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Abstract 

The thermal conductivity of the thin seasonally freezing and thawing soil layer in 

permafrost landscapes exerts considerable control over the sensitivity of the permafrost 

to energy and mass exchanges at the surface. At the same time, the thermal conductivity 

is sensitive to the state of the soil, varying, for example, by up to two orders of 

magnitude with varying water contents. In situ measurement techniques perturb the soil 

thermally and are affected by changes in soil composition, for example through 

variations in thermal contact resistance between sensor and soil. The design of a sensor 

for measuring the temperature of the soil rather than the axial heating wire temperature 

has consequences for the modeling of heat flow. We introduce an approximation of heat 

flow from a heated cylinder with thermal contact resistance between the cylinder and 

the surrounding medium. This approximation is compared to the standard line source 

approximation, and both are applied to data measured over a one-year period in northern 

Alaska. Comparisons of thermal conductivity values determined numerically using the 

line source solution, line source approximation and the analytical form of the heated 

cylinder model fall within 10% of accepted values, except for measurements made in 

pure ice, for which all methods of calculation under-predicted the thermal conductivity. 

Field data collected from a complete freeze-thaw cycle in silty clay show a seasonally 

bimodal apparent thermal conductivity, with a sharp transition between frozen and 

thawed values during thaw, but a three-month transition period during freezing. The use 

of soil composition data to account for changes in heat flow due to the effect of latent 
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heat during phase change results in a relationship between soil thermal conductivity and 

temperature. 
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The seasonal depth and duration of the active layer in permafrost regions is critical for 

biological, hydrological and mineralogical processes, as are the intensity and frequency 

of freezing and thawing events. The thermal conductivity of the shallow surface layer, 

which thaws and freezes seasonally, is used in the determination of surface heat 

balance. Various models of the surface energy balance use the thermal property of 

conductivity to predict the depth of thaw or freezing of the active layer by assuming a 

bimodal winter and summer thermal conductivity values. Such models (e.g. Anisimov 

et al., 1997; Hinzman et al., 1998) predict heat transfer, freeze/thaw depth and 

permafrost stability using these thermal conductivities. Treatment of geothermal data to 

recover heat flux histories also benefits from observed thermal conductivity data 

(Beltrami, 2001). Since spatial and temporal variations in soil thermal properties are 

dramatic (Hinzman et al., 1991; Putkonen 1998), they must be understood to adequately 

model physical processes. 

Estimates of soil thermal conductivity are based either on models, summarized by 

Farouki (1981) or on experimental data. Goodrich (1986) measured the thermal 

conductivity of active layer soils at four Canadian locations using a transient heat pulse 

probe. His data indicated that this bimodal model is too simple and that the thermal 

conductivity values in such diverse soil materials as peat and gravel do not show the 

expected seasonal variation in thermal response. He concluded that, at depths shallower 

than about 1.0 m, estimates of thermal conductivity based on a simple bimodal, frozen-

thawed model could be grossly in error, while interannual seasonal variations in thermal 

conductivity are probably acceptable below a depth of about 0.5 to 1.0 m. Smith and 

Riseborough (1985) investigated the effect of assuming a single frozen thermal 

conductivity value on the predicted temperature of the subsurface and found that it led 

to an over-prediction of the phase change boundary depth. The thermal conductivities of 
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the shallow surface layers are highly dependent on the composition and state of the soil 

and vegetation. Changes in water and ice content produce the greatest changes (by a 

factor of ten or more) in thermal conductivity temporally (Yoshikawa et al., 2003) and 

generally correspond to drying/wetting or freezing/thawing events. Soil composition in 

the periglacial landscape is highly variable spatially due to the agency of cryoturbation. 

There remains a need for in situ measurements of thermal conductivity in these soils to 

determine the influence of water and ice dynamics on the thermal conductivity. Our 

objective is to present an improved model for heat flow around a linear heat source in 

which the radial temperature difference between two points in the soil is measured. We 

demonstrate the use of this model in the laboratory and for field measurements at 

temperatures close to phase change in freezing and thawing soils. 

2 Models of transient methods for measuring thermal conductivity 

2.1 Heat transfer model 

Transient methods for the measurement of thermal conductivity have a long history 

(e.g. van der Held, 1949). Most field measurements of thermal conductivity are made 

using heated wire or needle probes modeled as perfect line conductors. The heat flux 

can be represented as a solution to the conduction equation in radial coordinates: 
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where r is the radial dimension, b is the radius of the linear heat source, t is time, T is 

the temperatures of the medium, κ is the thermal diffusivity. Solutions are subject to the 

conditions: 
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For a cylindrical region within in a medium, the heat flux across the cylinder surface is 

equal to the heat flux leaving the cylinder surface: 
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where we have introduced the thermal conductivity, k, of the region r > b, H, the 

thermal surface conductance at r = b and the temperature of the sensor, Ts. The heat flux 

into the medium must be given by: 
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where the heat produced within the cylinder per unit length and time is given by q and 

the heat capacity of the cylinder per unit length is given by Cs. 

