mon.
Wea. Rev., 131:2071–2084, 2003.

[86] P. J. van Leeuwen and G. Evensen. Data assimilation and inverse methods in
terms of a probabilistic formulation. Mon. Wea. Rev., 124:2898–2913, 1996.

[87] M. Verlaan. Efficient Kalman Filtering Algorithms for Hydrodynamic Models.
PhD thesis, Delft University of Technology, 1998.

[88] M. Verlaan and A. W. Heemink. Reduced rank square root filters for large scale
data assimilation problems. In International Symposium on Assimilation in Me-
teorology and Oceanography, pages 247–252. WMO, 1995.

[89] M. Verlaan and A. W. Heemink. Nonlinearity in data assimilation applications:
A practical method for analysis. Mon. Wea. Rev., 129:1578–1589, 2001.

[90] J. Verron, L. Gourdeau, D. T. Pham, R. Murtugudde, and A. J. Busalacchi.
An extended Kalman filter to assimilate satellite altimeter data into a nonlinear
numerical model of the tropical Pacific ocean: Method and validation. J. Geophys.
Res., 104(C3):5441–5458, 1999.

[91] A. C. Voorrips, A. W. Heemink, and G. J. Komen. Wave data assimilation with
the Kalman filter. J. Mar. Syst., 19:267–291, 1999.

[92] X. Wang and C. H. Bishop. A comparison of breeding and Ensemble Transform
Kalman Filter ensemble forecast schemes. J. Atm. Sci., 60:1140–1158, 2003.
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