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Abstract

Uncertainties in the determinations of particulate organic carbon flux from measurements of the disequilibrium between 234Th

and its mother isotope uranium depend largely on the determination of the organic carbon to 234thorium (OC:234Th) ratio. The

variability of the OC:234Th ratio in different size fractions of suspended matter, ranging from the truly dissolved (b3 or 10 kDa)

fraction to several millimeter sized marine snow, as well as from sediment trap material was assessed during an eight-day cruise off

the coast of California in Spring 1997. The affinity of polysaccharide particles called TEP (transparent exopolymer particles) and

inorganic clays to 234Th was investigated through correlations. The observed decrease in the OC:234Th ratio with size, within the

truly dissolved to small particle size range, is consistent with concepts of irreversible colloidal aggregation of non-porous nano-

aggregates. No consistent trend in the OC:234Th ratio was observed for particles between 1 or 10 to 6000 Am. Origin and fate of

marine particles belonging to this size range are diverse and interactions with 234Th too complex to expect a consistent relationship

between OC:234Th ratio and size, if all categories of particles are included. The relationship between OC and 234Th was significant

when data from the truly dissolved fraction were excluded. However, variability was very large, implying that OC flux calculations

using different collection methods (e.g. sediment trap, Niskin bottles or pumps) would differ significantly. Therefore a large

uncertainty in OC flux calculations based on the 234Th method exist due to individual decisions as to which types or size classes of

particles best represent sinking material in a specific area. Preferential binding of 234Th to specific substance classes could explain

the high variability in the relationship between OC and 234Th. At 15 m, in the absence of lithogenic material, the OC:234Th ratio

was a function of the fraction of TEP or TEP-precursors in OC, confirming that acidic polysaccharides have a high affinity for
234Th and that TEP carry a ligand for 234Th. Preferential binding to TEP might change distribution patterns of 234Th considerably,

as TEP may sink when included in large aggregates, or remain suspended or even ascend when existing as individual particles or

microaggregates. In the presence of lithogenic matter, at depths below 30 m, the ratio between 234Th and OC was linearly related to

the ratio between alumino silicates and C. The affinity of inorganic substances to 234Th is known to be relatively low, suggesting

that a coating of acidic polysaccharides was responsible for the apparently high affinity between 234Th and lithogenic material.

Overall, OC: 234Th ratios of all material collected during this investigation can best be explained by differential binding of 234Th to

both TEP and TEP-precursors, as well as to lithogenic minerals, which were very abundant in an intermediate nepheloid layer

between 50 and 90 m.
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1. Introduction

Knowledge of the mechanisms that drive the flux of

carbon to the deep sea is an important prerequisite for

understanding the marine carbon cycle and thus the

potential impacts of rising atmospheric CO2 concentra-

tions. Sediment traps have been used to estimate par-

ticulate organic carbon (POC) flux within the water

column for decades. Since the early nineties, POC

flux has also been estimated from the disequilibrium

between 234Th and its mother isotope 238U (Buesseler et

al., 1992; Murray et al., 1996). The difference between

the calculated 234Th flux and that measured by traps has

been interpreted to be the result of under- or over-

collection by traps (Buesseler, 1991). However, pro-

blems with flux estimates from the thorium method also

became apparent (Buesseler et al., 1992, 1995; Murray

et al., 1996) in part because of the uncertainty about

whether 234Th is an appropriate tracer for POC, or

whether 234Th may be a better tracer for mass (e.g.

surface area) than POC (Murray et al., 1989). Answers

to these questions are urgently needed as the uncertain-

ties in the determinations of POC flux from 234Th

measurements depend largely on the determination of

the OC:234Th ratio used to make this conversion.

The OC:234Th ratio can be highly variable in both

space and time and with particle collection method,

introducing a large uncertainty in flux estimates using
234Th deficiencies. The reasons for this variability are

not well understood (Buesseler et al., 2006-this issue;

Moran et al., 2003; Santschi et al., 2006-this issue). It

has been postulated that the OC:234Th ratio should

increase with particle size, but opposite trends have

also been observed (Buesseler et al., 2006-this issue).

Potential causes for this variability include: the lifetime

of particles in the surface with respect to sinking, the

surface to volume ratio of particles, biases during par-

ticle collection and differential binding to specific sub-

stance classes. Phytoplankton may scavenge thorium

(Fisher et al., 1987) and mineral composition and par-

ticle flux may impact the rate at which thorium is

scavenged from the water column (Chase et al., 2002,

2003). Furthermore, preferential binding to acidic poly-

saccharides has been postulated (Niven et al., 1995) and

established both in situ and in the laboratory (Guo et al.,

2002b,c; Quigley et al., 2002).

Acidic polysaccharides, which are released by phy-

toplankton and bacteria, form surface active transparent

exopolymer particles, called TEP (Passow, 2002b).

TEP are highly surface active, or bstickyQ, promoting

coagulation, and form the matrix of marine snow (Pas-

sow et al., 1994). Thus, these particles may contain or
carry a ligand for 234Th that may substantially impact

the distribution of 234Th. When incorporated into ma-

rine snow, TEP belong to the pool of large sinking

particles, however, individual TEP may also belong to

the pool of small suspended particles, which may

ascend to surface waters, as their density is lighter

than sea water (Azetsu-Scott and Passow, 2004). Pre-

cursors of TEP belong to the colloidal pool (Passow,

2000).

Using data collected during an eight-day cruise in

the Santa Barbara Channel we will show how the

OC:234Th ratio varies with particle size, from the

truly dissolved (ultrafiltrate) fraction to millimeter-

sized marine snow. We will also investigate the possi-

bilities of differential binding of 234Th to TEP and

lithogenic material and discuss possible effects on the

distribution and sinking of 234Th in the water.

