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Summary

1

 

The UV susceptibility of zoospores of the brown seaweeds 

 

Saccorhiza dermatodea

 

,

 

Alaria esculenta

 

 and 

 

Laminaria digitata

 

 (Laminariales) was determined in field experi-
ments in June 2004 on Spitsbergen (78

 

°

 

55

 

′

 

 N, 11

 

°

 

56

 

′

 

 E).

 

2

 

Freshly released zoospores were exposed for 1 or 2 days at various water depths to ambient
solar radiation, ambient solar radiation depleted of UVB radiation (UVBR) and ambient
solar radiation depleted of both UVBR and UVAR. Subsequently, germination rates were
determined after exposure to favourable light and temperature conditions in the laboratory.

 

3

 

The radiation regime was monitored at the water surface and in the water column
using data loggers attached adjacent to each experimental platform for the duration of
the field exposure.

 

4

 

Under ambient solar radiation, the tolerance of zoospores to UVR was highest in the
shallow water species 

 

S. dermatodea

 

, intermediate in the upper to mid sublittoral 

 

A. esculenta

 

and lowest in the upper to mid sublittoral 

 

L. digitata

 

. There was, however, no difference
in the susceptibility of the zoospores to ambient solar radiation or to solar radiation
depleted of UVBR.

 

5

 

The water column was relatively UV transparent, especially in the upper water layers.
The 1% UVB depth ranged between 5.35 and 6.87 m, although on one stormy day the 1%
UVB depth was only 3.57 m, indicating resuspension of sediments.

 

6

 

Early developmental stages are most susceptible to environmental stress. Tolerance
of zoospores to UVR is a major if  not one of the most important factors determining the
upper distribution limit of different Laminariales on the shore.

 

7

 

Kelps are very important primary producers in inshore coastal ecosystems, serving as
food for herbivores and as habitat for many organisms. Enhanced UVBR due to strat-
ospheric ozone depletion may lead to changes in the depth distribution of kelps and may
cause significant ecological domino effects.

 

Key-words

 

:

 

Alaria esculenta

 

, depth distribution, germination, 

 

Laminaria digitata

 

,
Laminariales, optical water characteristics, 

 

Saccorhiza dermatodea

 

, stratospheric ozone
depletion, UV radiation, zoospore viability 

 

Journal of Ecology

 

 (2006) 

 

94

 

, 455–463
doi: 10.1111/j.1365-2745.2006.01102.x

 

Introduction

 

The depth distribution of seaweeds is governed by a
variety of biotic and abiotic factors, among which the
radiation regime is very important (Lüning 1990).
While the lower depth distribution is determined by the
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need to maintain a positive carbon balance (Gómez

 

et al

 

. 1997), the upper limit primarily depends on the
capability of seaweeds to sustain high light stress, and
especially on the capacity for dynamic photoinhibition
of  photosynthesis (Sagert 

 

et al

 

. 1997; Hanelt 1998). In
addition to coping with excessive photosynthetic-
ally active radiation (PAR), tolerance of UV radiation
(UVR) is regarded as a major factor determining the
zonation of seaweeds in shallow waters (Maegawa 

 

et al

 

.
1993; Dring 

 

et al

 

. 1996; Bischof 

 

et al.

 

 1998).
Most previous studies on the UV tolerance of

seaweeds have focused on their macrothalli (Franklin
& Forster 1997). Only a few studies have been performed
using the unicellular propagules of seaweeds, the spores,
despite the fact that these early developmental stages
are regarded as most susceptible to UV stress (Coelho

 

et al

 

. 2000). It is known that UVR leads to an inhibi-
tion of  photosynthesis in zoospores of  

 

Laminaria
digitata

 

 and to DNA damage of zoospores of the kelps

 

L. digitata

 

, 

 

L. saccharina

 

 and 

 

Alaria esculenta

 

 (Wiencke

 

et al

 

. 2000). Both the photosynthetic apparatus and
DNA can be repaired in spores of the upper sublittoral
species 

 

L. digitata

 

, and the red algae 

 

Chondrus crispus

 

 and

 

Mastocarpus stellatus

 

 (Roleda 

 

et al

 

. 2004), but damage
is much less reversible in the mid to lower sublittoral

 

