

- Very accurately measures gravity, geoid, SSH
- serves as place holder for other high accuracy data
- Are ocean models up to this challenge?

LES, vertical mixing

temperature snapshot at 72h

with V.Gryanik

day 30

30

30

30

30

40

40

40

40

Regional model in the Antarctic Polar Frontal Zone: EIFEX analysis with MITgcm and REcoM (with M. Schartau, V. Strass)

OCMIP2: Doney et al. (2004)

Annual Sea Surface Temperature minus Levitus (C)

Estimating the accuracy of ocean circulation models

Martin Losch

- •To what extend can we trust ocean model-based estimates?
- random errors -> parameter perturbation, adjoint sensitivity
- systematic errors (very hard to assess) -> comparison to measurements; leads to state estimation with formal error estimates

A. perturbation experiments ("brute force")

- perturb 1 parameter, observe effect
- perturb next parameter, etc.
 - Problem: very costly, if systematic
- ensemble methods, Monte Carlo methods
 - choose ensemble of experiments and compare ensemble members, determine spread of solutions
 - Problems: what is the optimal ensemble size, how do you choose the ensemble?
- Example: Losch, Adcroft, and Campin (2004)

Mean SSH and changes to mean SSH Boussinesg model

Difference due to perturbed forcing

difference in SSH [cm]

B. (linear) adjoint sensitivity

- choose observable, objective function (OF)
- compute exact derivative of OF with respect to "control variables", *d*(OF)/*dx* by means of the adjoint model.
- very elegant, needs only 1 forward and 1 backward integration
- Problem: requires gradient code of ocean model, always involves linearization
- Example: OF = transport through Drake Passage, control variables: wind stress (conventional), bottom topography (unconventional), (with P. Heimbach, MIT)

adjoint sensitivities

C. Systematic comparison to observations:

- Data assimilation, state estimation, with error analysis
- different techniques
- variational/adjoint methods use gradient information (previous slide)
- example: ECCO-consortium (Stammer, Fukumori, Wunsch, and many others)
- large computational effort

C. Systematic comparison to data: error analysis

- cost function $J = \frac{1}{2} (d m(x))^T W (d m(x))$ • error covariance $C_{xx} = H^{-1} = \left(\frac{\partial^2 J}{\partial x_i \partial x_j}\right)^{-1}$
- error analysis is almost always computationally prohibitive, but yields "best estimate" with error estimate
- example: Losch and Wunsch (2003) and FEMSECT

linear shallow water model

Losch and Wunsch (2003)

linear SWM: optimized solution

b) sea-surface height data with white noise

a) perfect sea-surface height data

residual = optimal – true depth

posterior error estimate

FEMSECT: finite element inverse section model. Application to Fram Strait

Well, and how do you to estimate the accuracy of ocean circulation models?

a list with increasing complexity:

- "brute force" perturbation/ensemble methods, but very expensive
- adjoint sensitivity
- comparison to observations; data assimilation/state estimation with error estimates

to do

- explore unconventional control parameters in ocean models:
 - topography, diffusivity, lateral boundary conditions, ...
 - revise parameterization of the above
- state estimation with (coupled) ecosystem models (very nonlinear), to improve flux estimates of, e.g., CO₂