2. Methods

2.1. Sample collection

We determined the OC:234Th ratio in colloidal and

particulate organic matter by a variety of means in the

Santa Barbara Channel, off Santa Barbara (34815.0VN,
119854.5VW) during April 1–9, 1997 as part of a col-

laborative study between the University of Washington

and the University of California, Santa Barbara. Sam-

pling was conducted from the R/V Point Sur. Vertical

profiles of temperature and salinity (SBE-19 CTD),

beam attenuation (SeaTech transmissometer at 550

nm), and fluorescence (SeaCat fluorometer) were de-

termined several times daily. We measured alumino-

silicates (Al) as a proxy for clays, TEP and TEP-pro-

pensity, as well as POC and dissolved organic carbon

(DOC), nutrients, chlorophyll a (chl. a) and total, par-

ticulate and dissolved 234Th. Different types of samples

were collected, using a variety of methods (Table 1).

Each type of sample was collected 3–8 times during the

8-day period and as no temporal trend was visible data

from different days were averaged, with given errors

representing one standard deviation between samples

(Table 1).

Water column samples (WCNiskin) for determination

of total, dissolved and particulate 234Th, as well as TEP,

OC, chl. a, nutrients and Al were collected using 30 l

Niskin bottles from 6 depths (0, 15, 30, 45, 60, 75 m)

along the track of a drifting sediment trap (Table 1).

Approximately 10 l of seawater were taken for total
234Th and 20 l were pressure filtered through a 1-Am
Nuclepore filter for determination of dissolved 234Th

(filtrate) and particulate 234Th.



Table 1

Sample collection during the R/V Point Sur research cruise (1–9 April 1997)

Collection method Sampling dates and

number of samples

Depths Size fractions (Am) Parameters

WCNiskin (Niskin bottles, small

volume filtration)

2–8; n =8 0, 15, 30, 45,

60, 75 m

N0.8 Am OC, 234Th, TEP,

WCLVF 1–53 (LVF 1–53 Am)

and WCLVFN 53 (LVFN53 Am)

2–8; n =11 (15 m); n =2

(55 and 75 m, each)

15, 55, 75 m 1–53 AmN53 Am 234Th, Al, Ca, DW, Cl, OC*

Marine snow, Hand-collected 3, 4, 5; n =3 10–20 m N1–7 mm OC, 234Th, TEP, DW, Cl,

Sinking particles, Sediment traps 4–6, 7–9; n =2 each depth 75, 150 m Sinking particles OC, 234Th, TEP, Al, DW,

Cl, LSi#, BSi#

Ultrafiltration, Niskin bottles 2, 3, 4, 6, 7, 8; n =6

(5 for TEP)

15 m Total, b1, b0.2 Am,

b10 or 3 KDa

(alternate days)

OC, 234Th, TEP

Ca = calcium carbonate, Cl = chloride, DW = dry weight, LSi = lithogenic silica, BSi = biogenic silica, OC = organic carbon. n =number of

samples. Averages of results from samples of different days are given, thus the number of samples are treated as breplicatesQ.
* Calculated by difference from DW, Al, calcium carbonate, biogenic and lithogenic silicate and salt.
# LSi+BSi lithogenic and biogenic silica determined by Shipe and Brzezinski (2001).
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Suspended matter was also collected using a large

volume in-situ filtration system (LVFS). The LVFS con-

sisted of a baffling system, a 53 Am Nitex screen pre-

filter and two 1 Am quartz filters (Bishop et al., 1999).

Samples were collected for 1 h (filtered volume: 1012–

2896 l, median 1462 l at a flow rate of 17–51 l min�1,

median: 24 l min�1), the filters rinsedwith 30ml of weak

(1%) NaHCO3 solution to remove salt, vacuumed to

dryness, and dried at 50 8C for 24 h. Subsamples of the

1-Am (WC1–53) and the 53-Am (WCN53) filters were

analyzed for mass, 234Th, Al, calcium, chloride (for sea

salt correction). POC estimates were obtained by differ-

ence after accounting for the Al, calcium carbonate and

biogenic silica mass fractions. For details on biogenic

silica determinations, see Shipe (2000).

Marine snow was hand collected at depths of

10–20 m by scuba divers using 60 ml syringes. Aggre-

gates were selected underwater in three size categories

(small, medium, large), which were determined each

day by divers as described in Alldredge (1989). Ali-

quots of aggregate slurry from each size category, con-

taining between 30 and 234 aggregates each, were

analyzed for mass, 234Th and chloride, POC, and

TEP. Representative aggregates from each size category

were sized each day. Aggregate sizes varied between

days and an aggregate considered bsmallQ one day

could be qualified as bmediumQ the next. Data are

presented following the actual sizes determined, inde-

pendent of collection day or collection category.

On six days ultrafiltration exercises were conducted.

Water from six 30 l Niskin bottles collected at 15 m was

pressure filtered sequentially through a 1 Am Nuclepore

filter and a 0.2 AmMillipore filter into 20 l polyethylene

cubitainers. Subsamples for b1 and b0.2 Am size frac-

tions were taken. Colloidal separation proceeded over
approximately 6 h as b0.2 Am filtered water was

pumped across either a 1 or 3 kDa (on alternate days)

Amicon cross-flow ultra-filtration cartridge using

a Teflon bellows pump. The ultra-filtered (b1 or

b3 kDa) fraction was collected in a second polycar-

bonate tank. When the colloidal fraction (N1 or 3 kDa

and b0.2 Am) was concentrated down to approximately

2–3 l, cross-flow filtration was terminated. Triplicates

of the ultra-filtered fraction, a single colloidal fraction

and three sequential acid rinses of the two tanks and the

cross-flow filtration system (1 N HCl in artificial sea-

water) were analyzed for OC, 234Th and TEP-propen-

sity (TEP-propensity was not determined in the acid

rinses).