L. saccharina

 

 and 

 

L. hyperborea

 

 (Roleda 

 

et al

 

. 2005).
Other negative effects of UVR include a decrease of the
motility of zoospores from 

 

L. saccharina

 

 (Makarov &
Voskoboinikov 2001) and of  the phototaxis of  spores
of 

 

Scytosiphon lomentaria

 

 and 

 

Petalonia fascia

 

 (Flores-
Moya 

 

et al

 

. 2002). Finally, microtubules can be affected
by UVR as shown in zoospores of 

 

Macrocystis pyrifera

 

by Huovinen 

 

et al

 

. (2000).
The need for repair processes is reduced if  damage

to biomolecules, cell structure and cell function can be
prevented by the presence of UV-absorbing compounds,
such as the phlorotannins in the phenolic vesicles (phy-
sodes) that are typically found in kelp zoospores. After
exposure to UVR, physodes increase in number and
size, particularly in the upper sublittoral 

 

Saccorhiza
dermatodea

 

 and 

 

A. esculenta

 

, and to a lesser degree
in kelps from deeper waters (Wiencke, Clayton &
Schoenwaelder 2004). This is consistent with the observa-
tion that zoospore suspensions of the upper sublittoral

 

L. digitata

 

 absorb UVBR and UVAR below 360 nm
(characteristic of  phlorotannins) strongly but 

 

L.
saccharina

 

 and 

 

L. hyperborea

 

 from greater water depths
do not (Roleda 

 

et al

 

. 2005). Zoospore suspensions
of 

 

A. esculenta

 

, 

 

L. digitata

 

 and 

 

L. saccharina

 

 can protect
cultures of zoospores of other species from the potentially
lethal effects of UVAR and UVBR with UV-protection
properties varying with the species and, in particular,
with the spore density (Clayton & Wiencke 2004).

If  the negative effects of UVR are not fully balanced
by protective and repair mechanisms, germination
is impaired and germination rates decrease. This has
been demonstrated clearly in 

 

L. digitata

 

, 

 

L. saccharina

 

and 

 

L. hyperborea

 

 growing in this order from the upper
to the mid sublittoral on Helgoland (North Sea), with

the strongest reduction in 

 

L. hyperborea

 

 (Roleda 

 

et al

 

.
2005). Similar results were obtained in 

 

S. dermatodea

 

,

 

A. esculenta

 

, 

 

L digitata

 

, 

 

L. saccharina

 

 and 

 

L. solidungula

 

growing from low tide level down to about 16 m depth
in the middle zone of Kongsfjorden (Spitsbergen, 78

 

°

 

55

 

′

 

 N;
Wiencke, Vögele, Kovaltchouk & Hop 2004). Again,
the greatest decrease of germination rates was found in
the deep water species. In all these studies the strongest
effect has been obtained after exposure to both UVBR
and UVAR. UVAR alone usually induces more limited
effects on photosynthesis, DNA and germination rates
(Wiencke 

 

et al

 

. 2000, 2004; Roleda 

 

et al

 

. 2005).
Apart from a very limited pilot study performed under

natural solar radiation and ambient air temperature
(Wiencke, Clayton & Schoenwaelder 2004), all previous
studies have been conducted in the laboratory under
artificial illumination. Levels of  PAR are much lower
in the laboratory than in the field, whereas those of
UVBR are considerably higher (Wiencke, Clayton &
Schoenwaelder 2004). As the effect of UVBR exposure
on the performance of brown algal zoospores 

 

in situ

 

has not been explored, we exposed spores of three kelp
species from Spitsbergen for 1 to 2 days at different water
depths in Kongsfjorden to the full ambient solar radiation,
ambient solar radiation depleted of UVBR and ambient
solar radiation depleted of UVBR and UVAR. Radi-
ation regimes were monitored both at the water surface
and in the water. Germination rates were subsequently
determined after exposure to favourable light and
temperature conditions in the laboratory. These studies
may cast light on the potential impact of stratospheric
ozone depletion, especially over the polar regions (von
der Gathen 

 

et al

 

. 1995; Rex 

 

et al

 

. 2002), as this process
leads to an enhancement of UVB radiation (UVBR) at
the earth’s surface and in the water column (Groß 

 

et al

 

.
2001; Dahlback 2002). On Spitsbergen biologically
significant UVBR levels are measurable down to about
8 m water depth (Hanelt 

 

et al

 

. 2001; van de Poll 

 

et al

 

.
2002) and a UVBR-induced loss of zoospore viability
in shallow waters may therefore shift areas of successful
kelp recruitment to greater water depths.

