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Abstract

Mud boils, a form of non-sorted circles, cover the ground surface in many periglacial landscapes. The vegetation-covered
trough acts as an effective buffer to the downward movement of water and chemicals, while the bare center experiences larger
fluxes of heat and mass. Since dissolved ions affect the electric conductivity of the soil solution, measurements of the bulk soil
electric conductivity offer potential for estimating solute concentration. Since 1998, bulk soil electric conductivity has been
measured automatically and hourly using 32 time domain reflectometry probes over an approximately 1 m diameter mud boil close
to Ny Ålesund, Spitsbergen. Soil water electric conductivity was calculated from bulk soil electric conductivity using volumetric
soil water content and a calibration parameter. The seasonal and spatial behaviour of water, temperature and solute concentration
within two profiles of this mud boil were analyzed. Concentrations of estimated soil water electric conductivity were highest during
the summer period when the active layer was thawed. Thermodynamic equilibrium modelling of the soil solution during freezing
suggests that precipitation of dissolved species leads to the observed decrease in electric conductivity. There is a pronounced
vertical solute concentration gradient in both profiles, while there is little evidence for horizontal solute concentration gradients
beneath the mudboil.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Analysis of the phenomenology and dynamic process-
es of patterned ground yields information on past and
present climate and environmental conditions (Wash-
burn, 1979; Romanovskii, 1996). The objective of this
study is to characterize (seasonally and spatially) the
water and solute dynamics of this heterogeneous system
using soil solution sampling, high temporal resolution
measurements of bulk soil electric conductivity and
of a mud boil, Spitsbergen. Geomorphology (2007), doi:10.1016/j.
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thermodynamic equilibrium modelling of solution chem-
istry. This, in turn, adds insight to themechanical dynamic
of the mud boil, and to the discussions on the origin and
formation of these periglacial features.

Furthermore, these findings contribute directly to the
European Science Foundation project on ‘Sedimentary
Source-to-Sink-fluxes in Cold Environments’. An un-
derstanding of climate processes and their control on
mass transfer processes, such as subsurface behaviour of
solutes in a mudboil, aids in the understanding of mass
export of cold drainage baisins.

2. Theories of mud boil formation

Mud boils are symmetric surface features in
periglacial environments that have puzzled and fasci-
nated researchers since at least 1900. Early observations
and theories of the origin of patterned ground were the
beginning of exciting research. Washburn (1956) sum-
marized and discussed postulations of 19 separate
mechanisms of formation for non-sorted circles in
particular. These ideas are still central in today's discus-
sions of patterned ground formation.

Mud boils (also known as frost boils, frost scars, mud
circles and mud hummocks), classified as non-sorted
circles, are found in areas where the ground is subject to
seasonal freezing and thawing. They are characterized
by a bare, usually doming round mineral soil center,
surrounded by vegetation. Some of the mechanisms
postulated for their formation are: the sorting of soil
materials based on grain size; convection cell like
cryoturbation; diapir formation or upwellings of lower
soil horizons under pressure (Washburn, 1956). A
review of the main mechanisms involved in cryoturba-
tions was presented by Van Vliet-Lanoë (1991) based
upon field measurements and micromorphological data.
She concluded that “differential frost heaving appears to
be the main mechanism of cryoturbation” (pp. 123) and
that the presence of organics enhances differential frost
heaving. Kessler et al. (2001) modelled sorted circle
formation (with barren finer grained circle centers
surrounded by stones) from two layers distinct in par-
ticle size using a purely mechanical model. The freezing
front pushed soil to more compressible soil regions,
accumulating in soil plugs that reach to the surface.
During thawing, consolidation occurred vertically. The
circle was maintained at the surface by the circulation of
the stone and fine material domains, upward in the circle
center and downward at the edges. Walker et al. (2004)
presented horizontal soil profiles across a mud boil.
Nutrient concentrations (available potassium, phosphor,
nitrogen) and water content declined from the margins
Please cite this article as: Boike, J. et al. Water, heat and solute dynamics
geomorph.2006.07.033
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toward the center, a trend which they attributed to more
‘mechanical’ activity towards the center of the boil.