Two 51-h deployments of Particle Interceptor Traps

(aspect ratio of 8 :1, diameter 7 cm), were conducted at

75 and 150 m to collect sinking particles. Trap material

was picked for swimmers (which were rare in these

samples) and then analyzed for 234Th, mass, chloride

(for salt correction), Al, POC and TEP. Traps were

poisoned with a 15 cm thick brine layer (50 ppt

above ambient salinity). No corrections for possible

dissolution of material in traps were made (Antia,

2005; Hung et al., 2004). Large particles, including

zooplankton were collected with a 333-Am net (diam-

eter: 1 m) between 75 m and the surface.

2.2. Analysis

Seawater for nutrient analysis (NO3+NO2, PO4 and

H4SiO4) was filtered through 0.2 Am pore size syringe

filters and stored frozen (�30 8C) until analysis by flow
injection (Johnson et al., 1985). Chlorophyll a and

phaeopigments were measured in triplicate using stan-

dard fluorometric methods (Parsons et al., 1984). Du-
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plicate 500–750 ml samples for particulate OC were

filtered onto Whatman GF/F glass-fiber filters, stored

frozen, and analyzed on a Control Equipment Corpo-

ration CHN Analyzer, Model 440XA, according to

Sharp (1991). Samples for particle mass were filtered

onto preweighed Nuclepore filters, dried in a desiccator

and reweighed on a Cahn electrobalance. Dissolved OC

concentrations were measured on acidified/purged sam-

ples using a Shimadzu TOC-5000 high-temperature

catalytic oxidation analyzer (Benner and Hedges,

1993). 234Th samples were processed by acidification

with HCl, and the addition of an FeCl and 230Th

efficiency tracer. Samples were then neutralized with

NH3 and Fe(OH)3 precipitated. Further separation was

conducted using acidification and ion exchange chro-

matography, and samples were plated on platinum disks

and alpha and beta counted (Anderson and Fleer, 1982;

Dunne et al., 2000; Murray et al., 1996). Filters for

particulate 234Th were analyzed in full after digestion

using a boiling concentrated acid mixture. The efficien-

cy of 234Th recovery was determined using a 230Th

yield tracer with subsequent beta and alpha counting.

Analytical uncertainty in 234Th was 0.12 dpm l�1 or

6% of the total. 238U was derived from salinity (Chen et

al., 1986). Al was determined by flame atomic absorp-

tion spectrometry. TEP in seawater was measured col-

orimetrically on four replicates as described in Passow

and Alldredge (1995) and in sedimented material after

Passow et al. (2001) using Gum Xanthan as a standard.

TEP concentrations are given as the concentration of

Gum Xanthan per liter (AgXeq l�1) with the equivalent

Alcian Blue staining capacity as measured by adsorp-

tion at 787 nm. As the number of sites, which bind to

Alcian Blue per carbon is unknown for marine poly-

saccharides and is likely to vary as polysaccharide

composition varies, the carbon content of TEP cannot

be determined. Xeq is an arbitrary unit to calibrate the

Alcian Blue solution. Simultaneous measurements of

clean TEP and POC have shown that 1 Ag Xeq l�1 on

average equals about 0.7 Ag l�1 OC in several systems

measured (Engel and Passow, 2001).

TEP-propensity estimates the relative concentration

of TEP-precursors that can form TEP by measuring the

spontaneous production of new TEP after removal of

ambient TEP (Passow, 2000, 2002a). TEP-propensity

does not yield the actual concentration of precursor

material, but under similar physico-chemical conditions

(pH, pressure) the ratio between measured TEP-propen-

sity and TEP-precursors should be constant once equi-

librium conditions are reached. In unpublished

experiments with 0.2-Am filtered seawater, equilibrium

conditions were reached after 5–6 h (UP), which is
similar to results with nano-gels (Chin et al., 1998;

Verdugo et al., 2004). TEP-propensity was estimated

by measuring TEP concentrations on 0.2-Am filters 24 h

(total, b1 and b0.2 Am) or 48 h (colloidal and ultra-

filtered fraction) after fractionation of samples.

3. Results and discussion

3.1. Characteristics of the study area

The Santa Barbara Channel is a 100 km long, 45 km

wide, and 500 m deep basin that constitutes the north-

ern end of the Southern California Bight. It is bordered

to the north by the mainland US and by the Channel

Islands to the south. Westerly winds promote episodic,

local upwelling events, which result in large diatom

blooms (Dugdale and Wilkerson, 1989). Our study

was conducted between such upwelling events. In

fact, our sampling was during a period of very strong

westerly winds that had disrupted a bloom that had

developed the previous week and continued again the

week after. As a result of wind induced mixing, surface

values of nitrate were high, ranging between 2.6 and

7.5 AM. The subsurface chlorophyll maximum aver-

aged 0.9 Ag/l at 14 m and chlorophyll inventories in the

euphotic zone (0–60 m; 0.1% light level) varied be-

tween 22 and 39 mg m�2. The standing stock of TEP

was extremely low with b5 g Xeq m�2 and surface

concentrations (40–100 Ag Xeq l�1) were only slightly

elevated compared to concentrations below the chloro-

phyll maximum. Vertical patterns in the concentration

of TEP were similar to those found during low-produc-

tivity seasons in the same area (Passow et al., 2001) and

consistent with the low chlorophyll and the high nutri-

ent concentrations observed. A persistent intermediate

nepheloid layer between depths of 50 and 90 m was

apparent in beam attenuation. Particulate attenuations at

this depth were approximately twice that at depths

above and below. In the upper 30 m average lithogenic

silica concentrations were below 0.1 AM, but increased

to 1.0 AM at 75 m with maximum values of 1.6 AM
(Shipe, 2000). This is consistent with previous research

that have found terrigenous inputs to be a major con-

tributor to overall flux in this area (Dymond et al.,

1981; Fleischer, 1972). The average 0–75 m total
234Th was 2.04 F 0.26 dpm/l (n =12). Total 234Th ac-

tivities were strongly deficient relative to 238U in the

mixed layer above 40–60 m. Below the mixed layer,
234Th activities approached to equilibrium with 238U.