 

Materials and methods

 

Fertile specimens of 

 

Saccorhiza dermatodea

 

 (Pyl.) J. Ag.,

 

Alaria esculenta

 

 (L.) Grev. and 

 

Laminaria digitata

 

 (Huds.)
Lamour. were collected between May and June 2004 by
SCUBA divers in Kongsfjorden at Prins Heinrichøya or
Blomstrandhalvøya close to Ny Ålesund (Spitsbergen,
78

 

°

 

55

 

′

 

 N, 11

 

°

 

56

 

′

 

 E). For detailed information about the
physical environment and the ecosystem of Kongsfjorden
in general see Svendsen 

 

et al

 

. (2002), Hop 

 

et al

 

. (2002)
and Wiencke (2004).

Fertile sori were removed from five different individuals
per species using a razor blade, blotted with tissue paper
and kept in darkness in a moist chamber at 0 

 

°

 

C overnight
or for a few days. Sori were immersed in a small amount
of  seawater at 

 

c

 

. 15 

 

°

 

C and placed in the light close to
a window to promote the rapid release of zoospores
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(Wiencke 

 

et al

 

. 2000). The initial zoospore density was
counted by use of a Neubauer chamber (Brand Germany).
Samples taken from this stock suspension were trans-
ferred into 5-cm diameter Petri-dishes filled with filtered
(0.2 

 

µ

 

m pore size) seawater to give spore densities between
35 000 and 60 000 spores cm

 

−

 

2

 

.
Sample holders for the field experiments consisted

of an aluminium frame (0.25 

 

×

 

 0.40 m) with a black
plastic bottom and a top of UV-transparent Plexiglas
‘GS 2458’ (Röhm, Darmstadt, Germany: mean trans-
mission 93% of PAR, 92% of UV-A and 86% of UV-B),
and accommodated 15 Petri-dishes (53 

 

×

 

 12 mm) arranged
in a 3 

 

×

 

 5 grid. To determine the effect of different radi-
ation treatments, the Plexiglas above each Petri-dish was
covered either with Ultraphan URUV farblos (Digefra
GmbH, Munich, Germany), Folex PR Montage (Dr
Schleussner, Dreieich, Germany) and Ultraphan URT
300 (Digefra GmbH, Munich, Germany) foil to give
three treatments: photosynthetically active radi-
ation (PAR) = P, PAR + UV-A = PA, and PAR + UV-
A + UV-B = PAB. The spectral properties of the foils
used are published elsewhere (Bischof 

 

et al

 

. 2002). Treat-
ments were assigned randomly. Two to five drops of
zoospore suspension from different sporophytes were
added to each dish, before filling to the top with filtered
seawater. They were then covered by UV-transparent
Plexiglas, such that each dish was water-tight and free of
air bubbles. Several sample holders were prepared
and deployed at five depths (0.25 m, 0.5 m, 1 m, 2 m
and 4 m) in the fjord between the old and the new pier
in Ny Ålesund using anchors and buoys. They were
exposed for about 24 hours in the field. One experiment
was run for 45 hours due to very low light conditions
and corresponding low UV doses.

An ELUV 14 datalogger was fixed close to each
sample holder, to determine the UV-B doses (erythema
weighted, UV

 

ery

 

; El Naggar 

 

et al

 

. 1995) at the different
depths. The sensitivity of the datalogger was calibrated
to the standard CIE-87 erythemal response after
McKinlay & Diffey (1987). We used this datalogger
as it is, to our knowledge, the only submersible field
datalogger available. Surface PAR was measured through-
out the experimental period using a cosine quantum
sensor attached to a LI-COR datalogger (LI-1000, LI-
COR Biosciences, Lincoln, Nebraska, USA). Diffuse
vertical attenuation coefficients of downward irradiance
of UVBR were determined after Kirk (1994) using the
UV