2.1. Study site

The Bayelva catchment is located about 3 km from
Ny-Ålesund, Spitsbergen (78°55′N, 11°E) in the fore-
field of the Brøggerbreen glacier (Fig. 1A, B). In this
region, continuous permafrost underlies coastal areas to
depths of about 100 m and mountainous areas to depths
greater than 500 m. The North Atlantic Current warms
this area to mean monthly air temperatures around
−13 °C in January and 5 °C in July, respectively and
provides about 400 mm annual precipitation mostly as
snow between September and May. Our study site is
located at about 25 m above mean sea level, on top of a
small hill covered with unsorted circles (Fig. 1C). It is
not clear if the mud boils on this hill are currently being
degraded (for example, by gelifluction) or maintained
by active cryoturbation. Vegetation encroaching from
the sides into the mud boil's center – though the centers
are still doming – is an indicator for slow mass dis-
placement and semi-active behaviour. While other
patterned ground phenomena (such as sorted circles
and stripes) are found in the vicinity of the hill, these
mud boils are only present on Leirhaugen hill. The mud
boils were or are formed under local conditions favour-
able for mud boil formation after the last glacial period.

Leirhaugen hill is mainly composed of rock, but
partly covered by a mixture of sediments: glacial till,
finer glacio-fluvial sediments and clay formed by the
last glacial advance (Tolgensbakk, personal communi-
cation). The gray color of the sediments suggests that
the material was deposited by the Kongsfjorden glacier
and not the adjacent Brøggerbreen glacier, which
deposits redder material. Marine sedimentation could
also have contributed since the hill is located below the
marine limit (about 38 m).

3. Methods

We instrumented one of these non-sorted circles
(Fig. 1D) in August 1998 to automatically monitor
hourly temperature and volumetric liquid water content
(θ). Altogether 32 time domain reflectometry (TDR)
probes and 32 temperature probes were installed over
the 1×1 m profile. The position of the TDR probes is
shown in Fig. 2. The TDR and temperature data set
considered in this study is limited to 1999, the year in
which suction lysimeter data were collected. During
installation, soil samples were taken for the analysis of
physical parameters. The texture and composition of 25
of a mud boil, Spitsbergen. Geomorphology (2007), doi:10.1016/j.
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soil was passed through a sieve with 63 μm size to
measure sand content. After destruction of organics and
limestone, silt and clay were separated by sedimentation
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Fig. 2. Position of TDR probes (grey and hatched circles) installed in
the mud boil. Temperature probes are installed adjacent to TDR
probes. For the analysis, the left profile under vegetation and the
profile underneath the center of the mud are used (hatched circles). In
addition, nine suction lysimeters (black circles) are installed close to
TDR probes (see also Table 1).

Please cite this article as: Boike, J. et al. Water, heat and solute dynamics
geomorph.2006.07.033
TE
D
PRin Atterberg cylinders. Soil temperatures were recorded

using thermistors calibrated at 0 °C with a precision of
2.4×10−4 °C at 0 °C and an absolute error less than
±0.02 °C over the temperature range ±30 °C. Volumet-
ric liquid water content was calculated from TDR
measurements with an accuracy of 0.02 to 0.005 and a
precision better than 0.005. Soil water was sampled in
1999 using Prenart® suction cups (5 cm long, pore size
2 μm; Gravquick, Denmark) cups that were installed in
1998 at different depths close to TDR probes. Soil water
was analyzed in the field for pH, electric conductivity
and alkalinity. The remaining sample water was filtered
and stored at 4 °C in pre-cleaned HDPE bottles until
laboratory analysis took place. Cation concentrations
were analyzed with ICP-OES (Optima 3000 XL, Perkin
Elemer) and anion concentrations were measured with
ion chromatograph (Dionex 320).

3.1. TDR and bulk electric conductivity

Data on spatial and temporal distribution of water
and solutes in frozen and unfrozen soils are essential for
energy and mass transport models. A fast method to
measure the volumetric water content in situ is TDR.
Fig. 1. The location of Spitsbergen (A) and aerial picture (1:15000) of
the area around Ny-Ålesund (B). The study site (arrow) is located on
Leirhaugen hill close to end moraines of the Brøggerbreen glacier.
Parts of the road network of Ny-Ålesund can be seen in the lower left
part of the picture. The Bayelva study site (C) is located in a field
covered with non-sorted circles. The excavated mud boil is shown in
D. The bare soil circle centers range about 1 m in diameter and are
surrounded by vegetated borders consisting of a mixture of low
vascular plants, mosses and lichens.

of a mud boil, Spitsbergen. Geomorphology (2007), doi:10.1016/j.
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TDR has become a reliable and widely used technique
to measure the water content in frozen and unfrozen
soils (for example, Topp et al., 1980; Patterson and
Smith, 1980; Roth et al., 1990). The TDR technique for
measuring the volumetric water content is based on the
large disparity in the relative dielectric permittivities of
water and the other soil constituents. The bulk relative
dielectric permittivity of the soil determines the velocity
with which an electromagnetic wave travels through the
soil, so that measurement of the travel time for a known
distance allows determination of the material's permit-
tivity. We use a physically-based dielectric mixing
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Fig. 3. 2-D distribution of sand, silt, clay and total carbon, nitrogen, sulphur
sampling points.