2.2 Line source solution 

Data from heated wire or needle probes are usually modeled on a solution for an infinite 

line heat source (Lachenbruch, 1957) in a homogeneous, isotropic medium. For a 

continuous line source, the measured temperature difference between two radial points 

r1 and r2 is given by: 
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where q is the heat production of the central heating wire [W m-1], k is the thermal 

conductivity of the medium [W m-1 K-1], Δr is the radial distance over which the 

temperature difference is measured [m], κ is the thermal diffusivity of the medium [m2 

s-1] and u is an integration variable. In most field measurements in soil, a needle probe 

with a thermistor or thermocouple embedded in the probe is heated with some known 

power, and the temperature response of the probe is measured as a function of time. An 

approximation of the solution is usually used to treat data for the heating curve of the 

needle: 
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where γ is Euler’s constant (0.5772156649), λ is the bulk thermal conductivity of the 

medium [W m

123 
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125 

-1 K-1], and the Landau symbol, O(t-3), indicates that the absolute value of 

the error in the approximation is less than some constant times t-3 at large enough t. At 

large times, it is assumed that t
b

κ4
2

is sufficiently small to lead to a linear dependence 

on ln t: 
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Since the measurement takes place at a fixed position the second-term function of r can 

be treated as a constant. Applied to the radial temperature difference this assumption 

results in an expression independent of time for the heating curve: 
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where t = ts is the time at which power to the heating wire is switched off. For both 

approximations, the terms in r2/4κt must be small.  

2.3 Medium bounded internally by cylindrical region 

Relevant analytic solutions are also available for a region bounded internally by a 

cylinder (Carslaw and Jaeger, 1990), and for a region bounded internally by a cylinder 

with contact resistance (Kristiansen, 1982). Generally only the temperature of the 

cylinder is considered, reflecting the usual sensor design. The heated cylinder is 

assumed to be of infinite length (heat flow is restricted to the radial direction) and to act 

as a perfect conductor (no axial effects of heating). Jaeger (1956) provides solutions for 

a number of scenarios and investigates the effect of thermal contact resistance on the 

temperature of the cylinder. Blackwell (1954) examined the effect of contact resistance 
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between the sensor and the medium, but also restricted his analysis to the temperature of 

the heat source. Van Loon et al. (1989) present a second order time correction to the 

needle probe model that better describes its behavior at short times. For any system 

measuring the temperature of the medium, expressions for T rather than T

146 
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s are required. 

The temperature of the medium is determined under the conditions T(r, 0) = T0 and a 

constant heat supply to the region r < b for times t > 0. Based on Blackwell’s work, 

Kristiansen (1982) provided a solution for the temperature field in the medium: 
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where Jz and Yz are the zth order Bessel functions of the first and second kinds, 

respectively.  We have introduced the dimensionless parameters: 

h = k/bH (11a) 

η = r/b (11b) 

τ  = 4κt/b2 (11c) 

α =2πb2ρC/S  (11d) 

where h is a contact resistance term, η is the dimensionless radius, τ is the 

dimensionless time and α is twice the ratio of the volumetric heat capacity of the 

medium, ρC, to that of the sensor, 2bS π , where ρ and S are the density of the medium 

and the heat capacity of the sensor per length. As H takes on large values, the solution 

reduces to that of the heated cylinder without thermal contact resistance. The 

temperature distribution in the medium depends in a non-linear fashion on the physical 
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parameters. Its integral form requires numerical solution, although DeVries and Peck 

(1958a) provided a large time approximation, which is considered below.  

2.4 Large time approximation of the medium temperature  

DeVries and Peck (1958b) applied Blackwell’s (1954) approach to generate a large-time 

approximation for the temperature of the medium: 
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where γ is Euler’s constant. The assumptions that no phase change occurs and that no 

thermally induced migration of water or vapor occurs are implicit. These assumption are 

addressed in the discussions of results. For application to the sensor that we use, 

expressions for the temperature difference between η1 = r1/b and η2 = r2/b are obtained 

for the heating curve: 
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   For this approximation to order τ -2, dependence of the temperature response on the 

thermal contact resistance disappears (DeVries and Peck, 1958a). As the thermal heat 

capacity of the medium or the effective sensor radius approach zero, these solutions 

reduce to the solutions given by the line source approximation. For the heating curve, 

we can reformulate the temperature difference as: 
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so that a means of calibrating for the effective sensor properties using measurements in 

materials of known thermal properties is provided. For the cooling curve, the same A 

appears in the temperature drop:
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As for the line source approximation, the use of the medium temperature results in the 

cancellation of terms in the ratio of radial distances for the cooling curve. 

2.5 Sensitivity 

To evaluate the sensitivity of sensor output to changes in parameter values, we express 

the temperature of the medium (equation 9) in a form corresponding to the sensor 

output as a function of time only: 
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and η1 and η2 are the dimensionless radii at which temperature difference is measured. 