 

ery

 

 data determined at different depths.
After exposure, the sample holders were recovered

from the fjord and the individual Petri-dishes were
covered with lids and exposed to dim white light (10 

 

µ

 

mol
photons

 

−

 

2

 

 s

 

−

 

1

 

) using daylight fluorescent tubes (Osram
Daylight Lumilux De Luxe L36W/12–950) at a tem-
perature of  10 

 

°

 

C for 3 days. Germination rates were
determined microscopically by use of  an Axioplan
microscope (Zeiss, Göttingen, Germany) equipped
with a 25

 

×

 

 seawater immersion objective. A spore
was classified as germinated if  at least a germ-tube was
formed. We did not distinguish between dead spores

and those that were living, but not germinated. Approxi-
mately 300 spores were examined per sample.

Germination data were tested for homogeneity of
variances (Levene Statistics) and normality (Kolmogorov-
Smirnov test). Due to different environmental conditions
during each field experiment, statistical tests were
conducted separately on each species. The response
of the dependent variable was tested using multiple
analyses of variance (

 



 

, 

 

P

 

 < 0.05) to determine
the interaction between the effects of irradiance and
depth. This was followed by Duncan’s multiple range
test (DMRT, 

 

P

 

 = 0.05) to determine which groups were
homogeneous or significantly different from each other.
Statistical analyses were done using the SPSS program
(SPSS, Chicago, IL, USA).

Biologically effective UV-B doses (UV

 

ery

 

) resulting in
a 50% inhibition in germination were determined from
all germination data (expressed as percentage of the value
in treatment P) using non-linear regression (

 

y

 

 = a + bx
+ cx2), corresponding to the best fit curves.

Results

Throughout the investigation period, the weather was
relatively bright, with a mixture of sunny and cloudy
periods. Even during the polar day there is a clear var-
iation between low light conditions at midnight and
high light conditions at noon (see Fig. 1a). Midnight
photon fluence rates (PFR) were between about 100
and 200 µmoles photons m−2 s−1, whereas maximum
PFRs of about 1200–1400 µmoles photons m−2 s−1 were
measured at noon. PAR values at the surface were

Fig. 1 Variation in radiation during a typical polar day showing
(a) 24-hour surface photosynthetically active radiation and
(b) corresponding Erythema-weighted UV-B radiation (UVery;
El Naggar et al. 1995) at 0.5, 1.0, 2.0 and 4.0 m water depth.
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relatively similar in all experiments and varied between
8.23 × 106 J m−2 and 1.73 × 107 J m−2 (Table 1).

Figure 1(b) shows the UVery values obtained in a
typical experiment (7–8 June). There is a clear differ-
entiation of  the underwater radiation regime at the
various depths. Minimum levels of  UVB radiation
(UVBR, determined as UVery) at midnight were between
2 and 5 mW−2 at all depths, whereas maximum values
between 18 and 45 mW−2 were recorded at noon at 0.5 m
water depth (data not shown).

The UVery doses shown in Table 1 clearly reflect the
spectral properties of the different cut-off  filters used.
No UVBR was measured under the filter used for the
P treatment. The UVAR values reflect both the UVA
transparency of the used filter and the relatively low
sensitivity of the ELUV-14 datalogger in the UVA region
of the spectrum. The filter used for the PAB treatment
has a UVery transmission of about 70%.

Although the surface radiation regime was similar
during the various experiments (Table 1), the underwater
radiation regime exhibited clear differences, with water
being UV transparent at some times and more turbid
at others (7–8 June, see Fig. 1, Table 1, and 9–10 June
vs. 17–18 June; 4–5 June, 21–23 June and 14–15 June
represent intermediate situations). This is also reflected
in Kd values ranging between 0.67 and 1.28 and 1%
UVB-depths between 6.87 and 3.57 m (Fig. 2).

In the first experiment with S. dermatodea (9–10 June),
germination rates between 66 and 78% were determined
at 1 and 2 m depth under all of  the three exposure
conditions (Fig. 2a). At 0.5-m depth germination rates
under full ambient solar radiation (PAB) and under
solar radiation depleted of UVBR (PA) did not differ
significantly (Table 2) from those under solar radiation
depleted of both UVBR and UVAR (P). In the second
experiment with this species (on 21–23 June), germination
rates under all three conditions and at all depths were
very similar and ranged between 17 and 30% (Fig. 2a).