Please cite this article as: Boike, J. et al. Water, heat and solute dynamics
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model to compute the composite dielectric number of a
multiphase mixture using the relative dielectric permit-
tivities and volume fractions of its constituents (Roth
et al., 1990).

TDR can also be used to measure the impedance of the
bulk soil Z (Ω), which is related to the bulk soil electric
conductivity as a function of time. The bulk soil electric
conductivity is in turn related to the concentration of ionic
solutes (Reluy, 2004) and hence TDR is suited for in situ
detection of well-dissociating solutes. The impedance can
be determined from the attenuation of an electromagnetic
wave traveling along the probe after all multiple
TE
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of the mud boil in % weight. Linear interpolation is used between 25
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Fig. 4. Soil water electric conductivity obtained from suction lysimeter
water at three different times over depth.
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reflections have ceased and the signal reaches a stable
level. Usually it is assumed that the impedance is related
to the bulk soil electric conductivity by:

r25b ¼ KP

Z � Zcable
fT ð1Þ

where σb
25 [S m−1] is the soil bulk electric conductivity

corrected to 25 °C,Kp [m
−1] is the geometric cell constant

of the TDR probe, Zcable [Ω] accounts for the total
resistance of cables, connectors and cable tester and fT [−]
is a temperature factor defined as:

fT ¼ 1þ aðT � 25Þ ð2Þ

where T [°C] is the soil temperature and α=0.019 °C−1 is
the temperature coefficient (Heimovaara et al., 1995). We
calibrated our TDR probes in a range of solutions with
known electric conductivities, following the method of
Heimovaara et al. (1995). As there was no longer a linear
relation between measured impedance and the inverse of
the conductivity for high concentrations, we modified
Eq. (2) to:

r25b ¼ 1
Z � Zcable

� B

� �
Kp fT ð3Þ

where B is an additional fitting parameter. B, Kp and
Zcable were determined by non-linear least squares
fitting.

3.2. Calculation of soil solution electric conductivity σw

The relationship between bulk electric conductivity
and the electric conductivity of the liquid phase depends
on the conductivity of the solid phase and the geometry
of the phases, which is related to soil structure and air,
ice and water contents. There are several empirical
models, partly with some theoretical justification. Boike
and Roth (1997) compared the descriptive power of
three models for a permafrost site in Siberia by a com-
parison of the conductivity measured in water extracted
from suction cups with the conductivity predicted from
TDR measurements. For the coarse textured soils
studied they found the best agreement with a simple
regression model:

rb ¼ Ahrw ð4Þ

where σw [S m−1] is the electric conductivity of the soil
solution, θ [−] is the volumetric liquid water content of
the soil and A [−] is a fitting parameter. For three
Please cite this article as: Boike, J. et al. Water, heat and solute dynamics
geomorph.2006.07.033
TE
D
PR

OO
F

different mineral soils the parameter A varied between
0.7 and 4.8. Best results were obtained with probe
specific calibrations. Furthermore, they suggested that A
did not change from frozen to unfrozen soils and that
this model may be applied to calculate σw for frozen
conditions as well. To our knowledge, the only other
model predicting σw from TDR-determined σb in frozen
soils was introduced by van Loon et al. (1991; also
reviewed in Boike and Roth, 1997). This model has
been applied for the study of solute dynamics in
Swedish field soils (Lundin and Johnsson, 1994) and
in frozen lab columns (Stähli and Stadler, 1997) without
prior calibration to soil solution electric conductivity. As
the model by van Loon et al. (1991) did not predict
solution electric conductivity as well as the regression
model for permafrost soils in Siberia (Boike and Roth,
1997) we did not consider this model further in this
study.

4. Results

Soil composition data from the 25 samples taken
from the profile is presented in Fig. 3. The soil material
generally consists of silty clay with some larger stones.
The silt content decreases from over 50% at the top of
the profile to less than 30% at the bottom, concomitant
with an increase of clay content to over 50% (Fig. 3).
Concentrations of organic carbon, total nitrogen and
total sulphur are highest at the bottom of the profile,
peaking below the mud boil center. Of note are
especially high concentrations of organic carbon (N6%
of a mud boil, Spitsbergen. Geomorphology (2007), doi:10.1016/j.
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weight) at the bottom of the profile. Nitrogen is also
elevated below the vegetated trough of the profile.