Dissolved 234Th activities were constant (1.4 dpm/l)

throughout the upper 100 m. Particulate 234Th activities

were extremely low at the surface (b0.2 dpm/l) and
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increased to a subsurface maximum (N0.4 dpm/l) be-

tween 50 and 80 m. This subsurface maximum coin-

cided with the intermediate nepheloid layer shown in

beam attenuation and lithogenic particle distributions

from silica and Al. As has been observed previously

(Dunne et al., 1997), bottle dissolved and particulate
234Th activities are typically found not to sum to the

directly measured total 234Th activity. The sums of

dissolved plus particulate 234Th activities ranged from

62% to 117% of total 234Th activities with an average

value of 83%. Given the tendency for dissolved 234Th

to adsorb on filtration surfaces, we suggest that the

difference between total 234Th activity and the sum of

dissolved and particulate 234Th activities is due to

adsorption of dissolved 23 4Th during filtration.

3.2. Methodological concerns: mass balance for

ultrafiltration

The loss of material when using cross flow ultrafil-

tration is a major concern (e.g. Dai and Benitez-Nel-

son, 2001). A mass balance for the averages of the six

ultra-filtrations is given in Table 2, with colloidal

matter representing material between 10 or 3 kDa

and 0.2 Am. Colloidal matter using both cut-offs are

included in the average values as there was no signif-

icant difference in the fractionation whether a 10 or

3 kDa filter membrane was used. Total recovery rate

was 98% for the carbon and 90% for 234Th, which lie

within the range found in other studies (Dai and Beni-

tez-Nelson, 2001; Guo et al., 1997). The directly mea-

sured colloidal fraction was quite small for both OC

(6% of the b0.2 Am fraction) and 234Th (5% of the

b0.2 Am fraction), which lies within the lower end of

the range found in other studies (Dai and Benitez-

Nelson, 2001; Guo et al., 1997). The ultrafiltered

fraction contributed 88% and 42% OC and 234Th,

respectively to the dissolved (b0.2 Am) fraction. A

small fraction of the OC (4% of total) and a large

fraction of 234Th (42% of total) were subsequently
Table 2

Mass balance for ultrafiltration exercises (n =6)

Size fraction OC (AM) % 234Th

(dpm l�1)

%

Dissolved (b0.2 Am) 113.6F4.8 100 1.07F0.16 100

Colloidal (N3–10

KDA; b0.2 Am)

7.0F1.2 6 0.05F0.05 5

Truly dissolved

(b3–10 KDA)

99.9F7.2 88 0.45F0.19 42

Acid rinse 4.9F2.8 4 0.45F0.13 42

Total recovery 98 90
recovered in the acid rinses of the membranes and

containers. Total losses to the filter membranes and

containers between 20% and 35% are common (Dai

and Benitez-Nelson, 2001; Guo et al., 1997). The

source of this fraction can’t be determined unequivo-

cally. The colloidal fraction of 234Th retrieved in the

acid rinses in our study can be estimated assuming that

the OC:234Th ratio of the colloidal fraction reflects

that of all colloidal material, and using the OC content

in the acid rinses. Under that assumption the amount of
234Th in the acid rinse that originally belonged to the

colloidal fraction is 0.036 dpm l�1. This would imply

that N92% of the 234Th retrieved in the acid rinses

belonged in the ultrafiltered rather than the colloidal

fraction. If, however, it is assumed that a fraction of

the colloidal material is extremely sticky, and that the

OC:234Th ratio measured in the colloidal fraction does

not represent this sticky fraction, a much larger portion

of the 234Th retrieved in the acid rinses would belong

to the colloidal fraction. In other studies the 234Th has

been ascribed to the colloidal fraction (Guo et al.,

1997) or ignored in further calculation (Dai and Beni-

tez-Nelson, 2001). Assuming that in our study the
234Th recovered during acid rinses, belonged totally

to the colloidal fraction, this fraction would contain

47% of dissolved 234Th, which lies in the same range

as values found in the Gulf of Mexico or the Middle

Atlantic Bight (Guo et al., 1997). In graphics and

calculations presented here, we will, however, only

consider the 234Th directly measured in the colloidal

fraction as colloidal, and the fraction measured in the

truly dissolved fraction as truly dissolved, ignoring the
234Th retrieved in the acid rinses.

3.3. The OC:234Th ratio and particle selectivity of

different collection devices

The OC:234Th ratios of samples collected by differ-

entmethods at 75 m were slightly lower for sink-

ing (5F1 Am dpm�1) versus suspended large

(WCLVFN 53=8 Am dpm�1) or suspended small

(WCNiskin=9F2 Am dpm�1) particles, but did not differ

from each other significantly (t-test, a =0.01) (Table 3).
An earlier study found OC:234Th ratios in sediment trap

material to be intermediate between small and large

suspended particles, which exhibited a decreasing ratio

with increasing size (Hung et al., 2004). An OC:234Th

ratio of material collected in traps intermediate to differ-

ent suspended particles or the same as suspended parti-

cles would be expected.

Differences between samples collected by different

methods were larger and their variability higher for



Table 3

OC:234Th ratio in particles collected by different methods

Method Depth OC:234Th (Amol dpm�1) n

WCNiskin 75 m 9F2 3

Traps 75 m 5F1 4

WCLVFN 53 Am 75 m 8 1

WCNiskin 10–20 m 150F31* 3

WCLVF 1–53 Am 15 m 41F18 10

WCLVFN53 Am 15 m 64F42 10

Hand-collected snow 10–20 m 37F10 12

WCtotal 15 m 68F8 5

Net N333 Am 0–75 m 3000 1

n =number of samples.