UVR had no significant effect on the germination
capacity of  S. dermatodea in either field experiment.
In the first, however, depth had a significant effect on
germination (, P = 0.003, see Table 2). Regardless
of light quality, Duncan’s multiple range test (DMRT,
P = 0.05) showed significantly higher germination rate
at 1.0 m depth compared with 0.5 m and 2.0 m depths.

In the first experiment with A. esculenta (4–5 June),
germination rates of about 50% were measured under
the P condition in all four tested depths (Fig. 2b). Low
germination rates of 15–20% were determined under
the PAB and PA condition at 0.5 and 1 m depth. These
were not, however, significantly different from the rates
measured under the P condition (Table 2). At 2 and 4 m
depth germination rates were all very similar. In the
second experiment with this species (14–15 June),

Table 1 Surface levels of photosynthetically active radiation (PAR) and of weighted UV-B radiation (UVery; El Naggar et al.
1995) at different water depths during field experiments performed in Kongsfjorden (Spitsbergen). Values corresponding to
different treatments of PAR = P, PAR + UV-A = PA, and PAR + UV-A + UV-B = PAB were extrapolated from the percentage
transmission of UV dose (UVery) using the same cut-off  filter foils in the laboratory (ND = not determined)

Species

Experimental duration

Treatment
PAR (J m−2) 
Surface

UVery (J m−2) 

Date Total time h:min 0.5 m 1.0 m 2.0 m 4.0 m

Saccorhiza 
dermatodea

09.06.04 24:41 No filter 1.06 × 107 1.34 × 103 9.49 × 102 5.81 × 102 ND
17.37 to PAB 9.35 × 102 6.63 × 102 4.06 × 102

10.06.04 PA 3.46 × 101 2.46 × 101 1.51 × 101

18.18 P 0.00 × 10° 0.00 × 10° 0.00 × 10°

Saccorhiza 
dermatodea

21.06.04 45:00 No filter 1.73 × 107 8.18 × 102 3.99 × 102 1.35 × 102 ND
16.30 to PAB 5.72 × 102 2.79 × 102 9.44 × 101

23.06.04 PA 2.12 × 101 1.04 × 101 3.49 × 10°
13.30 P 0.00 × 10° 0.00 × 10° 0.00 × 10°

Alaria 
esculenta

04.06.04 24:46 No filter 1.26 × 107 1.38 × 103 1.02 × 103 6.77 × 102 3.39 × 102

08.40 to PAB 9.67 × 102 7.16 × 102 4.73 × 102 2.37 × 102

05.06.04 PA 3.58 × 101 2.65 × 101 1.75 × 101 8.77 × 10°
09.26 P 0.00 × 10° 0.00 × 10° 0.00 × 10° 0.00 × 10°

Alaria 
esculenta

14.06.04 21:40 No filter 8.23 × 106 6.78 × 102 5.96 × 102 3.89 × 102 1.85 × 102

18.35 to PAB 4.74 × 102 4.16 × 102 2.72 × 102 1.30 × 102

15.06.04 PA 1.76 × 101 1.54 × 101 1.01 × 101 4.80 × 10°
16.15 P 0.00 × 10° 0.00 × 10° 0.00 × 10° 0.00 × 10°

Laminaria 
digitata

07.06.04 24:32 No filter 1.17 × 107 1.28 × 103 9.74 × 102 6.86 × 102 3.72 × 102

17.34 to PAB 8.95 × 102 6.81 × 102 4.79 × 102 2.60 × 102

08.06.04 PA 3.32 × 101 2.52 × 101 1.78 × 101 9.62 × 10°
18.02 P 0.00 × 10° 0.00 × 10° 0.00 × 10° 0.00 × 10°

Laminaria 
digitata

17.06.04 24:00 No filter 1.33 × 107 6.98 × 102 5.06 × 102 2.50 × 102 7.85 × 101

16.10 to PAB 4.88 × 102 3.54 × 102 1.75 × 102 5.49 × 101

18.06.04 PA 1.81 × 101 1.31 × 101 6.49 × 10° 2.03 × 10°
16.10 P 0.00 × 10° 0.00 × 10° 0.00 × 10° 0.00 × 10°
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germination rates of about 60–65% were obtained
under the P condition at all depths. Under the PAB and
PA conditions a depression to about 35% was apparent
at 0.5 m water depth.