4.1. Determination of σw

The bulk electric conductivity of the soil is generally
considered to be the sum of the conductive contributions
of the liquid phase and the soil matrix surface

rb ¼ rw þ rs ð5Þ
The matrix surface contribution is generally assumed

to be low relative to that of the soil solution, and is often
neglected (Boike and Roth, 1997). The texture of the soil
in this study site is finer and has far more clay than the
coarse textured soils studied by Boike and Roth (1997).
Since the clay content is high, the conductivity of the solid
phase may no longer be negligible and it is not clear if
these findings are also valid for this site. To verify this and
to calibrate the measurement of σw we used the measured
electric conductivity of water extracted on three dates
(July 17, August 5 and 14, 1999) from suction cups
installed at nine positions near the TDR probes (Fig. 4).
The electric conductivity of the extracted water increased
with increasing profile depth, thus the rise of bulk electric
conductivity cannot be attributed solely to the increase in
finer soil particles.

Suction lysimeter data were used to calibrate the
model (Eq. (4)). The calculated mean A factors for the
regression model are given in Table 1. Calculated A
values lie within the same range as the ones calculated by
Boike and Roth (1997). Fig. 5 shows a comparison of σw

measured in soil water and the corresponding σw

calculated from TDR measurements. Altogether we
can see a good linear relation with some outliers. The two
water samples with high concentrations were collected
during the first sampling and have different ion
composition, as will be explained later in the Discussion
UN
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Table 1
Mean calculated A factors for the linear regression model

Suction
lysimeter

Suction lysimeter
location
depth [cm]

A factor No. of
water
samples

pH

B1 91 1.1 4 Neutral, pH=7.1
B2 93 1.0 3 Acidic, pH=4.1
B3 62 2.4 4 Alkaline, pH=7.8
B4 74 2.8 2 Neutral, pH=7.1
B5 48 4.0 5 Alkaline, pH=7.9
B6 54 1.6 3 Alkaline, pH=8.1
B7 36 4.7 6 Alkaline, pH=7.5
B8 41 3.8 4 Alkaline, pH=8.0
B9 10 4.0 3 Neutral, pH=6.7
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probes shows a narrow range of conductivities covered
by the limited amount of samples taken, so that within
the accuracy of the measurements they represent one
data point for each probe. This makes verification of
the model difficult. However, we assume that there are
monotone relations between σw and σb and θ and σb.
Therefore the qualitative behaviour of σw derived from
the TDR measurements is expected to be correct even if
absolute errors are introduced by disregarding the
conductivity of the solid phase.

4.2. Temperature, volumetric water content and soil
solution electric conductivity dynamics

For the following analysis, we chose two profiles:
one located below the vegetated left trough and the other
one below the center of the mud boil (Fig. 2).

Fig. 6 shows rainfall and snow depth, soil temperature,
soil volumetric water content and σw at 4 different depths
below the vegetated trough. As expected, the probe
closest to the surface (0.06 m) shows higher temperatures
and daily temperature fluctuations compared to the lower
probes. The temperature signal is attenuated with
depth. In May, the snow liquid water content increases
considerably, a process also enhanced by rain on snow
events (Boike et al., 2003), and infiltration of water
rapidly warms the soil at all depths. This is reflected in
Fig. 6 by the dramatic increase in the volumetric water
content of the soil at successive depths. The liquid water
content mirrors most clearly the advance of the thaw front.
The phase change ice/water starts during snow ablation
and is much enhanced after the snow has ablated. The soil
of a mud boil, Spitsbergen. Geomorphology (2007), doi:10.1016/j.
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end of July. However, low volumetric water contents
(∼0.25) that remain constant over the summer indicate
that the soil is not completely thawed. The temperature
sensor at 1.22 m depth (not shown in diagram) indicates
that the soil never thaws at this depth. During the summer,
volumetric water content remains constant at 0.62 m
depth, indicating the perched water table above the frozen
ground. Once freezing starts in September, soil tempera-
tures at all depths drop to below zero and phase change
from water to ice is initiated (“zero curtain effect”). The
phase change is completed bymid-November, after which
the soil profile cools. The volumetric liquid water content
in these frozen soils during winter ranges between 4 and
Please cite this article as: Boike, J. et al. Water, heat and solute dynamics
geomorph.2006.07.033
9% and is lowest at the surface due to desiccation (vapour
migration out of the soil, see Roth and Boike, 2001).