*182F125, n =6 including surface values.
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samples collected from the upper 20 m (Table 3). The

OC:234Th ratios of hand collected marine snow and

large particles WCLVFN 53 were statistically (t-test

a =0.01) the same (37F10 and 64F42), but both

values differed significantly (t-test a =0.01) from the

ratio in water collected with Niskin bottles at 10–20 m

(WCNiskin 10–20 m:150F31). The OC:234Th ratio in

unfiltered water (WCTotal : 68F8) from 15 m was sta-

tistically lower than WCNiskin, but statistically in the

same range as WCLVF1–53 (15m:41F18) and even

WCLVFN 53 and marine snow. Thus WCNiskin were the

only samples, which were statistically clearly different

from other samples at 10–20 m. Different types of

filters collect varying amounts of bdissolvedQ material

that adsorbs to the filter membranes, or POC may be

lost into solution during filtration. The usage of differ-

ent filters for the OC and thorium determinations as

here for the WCNiskin samples (Whatman GF/F versus

1-Am Nuclepore filter) is thus especially problematic,

even if both have a similar nominal pore size (0.8 to

1.0 Am). Overestimates of OC and thorium on GF/F

compared to membrane filters have been shown (Bues-

seler et al., 2006-this issue; Moran et al., 1999; Rutgers

Van der Loeff et al., 2006-this issue) and artificially

high OC:234Th ratios may be the result of such filter

biases. This could explain the high OC:234Th ratio we

found in WCNiskin samples compared to other similar

samples, like WCLVF1–53 or WCTotal. The OC:234Th

ratio of material caught in a zooplankton net was very

high, almost 2 orders of magnitude higher than the

ratios of the other samples.

The decrease of the OC:234Th ratio and a simulta-

neous decrease in the variability with depth have been

observed in many other regions of the ocean (Buesseler

et al., 2006-this issue). Biological processes that alter

the size of particles (e.g. growth, division, production of

feces, and fragmentation of snow due to feeding) are
appreciably more important in surface waters than at

depth. A higher variability in the relationship with age

and size of particles may thus be expected in surface

waters, where biological activity is high.

Part of the variability, however, stems from collect-

ing different types of particles while using different

sampling approaches. Among others, the differing filter

cut-offs, characteristics of the filters (Moran et al.,

1999), the stickiness of particles (Logan, 1993), and

the sample volume determine the class of particles

present in the sample. Buesseler et al. (2006-this

issue) give a detailed discussion on biases due to col-

lection methods and filter types. Here, we will discuss

only the effect of the sampling device on the type of

material expected in the different samples. Unfiltered

water sampled with Niskin bottles (WCTotal) includes

both colloidal and particulate matter, whereas filtered

samples (WCNiskin), theoretically exclude colloidal mat-

ter. The volume of water analyzed for the total sample

was, however, too small to quantitatively sample large

particles and the characteristics of WCTotal or WCNiskin

cannot be expected to include characteristics of particles

collected with the large volume filtration system. Parti-

cles in WCNiskin may be considered bsmallQ compared to

WCLVFN 53 or even WCLVF1–53, because medium-sized

or large particles are too rare to be found at representative

amounts in the volumes filtered onto GF/F. Organisms,

small fecal pellets and detritus particles should dominate

WCNiskin and WCLVF1–53 samples, with rarer particles

missing in WCNiskin. WCLVFN 53 Am should include rep-

resentative amounts of large particles (large feces, feed-

ing structures, sturdy aggregates) because of the large

volume filtered. Fragile marine snow could, however, be

destroyed by the turbulence near the filter with the

possible consequence that some of the material stem-

ming from such a large aggregate is lost from the

WCLVFN 53 samples. Hand collected marine snow biases

towards snow of the upper 20 m, as collection at greater

depth is not feasible and selects for large snow, but

ensures that all of the material belonging to a large

aggregate is collected quantitatively. Traps theoretically

collect all sinking material, but can also collect migrating

organisms. In practice, traps have been found to over-

and under-collect and it is currently unclear to what

degree collection is selective for certain particle types.

As aggregates are too fragile to be sampled by nets

zooplankton dominate net samples.

3.4. OC:234Th as a function of particle size

The average OC:234Th ratios of samples collected at

about 15 m depth in different size categories (ultrafil-
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tration results, WCNiskin and WCLVF1–53, WCLVFN 53,

marine snow) are depicted in Fig. 1a. The OC:234Th

ratio decreased from the truly dissolved (ultrafiltered)

fraction to the bsmallQ particulate fraction, but remained

more or less the same in all larger size fractions,

including different sizes of marine snow. The depen-

dence of the OC:234Th on particle sizes between 1 and

100 Am have been studied many times before; (for

review see Buesseler et al., 2006-this issue). Decreasing

OC:234Th ratios with particle size for particles 1–100
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Average OC:234Th ratios of these data are presented in

Fig. 1b. All samples were collected from the upper

water layer (V30 m). Dai and Benitez-Nelson did not

attribute the 234Th recovered in the rinse water to any

fraction, whereas it was added to the colloidal fraction

in the data sets of Guo et al. (1997). Three out of four

data sets show the same trend, of highest OC: 234Th

ratios in the truly dissolved fraction (b1 or 3 kDa) and

smallest ratios in the particulate phase (N0.2 or 1 Am),

with intermediate ratios in the colloidal phase. Values of

the particulate fraction of the Mid-Atlantic Bight data

are higher than those of the colloidal fraction, but

variability is so high, that this is not significant. To

our knowledge, no other OC: 234Th data on hand-

collected marine snow exists. Our data suggest no

consistent trend in the OC:234Th ratio with size of

marine snow (Fig. 1a, inset) Variability of characteris-

tics of marine snow is always high. Especially in the

surface ocean, marine snow is constantly formed and

destroyed and it is unlikely that size of marine snow is a

function of its age. Summarizing trends in the

OC:234Th ratio over the whole size spectrum of marine

material, a decrease in the OC:234Th ratio may be

expected between the truly dissolved, the colloidal

and the particulate fraction up to a size of about 1 or

10 Am. The ratio appears more variable and either

increases or remains constant with size for larger par-

ticles (see also Buesseler et al., 2006-this issue), includ-

ing large marine snow.