In A. esculenta, significant effects of irradiance and
dose (as a function of depth) (, P < 0.001) were
only observed in the second field experiment (Table 2).
DMRT (P = 0.05) showed that the P condition is
significantly different from PA and PAB conditions but
PA and PAB conditions are not significantly different
from each other. Values at 0.5 m were significantly
different from the other depths. Depths 1 and 2 m are
homogenous subsets, as were 2 and 4 m, although 1 m
was significantly different from 4 m.

In the first experiment with L. digitata (7–8 June,
Fig. 2c) almost no germination was observed under the
PAB and PA condition at 0.5 m and 1 m depth, whereas
a germination rate of about 55% was obtained under
the P condition at these depths. At 4 m depth germina-

tion rates of about 60% were measured under all three
conditions, whereas at 2 m very variable values between
25 and 45% were determined under all radiation condi-
tions. During the second experiment with this species
(17–18 June) germination rates exhibited little variation
under the P condition at all depths studied, with values
around 55% (Fig. 2c). UVBR and UVAR had no effect
on the germination rate at 2 and 4 m depth. However, at
0.5 and 1 m depth there was a clear decrease of germi-
nation rates down to 22–27% under both PA and PAB.

In both field experiments with L. digitata there were
significant effects of irradiance and depth as well as an
interaction between these variables (, P = 0.001).
DMRT (P = 0.05) showed that, in both experiments,
the P condition is significantly different from the PA
and PAB conditions but PA and PAB conditions are
not significantly different from each other. In the first
experiment, depths 1 m and 2 m belong to a homoge-
nous subset and are significantly different from depths

Fig. 2 Spore germination in (a) Saccorhiza dermatodea, (b) Alaria esculenta and (c) Laminaria digitata, 3 days after exposure to
ambient solar radiation treatments consisting of photosynthetically active radiation (PAR = P), PAR + UV-A (PA) and
PAR + UV-A + UV-B (PAB) at different depths and exposure times (see Table 1) and post-cultivated at 10 µmole photons m−2 s−1.
Inset values are corresponding average attenuation coefficients (Kd) and depth of 1% UV-B penetration. Vertical bars are standard
deviations (SD, n = 5).
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2 m and 4 m, which are also significantly different from
each other. In the second experiment, both 0.5 m and
1.0 m and 2.0 m and 4.0 m are homogenous subsets. The
two subsets are significantly different from each other.

Overall, the most UV-sensitive species was therefore
L. digitata, the least sensitive S. dermatodea, and A.
esculenta occupied an intermediate position. The dose–
response curves for the three species (Fig. 3) clearly
show that the 50% biologically effective dose (BED50)
for S. dermatodea was as high as > 1000 J m−2 UVery, for
A. esculenta 700 J m−2 UVery and for L. digitata as low
as 418 J m−2 UVery.

Discussion

The main result of  this first field study of  UV-effects
on brown algal zoospores is that, under ambient solar
radiation, the UVR tolerance is highest in the shallow
water species S. dermatodea, intermediate in the upper
to mid sublittoral A. esculenta and lowest in the upper
to mid sublittoral L. digitata. Clearly, the viability of
the zoospores of the species studied depends on the UV
exposure and is a major if  not the most important
factor determining their upper distribution limit as
proposed by Wiencke et al. (2000) and Wiencke et al.
(2004). However, there is no additional UVBR effect
on the viability of the zoospores compared with the PA
condition.