The general seasonal behaviour of σw below the
organic (except for the probe nearest to the surface at
0.06 m) can be summarized as follows: increase of σw

during thawing, highest concentrations during the sum-
mer and decrease during fall phase change. However,
during the spring thaw, the behaviour of σw is different
for each soil depth. At intermediate depth (0.32 m), σw

increases during thaw, but continues to increase even
after the soil is completely thawed, indicating either
transport of solutes to this area or local and continued
increases in the concentration of charged solutes. At
0.62 m depth, a pronounced drop in conductivity occurs
of a mud boil, Spitsbergen. Geomorphology (2007), doi:10.1016/j.
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during thaw at about 15% liquid water content, which
indicates that dilution of the soil water has occurred,
probably via downward migration of meltwater with
lower concentrations of dissolved ionic species. In ad-
dition, this is the soil depth with the highest σw in the
frozen soil. Since this is the soil depth that remains
thawed longest in the fall (Boike et al., 2003), migration
of excluded ions would take place towards this depth.
This is also suggested by a small increase of θ and σw in
December after closure of the zero curtain.

Throughout the whole summer σw is relatively stable,
with small increases of σw occurring at the three
intermediate depths simultaneously with an increase of
θ after a series of rain events during the latter half of
UN
CO
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EC

Fig. 7. Rainfall and snow depth, soil temperatures, soil water content and so
underneath mud. A=3.8 in Eq. (4) was used for TDR probe at 0.07 m unde
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August. However, there is also a peak in σw measured
with the deepest probe at the end of July, which is not
connected to a corresponding increase of water content.
Only the surface probe shows an increase in θ at this time,
caused by a minor rain event. As the same peak can be
recognized at the deepest probe below the mud boil
center, it is unlikely to be an artefact and either an in situ
increase in solute concentration, for example by dissolu-
tion of salts, or lateral inflow must have occurred.
Generally in the thawed organic profile, soil water
conductivity increases with depth and the highest concen-
trations occur at the bottom of the profile (0.91 m).

In the barren soil below the center of the boil the
fluctuations of temperature, water content (Fig. 7) and σw
TE
D
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il water electric conductivity from April 1999 to April 2000 for profile
r mud.
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near the surface are generally higher than below the
vegetation covered trough. Due to the lack of vegetation,
the profile thaws earlier. Inmid-July, the thaw front passes
the probe at 0.99m depth. Over the course of the summer,
the center of the mud boil thaws to greater depth com-
pared to the vegetated trough. The water content of the
soil surface layer shows greater fluctuations in response to
wetting by rainfall and subsequent drying since these
processes are not buffered by vegetation. The σw values
increase with depth in a fashion similar to the profile
under the vegetated trough, with highest values of σw at
the bottom of the boil and, σw values are generally higher
at the bottom of the mud profile. Decreases inσw from the
beginning of June (0.07 m) until the middle of July
(0.99 m) in the mineral profile indicate the dilution of the
soil solution by downward migration of meltwater. As
observed for the organic profile, these decreases in soil
solution electric conductivity are associatedwith thawing,
but occur before the liquid water content increases.

Soil waters from deep suction lysimeters B1 and B2,
and from shallower lysimeters B5 and B6, were analyzed
for cation and anion concentrations. Based on lysi-
meters B6 and B5 (about 60 cm), the most concentrated
species are HCO3

− and Mg2+ followed by Ca2+N
SiNSO4

−2NCl−NK+NNO3
−. Ionic concentrations at B6,

beneath the center of the mud boil are generally higher
than at B5, beneath the vegetated trough, with exception
of NO3

− and Siaq. The deeper soil solutions (around
100 cm) are closer to the permafrost table and were
most concentrated in SO4

2−, followed by Mg2+NCa2+N
HCO3

−NSiaq=K
+=Cl−. The first samples collected from

B2 in July 1999 show very low pHs of 4, higher Feaq
(20–40 μg L−1) and very high Alaq (1–2 mg L−1)
concentration compared to later samples. A possible
inorganic mechanism leading to such a low pH in natural
water is dissolution of pyrite. Two possible overall redox
reactions are given below (Langmuir, 1997, pp. 458):