The condition for the simultaneous identification of parameter values from a time series 

of temperature data is the linear independence of the sensitivities over the time period 

(Beck and Arnold, 1977).  The analytical solution is non-linearly dependent on the 

parameters, β
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i, and a condition for identifiability is not evident. We calculated the 

sensitivity of the temperature gradient numerically for the five parameters, b, S, H, k, 

and κ, as a function of time since the start of heating using the adaptive Lobatto 

quadrature technique and integration limits of 1 x 10-3 and 10. The oscillatory nature of 

the integrands required a maximum function count limit of at least 1 x 106 to prevent 

early termination of the integration (Gander and Gautschi, 1998). For the probe radius, 

heat capacity and heat production used here (b = 8 x 10-5 m, S = 131 J m-1 K-1, q = 1.5 

W m-1), with the parameter values of k = 0.3 W m-1 K-1, and κ = 2.5 x 10-7 m2 s-1, the 

temperature gradient is less sensitive to contact resistance or probe radius and thermal 

mass than to medium thermal conductivity or diffusivity by a factor of over 100 as time 

approaches 180 s (Figure 1). H-1 was set to zero for the other five sensitivities, and to 

3000 W K-1 for χH. Parameter values were chosen to match sensor characteristics. The 

magnitude and the general shape of the sensitivities do not change over a range of k, κ 

and H values extending beyond that encountered in the soil. Increases in thermal 

diffusivity and thermal surface conductance both increase the temperature gradient at 

short times (< 10 s). Thus, large changes in H and small changes in κ will affect the 

shape of the temperature gradient response to heating in a similar fashion. The thermal 

conductivity influences the temperature gradient more with increasing time, in a near 

linear fashion after 20 s. The large time approximation can be expected to deliver 

thermal conductivity, but does not contain recoverable information on the probe 

characteristics or thermal surface conductance. Repeated numerical solution of the 
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integral solution is computationally costly. In the following, we compare use of the 

large time approximations for the line source and heated cylinder solutions. 
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3 Methods 

3.1 Radial and axial temperature measurements 

Transient heat pulse sensors of any design share some basic characteristics. 

Simultaneous measurements of the heating power and either the axial temperature, the 

medium temperature at some radial distance or the temperature drop between radial 

positions over time are compared to some model for heat flow, making it possible to 

calculate the effective thermal properties of the medium. For all designs, power 

requirements are theoretically adjustable, and modest enough to permit battery 

operation over long periods, an advantage for remote sites. The radial sensor also differs 

from axial probes in that the temperature around the heat source is monitored rather than 

the temperature of the heat source. This design confers the advantage that less power is 

required since thermopile sensitivity to small variations in thermal gradient is greater 

than most thermistor or thermocouple resolutions. By measuring the temperature 

difference between two points, higher accuracy and lower susceptibility to drift can be 

achieved than for absolute temperature measurements. The thermopile also averages the 

radial temperature gradient over some axial length (and for the sensor we use, over two 

angular directions), minimizing the influence of localized heterogeneities on heat flow. 

For axial sensors, a thermal contact resistance is created when the temperature sensor is 

embedded within the heat source (Cull, 1978). Measuring the temperature of the 

medium at some distance from the heat source partially avoids this problem, and 

provides a wider range of scales over which the thermal conductivity may be measured. 

Disadvantages include the enhanced potential for contact resistance between the sensor 

and the medium, since the sensor’s area is quite large compared to the more common 



  12 

needle probe, and a reduced ruggedness, since the film containing the thermopile must 

necessarily have low thermal conductivity and heat capacity. 
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3.2 The transient sensor  

We use the TP01 sensor manufactured by Hukseflux Thermal Sensors, which consists 

of a doubled heating element (diameter: 2 x 10-5 m; length: 0.06 m) embedded in a thin 

film, in which a radially-oriented thermopile has also been integrated (Figure 2). The 

heating wire extends 20 mm beyond the thermopile in both axial directions to ensure 

radial heat flow across the thermopile. The thermopile measures the difference in 

temperature between two points 1 and 5 mm from the line source, averaged over 20 

mm. Averaging also occurs over thermopiles on either side of the heating wire.  

The difference in temperatures is related to the thermopile output by a calibration factor 

determined via a one-point calibration in an agar-water solution, in which the agar gel 

prevents convective heat transfer. The modeled temperature holds under the 

assumptions that the medium is well characterized by a thermal conductivity at the 

measurement scale, isotropic and homogeneous; that heat flow is steady, conductive and 

radial, and is not subject to any contact resistance at the sensor-medium interface. A 

typical calibration factor is 6.3 x 10-5 V K-1 (Hukseflux, 2000). The CR10X datalogger 

has a 1 μV resolution, which corresponds to a temperature gradient resolution of about 4 

K m-1. This corresponds to a mean uncertainty in k of 0.01 W m-1 K-1 over the k range of 

0.3 to 4.0 W m-1 K-1, assuming that uncertainties in heat production, thermopile position 

and measurement times are negligible. The thin film encasing the sensor’s heating wire 

and thermopile introduces a minimum thermal surface conductance. It has a thermal 

conductivity of 0.2 W m-1 K-1 and is about 1.5 x 10-4 m thick, leading to an conductance 

of at most H = 3000 W m-2. The temperature dependencies of both the heating wire 

resistance and thermopile output are possible sources of systematic error. The heating 

wire resistance varies less than 0.04 % K-1 over the temperature range -20 to 20 °C and 
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is neglected. We assume that the opposition of the warm and cold junctions 

compensates for the first order temperature dependency of the thermopile. 
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To estimate the thermal conductivity of a sample, the sensor is installed in the sample 

and a current of measured voltage flows through the heating wire for a period sufficient 

to establish a “steady” reading. Thermopile output is measured before, during and after 

heating. In soils, heating typically lasts for 180 s and the temperature gradient is 

monitored for an additional 180 s after heating ceases. This produces a time series of 

data during heating and cooling, both of which can be used to estimate soil thermal 

properties.  