Indoor and outdoor radiation conditions mainly differ
in the much higher PAR levels in the field compared
with the laboratory. Whereas in laboratory studies
(e.g. Wiencke, Clayton & Schoenwaelder 2004) PFRs
< 30 µmoles photons m−2 s−1 were applied, surface field
PFRs in this study ranged between 100 and 1400 µmoles
photons m−2 s−1. A somewhat unexpected result is that
high PAR values do not inhibit germination in the field,
as shown by similar germination rates in the P treat-
ment at different water depths in all species. Moreover,
parallel laboratory experiments under dim light condi-
tions with the same spore material gave similar germina-
tion rates to those in the field (data not shown). This
result is in contrast to previous observations that, in
addition to the inhibitory effect of UVR, high levels of
PAR exert strong negative effects on photosynthesis
and on the growth of seaweed macrothalli (Hanelt et al.
1997; Aguilera et al. 1999). Such patterns may, however,
be confined to the sun-adapted macrothalli of seaweeds
with highly active photosynthetic tissues, and may not

Table 2 Multiple analysis of variance () and significance values for the main effects and interactions of irradiance
(PAR = P; PAR + UV-A radiation = PA; PAR + UV-A + UV-B radiation = PAB) and depth on germination of zoospores in
three species of Laminariales from Spitsbergen. *Significant; NS, not significant

Date of experiment Species Source of variation d.f. F-value P-value

9–10 June 2004 S. dermatodea UV treatment (A) 2 2.412  0.104ns

Depth (B) 2 7.053  0.003*
A × B 4 1.289  1.289ns

21–23 June 2004 S. dermatodea UV treatment (A) 2 0.312  0.734ns

Depth (B) 3 1.257  0.301ns

A × B 6 0.583  0.742ns

4–5 June 2004 A. esculenta UV treatment (A) 2 2.599  0.085ns

Depth (B) 3 1.261  0.298ns

A × B 6 0.431  0.855ns

14–15 June 2004 A. esculenta UV treatment (A) 2 16.195 < 0.001*
Depth (B) 3 10.177 < 0.001*
A × B 6 2.327  0.047*

7–8 June 2004 L. digitata UV treatment (A) 2 35.096 < 0.001*
Depth (B) 3 39.256 < 0.001*
A × B 6 10.428 < 0.001*

17–18 June 2004 L. digitata UV treatment (A) 2 16.326 < 0.001*
Depth (B) 3 16.085 < 0.001*
A × B 6 4.646  0.001*

Fig. 3 Relationship between effective UV-B dose measured as
UVery and germination rate expressed as percentage of PAR.
Non-linear regression was used to obtain dose–response
relationship. Biological effective doses needed to achieve 50%
inhibition of germination BED50 are > 1000 J m−2, 700 J m−2

and 418 J m−2 for S. dermatodea, A. esculenta and L. digitata,
respectively.
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be appropriate for the spores of Laminariales, which
are shade adapted, contain only a single chloroplast
with few thylakoids (Henry & Cole 1982) and exhibit
only very low photosynthetic rates (Kain 1964; Amsler
& Neushul 1991).

Another important difference is the much higher
UVBR levels in the laboratory compared with the
field. Under ambient solar radiation, over various time
intervals, about 10 times lower UVBR doses were
recorded compared with those in standard laboratory
experiments (data taken from Wiencke, Clayton &
Schoenwaelder 2004), probably explaining lower
laboratory germination under PAB filters than under
PA conditions (Wiencke et al. 2000; Wiencke, Clayton
& Schoenwaelder 2004; Roleda et al. 2005). Another
possibility may be a better stimulation under field
conditions of the blue-light dependent photolyases that
remove the cyclobutane pyrimidine dimers resulting
from UV-induced DNA damage (Pakker, Beekman &
Breeman 2000; Pakker, Martins, Boelen, Buma,
Nikaido & Breeman 2000). In higher plants, photo-
lyase enzymes recognize UV-induced DNA lesions
and reverse dimerization by absorbing light between
350 and 450 nm (Hada et al. 2000).

The UVR-tolerance of  zoospores may be partly
explained by increased activity of the repair mechanisms,
which apparently operate best in the shallow water
species S. dermatodea, to a lesser degree in the upper
to mid sublittoral A. esculenta and least in the upper to
mid sublittoral L. digitata, as observed in laboratory
studies (Wiencke, Clayton & Schoenwaelder 2004).
Repair of DNA damage has been demonstrated in a
variety of seaweeds (van de Poll et al. 2002) and also in
zoospores of L. digitata, L. saccharina and L. hyperborea
(Roleda et al. 2005). In the latter study, efficient repair
was observed in the upper sublittoral L. digitata, but not
in species occurring in greater water depths. Although
the recovery of photosynthesis after UVR exposure
has been documented, repair processes have so far not
been shown in macroalgae, despite the fact that such
processes must be involved.