FeS2 þ 7=2O2 þ H2O→Fe2þ þ 2SO2−
4 þ 2Hþ ð6Þ

FeS2 þ 14Fe3þ þ 8H2O→15Fe2þ þ 2SO2−
4 þ 16Hþ

ð7Þ

This reaction needs electron acceptors that can either
be provided by oxygen or by an abundance of Fe3+.
Although this reaction would explain both high sulphate
concentrations and low pH, more details (e.g. redox
potential) are required to reveal if oxidation and
dissolution of pyrite is the reason for the low pH values.
During excavation of this and another soil pit coal
fragments were found and exploratory excavations for
Please cite this article as: Boike, J. et al. Water, heat and solute dynamics
geomorph.2006.07.033
TE
D
PR

OO
F

coal are located nearby. The low pH, occurrence of coal
and enrichment in Fe all support dissolution of pyrite
as a common cause. The low pH enhances chemical
weathering and therefore contributes to the overall in-
crease in solute concentration at depth.

The rapid decrease in σw when soils freeze (Figs. 6
and 7) is counter-intuitive, since an increase in con-
centration due to the exclusion of ions during freezing is
expected. A first approach to model the change in solute
composition and concentration of soil water at sub-
freezing temperatures can be performed with geochem-
ical equilibrium model FREZCHEM62 (Marion and
Grant, 1994). This program is written to model changes
in chemistry during stepwise freezing of a water solution
and considers either continuous contact between solu-
tion and precipitated phase or fractional removal of
precipitated phase from solution. It does not incorporate
soil physical factors like mineral, organic or colloid
surfaces that most likely contribute to changes in
water chemistry. However, it allows estimation of the
chemical development of a solution during freezing.
Results of the modelling with FREZCHEM of solutions
B1 and B6 collected at 1 and 0.6 m depth is shown in
Fig. 8. Liquid water content rapidly decreases below
subfreezing temperatures and at −5 °C only 0.006% of
the total water content present before freezing is still
unfrozen. During freezing salts of different composition
precipitate from solution in the sequence: CaSO4·2H2O,
MgCO3, CaMg(CO3)2, K2SO4, and Na2SO4·10H2O.
The precipitation of these salts causes the changes in
molar elemental ratios displayed in Fig. 8. The most
striking difference between the soil solution with high
SO4

2− concentration (B1, B2) and high HCO3
− concen-

tration (B6) is in the change of Na/Cl ratios. While in the
B1 soil solution the Na/Cl ratio constantly increases, it
decreases in B6 due to the formation of KCl at −10 °C.
Compared to TDR measurements, the calculated liquid
water content based on water chemistry is much lower, a
difference amounting to up to 9% by volume. An im-
portant part of liquid water in frozen soils exists as thin
water films on particle surfaces (Ugolini and Anderson,
1973), and such water–surface interactions are not
considered in FREZCHEM. If surface-bound water is
not in contact with the solute-rich solution excluded
from the forming ice, then the predicted precipitation of
salts due to freezing would hold. Measurements of σw

depend on a direct current pathway between electrodes
(in this case, TDR sensor wave guides), so that isolated
pockets of high concentration will not contribute to the
measured bulk electric conductivity of the soil. Surface
bound water, however, contributes to the measurement
of σb (Guy–Chapman double layer theory).
of a mud boil, Spitsbergen. Geomorphology (2007), doi:10.1016/j.
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Fig. 8. Molar element ratios and liquid water concentration (%) modelled with FREZCHEM62 between +5 and −20 °C. The soil solutions are taken
from suction cups B6 and B1. Changes in element ratios indicate formation of solid salt precipitates that remove specific elements from solution.
Liquid water content refers to percent of liquid water of total amount of water that was present before freezing. At −20 °C liquid water content is less
than a per mille.

Fig. 9. Calculated total ion concentration in eq L−1 in remaining solution during freezing. EC is calculated from Eq. (8) using total ion activity (eq/L)
(∑ai =∑Niγi where γi is the activity coefficient provided by FREZCHEM62) instead of ion concentration Ni.

10 J. Boike et al. / Geomorphology xx (2007) xxx–xxx

ARTICLE IN PRESS

Please cite this article as: Boike, J. et al. Water, heat and solute dynamics of a mud boil, Spitsbergen. Geomorphology (2007), doi:10.1016/j.
geomorph.2006.07.033

http://dx.doi.org/10.1016/j.geomorph.2006.07.033
http://dx.doi.org/10.1016/j.geomorph.2006.07.033
jboike
Notiz
please correct eq/L with eq L−1
(-1 should be suprascript)

jboike
Durchstreichen

jboike
Ersatztext
please replace "a" with "one"