3.3 Field methods 

We have collected data from a site in the northern foothills of the Brooks Range in 

Alaska (68° 29´ N, 149° 29´ W). The site lies in the Galbraith Lake valley, and is 

located in lacustrine deposits partially reworked by streams draining into Galbraith Lake 

as the shoreline receded. The site is thus poorly drained and the water table is within 20 

cm of the ground surface during the growing season. The soil is assumed to remain 

saturated during freezing and thawing. Landcover type is classified as moist non-acidic 

tundra, the soil pedon is classified as a cryaquept and the soil horizons are contorted by 

cryoturbation (Ping, 1998). Permafrost temperatures at 20 m are about –5 °C 

(Osterkamp 2003).  

Installation of sensors followed careful excavation of a soilpit. Soil was removed by 

horizon, and replaced and compacted to close to the original density. Sensors were 

installed in undisturbed soil in the pit wall. The thin film of the thermal conductivity 

sensors here requires careful insertion; we used a thin knife blade to insert the sensor in 

to the soil, a method which has the potential to create gaps around the sensor. The soil 

here is subject to frost heave, and since data here are collected after one complete 

freeze-thaw cycle, it is assumed that the soil has compacted. Measurements considered 
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in this study were taken from sensors installed in a silty clay soil at 0.37 m below the 

ground surface. Soil at this location had an oven-dry (105 °C) bulk density of 0.5 g cm
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-

3, with less than 3% carbon content and particle size percentages by weight of 42% clay, 

45% silt and 13% sand (Soil Survey Staff, 2005). 

In field deployment north of the Artic Circle in Alaska, a datalogger (CR10X, Campbell 

Scientific Inc.) controlled relays connecting the heating wire to the power source. In 

remote field installations, a 12 V battery recharged continuously by a 50 W solar panel 

was the electrical source for the heating wires. The power requirements for frequent 

measurements were met by this system (including a meteorological station with TDR 

unit), with enough reserve power to continue measuring through the winter darkness. 

The datalogger also measures heating power and thermopile voltage. Data in the field 

were analyzed using the line source approximation, following the manufacturer’s 

recommendations, and cooling curves were recorded for later reference, whereas in the 

laboratory, the heating and cooling curves were saved for post-processing. 

3.4 Soil state 

Two thermistors measured temperature proximal to the thermal sensors on an hourly 

basis. The thermistors were calibrated using a de-ionized water-ice mixture, from which 

a thermistor-specific offset, δo, for the Steinhardt-Hart equation was generated: 

( )( ) ( )( )3843 ln1006.9ln1037.21028.11 oToT RRT δδ −×+−×+×= −−−  (22) 328 
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where RT is the measured resistance and δo is the resistance offset at 0 °C. A linear 

interpolation of the soil temperatures was performed to estimate the temperature at the 

sensor location. The thermistors were located 0.05 and 0.12 m from the thermal 

conductivity sensor. Liquid water content was also measured proximal to the thermal 

sensors on an hourly basis using time domain reflectometry to measure the bulk 

apparent dielectric constant of the soil. Topp et al.’s equation (1980) was used to 
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calculate volumetric liquid water contents in thawed soil. Van Loon et al. (1991) 

showed that Smith and Tice’s (1988) empirical frozen soil calibration could be 

explained by assigning a lower relative dielectric permittivity to the unfrozen water 

remaining in the frozen soil. We use his relationship here to calculate the unfrozen 

water content of the frozen soil. TDR accuracy for volumetric water content is estimated 

to be better than 5% following Roth and Boike (2001). 

3.5 Data analysis 

In the following, sensor output is referred to as the temperature gradient. For both of the 

large time approximations, it is assumed that t >> r2/4κ. Soil κ values are expected to 

vary between 1.2 x 10-7 and 1.4 x 10-6 m2 s-1 (Yershov, 1990), so that t >> 2 to 0.2 s for 

r1 = 0.001 m. We consider this condition to be satisfied at t > 100 s. Field data are 

analyzed using the line source approximation, and the heated cylinder approximation. 

