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1 Overview

Combining models and data with data as-
similation or state estimation techniques
IS promising when both data and mod-
els separately exhibit some skill. How-
ever, in oceanography more often than not,
data and in particular sub-surface data are
sparse and the prediction skill of ocean
models tends to be poor on long time
scales. We present a state estimation ex-
periment, in which we exploit the avail-
ability of a high-resolution regional data
set: Hydrographic, tracer and velocity data
from the European Iron Fertilization EX-
periment (EIFEX) are used to constrain a
high-resolution coupled ecosystem-ocean
circulation model of the experimental site
In Atlantic sector of the Antarctic Polar
Frontal Zone.

2 EIFEX: European Iron
Fertilization EXperi-
ment

EIFEX was aimed at testing the hypothe-
sis that iron limits phytoplankton blooms
In the Southern Ocean. For the open
ocean experiment, a patch with a diame-
ter of 16 km inside of a cyclonic, mesoscale
eddy in the polar frontal zone was fertilized
on February 12-13 and February 26-27,
2004 with dissolved iron. Subsequently the
oceanic response was monitored. The eddy
was Identified with the help of in-situ mea-
surements (CTD sensor and ship mounted
ADCP) and satellite altimetry. It extended
over 60 km by 100 km. with the center near
49°24°S 02°15°E in the South Atlantic
During the course of the experiment both
hydrographic and dynamic parameters and
bio-geochemical quantities were measured
at CTD stations inside and outside the
fertilized patch and along the ship track.
Many measurements covered the water col-
umn down to 500 m depth.
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3 MITgcm and state estimation

The M.L.T. general circulation model (MITgcm Marshall et al., 1997) has been
adapted for use with the Tangent linear and Adjoint Model Compiler (TAMCOC),
and its successor TAF (Transformation of Algorithms in Fortran, Giering and
CPU/memory), exact (w.r.t. the model’s MENNNER I T
transient state) derivative code can be generated for up-to-date versions of the SRR 2
MITgcm and its newly developed packages in a wide range of configurations
(Heimbach et al., 2002, 2004). Here, the MITgcm iIs configured to cover the ex-
perimental region of the EIFEX cruise of appoximately 150 km by 194 km with
a mean horizontal grid spacing of approximately 3.6 km; vertical grid spacing
Increases from 10 m near the surface to 25m at 500 m depth. The integration

Kaminski, 1998). Efficient (w.r.t.

time spans the length of the experiment (39 days).
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4 tions to the objective function J with iteration
number of the BFGS-descend algorithm. Hy-
drographic data from CTD-stations and ship-
mounted ADCP-current measurements are used
to assimilate the model using the variational data
assimilation technique (state estimation, “4D-
VAR”). During the minimization of the objec-
tive function J that describes the quadratic de-
viation of the model from data and also penal-
1zes deviations from the first guess, initial con-
ditions for temperature and salinity, open bound-
ary conditions for temperature, salinity, and ve-
locity, and surface fluxes of heat, fresh water,
and momentum are adjusted to give the best fit
to observations.
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Figure 2: Comparison with in-situ data shows that data assimilation improves the position of the eddy by adjusting
open boundary conditions, initial hydrography, and (to a lesser extend) surface flux boundary conditions. Left:
surface salinity from hydrographic measurements, average over first 10 days of the experiment. Center: surface
salinity of modeled eddy on day 5 without data assimilation; initial conditions and boundary conditions for this first
guess are obtained by interpolating and extrapolating all available data; the amount of data is not sufficient to allow
for time dependent boundary conditions, which appears to be the major problem for this solution. Right: surface
salinity of modeled eddy on day 5 after full time-dependent state estimation; the eddy has moved southward and
away from the boundary and its position is now in much better agreement with observations (Left).
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Figure 4. Horizontally averaged temperature (left) and salinity (right) in the fertilized patch; data (top panels),
optimized model (middle panels), first guess model (bottom panels). The optimization improves the description
of the mixed layer depth dramatically, so that the optimized solution describes the warming and freshening of the
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mixed layer more accurately than the first guess solution.

In a one-dimensional configuration, a mixed layer model (KPP, Large et al., 1994) is driven by meterological parameters (POL-
DAT, G. Konig-Langlo) that were collected during the EIFEX cruise to obtain vertical mixing coefficients. The mixed-layer
dynamics drives a regulated ecosystem model (REcoM, M. Schartau and M. Losch, personal communications) that includes
phytoplankton, heterotrophic zooplankton and detritus, dissolved inorganic matter and extra cellular organic matter for three nu-
trient groups (nitrate, carbon, and silicium) and the limiting effect of iron. With the physical parameters held fixed, REcoM Is
assimilated to chlorophyll bottle data collected during the EIFEX cruise (C. Klaas, personal communications) in order to obtain
an optimal parameter set for the time of the cruise. Ecosystem model dynamics are notoriously nonlinear. Therefore we use a

Sequential Importance Resampling (SIR) filter for the assimilation.
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Figure 5. Evolution of 19 adjusted model parameters with
filter step in the one-dimensional experiment. After 30 in-
tegrations (filter steps) of 500 Ensemble members, some pa-
rameters emerge with clear optimal values, for example, the
maximum of the C-specific rate of photosynthesis FP.,, and
the sinking velocities vp.; and vpy,,; other parameters have a
bimodal PDF, for example, the Chl-specific initial slope of the
P-1 curve « and the degradations constations of extracellular
organic carbon p~1. The grey bars represent the first guess
values, the red bars represent the maximum of the PDF.
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altimetry on day 37 of the experiment (not used In the assimila-
tion; source: http://www-ccar.colorado.edu/ realtime/gsfc
global-real-time _ssh). Center. SSH of modeled eddy on day 37 with-
out data assimilation. Right: SSH of modeled eddy on day 37 after full time-
dependent state estimation; the eddy extends further south than before, but the
comparison of absolute SSH with height anomalies is ambiguous.

5 Coupling of Optimized Ecosytem Model to the Optimized Circu-
lation Model

Figure 7. 24 h-mean of mod-
eled chlorophyll concentration
on day 37 of the experiment
with the optimized coupled
ecosystem circulation model;
left: top view; right: sec-
tion through the fertilized patch
along black line of top-view
graph. Dashed black lines
are contours of potential den-
sity that show the stratification.
Mixed layer depth is indicated
by the thick white line.
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Figure 8: \ertical flux of particulate organic carbon

Figure 6. Temporal evolution of cholorphyll a (Chl a) without
data assimilation (top) and with data assimilation (bottom) in
the one-dimensional experiment. Filled circles represent data
values used In assimilation. The assimilated model captures
the beginning and the end of the phytoplankton bloom where
the unassimilated model fails. Mixed layer physics is not ad-
justed not affected by data assimilation, therefore the mixed
layer is too shallow in both models; consequently they fail to
explain high chlorophyll values at the bottom of the observed
mixed layer which extends below 100 m depth.
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(POC, in mmol C m—2s~1) averaged over the fertilized
patch and the entire experiment period for three different
experiments: (1) first guess physics and ecosystem pa-
rameters (blue), (2) assimilated physical trajectory and
first guess ecosystem parameters (green), (3) assimilated
physical trajectory and optimized ecosystem parameters
(red). Clearly, improving the physical trajectory has a
larger impact than optimizing the ecosystem model’s pa-
rameters. Outside the fertilized patch the effects of im-
proved physics and biology are small.
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