476

477

478

479

480

481

482

483
484

485

486
487
488Q2

489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

11J. Boike et al. / Geomorphology xx (2007) xxx–xxx

ARTICLE IN PRESS
CO
RR

EC

To compare the modelled solution with measured
conductivity, the electric conductivity is calculated
following the approach of Reluy et al. (2004) relating
electric conductivity (EC) to the equivalent concentra-
tion of ions in solution (∑N). The relation between EC
and ∑N is given by:

EC ¼ 10�6uVF
X
i

Ni ð8Þ

where F is Faraday's constant (Cmol−1), and u′ is the
concentration-weighted mean equivalent mobility:

uV¼

X
i

Niui
X
i

Ni

ð9Þ

where ui is the limiting equivalent ionic mobility of ion i
[mS cm2 mol eq−1 C]. For calculationwe used values ofui
given in Table 3 in Reluy et al. (2004). Instead of
normalities, Ni, we used the activities calculated with
FREZCHEM for each ion and ion pair. The results of this
calculation are shown in Fig. 9, indicating that the solution
electric conductivity increases with increasing solute
concentration from around 0.05 S m−1 to 60 S m−1.
The total concentration of ions in the remaining unfrozen
solution increases by a factor of ∼1000, whereas without
precipitation of salts the concentrationwould increase by a
factor of ∼17000 at the final water content. Modelled
changes to soil solution, in the absence of mineral–soil
solution interactions, lead to a predicted increase in soil
water electric conductivity of three orders of magnitude
with freezing. The water electric conductivities in the
thawed soil estimated for the solution analyzed here are of
the same order of magnitude as those predicted by this
model (e.g. for a measured solution electric conduc-
tivity of 0.038 S m−1, we predict an electric conductivity
of 0.050 S m−1).

If the contribution of the clay particle surface
conductivity to σb is significant, the isolation of clay
particles by ice layers could be another reason for the
reduction of σb. In that case σw in frozen soil might be
underestimated by the values calculated from bulk
electric conductivity measured with the TDR probes.
N
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5.1. Observed changes in soil water electric conductivity
with time

Changes in estimated soil water electric conductivity
respond to freezing, thawing and summer rainfall
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events. Using the model of Boike and Roth (1997),
we show that the largest annual increase and decrease
are associated with thawing and freezing, respectively,
of the soil. During thaw, for both soils under the boil and
the vegetated trough, soil water electric conductivity at
all depths decreases by up to 30% before the increase
associated with thawing occurs. The thaw increase
occurs simultaneously with the increase in liquid water
content associated with the phase change of ice to water.
We suggest that the initial decrease in electric
conductivity indicates that the infiltration and refreezing
of snow meltwater has diluted the available soil
solution.

5.2. Increase in solute concentration with depth

Our data show that soil solutes within the mud boil
are stratified horizontally throughout the year and that
this stratification, with highest concentrations at the
bottom of the profile, is dominant over any vertical
stratification (organic versus mud). Lundin and Johns-
son (1994) also found that σw increased with depth and
percentage of fines in Swedish agricultural soils.
Alekseev et al. (2003) and Kokelj and Burn (2003)
also find the highest concentrations in the soil profile at
the boundary between seasonally thawed soil and
permafrost. Alekseev et al. (2003) conclude that
permafrost landscapes in general accumulate solutes at
the upper boundary of the permafrost, acting as a
geochemical barrier.

In addition to this depth stratification, we observe a
slight increase in soil electric conductivity beneath the
center of the mud boil. Depressions, as in our case the
bowl-shaped region beneath the mud boil, have even
higher concentrations of solutes. These subtle variations
in concentration might be the initiator of irregularities in
the permafrost table due to the depression of the freezing
point and thus, the precursor of certain patterned
ground, such as these non-sorted circles. Once a bowl-
shaped depression of the permafrost table exists, cell-
like circulation pattern within the active layer can be
initiated (i.e. the equilibrium model after Mackay,
1980). However, Fig. 8 shows that the depression of
the freezing point by solute exclusion from a freezing
solution with the chemistry of extracted soil water is
only sufficient to maintain less than 0.1 mL of water in
the liquid state per liter of soil solution below −10 °C,
implying that the effect of solute exclusion on the
permafrost table depth are minimal compared to those of
differences in surface cover and overlying soil thermal
properties. Therefore it seems plausible that differential
frost heave is responsible for the formation of the mud
of a mud boil, Spitsbergen. Geomorphology (2007), doi:10.1016/j.
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boils as also stated by Van Vliet-Lanoë (1991). Walker
et al. (2004, pp. 178) postulated that frost boils typical of
coastal areas pump solutes to the surface as a result of
relatively high evaporation rates and that the salts thus
deposited inhibit vegetation growth. In contrast to these
findings, our data suggest that net accumulation of
solutes occurs at the base of the active layer, with little
difference between mud boil and adjacent vegetated
regions. In both profiles, the highest values of σw occur
at depth, whereas the lowest values are found in the
upper coarser horizon.