A previously published model, predicts a general-

ized curve where the OC:234Th ratio decreases with

increasing particle size up to about 10 Am-particles, and

remains constant thereafter (Burd et al., 2000). The

model is driven by adsorption and aggregation, ignor-

ing biological processes like degradation or reminera-

lization. The agreement between model and data in the

lower size range suggest that biological processes may

be of secondary importance and that the changes in the

OC:234Th ratio at the lower end of the spectrum is

largely explainable by the physical, size-dependant pro-

cesses of aggregation and adsorption. Decreasing

OC:234Th ratios with increasing size of colloidal matter

are consistent with the concept of irreversible colloidal

aggregation of non-porous nano-aggregates. Aggrega-

tion of colloids to nano-aggregates has been shown

(Chin et al., 1998; Passow, 2000).

The variability in the OC:234Th versus size rela-

tionship for particles N10 Am may result from the

large variety of particle types belonging to this partic-

ulate size class. Large fecal pellets appear to have a

very low OC:234Th ratio (Dunne et al., 2000). This

might be expected for fresh feces, as POC loss during
digestion is high because of selective OC assimilation

by copepods (Buesseler et al., 2006-this issue). With

increasing age the ratio of large pellets should increase

due to decay of 234Th and a small surface area com-

pared to volume. Aggregates are fractal and very

porous, with larger ones being more porous than

smaller ones (Alldredge, 1998). The flux of solutes

into aggregates is mostly based on diffusion (Jannasch

et al., 1988), with diffusion rates similar to those in

seawater (Ploug, 2001). Moreover, aggregates frag-

ment and disaggregate during sedimentation (Dilling,

1997; Dilling and Alldredge, 2000; Dilling et al.,

1998). Thus, from a theoretical point of view the

OC:234Th ratio of aggregates would depend on ag-

gregate composition, age, and effective porosity, e.g. if

the inside surfaces of an aggregate is accessible for
234Th binding on time scales of fragmentation and re-

aggregation relative to the decay of 234Th. Large

phytoplankton cells or feeding structures will exhibit

yet another behavior with regard to their OC: 234Th

ratio. 234Th may bind to phytoplankton and protozoo-

plankton directly (Buesseler et al., 1998; Fisher et al.,

1987). The relationship between OC:234Th ratio and

marine organisms has also been suggested to be based

on the production of acidic polysaccharides by phyto-

plankton (Santschi et al., 2003). Contradictory find-

ings regarding the relationship of the OC:234Th ratio

versus particle size for particles N1 Am may thus

easily reflect differences in the dominating particle

type, even if no differences in the affinity of 234Th

to different substances are assumed.

3.5. OC:234Th ratio as a function of TEP or clay

concentration

A plot of 234Th as a function of OC of all samples

(Fig. 2) suggests a significant relationship (r2=0.7,

n =22) between 234Th and C, if the truly dissolved

fraction (data point with 100 AM OC vs. 0.45 dpm

l�1 234Th) is ignored. However, variability is too high

to use this relationship for reliable C-flux estimates

from 234Th deficiencies. Usually OC flux is calculated

from 234Th deficiency based on OC:234Th ratios of

samples collected using sediment traps, LVFS, or

Niskin bottles. The large variability in the regression

based on all types of data indicates that the calculated

OC flux would differ significantly depending on the

particular method of collection used. The high variabil-

ity in the OC:234Th ratio may reflect specific binding

of 234Th to certain organic and inorganic substance

classes. TEP and their colloidal precursors are rich in

acidic polysaccharides (Alldredge et al., 1993), and a
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high affinity of 234Th to acidic polysaccharides has

been suggested both in situ and in laboratory experi-

ments (Guo et al., 2002a; Quigley et al., 2002). In our

study, the average OC: 234Th ratio of the truly dissolved

fraction (b3 or 10 kDa), colloids (3 or 10 kDa–0.2 Am),

small particulates (0.2–1.0 Am) up to medium sized

particles (1–53 Am) is a linear function (r2=0.92) of

the TEP:OC ratio (Fig. 3a). The OC:234Th ratio of

small particles WCNiskin from 15 m also falls within that

relationship. This implies that in the upper 15 m 234Th

binding was a function of the OC fraction, which con-

sists of TEP or TEP-precursors, independent of the size

of the material, ranging from the colloidal to large

particles. A linear relationship between the 234Th :OC

ratio and the fraction of acidic polysaccharides within

the pool of OC was also found for sinking and sus-

pended particles in the Gulf of Mexico (Santschi et al.,

2003), confirming that thorium binds preferentially to

the acidic polysaccharide fraction of OC (Santschi et

al., 2006-this issue). A direct comparison of results with

regards to the relationships between the OC:234Th

ratio and TEP or acidic polysaccharide content is

impossible, as different methods and standards were

used to determine the acidic polysaccharide fraction.

Specific binding of 234Th to TEP will impact distri-

bution patterns of 234Th. TEP are not only associated

with sinking marine snow, but also exist as individual

particles, which can have a positive buoyancy and

even accumulate at the surface (Azetsu-Scott and Pas-

sow, 2004). Accumulation of TEP and 234Th in the

surface layer has been observed during a spring bloom

in a coastal area (Azetsu-Scott and Niven, 2005). Such

upward transport of 234Th would, if large enough to
be significant, further complicate the use of 234Th

deficiency to calculate C-flux.

