Discrepancies between formaldehyde measurements and methane oxidation model predictions in the Antarctic troposphere: An assessment of other possible formaldehyde sources


Contact
Otto.Schrems [ at ] awi.de

Abstract

Abstract. Formaldehyde (HCHO) is a key intermediate in the photooxidation of methane by hydroxyl radicals. Through its photolysis it is also a source for free radicals in the troposphere. Owing to these reactions, HCHO influences the oxidation capacity of the atmosphere and is a suitable species to test our current understanding of atmospheric oxidation pathways. Especially in polar regions, discrepancies between measurements and model calculations exist. Though recent investigations in the Arctic suggest that HCHO emissions from the snow surface might act as the missing source, the question remains unresolved for the Antarctic. We compare year-round HCHO measurements in Antarctica with model results from a simple photochemical box model. The observed ambient HCHO mixing ratios cannot be explained by methane photooxidation alone. Inclusion of HCHO emissions from the snow surface makes the model results and measurements consistent, but significantly higher emissions than those derived in the Arctic are needed to explain the observed HCHO mixing ratios. We discuss other possible sources such as oxidation of dimethylsulfide (DMS), isoprene, ethene, propene, and the effect of halogens, that may be responsible for the enhanced HCHO mixing ratios in the marine Antarctic troposphere. We find that, for the largest HCHO mixing ratio measured, methane is likely to produce only about 9% of the required HCHO; isoprene (including generated propene) about 22%; and ethene, DMS and halogens together only 7%. If the remaining HCHO is produced by a flux from the snow, the flux required is about 1.9 x 1013 molecules m-2 s-1.



Item Type
Article
Authors
Divisions
Programs
Publication Status
Published
Eprint ID
12051
DOI 10.1029/2005JD005859

Cite as
Riedel, K. , Allan, W. , Weller, R. and Schrems, O. (2005): Discrepancies between formaldehyde measurements and methane oxidation model predictions in the Antarctic troposphere: An assessment of other possible formaldehyde sources , Journal of geophysical research-atmospheres, Vol. 110, D15308 . doi: 10.1029/2005JD005859


Download
[thumbnail of Fulltext]
Preview
PDF (Fulltext)
Rie2005a.pdf

Download (327kB) | Preview
Cite this document as:

Share
Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email


Citation

Research Platforms

Campaigns
N/A


Actions
Edit Item Edit Item