The increase with depth probably results from one or
both of two general processes. First, seasonal freezing
may lead to a cumulative downward migration of solutes
as a result of solute exclusion from the freezing soil
water. This downward migration is ultimately limited by
the presence of the permafrost table, which provides a
natural boundary to downward percolation. Secondly,
the fraction of finer material increases with depth at this
site providing a higher surface area susceptible for
chemical weathering.

5.3. Comparison to thermodynamically modelled freezing

The high temporal resolution of soil water electric
conductivity data derived from TDR measurements
permits qualitative identification of processes such as
dilution (melting of pure ice) or concentration in frozen
soil during snow ablation and migration in the thawed
soil. These are in congruence with the observed
hydrologic and thermal dynamic. However, the absolute
concentration values during the frozen period are much
lower than expected if exclusion of solutes from the
freezing soil solution occurs, despite the fact that
thermodynamically modelled freezing indicates that
several salts precipitate from soil solution during freezing.
The time difference between the increase in water content
and soil water electric conductivity during thawing might
indicate kinetic delay of re-dissolution of these salt
crystals. Furthermore, some of precipitates, like carbo-
nates and Ca-sulfates, may not re-dissolve completely.
The higher amount of particulate inorganic carbon found
at depth of mud boil may be a direct result of precipitation
of fine carbonates combined with mechanical movement
of fines to bottom of mud boil. The contribution of
solute movement is unlikely since it would be against the
concentration gradient.

The calculation of electric conductivity from salt
concentration and salt composition strongly depends on
ion mobility. However, values used for ui have been
determined for temperate solutions. Subfreezing tempera-
tures and changes in the viscosity of water may decrease
Please cite this article as: Boike, J. et al. Water, heat and solute dynamics
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ion mobility and electric conductivity. Further experi-
mental investigations are needed to determine mobilities
of single ions and ion pairs at temperature below 0 °C.
Furthermore, water bound to clay particle and ice surfaces
may have lower solute concentrations than regions
containing solutes excluded from freezing pore water,
leading to lower overall measured salt concentration per
unit volume of soil. Ostroumov et al. (2001) found that
liquid drops on the surface of the forming ice were
probably responsible for solute transport in frozen
deposits close to the freezing front. The implication is
that excluded solutes are restricted to small, unconnected
domains within the soil that would not contribute to
measured bulk soil electric conductivity.

5.4. Implications for cryoturbation

Walker et al. (2004) hypothesize that particles and
dissolved organic material are carried downward at the
margins of frost boils by soil movement and leaching,
whereas organics accumulate in the thawed of the frost
boil. At the center of the mud boil, upward migration of
organics occurs. The high concentrations (N6%) of
organic carbon in our mud boil (Fig. 2) support their
hypothesis. The differences in thermal and hydrologic
regime, thawdepth, and total nitrogen, organic carbon and
total sulfur concentrations between mud and vegetated
trough profiles create a physically different environment.
This, in turn, affects the vegetation and possibly governs
the mechanical forces that create the mud boils.
Cryoturbation is the most effective process in moving
organics and (weathered) minerals upwards from the
bottom of the active layer, thus counteracting the
downward fluxes. Cryoturbation is likely to change with
a changing climate. On Svalbard, mean annual
ground surface temperature currently increases at a rate
of ∼0.4 °C per decade (Isaksen et al., 2001).

6. Conclusion

The influence ofmud boils on solutemigration is small
compared to the influence of the seasonal freeze–thaw
cycle in the presence of permafrost. The soil solution
electric conductivity increases with depth beneath a mud
boil, irrespective of lateral position, but seasonal changes
in conductivity between frozen and thawed soil are up to 5
times greater. TDR-determined bulk electric conductivity
is a useful tool, since it permits high temporal resolution
measurement of changes in soil electric conductivity, and
thus a means of investigating solute dynamics. The
deviation between TDR determined and thermodynami-
cally modelled changes in soil solution chemistry
of a mud boil, Spitsbergen. Geomorphology (2007), doi:10.1016/j.
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identifies two future research goals: (i) a new model
accounting for changes in phase geometry during freezing
and (ii) including the effects of soil surface physics in
thermodynamic models of freezing.
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