No relationship existed in our study between the

OC:234Th ratio and the percentage of TEP in C, for

particles below 30 m, for sinking particles (trap data),

or marine snow. Marine snow, trap samples and sam-

ples from below 15 m all displayed a much smaller

OC: 234Th ratio than expected from TEP contribution

(Fig. 3a). The OC:234Th ratios of the trap and

WCLVF1–53 samples from below 30 m, exhibited a

linear relationship with the relative amount of Al in

the water, with trap material being relatively enriched

in 234Th compared to suspended material (Fig. 3b).

Thus samples from below 30 m suggest preferential

binding of 234Th to lithogenic material, with particles

rich in 234Th and lithogenic material sinking preferen-

tially. Particle–water partitioning coefficients for thori-

um adsorption to inorganic phases are, however, only

moderate, whereas those to acidic polysaccharides are

high (for overview see Santschi et al., 2006-this issue).

All non-living surfaces in the ocean are rapidly coated

with acidic polysaccharides and other surface active

substances (Decho, 1990). Assuming that binding be-

tween acidic polysaccharides and 234Th depends on

the surface area of the acidic polysaccharides, the

binding capacity of a certain amount of acidic poly-

saccharides would be appreciably larger if they existed

as a thin surface layer coating particles, rather than as

TEP, which are essentially acidic polysaccharide

aggregates. A relatively small amount of Alcian Blue

stainable material would thus be able to bind large

amounts of 234Th in the presence of fine lithogenic

particles. In terms of total mass, such a monolayer
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coating of the lithogenic material would be negligible.

The presence of lithogenic material would then mask

the relationship between acidic polysaccharides and
234Th, as seen in our data. The relationship between

lower OC:234Th ratios and lithogenic material in traps

suggests that clay settled preferentially relative to other

suspended material. Aggregates are known to scav-

enge clay particles promoting their sedimentation

(Kumar et al., 1998; Passow et al., 2001). Unfortu-

nately Al determinations of marine snow exist only for

one sampling day. But those three data points (3 size

classes) all fall between suspended and trap samples

with regards to their OC:234Th vs. Al :OC relation-

ship. As marine snow was collected above 30 m

depths where clay concentrations were low, these

aggregates must have scavenged 234Th labeled clay

very efficiently, which would be expected for large

organic aggregates.
3.6. Thorium in trap material

Material collected in sediment traps consisted of OC,

lithogenic material and biominerals (mostly calcium

carbonate, some opal). Our data allow the calculation

of the respective contributions of these different sub-

stances to trap material by assuming that (1) the char-

acteristics of hand-collected marine snow from the

surface ocean represent those of OC in traps, that (2)

the contribution of lithogenic material can be estimated

from measurements of alumino silicates or lithogenic

silicates in traps, and that (3) biogenic minerals contain

neither OC nor bind 234Th. The relatively high OC

content of marine snow suggests that the fraction of

biogenic material in marine snow at the surface was

low. Visual examination also demonstrated that the

snow was predominately detrital, not diatom dominat-

ed, strengthening the assumption that the marine snow



Table 4

End-member calculation estimating the contributions of OC, Al and bio-minerals in traps (OCtrap, Altrap, BioMintrap, respectively) and the

fractionation of 234Th, OC, DW and TEP between these three components of trap material, as well as the ratios of material of the three components

Units Traps total OCtrap* Altrap BioMintrap

234Th dpm m�2 d�1 3419 399 3020 0

OC nmol OC m�2 d�1 15.9 14.7 1.2 0

DW mg m�2 d�1 2887 443 1390 1054

TEP mgXeq m�2 d�1 37.5 45.9 Very small Very small
234Th :DW dpm mg�1 1.2 0.9 2.2 0

OC:234Th Amol dpm�1 4.6 33, 37 0.4 0

TEP:234Th Ag Xeq dpm�1 10 115 Very small Very small

DW= Dry weight; OC= organic carbon; Al= alumino silicates, Bio.Min= biogenic minerals.

*Values from hand-collected snow. Bold = measured, italics = calculated values, the others are based on assumptions. As more measurements existed

than were necessary to solve the equations a calculated and ameasured value exist for the OC: 234Th ratio of OCtrap, showing a relatively high degree of

consistency. The TEP content of OC derived from snow was higher than the TEP content in traps, implying that the amount of TEP that settled

associated with alumino silicates or biogenic minerals was very small. These are back-of the envelope calculations and the uncertainty associated with

the assumptions (see text) are large and not quantifiable compared to standard deviations of calculations, thus no error range is given.
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consisted predominantly of OC, with diatom frustules

contributing very little. Estimates of lithogenic material

using Al gave similar values to those using measured

lithogenic silicates, and both are consistent with earlier

measurements in the area, justifying the second as-

sumption as well. The third assumption is the hardest

to justify, as evidence suggests that thorium is scav-

enged by opal, and especially by carbonate and litho-

genic material (e.g. Chase et al., 2002). But binding of
234Th to mineral particles depends also highly on the

sea water, giving strong evidence that colloidal matter

determines binding of 234Th to minerals (Geibert and

Usbeck, 2004). This study further suggests that varia-

tions in DOC composition may be controlling the ad-

sorption of 234Th onto mineral (biominerals and

lithogenic minerals) particles (Geibert and Usbeck,

2004). In the following calculation we will initially

assume that binding of 234Th to biominerals can be

neglected, but discuss both cases later.

Using the three assumptions the partitioning of 234Th

in traps is estimated using the following three equations,

were DWtrap, DWPOC, DWAlSi, and DWBioMin stand for

the dry weight of trap material, OC, Al and biominerals,

respectively. The carbon content of trap material, partic-

ulate organic carbon and alumino-silicates is labeled as

Ctrap, CPOC, and CAlSi, respectively. And Thtrap, ThPOC,

and ThAlSi stand for the thorium content of trap material,

OC and Al.