For the latter, the slope of the temperature drop data against inverse time is found: 
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The probe-dependent terms are collected to provide: 
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is a probe constant. Estimates of the apparent heat capacity of the soil, Capp, at the time 

of measurement are generated from field soil composition data:  

dT
d

LCC w
wfapp

θ
ρ+=  (25) 355 
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where C is the thermal heat capacity of the soil (Kay et al., 1981), and is calculated as 

the sum of the relative volumetric fraction-weighted heat capacity over the three phases 

ice, water and soil matrix (i, w, s): 
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  (26) ∑
=

=
swin

nnnCC
,,

θρ

where ρn, Cn and θn are the density, specific heat capacity and volumetric fraction of the 

nth soil phase. θi was estimated based on porosity and changes in liquid water content 

during and after freezing. In doing so, we implicitly assume that ice segregation and 

moisture redistribution has a negligible effect on the composition of the measurement 

volume. Volumetric liquid water content was calculated as described in the methods 

section, and the soil matrix volume fraction was assumed to be equal to (1 - θsat), where 

the latter term is the volumetric liquid water content at saturation. The analytical 

solution to the heat flow equation (equation 9) cannot be used to measure the apparent 

thermal conductivity when the apparent thermal conductivity is strongly temperature 

dependent (Kay et al., 1981). This occurs when the liquid water content is strongly 

temperature dependent, generally at temperatures between -0.5 and 0 °C. The rate of 

change in liquid water content with temperature for both the freezing and thawing arms 

of the freezing characteristic curve can be given by an empirical relationship of the 

form: 

HTF G
w +=θ  (27) 374 

375 where θw is the volumetric liquid water content, F, G and H are constants (the offset, H, 

is introduced to better represent the freezing data), and T  is the absolute value of the 

temperature measured in °C. These values were used to calculate the release and 

consumption of latent heat as a function of soil temperature.  
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4 Results and Discussions 379 
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4.1 Sensor calibration 

The radial temperature differences measured by the sensor while embedded in ice from 

degassed, distilled water, in agar gel, in moist clay and in dry sand are plotted as a 

function of time since the beginning of heating in Figure 3. For all four materials, the 

thermal gradient continues to increase with time throughout heating and its magnitude 

after 180 s is inversely proportional to the thermal conductivity of the medium. For high 

thermal conductivity materials, the thermal gradient approaches a linear rate of increase 

more rapidly during heating. The thermal gradient falls very rapidly for high k values 

and slower for low k values within three seconds of the cessation of heating and 

approaches zero as time increases. The manufacturer's suggestions recommend using 

the thermal gradient before and after 180 s of heating, ΔT(180) - ΔT(0), for the 

determination of thermal conductivity. Use of the ΔT(0) term accounts for any thermal 

gradients at the onset of heating. This corresponds to the line source approximation, 

which represents the thermal gradient at large times, when the conditions in Equations 7 

and 8 are satisfied, as a constant. Thermal conductivity values calculated for the sand, 

clay, ice and agar are shown in Table 1. The probe constant, Eo, for the heated cylinder 

is calculated using equation 24 and the accepted value for water and agar. This value is 

used to calculate the thermal conductivity for the other three materials. A manufacturer-

supplied probe constant is applied for the line source approximation and line source fit. 

The heating curves of the same data are plotted in Figure 4 as a function of t-1. Black 

symbols mark those values used to calculate the linear approximation, gray values are 

those neglected in the least squares fit. Earlier measured values were eliminated to 

maximize the coefficient of determination. More values are included for high thermal 

conductivity materials since the thermal gradient resolution decreases with increasing 

thermal conductivity and since materials higher in thermal diffusivity approach linearity 
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as a function of the inverse time more rapidly. Thermal conductivity values using these 

methods, as well as the least squares fit to the line source model, and the large time 

approximation of the heated cylinder, are presented in Table 1. The line source solution 

values are found via least squares curve-fitting to numerical calculations of equation 5 

with thermal conductivity as the fitting parameter. All methods of determination give 

values for the porous materials within the accepted range. Values for agar and for ice 

show greater deviation from the accepted values. The line source performs best for the 

agar, while the heated cylinder approximation comes closest to the ice value. The 

maximum deviation for the agar value is 7%, and 17% for the ice. 
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4.2 Field Data 

Least squares fits of equation 27 to freezing and thawing data collected over three 

freezing and thawing cycles from late summer 2001 until summer 2004 are shown in 

Figure 5. Coefficient values are found using least-squares fitting (freezing: {F, G, H} = 

{0.253, -0.572, 0.051}, r2 = 0.98; thawing: {F, G, H} = {0.169, -0.168, 0}, r2 = 0.93). 

Hysteresis affects the water content at temperatures above -10 °C and may be result of 

at least three processes: solute exclusion from the forming ice increases the 

concentration of solutes in the remaining liquid water, depressing its freezing point; 

capillarity and the irregularity of the pore space cause hysteresis in a fashion analogous 

to that of wetting and drying curves and the soil solution may also super-cool before 

nucleation (Bittelli et al., 2003). The steeper slope of the thawing curve close to the 

freezing point results in higher apparent thermal conductivities for thawing soils than 

for freezing.  