Another explanation for the differential UV tolerance
is the presence of protective mechanisms. UV-absorbing
compounds, in particular phlorotannins are present
in kelp zoospores, with higher concentrations in upper
compared with mid sublittoral species (Roleda et al.
2005). Moreover, an increase in the number and diameter
of phlorotannin-containing physodes has been described
in S. dermatodea and in A. esculenta (Wiencke, Clayton
& Schoenwaelder 2004), another reason for the success
of these species in shallow waters.

Beside the incident surface radiation, an important
factor governing the underwater radiation regime in
polar regions is the presence of sea ice, which attenuates
both PAR and UVBR very strongly (Hanelt et al. 2001).
By the time the break-up of ice occurs in spring, the solar
angle is already relatively high and algae are therefore
suddenly exposed for long daily periods to very high PFRs.
Moreover, the water is very clear and biologically

relevant UVBR penetrates the water column down to
about 5–8 m depth (Fig. 2; Hanelt et al. 2001; van de Poll
et al. 2002). From the end of June onwards, however,
attenuation increases due to a strong inflow of turbid
melt water from then until mid August (Svendsen et al.
2002), after which the water transparency increases again
(Hanelt et al. 2001).

This change in the underwater radiation may be
reflected also in the UVR susceptibility of algal spores.
Germination is clearly inhibited in spores from L.
saccharina, L. digitata and A. esculenta collected in spring
and exposed to PA (Wiencke et al. 2000), but there is no
equivalent UVAR effect on autumn-collected spores
(Wiencke, Clayton & Schoenwaelder 2004). In our
opinion, the inhibition of  germination after UVAR
exposure in spring is related to the fact that material
is not yet acclimated to high radiation conditions. In
a marine diatom, damage to carbon fixation in the
cells was found to be higher under UV-A, which also
induces localized loss on the acceptor side of  the
PSII reaction centres (Grzymski et al. 2001; Turcsányi
& Vass 2002).

All the species studied here develop their sori in
summer. A. esculenta and L. digitata are fertile between
May and September, whereas young specimens of S.
dermatodea become fertile in August and September
(C. Wiencke & M. N. Clayton, unpublished data) and
18-month-old specimens in May and June. The spores
of the studied species were therefore exposed to the
described radiation conditions at an appropriate time,
underlining the ecological relevance of our data.

In the field, S. dermatodea is common at depths
between 0.5 and 5.5 m, A. esculenta at depths between
1.5 and 12.5 m and L. digitata grows between 1.5 and
13.5 m (Wiencke, Vögele, Kovaltchouk & Hop 2004;
C. Wiencke unpublished data). The known depth
distribution pattern therefore mostly reflects the data
obtained here on UV tolerance of the zoospores. The
only misfit is the overlap in the distribution between
A. esculenta and L. digitata in shallow water. However,
in such situations, L. digitata may grow below A. esculenta
(C. Wiencke, unpublished observations) and settling
in the shade of  A. esculenta may allow the very UV
sensitive zoospores of L. digitata to establish. The adult
macrothalli of  L. digitata are clearly sun adapted
and can cope very well both with high PAR and with
UVBR (Hanelt et al. 1997; Bischof et al. 1998). Addi-
tional biotic factors, such as competition or grazing,
as exemplified by Wahl et al. (2004), require further
investigation.

The results suggest the need for studies of the protec-
tive and repair mechanisms in the most UV-tolerant
species, S. dermatodea and A. esculenta. The question
remains whether they will be able to cope with the
increase of harmful UVBR due to stratospheric ozone
depletion. A 10% decline in ozone concentration results
in a doubling of  irradiance at 300 nm (Frederick
et al. 1989). In the Ny Ålesund area a 12% increase
in irradiance at 300 nm was already measured as a
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consequence of  a relatively minor reduction in ozone
concentration of 10 Dobson units (Groß et al. 2001).
Enhanced UVBR certainly will influence the viability
of brown algal zoospores and, hence, the zonation of
seaweeds around Spitsbergen.
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