DWtrap ¼ DWPOC þ DWAlSi þ DWBioMin ð1Þ

Ctrap ¼ CPOC þ CAlSi ð2Þ

Thtrap ¼ ThPOC þ ThAlSi ð3Þ

The average OC content of snow and trap material,

respectively, was 39.8% and 8.3% of DW calculated
using DW and OC measurements of snow and trap

material. From Al (4.79 mmol m�2 d�1, MW6280)

and silicate measurements (Shipe and Brzezinski, 2001)

in trap material, the DW of lithogenic material can be

estimated to be 1390 mg m�2 d�1 (Table 4), which is

supported by other studies showing that in this area the

terrigenous mineral component accounts for about 53%

of the sinking mass flux (Dymond et al., 1981;

Fleischer, 1972; Thunell, 1998). Using the assumption

that the OC content of alumino silicates (surface coat-

ing) is 1% of DW (Eganhouse and Venkatesan, 1993),

the remaining data for Table 4 can be calculated without

further assumptions.

During sedimentation, marine snow from the surface

will aggregate with all particles present (Passow et al.,

2001). A large fraction of the lithogenic material pres-

ent in the deeper water in the Santa Barbara Basin

(Dymond et al., 1981) is too small to sink at significant

speeds, unless in association with organic aggregates

(Passow et al., 2001). Thus the lithogenic material, and

presumably the biogenic material, must all have arrived

in the traps as part of marine snow. This, however, does

not alter the end-member calculations from above,

which give an estimate of the mechanism of 234Th

transport.

Calculations presented in Table 4 indicate that 89%

of all 234Th in traps was associated with lithogenic

material rather than with OC (no 234Th is associated

with biominerals, according to assumption 3). If bind-

ing of 234Th to biominerals is allowed, about 89% of all
234Th in traps reaches these associated with mineral

particles (either with biominerals or with lithogenic

material). The trap data thus indicate that lithogenic

material (or lithogenic+biominerals) scavenged 234Th

more effectively than OC. Or, alternatively that poly-

saccharides scavenged 234Th more effectively when
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coating minerals, than as TEP, which are polysaccha-

ride particles. This latter interpretation is consistent

with that of Geibert and Usbeck (2004). The concen-

tration of acidic polysaccharides that would coat litho-

genic material is too small to be determined by our

back-of the envelope calculation above. But if our

argument is correct, the OC: 234Th ratio will be small

in the presence of minerals. Moreover, 234Th will be

enriched in traps, when these lithogenic particles are

scavenged by fast sinking marine snow.

Further studies will be necessary to understand the

mechanisms driving the specific binding of 234Th. If
234Th binds preferentially to acidic polysaccharides as

we (and others) suggest then 234Th would track extra-

cellular acidic polysaccharides rather than OC. A

roughly constant relationship between the fraction of

extracellular acidic polysaccharides and OC would

allow 234Th to track OC reasonably well. On average,

the fraction of extracellular acidic polysaccharides of

particulate organic matter may be fairly constant. In

surface waters, where biological production and de-

struction rates of organic matter are high, the fraction

of extracellular acidic polysaccharides varies, as can be

deduced from varying concentrations of TEP in surface

waters (Passow, 2002b). At depth, the ratio of extracel-

lular acidic polysaccharides to POC is presumably

more constant. Consequently 234Th may trace OC at

depth reasonably well as has been suggested (Bruland

et al., 1981; Santschi et al., 1999), and this would

explain the relative success the thorium method has

had in determining POC flux to date. However, in

regions affected by the cycling of lithogenic material,
234Th would track the surface area of these particles,

because they are coated with a thin layer of extracellu-

lar acidic polysaccharides. This may also be true in the

presence of other inorganic particles, like calcium car-

bonate. Such an interpretation is supported by experi-

ments by Geibert and Usbeck (2004), where in the

absence of inorganic particles, 234Th was retrieved in

the particulate phase, presumably complexed with TEP

or TEP-like particles, which had formed from colloids.

In the presence of inorganic particles, 234Th appeared

associated with inorganic particles, possibly because

they were coated with colloidal matter (Geibert and

Usbeck, 2004, but see Santschi et al., 2006-this

issue). This implies that the relationship between
234Th and extracellular acidic polysaccharides is not

constant, and partially depends on the presence of

inorganic particles. As fine lithogenic particles only

sink at significant speeds when scavenged by large

organic aggregates, 234Th labeled inorganic particles

would sink in association with sinking POC. Neverthe-
less, it appears unlikely that 234Th tracks sinking OC

very well, if polysaccharide coated inorganic particles

are abundant.

4. Conclusions

Our field study indicates that in the absence of

inorganic particles, 234Th affinity is high for TEP and

their precursors with the result that 234Th may be

associated with large, rapidly sinking TEP-rich aggre-

gates, with small suspended particles coated with TEP-

like substances, or with TEP that float upward accu-

mulating in the surface layer of the ocean. 234Th also

exhibited a high affinity for lithogenic particles, possi-

bly due to an organic coating of inorganic particle

surfaces. As fine lithogenic material is effectively scav-

enged by marine snow, an enrichment of 234Th in

sinking matter may be the result. It appears that the

OC:234Th ratio depends largely on the types of parti-

cles present, rather than on size per se, except in size

classes smaller than about 1 Am. The complexity of the

dynamics impacting particle generation and destruction

as well as differences in specific binding rates of 234Th,

and the largely unknown impact of the coatings of

colloidal matter, prevent a simple relationship between

the OC:234Th ratio and particle size. Few processes

impacting 234Th binding change continuously with par-

ticle size over the spectrum from colloidal to marine

snow sized material.
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