Figure 6 shows the soil temperature, volumetric liquid water content, apparent thermal 

heat capacity and apparent thermal conductivity as a function of time. The soil 

temperature at 0.32 m depth has begun to decrease by the beginning of September. The 

soil reaches a temperature close to 0 °C by September 12th and remains within 0.5 
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degrees of 0 °C for more than one month. During this period, warming of the air 

temperature between October 2nd and 10th lead to an increase of liquid water content 

relative to the pre-freezing saturation water content of 0.48 m
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3 m-3.  

Bulk soil thermal heat capacity values between 2.2 and 3.0 MJ m-3 K-1were calculated, 

which lie within the range for silt and sand soils given by Yershov (1990; 1.2 to 3 MJ 

m-3 K-1). The apparent thermal heat capacity is shown in Figure 6, truncated to 

maximum values of 6 MJ m-3 K-1. During fall freezing, Capp increases to over 800 MJ 

m-3 K-1, probably due to the fact that measurement times were coincident with the soil 

having reached the melting point. Putkonen (2003) observed similar values in thermal 

heat capacity as a function of temperature, with values increasing rapidly as the 

temperature approached the melting point. 

The apparent thermal conductivity of the soil shows a roughly bimodal seasonal 

variation, with lower values in thawed soil than in frozen. This is expected, as the 

thermal conductivity of ice is four times as high as that of water. Global climate models 

which incorporate permafrost usually estimate thaw depth based on bimodal seasonal 

variation in thermal conductivity between a thawed and frozen value. Laboratory 

measurements of thermal conductivity presented by Yershov (1990) and Hinzman 

(1998) show higher values (by factors of up to 2, depending on material and ice and 

water content) for frozen soils than thawed soils for a wide range of soil types, 

including silt, clays, sands and peats. Frozen and thawed soil thermal conductivity 

values are each very weakly dependent on temperature, primarily as a result of the 

temperature dependence of the thermal conductivity of water and ice. The transition 

from frozen to thawed value occurs at sub-zero temperatures. The apparent thermal 

conductivity data observed here show two departures from this model.  

Apparent thermal conductivity spikes occur during spring thaw and during fall freezing, 

during which values increase from 1.0 and 1.4 W m-1 K-1 to 1.3 and 2.8 W m-1 K-1, 



  20 

respectively.  There is a sharp discontinuity in the time series of apparent thermal 

conductivity, so that the duration of this spike can be estimated. It lasts 6 and 11 days in 

the spring and fall, respectively. In the fall, the spike occurs between temperatures of -

0.5 and -1.1 °C, with liquid water contents between 0.4 and 0.35. During thawing, the 

spike begins at -1.9 °C and returns to a stable thawed value after soil temperatures reach 

1.1 °C. The thermal conductivity of the soil close to the freezing point is usually 

assumed to take values close to those that may be interpolated from the frozen and 

thawed values at the same total water content (Hinzman et al., 1991).  
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Thawing occurs over a shorter time span than freezing. The soil temperature increases 

from -0.5 to +0.5 °C in less than one week, while the decrease from +0.5 to -0.5 °C 

occurs over more than one month. At this soil depth, the mean volume-normalized rate 

of freezing is -1.3 MJ d-1 over an 80-day period while the mean rate of thawing is 5.0 

MJ d-1 over a 22-day period. Apart from the influence of different energy balances at the 

surface, thawing is speeded relative to freezing by the infiltration and refreezing of melt 

water from shallower horizons, and by the absence of an insulating snow layer. The line 

source approximation shows increased values of apparent thermal conductivity during 

phase change (Figure 6). The magnitude of the increase is greater during thawing than 

during freezing, probably owing to differences in the way phase change occurs. 

The assumption that moisture redistribution does not occur in the soil after phase 

change begins is invalid in almost any freezing or thawing soil. Moisture is redistributed 

at a spatial scale larger than that of the sensor used here. For example, the downward 

percolation of meltwater in the upper soil profile to lower horizons with refreezing in 

spring (Ippisch, 2003) is a large scale process. However, at the sensor scale, this would 

be reflected in the measured thermal conductivity values. It is also possible that the 

heating required to measure thermal conductivity results in moisture redistribution at the 

scale of the sensor. Moisture is redistributed away from the heating wire radially by the 
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temperature gradient created during heating (DeVries and Peck, 1958b). DeVries and 

Peck (1958b) examined moisture redistribution in response to heating using a needle 

probe by theoretical, numerical and experimental methods, and found that the absolute 

change in moisture content and the influence on measured thermal conductivity are 

small at temperatures below about 40 °C, and that the former approaches zero close to 

saturation. The  magnitude of the redistribution depends on the temperature gradient 

produced, the duration of heating and on the hydraulic diffusivity of the soil. Since the 

heating period here is 180 s, heating power is less than 1 W and the hydraulic 

conductivity of the silty clay is low, this effect is ignored in the unfrozen soil. The 

hydraulic conductivity of frozen soil is orders of magnitude lower than that of the 

unfrozen soil (Burt and Williams, 1976; Kane and Stein, 1983). For the frozen soil, 

latent heat effects are likely to have a much greater influence than redistribution. Fuchs 

et al. (1978) showed theoretically that the effects of phase change on the apparent 

thermal conductivity are limited to a well-defined temperature range, between 0 and -

0.5 °C for a Palouse loam. The lower limit of this temperature dependency is a function 

primarily of total soil water content (Fuchs et al. 1976; Kay et al., 1981). Thermal 

conductivity measurements in the frozen soil may also be affected by cumulative 

migration and freezing of water over multiple measurement cycles at the same position. 

Depending on where the induced temperature gradient and the amount of ice 

accumulated, the thermal conductivity would be increased over the course of multiple 

measurements. We cannot exclude this possibility, but the near one-to-one relationship 

between thermal conductivity and temperature below -10 °C suggests that it depends on 

liquid water content only, and not on measurement history. 
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 Figure 7 shows the variation in apparent thermal conductivity calculated with the line 

source (a) and heated cylinder (b) models using the cooling curve data and the apparent 

heat capacity calculated via equation 25 as a function of soil temperature during two 
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freezing and three thawing periods from May 18, 2002 until July 21, 2004. Cooling 

(grey circles) and warming periods (black crosses) are differentiated on the figure. The 

relatively stable apparent thermal conductivities calculated via the heated cylinder 

approximation when the soil was below -5 °C in the winters of 2002/2003 and 

2003/2004 vary between 1.2 and 1.6 W m
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529 

530 
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-1 K-1. Both winters produce similar values as 

a function of temperature. The values calculated via the line source approximation vary 

as a result of varying temperature differences after 180 s of heating. Warming values 

above 0 °C in 2002 lie between 0.65 and 0.90 and increase to the range 0.90 to 1.05  W 

m-1 K-1 in the summer of 2004. The apparent thermal conductivity of the freezing and 

frozen soil changes slowly over time. The hysteresis-like difference between cooling 

and warming periods of the line source data is not directly related to the liquid water 

content of the soil, which is similar during the winters of 2002/2003 and 2003/2004. 

Both approximations result in slight increases in thermal conductivity with decreasing 

temperature below –10 °C, corresponding to increases in ice content. The rate of 

increase (0.009 W m-1 K-2) in the heated cylinder thermal conductivity is somewhat 

lower than the rate of decrease in thermal conductivity of pure ice with temperature 

(0.011 W m-1 K-2), probably as a result of the composite nature of the soil. Since ice 

segregation proximal to the sensor or an increase in contact resistance would lead to 

higher estimates of k at these temperatures, we suggest that this serves as indication that 

neither of these processes are operative. The freezing and thawing arms of the apparent 

thermal conductivity as calculated with the line source approximation (Figure 7a) 

converge to a narrower range of values as a function of temperature in the temperature 

range (-10, 0 °C) for the heated cylinder approximation (Figure 7b). This suggests that 

the influence of non-conductive processes on the heat flux within the measurement 

volume can be compensated for by accounting for the latent heat change associated with 
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melting of soil pore ice alone. The thermal conductivity values calculated within this 

temperature range are therefore likely to be close to the true values.  
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5 Conclusions 

We develop a large time approximation for the radial temperature gradient in a medium 

surrounding a cylinder with heat production. This approximation is used to model heat 

flow from a transient heat pulse thermal conductivity sensor while using a time series of 

heating data to calculate the apparent thermal conductivity of the soil. A commercially 

available sensor measuring the radial temperature gradient produced results comparable 

to the line source model. Based on the form of the heated cylinder model, thermal 

conductivity sensors that measure the radial temperature gradient, rather than the axial 

temperature, should be operated in a heating, rather than cooling mode. By including 

only first order term in time, terms with thermal surface conductance between the sensor 

and the soil cancel out for the radial temperature difference, suggesting an improvement 

over axial temperature measurements. Thermal conductivity calculated over a freeze-

thaw cycle in the field showed roughly bimodal seasonal variation, with winter thermal 

conductivities 50 % higher than summer values. Using soil composition data to account 

for latent heat effects on thermal conductivity measurements leads to convergence of the 

freezing and thawing arms of the thermal conductivity data, suggesting that the values 

so obtained represent the actual bulk thermal conductivity of the soil.  

This work underscores the importance of recording data on the composition of the soil 

in parallel with soil temperature, particularly at temperatures close to the freezing point. 

Soils in most permafrost landscapes typically spend well over a quarter of the year at 

temperatures between -5 and 0 °C, and this period is critical for many processes in the 

active layer (for carbon release, for example). The relationship between the bulk thermal 

properties of the soil and the temperature and moisture content of the soil will play a 
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role in determining changes to the soil and permafrost as the climate changes. There 

remains a need for more thermal conductivity measurements under field conditions.
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Appendix:  List of Symbols 569 

A constant -- 
B constant -- 

C heat capacity J kg-1 K-1

ES effective sensor constant K s m-2

H surface thermal conductance W m-2 K-1

Jz Bessel function of the 1st kind, zth order -- 

Lf latent heat of fusion J kg-1

P ( ) ( ) ( )uJhukuuJ 1
2

0 α−+=  -- 

Q heat produced per length of source W m-3

R ( ) ( ) ( )uYhukuuY 1
2

0 α−+=  -- 

RT thermistor resistance Ω 

S heat capacity of the heating wire J m-1 K-1  

T temperature of the medium °C  

Ts heating wire temperature °C 

Yz Bessel function of the 2nd kind, zth order -- 

b heat source radius m 

h Biot number -- 

k thermal conductivity W m-1 K-1

q heat production per unit length W m-1

r radius m 

t time s 

ts time at which heat production ceases s 

u integration variable -- 

z order, Bessel function -- 

 ΔT radial temperature gradient K m-1

ΔJ  = J0(uη1) – J0(uη2) -- 

ΔY  = Y0(uη1) – Y0(uη2) -- 
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α twice the ratio of medium to sensor heat capacities -- 

βi ith parameter in parameter set i-dependent 

χi sensitivity to ith parameter i-dependent

δo resistance offset (thermistors) Ω 

γ Euler’s constant, (0.5772156649) -- 

η ratio of radial position to cylinder radius, b -- 

κ medium thermal diffusivity m2 s-1

π pi -- 

θi volumetric content of soil component i m3 m-3

ρ density kg m-3

τ Fourier number -- 

τs dimensionless time at cessation of heat production -- 

 Subscripts  

1, 2 radial positions  

app apparent  

i ice  

w water  

s soil  

S sensor  
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Figure 1. Sensitivities of the radial temperature gradient to the parameters for values b = 

8 x 10-5 m, S = 131 J m-1 K-1, q = 1.5 W m-1, k = 0.3 W m-1 K-1, and κ = 2.5 x 10-7 m2 s-

1, as a function of time since the beginning of heating. χi is defined in the text (equation 

20). The left hand axis is for k and κ, the right hand axis for H, b and S. H-1 was set to 

zero for the other five sensitivities, and to 3000 W K-1 for χH. The units of χi depend on 

i. 

 

Figure 2.  Oblique-view schematic diagram of the Hukseflux TP01 thermal properties 

sensor. The sensor produces a known amount of heat, q, per unit time and length of 

heating wire along the central heating wire. The temperature difference is measured 

between radial distances of 1 (r1) and 5 mm (r2) from the central heating wire (indicated 

by q). This temperature difference is averaged over the central 20 mm of the heating 

wire (longitudinally) and over two angular directions in the plane of the sensor.  

 

Figure 3.  The radial temperature difference as a function of time for the first 180 s of 

heating and then the next 180 s of cooling in four materials is shown. Thermopile and 

heater voltages are recorded with a datalogger. The former is related to the radial 

temperature by the thermopile’s Seebeck coefficient. Heat production by the heating 

wire is related to the resistance of the heating wire, the voltage across it and its length. 

 

Figure 4.  The radial temperature difference for times t < 180 s from Figure 3 is plotted 

here against the inverse of time. Black values are used for the least squares linear fits 

shown and were selected by calculating the minimum absolute change in correlation 

coefficient with the addition of each point. The gray points are not used in the linear fit.  
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Figure 5.  Freezing characteristic curve generated using a time domain reflectometry 

volumetric water content sensor and a temperature sensor proximal to the thermal 

conductivity sensor discussed here. Data are from a three-year period, 2002-2004, and 

include three freezing and thawing cycles. Least-square linear fits to the to the data are 

shown on the graph. 

 

Figure 6.  The soil temperature [°C] and fractional volumetric water content [-] are 

shown in the top graphs, as measured using thermistor and time domain reflectometry 

sensor. The third graph shows apparent heat capacity, truncated to 6 MJ m-3 K-1, 

calculated using equation 25. The lowest graph shows the apparent thermal conductivity 

calculated using large times approximations for the line source solution (black), and for 

the heated cylinder solution (grey). 

 

Figure 7.  The apparent thermal conductivities (W m-1 K-1) calculated using both the line 

source approximation (left) and the heated cylinder approximation (right) plotted 

against soil temperature (°C) from May 18, 2002 until July 21, 2004. Grey circles 

denote measurements made between February 1 and July 31, while black crosses 

indicate measurements between August 1 and January 31. 



Table 1. Calculated thermal conductivities [W m-1 K-1].  
Thermal conductivity 

[W m-1 K-1] 
Moist Clay 

(21 °C) 
Dry Sand 
(21 °C) 

Ice  
(-5 °C) 

Water and agar 
gel (21 °C) 

Accepted a  1.2 – 1.4 0.3 – 0.35 2.38 0.60 

Line source 
approximation 

 
1.36 0.32 1.98 0.59 

Line source model b  1.31 0.31 1.97 0.53 

Heated cylinder 
approximation 

slope 
1.33 c 0.30 c 2.08 ─ d

 intercept 1.45 0.34 2.09 ─ d

a – from Yershov (1990) for sand,, clay and water; from Lide (2005) for ice;  b – the parameter η1/η2 is 
estimated from the manufacturer-provided sensor calibrations;  c – estimated thermal heat capacities of 1.25 
MJ m-3 K-1 and 2.8 MJ m-3 K-1 for dry sand and moist clay were taken from Yershov (1990);  d – used to 
calculate sensor. 
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